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ANALOGUES OF THE CENTRAL POINT THEOREM FOR FAMILIES

WITH d-INTERSECTION PROPERTY IN R
d

R.N. KARASEV

Abstract. In this paper we consider families of compact convex sets in R
d such that

any subfamily of size at most d has a nonempty intersection. We prove some analogues
of the central point theorem and Tverberg’s theorem for such families.

1. Introduction

Let us start with a definition:

Definition 1.1. A family of sets F has property Πk if for any nonempty G ⊆ F such that
|G| ≤ k the intersection

⋂

G is not empty.

Helly’s theorem [7] states that a finite family of convex sets (or any family of convex
compact sets) with Πd+1 property in R

d has a common point. In the review [4] Helly’s
theorem and many its generalizations are considered in detail.
In this paper we concentrate on the families with Πd property in R

d, the “almost” Helly
property. The typical example of a family with Πd property is any family of affine hyper-
planes in general position. It can be easily seen already in the case of affine hyperplanes
that such a family need not have a common point, and even need not have a bounded
piercing number, which is the smallest size of a finite set intersecting any set of the family.
The reader may also consult [10], where some bounds on the piercing number following
from the Πd property are given for particular families of sets, for example, balls of equal
radii, balls of arbitrary radii, or translates of a single convex compact set in the plane.
An important consequence of Helly’s theorem is the central point theorem [5, 18, 19]

for measures: For every absolute continuous probability measure µ on R
d one can find a

central point, that is a point x such that any halfspace H ∋ x has µ(H) ≥ 1
d+1

. Here we
discuss the discrete central point theorem for finite point sets instead of measures: For
a finite set X ⊂ R

d there exists a central point x ∈ R
d such that any half-space H ∋ x

contains at least

r =

⌈

|X|

d+ 1

⌉

points of X . Here |X| denotes the cardinality of X .
In [11] several “dual” analogues of the central point theorem were established for the

families of affine hyperplanes. For example, if F is a family of affine hyperplanes in R
d

then there exists a point x ∈ R
d such that any ray staring at x intersects at least

r =

⌈

|F|

d+ 1

⌉
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2 R.N. KARASEV

affine hyperplanes of F . The word “dual” here does not mean that this theorem follows
from the original discrete central point theorem by the projective duality or some other
transformation; this “dual” theorem in fact requires a separate proof using some topology.

Here we prove an analogue of the dual central point theorem for every family of convex
compact sets with Πd property:

Theorem 1.2. Let a finite family F of convex closed sets in R
d have property Πd. Then

there exists a point x ∈ R
d such that any unbounded continuous curve that passes through

x intersects at least

r =

⌈

|F|

d+ 1

⌉

sets in F .

Similar to what is done in [11] it is natural to generalize this theorem in the spirit of
Tverberg’s theorem [20]. First, we have to make a definition. For a family G of d + 1
compact convex sets in R

d with Πd property we have two alternatives: either all the sets
in G have a common point, or the nerve of the family G (see [4] for the discussion of
nerves) is a simplicial complex equal to the boundary ∂∆d of the standard d-simplex. By
the nerve theorem the union

⋃

G is homotopy equivalent to ∂∆d (or a (d−1)-dimensional
sphere) and by the Alexander duality [6, Theorem 3.44] the complement Rd \

⋃

G consists
of two connected components, one being bounded and the other being unbounded. Now
it is natural to make a definition:

Definition 1.3. Consider a family G of d+1 convex compact sets in R
d with Πd property.

If the family G has no point in common, then the complement of its union consists of two
connected components: X and Y , where X is bounded and Y is unbounded. In this case
for any point x ∈ X we say that G surrounds x.

Remark 1.4. A typical example is: d + 1 facets of any d-dimensional simplex surround
any point in the interior of the simplex.

Now we state the analogue of the Tverberg theorem:

Theorem 1.5. Let a finite family F of convex compact sets in R
d have property Πd.

