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Constructions of Strongly Regular Cayley Graphs and Skew

Hadamard Difference Sets from Cyclotomic Classes

Tao Feng∗ Koji Momihara† Qing Xiang‡

Abstract

In this paper, we give a construction of strongly regular Cayley graphs and a con-
struction of skew Hadamard difference sets. Both constructions are based on choosing
cyclotomic classes in finite fields, and they generalize the constructions given by Feng and
Xiang [10, 12]. Three infinite families of strongly regular graphs with new parameters are
obtained. The main tools that we employed are index 2 Gauss sums, instead of cyclotomic
numbers.
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1 Introduction

We assume that the reader is familiar with the basic theory of strongly regular graphs and
difference sets. For the theory of strongly regular graphs, our main references are the lecture
notes of Brouwer and Haemers [5] and [13]. For difference sets, we refer the reader to [17]
and Chapter 6 of [2]. We remark that strongly regular graphs are closely related to other
combinatorial objects, such as two-weight codes, two-intersection sets in finite geometry, and
partial difference sets. For these connections, we refer the reader to [5, p. 132], [7, 22].

Let Γ be a (simple, undirected) graph. The adjacency matrix of Γ is the (0, 1)-matrix A with
both rows and columns indexed by the vertex set of Γ, where Axy = 1 when there is an edge
between x and y in Γ and Axy = 0 otherwise. A useful way to check whether a graph is
strongly regular is by using the eigenvalues of its adjacency matrix. For convenience we call
an eigenvalue restricted if it has an eigenvector perpendicular to the all-ones vector 1. (For a
k-regular connected graph, the restricted eigenvalues are the eigenvalues different from k.)

Theorem 1.1. For a simple graph Γ of order v, not complete or edgeless, with adjacency
matrix A, the following are equivalent:

1. Γ is strongly regular with parameters (v, k, λ, µ) for certain integers k, λ, µ,
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2. A2 = (λ − µ)A + (k − µ)I + µJ for certain real numbers k, λ, µ, where I, J are the
identity matrix and the all-ones matrix, respectively,

3. A has precisely two distinct restricted eigenvalues.

One of the most effective methods for constructing strongly regular graphs is by the Cayley
graph construction. For example, the Paley graph P(q) and the Clebsch graph are both
Cayley graphs (moreover they are cyclotomic). Let G be an additively written group of order
v, and let D be a subset of G such that 0 6∈ D and −D = D, where −D = {−d | d ∈ D}. The
Cayley graph on G with connection set D, denoted Cay(G,D), is the graph with the elements
of G as vertices; two vertices are adjacent if and only if their difference belongs to D. In the
case when Cay(G,D) is a strongly regular graph, the connection set D is called a (regular)
partial difference set. The survey of Ma [22] contains much of what is known about partial
difference sets and about connections with strongly regular graphs.

A difference set D in an (additively written) finite group G is called skew Hadamard if G is
the disjoint union of D, −D, and {0}. The primary example (and for many years, the only
known example in abelian groups) of skew Hadamard difference sets is the classical Paley
difference set in (Fq,+) consisting of the nonzero squares of Fq, where Fq is the finite field of
order q, and q is a prime power congruent to 3 modulo 4. This situation changed dramatically
in recent years. Skew Hadamard difference sets are currently under intensive study; see the
introduction of [12] for a short survey of known constructions of skew Hadamard difference
sets and related problems.

