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Abstract

In this paper we have shall generalize Shearer’s entropy inequal-

ity and its recent extensions by Madiman and Tetali, and shall apply

projection inequalities to deduce extensions of some of the inequali-

ties concerning sums of sets of integers proved recently by Gyarmati,

Matolcsi and Ruzsa. We shall also discuss projection and entropy

inequalities and their connections.

1 Introduction

In 1949, Loomis and Whitney [10] proved a fundamental inequality bounding
the volume of a body in terms of its (n − 1)-dimensional projections. Over
forty years later, this inequality was extended considerably by Bollobás and
Thomason [3]: they showed that a certain ‘box’ is a solution of much more
general isoperimetric problems.

In 1978, Han [8] proved the exact analogue of the Loomis-Whitney in-
equality for the entropy of a family {X1, . . . , Xn} of random variables, and
in the same year Shearer proved (implicitly) a considerable extension of this
inequality, namely the entropy analogue of the projection inequality that was
to be used some years later in [3] to deduce the Box Theorem. (This extension
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was published only in 1986, in [5].) Recently, Madiman and Tetali [11, 12]
strengthened Shearer’s inequality to a two-sided inequality concerning the
joint entropy H(X1, . . . , Xn).

In this paper we have two main aims. The first is to prove an entropy
inequality that extends both sides of the Madiman-Tetali inequality. Surpris-
ingly, this inequality is not only much more general than the earlier inequal-
ities, but is also just about trivial. Our second aim is to point out that the
projection inequalities imply extensions of some very recent inequalities of
Gyarmati, Matolcsi and Ruzsa [6] concerning sums of sets of integers.

Our paper is organized as follows. In the next two sections we shall review
some of the projection and entropy inequalities. In Section 4 we shall prove
our extremely simple but very general entropy inequality extending those of
Shearer, and Madiman and Tetali. In Section 5 we shall turn to sumsets, and
continue the work of Gyarmati, Matolcsi and Ruzsa. Finally, in Section 6,
we shall state some related unsolved problems.

2 Projection inequalities

As in [3], we call a compact subset of Rn which is the closure of its interior
a body, and write {e1, . . . , en} for the canonical basis of Rn. Given a body
K ⊆ R

n and a set A ⊆ [n] = {1, . . . , n} of d indices, we denote by KA the
orthogonal projection of K into the linear span of the vectors ei, i ∈ A, and
write |KA| for its d-dimensional Euclidean volume. (In particular, K[n] = K.)
The volumes |KA| can be viewed as a measure of the ‘perimeter’ of K. In
1949, Loomis and Whitney [10] (see also [1], [4, page 95] and [7, page 162])
proved the following isoperimetric inequality:

|K|n−1 ≤
n∏

i=1

|K[n]\{i}|. (1)

Close to fifty years later, Bollobás and Thomason [3] proved the following
Box Theorem showing that for the set of projection volumes |KA|, A ⊆
[n], the solution of the isoperimetric problem is a box, i.e., a rectangular
parallelepiped whose sides are parallel to the coordinate axes.

Theorem 1. Given a body K ⊆ R
n, there is a box B ⊆ R

n with |K| = |B|
and |KA| ≥ |BA| for every A ⊆ [n].
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This theorem is equivalent to the assertion that there exist constants
ki ≥ 0 such that

|K| =
n∏

i=1

ki and |KA| ≥
∏

i∈A

ki for all A ⊆ [n]. (2)

An immediate consequence of Theorem 1 is that, if the volume of a box can
be bounded in terms of the volumes of a certain collection of projections,
then the same bound will be valid for all bodies. In particular, the Loomis-
Whitney Inequality (1) is an immediate consequence of the Box Theorem.
In fact, the Box Theorem was deduced from the Uniform Cover Inequality,
which is an even more obvious extension of (1). To state this inequality, we
call a multiset A of subsets of [n] such that each element i ∈ [n] is in at
least k of the members of A a k-cover of [n]. A k-uniform cover or uniform
k-cover is one in which every element is in precisely k members of A. Thus
the sets [n] \ {i} appearing in the Loomis-Whitney inequality (1) form an
(n− 1)-uniform cover of [n]. The Uniform Cover Inequality states that if K
is a body in R

n and A is a k-uniform cover of [n] then

|K|k ≤
∏

A∈A

|KA|. (3)

Clearly, the Uniform Cover Inequality is a trivial consequence of the Box
Theorem. Uniformity is needed for (3) to hold: if A is not k-uniform, then
(3) does not hold for every body K, not even if A is a k-cover. Indeed, if
|KA| < 1 for some A, then we can add an arbitrary number of copies of A to
A, making the right hand side of (3) arbitrarily small.