Suppose the number

r =

⌈

|F|

d+ 1

⌉

is a prime power. Then there exists a point x ∈ R
d and r pairwise disjoint nonempty

subfamilies F1, . . . ,Fr ⊆ F such that the following condition holds for any i = 1, . . . , r:
1) either some member of Fi contains x;
2) or the family Fi surrounds x.

We conjecture that this result holds without the assumption that r is a prime power.
In this case this would imply Theorem 1.2 directly, because any unbounded continuous
curve through x must intersect some element of every Fi. It turns out that in order to
deduce Theorem 1.2, it is sufficient (see Section 6) to prove Theorem 1.5 only for prime
numbers r.

It is also possible to give a generalization of Theorem 1.5 in the spirit of Tverberg’s
transversal conjecture [21]; see also [3, 9, 11, 22, 25] for proofs of some particular cases of
Tverberg’s transversal conjecture and similar results.

Definition 1.6. Consider a family G of d−m+ 1 convex compact sets in R
d with Πd−m

property and an affine m-subspace L. We say that G surrounds L if π(G) surrounds the
point π(L), where π is the projection along L.
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Theorem 1.7. Suppose that each of m+ 1 families Fi (i = 0, . . . , m) of convex compact
sets in R

d have property Πd−m. Let the numbers

ri =

⌈

|Fi|

d−m+ 1

⌉

be powers of the same prime p and
a) either p = 2;
b) or d−m is even;
c) or m = 0.
Then there exists an affine m-subspace L and, for every i = 0, . . . , m, some ri pairwise

disjoint nonempty subfamilies Fi1, . . . ,Firi ⊆ Fi such that for any i = 0, . . . , m and
j = 1, . . . , ri the following condition holds:
1) either some member of Fij intersects L;
2) or the family Fij surrounds L.

The casem = 0 is inserted here to make a unified statement with Theorem 1.5. Actually,
in this theorem the sets need not be convex, it is sufficient that all their projections to
linear (d−m)-subspaces are convex; this property is sometimes called (d−m)-convexity.
The assumption that ri are prime powers is essential in the proof of Theorem 1.7 since

the action of a p-torus on the configuration space is required, see Section 5. Of course, it
is natural to conjecture that this restriction is not necessary.
While this paper was considered and reviewed in the journal, another paper [12] with

similar results was published. So the content of this paper has a large intersection with
that of [12].
Acknowledgments.

The author thanks V.L. Dol’nikov for the discussions that have lead to formulation of
these results and the unknown referee for numerous helpful suggestions.

2. Facts from topology

We consider topological spaces with continuous (left) action of a finite group G and
continuous maps between such spaces that commute with the action of G. We call them
G-spaces and G-maps. We mostly consider groups G = (Zp)

k for prime p, so-called p-tori.
For basic facts about (equivariant) topology and vector bundles the reader is referred

to the books [8, 14, 17]. The cohomology is assumed with coefficients in Fp (p is the same
as in the definition of G), we omit the coefficients from notation. Let us start from some
standard definitions. In this paper we assume Čech cohomology, it is safe to make such
assumptions in results like Lemma 3.4.

Definition 2.1. Denote by EG the classifying G-space, which can be thought of as an
infinite join EG = G ∗ · · · ∗ G ∗ . . . with diagonal left G-action. Denote BG = EG/G.
For any G-space X denote by XG = (X × EG)/G, and put (equivariant cohomology in
the sense of Borel) H∗

G(X) = H∗(XG). It is easy to verify that for a free G-space X the
space XG is homotopy equivalent to X/G.

Consider the algebra ofG-equivariant cohomology of the point AG = H∗
G(pt) = H∗(BG).

For a group G = (Zp)
k the algebra AG = H∗

G(Zp) has the following structure (see [8]). In
the case p odd it has 2k multiplicative generators vi, ui with dimensions dim vi = 1 and
dim ui = 2 and relations

v2i = 0, βvi = ui,

where we denote by β(x) the Bockstein homomorphism.
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In the case p = 2 the algebra AG is the algebra of polynomials of k variables v1, . . . , vk
of degree one.