As we have seen above, in order to obtain strongly regular Cayley graphs, we need to construct
regular partial difference sets. A classical method for constructing both partial difference sets
and difference sets in the additive groups of finite fields is to use cyclotomic classes of finite
fields. Let p be a prime, f a positive integer, and let q = pf . Let N > 1 be an integer
such that N |(q − 1), and γ be a primitive element of Fq. Then the cosets Ci = γi〈γN 〉,
0 ≤ i ≤ N −1, are called the cyclotomic classes of order N of Fq. The numbers |(Ci+1)∩Cj|
are called cyclotomic numbers. Many authors have studied the problem of determining when
a union of some cyclotomic classes forms a (partial) difference set. A summary of results in
this direction obtained up to 1967 appeared in [25]. However, all the results in [25] are based
on cyclotomic classes of small orders and this method has had only very limited success. In
fact, known infinite series of difference sets were obtained only in the case when N = 2. The
situation for partial difference sets is slightly better (see [6], [5, p. 137-138]). One of the
reasons why very few difference sets have been discovered by this method is the difficulty
of computing cyclotomic numbers of order N when N is large. So far cyclotomic numbers
have been evaluated for N ≤ 24 [1] (but note that some of these evaluations are not explicit).
For large N , probably Van Lint and Schrijver [21] are the first to use cyclotomic classes of
order N of finite fields to construct strongly regular graphs, and Baumert, Mills and Ward [4]
are the first to use cyclotomic classes of order N of finite fields to construct difference sets.
We comment that the difference sets constructed in [4] are also partial difference sets since
the finite fields involved have characteristic 2. Both constructions are based on the so-called
uniform cyclotomy, which will be defined in Section 2.

On the other hand, many sporadic examples of strongly regular Cayley graphs have been found
using unions of cyclotomic classes of Fq by computer search. For example, the following are
known:
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(i) (De Lange [20]) Let q = 212 and N = 45. Then, Cay(Fq, C0 ∪ C5 ∪ C10) is a strongly
regular graph.

(ii) (Ikuta and Munemasa [15]) Let q = 220 and N = 75. Then, Cay(Fq, C0∪C3∪C6∪C9∪
C12) is a strongly regular graph.

(iii) (Ikuta and Munemasa [15]) Let q = 221 and N = 49. Then, Cay(Fq, C0∪C1∪C2∪C3∪
C4 ∪ C5 ∪ C6) is a strongly regular graph.

Recently, in [10], the first and the third authors extended the above examples to infinite
families by using index 2 Gauss sums over Fq. Below is the main theorem from [10].

Theorem 1.2. (i) Let p1 ≡ 3 (mod 4) be a prime, p1 6= 3, N = pm1 , and let p be a prime
such that f := ordN (p) = φ(N)/2, where φ is the Euler totient function. Let q = pf

and D =
⋃pm−1

1 −1
i=0 Ci ⊆ Fq. Assume that 1 + p1 = 4ph, where h is the class number of

Q(
√−p1). Then Cay(Fq,D) is a strongly regular graph.

(ii) Let p1 and p2 be primes such that {p1 (mod 4), p2 (mod 4)} = {1, 3}, N = pm1 p2, and
let p be a prime such that ordpm1 (p) = φ(pm1 ), ordp2(p) = φ(pn2 ), and f := ordN (p) =

φ(N)/2. Let q = pf and D =
⋃pm−1

1 −1
i=0 Cip2 ⊆ Fq. Assume that p1 = 2ph/2 +(−1)

p1−1
2 b,

p2 = 2ph/2 − (−1)
p1−1

2 b, h is even, and 1 + p1p2 = 4ph, where b ∈ {1,−1} and h is the
class number of Q(

√−p1p2). Then Cay(Fq,D) is a strongly regular graph.

Furthermore, in [12], the following two constructions of skew Hadamard difference sets and
Paley type partial difference sets were given. (A partial difference set D in a group G is said
to be of Paley type if the parameters of the corresponding strongly regular Cayley graph are
(v, v−1

2 , v−5
4 , v−1

4 ).)

Theorem 1.3. (i) Let p1 ≡ 7 (mod 8) be a prime, N = 2pm1 , and let p be a prime such
that f := ordN (p) = φ(N)/2. Let s be an odd integer, I any subset of ZN such that
{i (mod pm1 ) | i ∈ I} = Zpm1

, and let D =
⋃

i∈I Ci ⊆ Fpfs. Then, D is a skew Hadamard
difference set if p ≡ 3 (mod 4) and D is a Paley type partial difference set if p ≡
1 (mod 4).