By identifying a lattice point z ∈ Z
n with the unit cube Q

z
⊆ R

n with
centre z, (3) implies that if S is a finite subset of Zn and SA is the projection
of S to the subspace spanned by {ei : i ∈ A}, then for every uniform k-cover
A of [n] we have

|S|k ≤
∏

A∈A

|SA|. (4)

In fact, in this inequality we do not have to demand that the k-cover A =
{Ai} is uniform: if A′ ⊆ A then |SA′| ≤ |SA|; therefore, by removing elements
from the sets Ai so as to obtain a uniform k-cover A′ = {A′

i} with A′
i ⊆ Ai,

we have |S|k ≤
∏

i |SA′

i
| ≤

∏
i |SAi

|.
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3 Entropy Inequalities

Let us turn to some entropy inequalities related to the projection inequalities
above. As usual, we write H(X) for the entropy of a random variable X ; in
particular, if X is a discrete random variable, then

H(X) = −
∑

k

P(X = k) log2 P(X = k).

It is easily seen that if X takes n values then H(X) ≤ log2 n, with equality if
and only if X is uniformly distributed, i.e., takes every value with probability
1/n. If X and Y are two discrete random variables, then the entropy of X
conditional on Y is

H(X | Y ) = −
∑

k,l

P(X = k, Y = l) log2 P(X = k | Y = l).

The entropy satisfies the following basic inequalities:

H(X, Y ) = H(X | Y ) +H(Y ), (5)

0 ≤ H(X | Y ) ≤ H(X), (6)

H(X | Y, Z) ≤ H(X | Y ), (7)

where, for example, we write H(X, Y ) for the entropy of the joint variable
(X, Y ).

Analogously to our notation concerning projections, given a sequence
X = (X1, . . . , Xn) of n random variables, for A ⊆ [n] we write XA = (Xi)i∈A.
In 1978 Shearer proved the following analogue of (3) for entropy (the result
was first published in [5]). Since H(XA) is a monotone increasing function
of A, in this inequality it makes no difference whether we take A to be a
k-cover or uniform k-cover.

Theorem 2. If A is a uniform k-cover of [n] then

kH(X) ≤
∑

A∈A

H(XA). (8)

A little earlier Han [8] had proved the ‘Loomis-Whitney’ form of The-
orem 2: (n − 1)H(X) ≤

∑
iH(X[n]\{i}). The first non-trivial case of this

inequality is 2H(X, Y, Z) ≤ H(X, Y ) + H(X,Z) + H(Y, Z). Curiously, in
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[5] it is remarked that this special case can be proved analogously to what
we stated as Theorem 2, and so can the case when A is the collection of all
k-subsets of [n].

Some years after the publication of [3] it was noted that Theorem 2 implies
Theorem 1. In fact, the reverse implication is also easy: this follows from the
fact that if p1, . . . , pn are fixed ‘probabilities’ with

∑
pi = 1 and Npi is an

integer for every i, then the number of sequences of length N with Npi terms
equal to i is 2(1+o(1))H(X)N , where X is a random variable with P(X = i) = pi.
Given random variables X1, . . . , Xn, we may assume that Xi takes values in
Vi ⊆ Z, so that X = (X1, . . . , Xn) takes values in V = V1 × · · · × Vn, and
there is an integer d such that dP(X = v) is an integer for every v ∈ V . Let
N be a multiple of d, and let S ⊆ V N ⊆ Z

nN be the set of all sequences in
which v occurs precisely N P(X = v) times. For A ⊆ [n], write Ã ⊆ [nN ]
for the set of all coordinates of V N ⊆ Z

nN that correspond to one of the
factors Vi, i ∈ A. Then SÃ is the set of sequences in V N

A where each value
v ∈ VA occurs N P(XA = v) times. If A is a k uniform cover of [n] then
Ã = {Ã : A ∈ A} is a k uniform cover of [nN ] and so by Theorem 1

|S|k ≤
∏

A∈A

|SÃ|.