We are going to find the equivariant cohomology of a G-space X using the following
spectral sequence (see [8, 16]):

Proposition 2.2. The natural fiber bundle πXG
: XG → BG with fiber X gives the spectral

sequence with the E2-term
Ex,y

2 = Hx(BG;Hy(X)),

having a structure of a graded AG-module, and converging to a graded AG-module, asso-
ciated with the filtration of H∗

G(X).
The system of coefficients Hy(X) is obtained from the action of G = π1(BG) on the

cohomology Hy(X). The differentials of this spectral sequence are homomorphisms (of
corresponding degree) of graded AG-modules.

This proposition implies the following: If the space X is (n − 1)-connected then the
natural map Am

G → Hm
G (X) is injective in dimensions m ≤ n.

Any representation of G can be considered as a vector bundle over the point pt, and
it has corresponding characteristic classes in H∗

G(pt). We need the following lemma, that
follows from the results of [8, Chapter III, § 1] (see also [13, 23]):

Lemma 2.3. Let G = (Zp)
k, and let I[G] be the subspace of the group algebra R[G],

consisting of elements
∑

g∈G

agg,
∑

g∈G

ag = 0.

Then the Euler class e(I[G]) 6= 0 ∈ AG and is not a divisor of zero in AG.

In this lemma the assumption that G = (Zp)
k is essential.

We also need the following folklore fact on the Grassmann variety (see [3, 9, 25] for
its different applications). Consider the canonical bundle over the Grassmann variety
γ : E(γ) → Gd−m

d . In the case p = 2 we consider the variety of non-oriented linear
(d−m)-subspaces, and for odd p we consider the variety of oriented subspaces.

Lemma 2.4. For the Euler class e(γ) modulo p the following holds

e(γ)m 6= 0 ∈ Hm(d−m)(Gd−m
d ;Fp),

if either p = 2, or d − m is even, or m = 0. In the latter case we put e(γ)0 = 1 ∈
H0(Gd−m

d ;Fp) by definition.

It is hard to locate the place where this lemma was proved for the first time (for example,
it follows from Schubert calculus); one particular reference for the proof is [9, Lemma 8],
where this class in the oriented case is shown to be Poincaré dual to a set of two points
with same signs. In the non-oriented case and mod 2 cohomology this class is Poincaré
dual to a single point, which is a nontrivial 0-cycle mod 2.

3. Topology of Tverberg’s theorem

In Tverberg’s theorem and its topological generalizations (see [1, 24] for example) it is
important to consider the configuration space of r-tuples of points x1, . . . , xr ∈ ∆N with
pairwise disjoint supports. Here ∆N is a simplex of dimension N . Let us make some
definitions, following the book [15].

Definition 3.1. Let K be a simplicial complex. Denote by Kr
∆ the subset of the r-fold

product Kr, consisting of the r-tuples (x1, . . . , xr) such that every pair xi, xj (i 6= j) has
disjoint supports in K. We call Kr

∆ the r-fold deleted product of K.
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Definition 3.2. Let K be a simplicial complex. Denote by K∗r
∆ the subset of the r-fold

join K∗r, consisting of convex combinations w1x1 ⊕ · · · ⊕wrxr such that every pair xi, xj
(i 6= j) with weights wi, wj > 0 has disjoint supports in K. We call K∗r

∆ the r-fold deleted
join of K.

Note that the deleted join is a simplicial complex again, while the deleted product has
no natural simplicial complex structure, although it has some cellular complex structure.
The r-fold deleted product of the simplex ∆(r−1)(d+1) is the natural configuration space

in Tverberg’s theorem, but sometimes it is simpler to use the deleted join because of the
following fact. Denote by [r] the set {1, . . . , r} with the discrete topology, the following
lemma is well-known, see [15] for example.

Lemma 3.3. The deleted join of the simplex (∆N)∗r∆ = [r]∗N+1 is (N − 1)-connected.