(ii) Let p1 ≡ 3 (mod 8) be a prime, p1 6= 3, N = 2p1, and let p ≡ 3 (mod 4) be a prime such
that f := ordN (p) = φ(N)/2. Let q = pf , I = 〈p〉∪2〈p〉∪{0}, and let D =

⋃
i∈I Ci ⊆ Fq.

Assume that 1+ p1 = 4ph, where h is the class number of Q(
√−p1). Then, D is a skew

Hadamard difference set in the additive group of Fq.

Note that in Theorem 1.3 (ii), we need to choose a suitable primitive element γ of Fq. For
details, see [12]. To extend the construction of Theorem 1.3 (ii) to the general case N = 2pm1
was left as an open problem in [12].

The purpose of this paper is to generalize the constructions of strongly regular Cayley graphs
in Theorem 1.2 (ii) to the case where N = pm1 p

n
2 and of skew Hadamard difference sets in

Theorem 1.3 (ii) to the case where N = 2pm1 . Three infinite families of strongly regular
graphs with new parameters are obtained (see Table 2 in Section 3). An infinite series of
skew Hadamard difference sets in (Fq,+), where q = 353·107

m−1
, is also obtained. Implications

of these results on association schemes will be discussed in Section 4.
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2 Index 2 Gauss sums

Let p be a prime, f a positive integer, and q = pf . The canonical additive character ψ of Fq

is defined by

ψ : Fq → C∗, ψ(x) = ζ
Trq/p(x)
p ,

where ζp = exp(2πip ) and Trq/p is the trace from Fq to Fp. For a multiplicative character χ of
Fq, we define the Gauss sum

G(χ) =
∑

x∈F∗
q

χ(x)ψ(x).

Below are a few basic properties of Gauss sums [18]:

(i) G(χ)G(χ) = q if χ is nontrivial;

(ii) G(χp) = G(χ), where p is the characteristic of Fq;

(iii) G(χ−1) = χ(−1)G(χ);

(iv) G(χ) = −1 if χ is trivial.

In general, the explicit evaluation of Gauss sums is a very difficult problem. There are only
a few cases where the Gauss sums have been evaluated. The simplest case is the so-called
semi-primitive case (also referred to as uniform cyclotomy or pure Gauss sum), where there
exists an integer j such that pj ≡ −1 (mod N), here N is the order of the multiplicative
character χ involved. See [1, 4, 7] for the explicit evaluation in this case.

The next interesting case is the index 2 case where the subgroup 〈p〉 generated by p ∈ Z∗
N

has index 2 in Z∗
N and −1 6∈ 〈p〉. In this case, it is known that N can have at most two

odd prime divisors. Many authors have investigated this case, see e.g., [3, 19, 23, 24, 27, 28].
In particular, a complete solution to the problem of evaluating Gauss sums in this case was
recently given in [27]. The following are the results on evaluation of Gauss sums which we
will need in the next section.

Theorem 2.1. ([27], Case B1; Theorem 4.10) Let N = pm1 p
n
2 , where m and n are positive

integers, p1 and p2 are primes such that p1 ≡ 1 (mod 4) and p2 ≡ 3 (mod 4). Assume that p is
a prime such that ordpm1 (p) = φ(pm1 ), ordpn2 (p) = φ(pn2 ), and [Z∗

N : 〈p〉] = 2. Let f = φ(N)/2,

q = pf , and χ be a multiplicative character of order N of Fq. Then, for 0 ≤ s ≤ m − 1 and
0 ≤ t ≤ n− 1, we have

G(χps1p
t
2) = p

f−hps1p
t
2

2

(
b+ c

√−p1p2
2

)ps1p
t
2

;

G(χpm1 pt2) = −p f
2 ;