Thus
2k(1+o(1))H(X)N ≤

∏

A∈A

2(1+o(1))H(XA)N

and Theorem 2 follows by letting N → ∞.
Recently, Madiman and Tetali [11], [12] strengthened Theorem 2 by re-

placing the entropies H(XA) by certain conditional entropies; furthermore,
they also gave lower bounds for H(X).

Theorem 3. Let X = (Xi)
n
1 be a sequence of random variables with H(X)

finite, and A a uniform k-cover of [n]. For A ⊆ [n] with minimal element
a ≥ 1 and maximal element b, set A∗ = {1, . . . , a − 1} and A∗ = {i /∈ A :
1 ≤ i ≤ b− 1}. Then

∑

A∈A

H(XA | XA
∗ ) ≤ kH(X) ≤

∑

A∈A

H(XA | XA∗
).

It should be noted that Theorem 3 does not follow from Shearer’s In-
equality, Theorem 2.
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Trivially, in the lower bound A may be replaced by a k-packing or a
fractional k-packing, and in the upper bound it may be replaced by a k-
cover or a fractional k-cover, with the obvious definitions.

4 New Entropy Inequalities

Since, as shown in [3], the Box Theorem follows from the Uniform Cover
Inequality (3), one has a Box Theorem type strengthening of Shearer’s In-
equality; in fact, there is a similar strengthening of Theorem 3 as well.

Theorem 4. Let X = (Xi)
n
1 be a sequence of random variables with H(X)

finite. Then there are non-negative constants h1, . . . , hn such that H(X) =∑n
i hi and

H(XA | XA∗) ≤
∑

i∈A

hi ≤ H(XA | XA∗
) for all A ⊆ [n].

Proof. We may take hi = H(Xi | X[i−1]); to prove the inequalities, we induc-
tively apply properties (5–7).

Although Theorem 3 does not follow from Theorem 2 (Shearer’s Inequal-
ity), as we shall see now, it does follow from a result which is extremely easy
to prove but is still a considerable extension of Shearer’s Inequality and a
generalization of the submodularity of the entropy. Before we state this new
inequality, we shall recall a consequence of the basic entropy inequalities, and
introduce a partial order on the collection of multisets of subsets of [n].

First, from (7) and (5) one can deduce that H(XA) is a submodular func-
tion of the set A: if A,B ⊆ [n] then

H(XA∪B) +H(XA∩B) ≤ H(XA) +H(XB). (9)

To see this, note that by (7) we have

H(XB\A | XA) ≤ H(XB\A | XA∩B);

using (5) to expand the first and last terms, we get

H(XA∪B)−H(XA) ≤ H(XB)−H(XA∩B),

which is (9).
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1 2 3 4 5 6

A♯ =

{1, 2}

{1, 2, 3}

{1, 2, 3}

{1, 2, 3, 4, 5, 6}

Figure 1: The minimal compression A♯ of A = {{2, 3, 4}, {1, 3, 5}, {1, 2, 6},
{1, 2}, {1, 3}, {2}}.

Second, let Mn,m be the family of multisets of non-empty subsets of [n]
with a total of m elements. Given a multiset A = {A1, . . . , Aℓ} ∈ Mn,m

with non-nested sets Ai and Aj (thus neither Ai ⊆ Aj nor Aj ⊆ Ai holds),
let A′ = A(ij) be obtained from A by replacing Ai and Aj by Ai ∩ Aj and
Ai ∪ Aj , keeping only Ai ∪ Aj if Ai ∩ Aj = ∅. (If Ai and Aj are nested
then replacing (Ai, Aj) by (Ai ∩ Aj , Ai ∪ Aj) does not change A.) We call
A′ an elementary compression of A. Also, we call the result of a sequence of
elementary compressions a compression.