If r is a prime power r = pk, then the group G = (Zp)
k can be somehow identified

with [r], so a G-action on Kr
∆ and K∗r

∆ by permuting the r factor arises. In this case
Proposition 2.2 and the above lemma imply that the natural map Al

G → H l
G((∆

N)∗r∆ ) is
injective in dimensions l ≤ N . We need a similar fact for deleted products, following from
the next lemma:

Lemma 3.4. Let r = pk, G = (Zp)
k, and let K be a simplicial complex. If the natural

map Al
G → H l

G(K
∗r
∆ ) is injective for l ≤ N , then the similar map Al

G → H l
G(K

r
∆) is

injective for l ≤ N − r + 1.

Proof. Define the map α : K∗r → R[G] as follows. Let α map a convex combination
w1x1 ⊕ · · · ⊕ wrxr ∈ K∗r to (w1, . . . , wr) ∈ R

r, the latter space is identified with R[G], if
we identify the set [r] with G. This map is G-equivariant.
Consider the natural orthogonal projection π : R[G] → I[G] (the latterG-representation

is defined in Lemma 2.3) and the natural inclusion ι : K∗r
∆ → K∗r. The map β = π ◦α◦ ι :

K∗r
∆ → I[G] is G-equivariant, and it can be easily checked that

Kr
∆ = {y ∈ K∗r

∆ : β(y) = 0}.

Now assume the contrary: the image of some nonzero element ξ ∈ Al
G is zero in

H l
G(K

r
∆) and l ≤ N − r+ 1. We denote the classes in AG and their natural images in the

equivariant cohomology of G-spaces by the same letters if it does not lead to confusion.
Put e(I[G]) = e ∈ Ar−1

G for brevity.
The Euler class of a vector bundle is zero outside the zero set of a section of the bundle.

Indeed, if Z is the zero set of a section s of a vector bundle ν over a space X , then the
restriction of ν to X \ Z has a nonzero section s. Therefore ν|X\Z has zero Euler class
and the needed claim follows from the naturality of the Euler class: the Euler class of the
restriction is the restriction of the original Euler class.
So we know that e vanishes in Hr−1

G (K∗r
∆ \ Kr

∆). By the standard property of the
cohomology product (often used to estimate the Lusternik–Schnirelman category by the
cup-length) we obtain that the class eξ vanishes over (K∗r

∆ \Kr
∆) ∪K

r
∆, that is over the

whole K∗r
∆ . By Lemma 2.3 eξ 6= 0 ∈ Al+r−1

G , and we come to contradiction with the
injectivity condition in the statement of this lemma. �

4. Proof of Theorem 1.5

It would be sufficient to prove Theorem 1.7, since Theorem 1.5 is its particular case.
Though we give a separate proof for Theorem 1.5 to clarify the exposition. The reasoning
in this proof (and the subsequent proofs) is essentially the same as in [11, 12].
Consider the simplex ∆ = ∆n−1, along with some identification of its vertices with

the members of F . Take some large enough ball B ⊂ R
d, containing all the sets of F
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in its interior. The configuration space that we study is ∆r
∆ × B, denote its elements

by (y1, y2, . . . , yr, p). The points yi in the simplex ∆ will be considered in barycentric
coordinates as functions yi : F → R

+ each of them having unit sum of values. The
condition that an r-tuple (y1, . . . , yr) lies in the deleted product means that the supports
of these functions are pairwise disjoin.

Put for brevity R
d = V . Now let us map our configuration space to V r by the following

rule. Let πK(p) be the metric projection of p to K ∈ F sending every p to the closest to
p point in K; this map is 1-Lipschitz and therefore continuous. Put

f(y1, y2, . . . , yr, p) =
r

⊕

i=1

∑

K∈F

yi(K)(πK(p)− p),

This map is evidently continuous andG-equivariant, if we identify V r with V [G] (V -valued
functions on G with G-action by right multiplication by g−1).