Let us define a partial order on M(n,m) by setting A > B if B is a
compression of A. That ‘ >′ defines a partial order on Mn,m follows from
the fact that if A′ is an elementary compression of A then

∑

A∈A

|A|2 <
∑

A∈A′

|A|2.

Note that for every multiset A ∈ M(n,m) there is a unique minimal multiset
A♯ dominated by A consisting of the sets

A♯
j = {i ∈ [n] | i lies in at least j of the sets A ∈ A}.

Equivalently, A♯ is the unique multiset that is totally ordered by inclusion
and has the same multiset union as A. If we renumber [n] in such a way that
each A♯

j is an initial segment, then the A♯
js are just the rows of the Young

tableaux associated with the set system A, as in Figure 1. In particular, if
A is a k-uniform cover, then A♯ = k{[n]}.

Here is then our essentially trivial but general entropy inequality.
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Theorem 5. Let X = (Xi)
n
1 be a sequence of random variables with H(X)

finite, and let A and B be finite multisets of subsets of [n]. If A > B then
∑

A∈A

H(XA) ≥
∑

B∈B

H(XB). (10)

Proof. All we have to check is that (10) holds if B is an elementary compres-
sion of A, i.e., if B = A(ij) for some i and j, where A = {A1, . . . , Aℓ}. But
then (10) is equivalent to

H(XAi
) +H(XAj

) ≥ H(XAi∩Aj
) +H(XAi∪Aj

),

which holds by (9), the submodularity of the entropy.

We dignify the special case of Theorem 5 in which B is the minimal
multiset A♯ dominated by A by calling it a theorem. This is the inequality
one is most likely to use.

Theorem 6. Let X = (Xi)
n
1 be a sequence of random variables with H(X)

finite, and let A be a finite multiset of subsets of [n]. Then
∑

A∈A♯

H(XA) ≤
∑

A∈A

H(XA).

Let us illustrate Theorem 5 with a simple example: as {{1, 2}, {1, 3}, {4}} >
{{1, 2, 3}, {1, 4}},

H(X1, X2) +H(X1, X3) +H(X4) ≥ H(X1, X2, X3) +H(X1, X4).

Also, let us point out that even Theorem 6 is stronger than Theorem 3, the
Madiman–Tetali inequality.

Proof of Theorem 6 ⇒ Theorem 3. SinceH(XA | XB) = H(XA∪B)−H(XB),
the upper bound inequality is

kH(X) +
∑

A∈A

H(XA∗
) ≤

∑

A∈A

H(XA∪A∗
),

which follows from the fact that the multiset C1 = {A∗ : A ∈ A} ∪ k{[n]} is
totally ordered and has the same multiset union as C2 = {A ∪ A∗ : A ∈ A},
so C1 = C♯

2. Similarly, the lower bound inequality is equivalent to
∑

A∈A

H(XA∪A∗) ≤
∑

A∈A

H(XA∗) + kH(X).
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Figure 2: A body K made up of five unit cubes. Coordinate ‘1’ is horizontal.

which follows from the fact that the multiset C3 = {A∪A∗ : A ∈ A} is totally
ordered and has the same multiset union as C4 = {A∗ : A ∈ A} ∪ k{[n]}, so
C3 = C♯

4.

The inequality corresponding to Theorem 6 in terms of projections of
bodies is false. For example, consider the set K in Figure 2. Then |K| = 5,
|K{1}| = 2, but |K{1,2}| = |K{1,3}| = 3, so

|K{1,2,3}||K{1}| > |K{1,2}||K{1,3}|.

5 Sumsets

Let S1, . . . , Sn be finite sets in a commutative semigroup with sum

S = S1 + · · ·+ Sn = {s1 + · · ·+ sn : si ∈ Si for every i}.

For A ⊆ [n] set SA =
∑

i∈A Si, so that S[n] = S. We shall think of S as
an n-dimensional body in R

n and SA as its canonical projection into the
subspace spanned by {ei : i ∈ A}. Gyarmati, Matolcsi and Ruzsa [6] proved
the analogue of the Loomis-Whitney inequality in this context. In fact, the
analogue of the Uniform Cover inequality and Box Theorem are just as easy
to show.