The map f can be considered as a section of a G-equivariant vector bundle V [G] ×
∆r

∆ × B → ∆r
∆ × B. This bundle is trivial by definition but the action of G makes

it equivariantly nontrivial. The relative Euler class of this section1 can be decomposed
according to the decomposition V [G] = V ⊕ V ⊗ I[G], multiplicativity of the relative
Euler class (see [11]), and the Künneth formula:

e(f) = wd × u ∈ Hrd
G (∆r

∆ × B,∆r
∆ × ∂B) = H

d(r−1)
G (∆r

∆)⊗Hd(B, ∂B).

Here w is the image of e(I[G]) in Hr−1(∆r
∆) and u is the generator of Hd(B, ∂B). We

indeed obtain u as the second factor because for any fixed (y1, . . . , yr) the corresponding
projection f ′′ of the section f to the summand V corresponds to a vector pointing from
p to a convex combination of vectors πK(p). If B contains all sets of F in its interior
as we have assumed, then this vector always points inside B for p ∈ ∂B. Hence the
corresponding Euler class is the same as in the Brouwer fixed point theorem [2], which is
the generator of Hd(B, ∂B).

By Lemmas 2.3 and 3.4, wd 6= 0 ∈ H
d(r−1)
G (∆r

∆), and the Künneth formula implies that
e(f) 6= 0.

The map f therefore must have a zero, let it be (y1, y2, . . . , yr, p). For any K ∈ F
there is at most one i ∈ [r] such that yi(K) > 0, since yi’s have disjoint supports. In this
case we put K to the subset Fi. From the definition of f it follows that for any i the
projections of p to the sets K ∈ Fi have p in their convex hull.

We use the following lemma:

Lemma 4.1. Let a family G = {G1, . . . , Gd+1} of convex compact sets in R
d have property

Πd. Let a point p ∈ R
d be such that p lies in the interior of the convex hull of g1, . . . , gd+1,

where gi is the closest to p point in Gi. Then G surrounds p.

Proof of Lemma 4.1. Consider the half-spaces

Hi = {x ∈ R
d : (x, gi − p) ≥ (gi, gi − p)}

and note that Gi ⊆ Hi. Clearly,
⋂d+1

i=1 Hi = ∅.
For any i = 1, . . . , d + 1 the nonempty intersection

⋂

j 6=iGj is contained in
⋂

j 6=iHi,

take one point xi ∈
⋂

j 6=iGj . The simplex ∆ = convd+1
i=1 {xi} contains R

d \
⋃d+1

i=1 Hi ∋ p

(compare [10, Lemma 1]), and every its facet ∂i∆ = convj 6=i{xi} is contained in the
corresponding Gi.

1 The reader is referred to [11] for properties of the relative Euler class. It is important that the
relative Euler class depends on both the vector bundle and its section.
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Thus p 6∈
⋃d+1

i=1 Gi and is separated from infinity by
⋃d+1

i=1 Gi ⊇ ∂∆, so G surrounds p
by definition. �

If p coincides with one of πK(p) (for K ∈ Fi), then p is already contained in
⋃

Fi. If
p lies in the interior of the convex hull of some d + 1 points of {πK(p)}K∈Fi

, we reduce
Fi so that it contains only those d + 1 corresponding sets K and note that {πK(p)}K∈Fi

surround p by Lemma 4.1, and therefore Fi surrounds p.
If none of the above two alternatives holds, then p lies in the relative interior of the

convex hull of some n < d + 1 points πK1
(p), . . . , πKn

(p), K1, . . . , Kn ∈ Fi. Denote the
half-spaces

HK = {x ∈ R
d : (x, πK(p)− p) ≥ (πK(p), πK(p)− p)}.

Note that K ⊆ HK (since π is the projection) and the half-spaces HK1
, . . . , HKn

have
empty intersection. So some n < d + 1 sets of Fi have an empty intersection that
contradicts the Πd property. So the case n < d+1 is impossible and the proof is complete.

5. Proof of Theorem 1.7

For any affinem-subspace L denote the unique linear (d−m)-subspace in R
d, orthogonal

to L, by L⊥. It is easy to see that L is determined uniquely by L⊥ and the point L∩L⊥.
So the variety of all affine m-subspaces is the total space of the canonical bundle γd−m

d

over the Grassmann variety Gd−m
d .

For any V ∈ Gd−m
d denote the orthogonal projection of Rd onto V by πV . For any

X ∈
⋃m

i=0Fi, V ∈ Gd−m
d , and p ∈ V denote by φ(V, p,X) the closest to p point in πV (K).

This point depends continuously on the pair (V, p) (a standard technical argument showing
this is omitted) and lies in V .
Fix some i = 0, . . . , m and define a linear map ψi : Ki = ∆|Fi|+1 → V that maps the

vertices of the simplex (corresponding to X ∈ Fi) to the points φ(V, p,X)− p for X ∈ Fi

and is piece-wise linear. Denote by ξi : (Ki)
ri
∆ → V ri the corresponding map of the deleted

product. This map is the analogue of f from the previous proof, but we have to define
one such map for every Fi.
Let the group Gi = (Zp)

ki, where ri = pki, act on the deleted product Li = (Ki)
ri
∆

and on V ri by permutations, we put V ri = V [Gi] to indicate this action, the map ξi thus
becomes Gi-equivariant.
In the sequel we put γd−m

d = γ for brevity. Summing up all the maps we obtain a map

ξ : L0 × · · · × Lm → V [G0]⊕ · · · ⊕ V [Gm].

The map ξ also depends on the pair (V, p) ∈ E(γ) continuously, so actually it gives a
section ξ of the vector bundle ν with fiber V [G0]⊕· · ·⊕V [Gm] over the space E(γ)×L0×
· · ·×Lm. Here V as a function of the pair (V, p) can be treated as the pullback of the vector
bundle γ → Gd−m

d by the map γ : E(γ) → Gd−m
d . We denote this pullback by γ (it does

not make a confusion) and therefore assume ξ to be a section for γ⊗(R[G0]⊕· · ·⊕R[Gm]).
To prove the theorem we have to find V ∈ Gd−m

d , p ∈ V, (y0, . . . , ym) ∈ L0 × · · · × Lm

such that ξ(V, p, y0, . . . , ym) = 0.
If we take the bundle of large enough balls B(γ) in γ, the section ξ obviously has no

zeros over ∂B(γ)× L0 × · · · × Lm (this happens when all the balls ∂B(γ) contain all the
projections πV (X) for X ∈

⋃

iFi in their interiors). To guarantee the zeros for the section
ξ, we have to find the relative Euler class

e(ξ) ∈ H
(d−m)(r0+···+rm)
G0×···×Gm

(B(γ)× L0 × · · · × Lm, ∂B(γ)× L0 × · · · × Lm).

Put for brevity G = G0 × · · · ×Gm.
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Let us decompose the bundle ν and its section ξ in the following way. Any V [Gi] can be
split V [Gi] = V ⊗R[G] = V ⊗R⊕V ⊗ I[Gi] = V ⊕V ⊗ I[Gi]. So the section ξ splits into
section η of the bundle υ = γm+1 and ζ of the bundle ω = γ⊗

⊕m

i=0 I[Gi], and ν = υ⊕ω.
The section η has no zeroes on ∂B(γ)×L0×· · ·×Lm and, in fact, for large enough balls

in B(γ) the homotopy ηt = (1−t)η+t(−p, . . . ,−p) connects it to the section (−p, . . . ,−p)
so that ηt has no zeroes on ∂B(γ) × L0 × · · · × Lm for all t ∈ [0, 1]. The section η1 does
not depend on the factor L0 × · · · ×Lm and it can be easily seen that (see [11], the proof
of Theorem 6)

e(η) = u(γ)e(γ)m × 1 ∈ H(d−m)(m+1)(B(γ), ∂B(γ))×H0
G(L0 × · · · × Lm) ⊂

⊂ H(d−m)(m+1)(B(γ)× L0 × · · · × Lm, ∂B(γ)× L0 × · · · × Lm),

where u(γ) is the Thom’s class of γ (in H∗(E(γ))), e(γ) is its Euler class, and the last
inclusion is the Künneth formula. Lemma 2.3 and the Thom isomorphism show that
u(γ)e(γ)m 6= 0 (compare [11, Proof of Theorem 6]).