To see this, put an arbitrary linear order on each of the sets Si. For
each A = {i1, . . . , ir} ⊆ [n] define an embedding ϕA of SA into the Cartesian
product

∏
i∈A Si by mapping s ∈ SA to the lexicographically least element

(si1, . . . , sir) of
∏

i∈A Si with coordinates summing to s. (In fact, there are
many other orders we could choose instead of the lexicographic order: all
we need is that the assertions below hold for these orders.) As shown by
Gyarmati, Matolcsi and Ruzsa [6], the projection of S ′ = ϕ[n](S[n]) into∏

i∈A Si is contained in ϕA(SA). To see this, note that if (s1, . . . , sn) ∈ S ′

9



then any projection (si1 , . . . , sir) is lexicographically minimal with the same
sum, since if si1 + · · ·+ sir = s′i1 + · · ·+ s′ir with (s′i1, . . . , s

′
ir
) < (si1, . . . , sir),

then s1+ · · ·+ sn = s′1+ · · ·+ s′n and (s′1, . . . , s
′
n) < (s1, . . . , sn) where s

′
i = si

if i /∈ A. Thus |(S ′)A| ≤ |ϕA(SA)| = |SA|. Now the following result is
immediate from Theorem 1 applied to S ′.

Theorem 7. There are constants λ1, . . . , λn ≥ 0 such that

|S| =
n∏

1

λi and |SA| ≥
∏

i∈A

λi for all A ⊆ [n].

In particular, if A is a uniform k-cover of [n] then

|S|k ≤
∏

A∈A

|SA|.

Using a similar approach, one can prove the following, which is stated
(with a slight error) as an open problem in [6].

Theorem 8. If A,B1, . . . , Bk are finite sets of integers and C ⊆ B1 + · · ·+
Bk, then

|A+ C|k ≤ |C|k−1
k∏

i=1

|A+Bi|. (11)

Proof. For convenience, write n = k + 1 and Bn = Bk+1 = A. Define maps
ϕT , T ⊆ [n], as above. Let S ′ be ϕ[n](C + Bn). Then |S ′

[k]| ≤ |C| and

|S ′
{i,n}| ≤ |Bi + Bn|. The result follows by applying (4) to S ′ and the k-

uniform cover of [n] consisting of the following 2k−1 sets: the k pairs {1, n},
{2, n}, . . . , {k, n}, and the k-set [n− 1] taken k − 1 times.

One can have equality in Theorem 8, for example, if A = [n], C = B1 =
{0, n}, B2 = · · · = Bk = {0}. This shows that inequality (11) may break
down if |C|k−1 is replaced by |C|i with i < k − 1.

It is worth noting that one can prove a lower bound on |S| which is
additive in the |SA| in the case when the sets Si lie in a torsion free abelian
group. This generalizes Theorem 1.1 of [6].

Theorem 9. If the sets Si lie in a torsion-free abelian group then there are
subsets S ′

i ⊆ Si of cardinality at most 2 such that for any uniform k-cover
A of [n] we have

k(|S| − 1) ≥ k(|S ′| − 1) ≥
∑

A∈A

(|SA| − 1),

10



where S ′ is the set of sums s1 + · · ·+ sk ∈ S such that {i : si /∈ S ′
i} ⊆ A for

some A ∈ A.

Proof. We first note that any torsion-free abelian group can be given an
ordering compatible with addition.

Pack a k × n grid with the sets A ∈ A in the obvious manner: each
A = {j1, . . . , jr} is packed as a set of pairs A′ = {(i1, j1), . . . , (ir, jr)} so that
the A′, A ∈ A, are disjoint and cover the whole of [k] × [n]. The iks are
otherwise arbitrarily chosen.

We may assume without loss of generality that the minimum elements of
Si are all equal to 0. Let ai be the maximum element of Si. The set S ′

i will
be chosen to be {0, ai}. For convenience write aT =

∑
i∈T ai. We shall mark

k copies of S − {0} as follows.
Process each element of [k]× [n] in the lexicographic order — i.e.,

(1, 1), . . . , (1, n), (2, 1), . . . , (2, n), . . . . . . , (k, n).