Now we consider the class e(ζ) ∈ H
(d−m)(r0+···+rm−m−1)
G (B(γ)× L0 × · · · × Lm). Taking

some fixed p ∈ B(γ) and considering the inclusion

ιp : L0 × · · · × Lm = {p} × L0 × · · · × Lm → B(γ)× L0 × · · · × Lm

and the induced bundle ι∗p(ω) =
⊕m

i=0(I[Gi])
d−m, we obtain

ι∗p(e(ζ)) = e(I[G0])
d−m × e(I[G1])

d−m × · · · × e(I[Gm])
d−m ∈ H∗

G(L0 × · · · × Lm) =

= H∗
G0
(L0)× · · · ×H∗

Gm
(Lm),

the last equality being the Künneth formula. By Lemmas 2.3 and 3.4, for any i = 0, . . . , m

the Euler class e(I[G])d−m 6= 0 ∈ H
(d−m)(ri−1)
Gi

(Li) and, by the Künneth formula, ι∗p(e(ζ)) =
a 6= 0. From one more Künneth formula for the product B(γ)× L0 × · · · × Lm it follows
that

e(ζ) = 1× a+
∑

j

bj × cj,

where bj ∈ H∗(B(γ)), cj ∈ H∗
G(L0 × · · · × Lm) are some classes such that dim bj > 0 for

all j. Hence

e(ξ) = u(γ)e(γ)m × a +
∑

j

u(γ)e(γ)mbj × cj ,

and e(ξ) 6= 0 by the Künneth formula (its first summand cannot be eliminated by the
latter sum).

Now we have a zero of ξ at (V, p, y0, . . . , ym). Every point yi ∈ Li is actually an ri-tuple
of points yi1, . . . , yiri ∈ Ki = ∆|Fi|+1 with pairwise disjoint supports. We identify the
vertices of Ki with Fi and write

yij =
∑

X∈Fi

w(i, j, X)X.

Denote Fij = {X ∈ Fi : w(i, j, X) > 0}, each X is assigned to no more than one of Fij,
because yij have pairwise disjoint supports. The condition ξ = 0 implies that for any
i = 0, . . . , m and j = 1, . . . , ri the point p is a convex combination of its projections to
the sets πV (X):

p =
∑

X∈Fij

w(i, j, X)φ(V, p,X).

Now we define L to be the affine subspace, orthogonal to V and passing through p. The
rest of the proof is the same as in the previous section, because every Fij either intersects L
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(equivalently, the family {πV (X)}X∈Fij
covers p) or surrounds L (equivalently, the family

{πV (X)}X∈Fij
surrounds p).

6. Proof of Theorem 1.2

In this theorem we can assume that F consists of compact sets. Indeed, for a large
enough ball B the family {X ∩B}X∈F consists of compact sets and has property Πd.
As it was already noted, this theorem follows from Theorem 1.5 directly when r is a

prime power. Consider some other r. Obviously, it is sufficient to prove the theorem in
the case N = |F| = (d+ 1)(r − 1) + 1.
By the Dirichlet theorem on arithmetic progressions, we can find a positive integer k

such that R = k(r − 1) + 1 is a prime. Now take the family F ′ of size kN by simply
repeating each set in F exactly k times. Note that

kN = k(d+ 1)(r − 1) + k = (d+ 1)(R− 1) + k ≥ (d+ 1)(R− 1) + 1,

so we can apply the case of the theorem, that is already proved, to F ′ to get some point
x.
Every unbounded closed curve C ∋ x intersects at least R = k(r − 1) + 1 sets of F ′.

Each set of F is counted no more that k times, then we conclude that C intersects at
least r sets of F .
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