Suppose we are processing (i, j). Then (i, j) = (it, jt) for some A ∈ A. In
the i’th copy of S ′ − {0}, mark all the elements that are in

a[j]−A + SA ∩ (a[j−1], a[j]].

Note that all elements of a[j]−A + SA lie in S ′ (indeed in SA∪[j] ∩ S ′), and,
subtracting a[j]−A, the number of elements marked is equal to the number of
elements of SA that lie in the interval

(a[j−1]∩A, a[j]∩A].

(Note by assumption j ∈ A so [j] − A = [j − 1] − A). Now it is clear that
for distinct (i, j), distinct elements are marked (since they all lie in the i’th
copy of S ′ ∩ (a[j−1], a[j]] and these sets are distinct), so at most k(|S ′| − 1)
elements are marked in total. (The element 0 ∈ S is not included in any of
the intervals (a[j−1], a[j]].) However, every element in SA − {0} lies in some
interval (a[j−1]∩A, a[j]∩A] for some j ∈ A, so results in some element being
marked. Since it is clear that |S| ≥ |S ′|, the result follows.

Corollary 10. If the sets Si lie in a torsion-free abelian group then there
exists constants σi such that

|S| − 1 =
n∑

i=1

σi and |SA| − 1 ≤
∑

i∈A

σi for all A ⊆ [n].
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Theorem 9 fails for groups with torsion when, for example, all Si are
equal to some non-trivial finite subgroup. If we insist that |S| is smaller
than the order of the smallest non-trivial subgroup then we have the famous
Cauchy–Davenport theorem, which can be written in the following form.

Theorem 11. If S1, . . . , Sn are non-empty subsets of Zp and S = S1+ · · ·+
Sn, then either |S| ≥ p or

|S| − 1 ≥
∑

i

(|Si| − 1). �

Theorem 11 is the analogue of Corollary 10 for the 1-uniform cover A =
{{1}, . . . , {n}}, and can be extended to all finite (even non-abelian) groups
as is shown in [9] and [13] (see also [2]).

Theorem 12. If S1, . . . , Sn are non-empty subsets of a finite group G and
S = S1 ⋆ · · · ⋆ Sn (⋆ denoting the group operation), then either |S| ≥ p or

|S| − 1 ≥
∑

i

(|Si| − 1).

where p is the smallest prime dividing |G|. �

Unfortunately, Theorem 12 does not generalize to more general covers.
For example, if S1 = S2 = S3 = {0, 1, 3, 5} ⊆ Z13 then |S1+S2| = |S1+S3| =
|S2 + S3| = 9 and |S1 + S2 + S3| = 12, so

2(|S1 + S2 + S3| − 1) < (|S1 + S2| − 1) + (|S1 + S3| − 1) + (|S2 + S3| − 1).

6 Conjectures

The most obvious problems related to the results above concern general (not
necessarily commutative) groups. In fact, Ruzsa has already asked whether
a suitable analogue of the inequality corresponding to the Loomis–Whitney
inequality holds for all groups. It is not unreasonable to hope that the
analogue of the Box Theorem (or Cover Inequality) holds as well, as does the
extension of Corollary 10. To state these conjectures, given finite non-empty
sets S1, . . . , Sn in a group G with operation ⋆ as above, and a set A ⊂ [n],
write NA for the maximal number of elements in a product set obtained from
S1 ⋆ · · · ⋆ Sn by replacing each Si, i /∈ A, by a single element of Si. Similarly,
write nA for the corresponding minimum.

12



Conjecture 13. Let S1, . . . , Sn be non-empty finite subsets of a group. Set
S = S1⋆· · ·⋆Sn, and let NA be as above. Then there are constants λ1, . . . , λn >
0 such that

|S| =
n∏

1

λi and NA ≥
∏

i∈A

λi for all A ⊆ [n]. �

Conjecture 14. Let S1, . . . , Sn be non-empty finite subsets of a group, and
let S and nA be as above. Then there are constants σi such that

|S| − 1 =
n∑

i=1

σi and nA − 1 ≤
∑

i∈A

σi for all A ⊆ [n].

In conclusion, we should say that both these conjectures are rather ten-
tative: we would not be amazed if they turned out to be false.
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