G(χps1p
n
2 ) = p

f
2 ,

where h is the class number of Q(
√−p1p2), and b and c are integers determined by b, c 6≡

0 (mod p), 4ph = b2 + p1p2c
2, and bp

f−h
2 ≡ 2 (mod p1p2).
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Theorem 2.2. ([27], Case D; Theorem 4.12) Let N = 2pm1 , where p1 > 3 is a prime such that
p1 ≡ 3 (mod 4) and m is a positive integer. Assume that p is a prime such that [Z∗

N : 〈p〉] = 2.
Let f = φ(N)/2, q = pf , and χ be a multiplicative character of order N of Fq. Then, for
0 ≤ t ≤ m− 1, we have

G(χpt1) =





(−1)
p−1
2

(m−1)p
f−1
2

−hpt1
√
p∗

(
b+c

√−p1
2

)2pt1
, if p1 ≡ 3 (mod 8),

(−1)
p−1
2

mp
f−1
2
√
p∗, if p1 ≡ 7 (mod 8);

G(χ2pt1) = p
f−pt1h

2

(
b+ c

√−p1
2

)pt1

;

G(χpm1 ) = (−1)
p−1
2

f−1
2 p

f−1
2

√
p∗,

where p∗ = (−1)
p−1
2 p, h is the class number of Q(

√−p1), and b and c are integers determined

by 4ph = b2 + p1c
2 and bp

f−h
2 ≡ −2 (mod p1).

Note that Theorem 2.2 above is Theorem 4.12 in [27], whose statement contains several
misprints. We corrected those misprints in the above statement.

3 Constructions of strongly regular Cayley graphs and skew

Hadamard difference sets

We first recall the following well-known lemma in the theory of difference sets (see e.g.,
[22, 26]).

Lemma 3.1. Let (G,+) be an abelian group of odd order v, D a subset of G of size v−1
2 .

Assume that D ∩ −D = ∅ and 0 6∈ D. Then, D is a skew Hadamard difference set in G if
and only if

χ(D) =
−1±√−v

2

for all nontrivial characters χ of G. On the other hand, assume that 0 6∈ D and −D = D.
Then D is a Paley type partial difference set in G if and only if

χ(D) =
−1±√

v

2

for all nontrivial characters χ of G.

Let q = pf , where p is a prime and f a positive integer, and let Ci = γi〈γN 〉, 0 ≤ i ≤ N−1, be
the cyclotomic classes of order N of Fq, where γ is a fixed primitive element of Fq. From now
on, we will assume that D is a union of cyclotomic classes of order N of Fq. In order to check
whether a candidate subset, D =

⋃
i∈I Ci, is a partial difference set or a skew Hadamard

difference set in (Fq,+), we will compute the sums ψ(aD) :=
∑

x∈D ψ(ax) for all a ∈ F∗
q,

where ψ is the canonical additive character of Fq. Note that the sum ψ(aD) can be expressed
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as a linear combination of Gauss sums using the orthogonality of characters:

ψ(aD) =
1

N

∑

i∈I

∑

x∈F∗
q

ψ(aγixN )

=
1

N

∑

i∈I

∑

x∈F∗
q

1

q − 1

∑

y∈F∗
q

ψ(y)
∑

χ∈F̂∗
q

χ(aγixN )χ(y)

=
1

(q − 1)N

∑

i∈I

∑

x∈F∗
q

∑

χ∈F̂∗
q

G(χ−1)χ(aγixN )

=
1

(q − 1)N

∑

i∈I

∑

χ∈F̂∗
q

G(χ−1)χ(aγi)
∑

x∈F∗
q

χ(xN )

=
1

N

∑

χ∈C⊥

0

G(χ−1)
∑

i∈I
χ(aγi),

where F̂∗
q is the group of multiplicative characters of F∗

q and C
⊥
0 is the subgroup of F̂∗

q consisting
of all χ which are trivial on C0.

3.1 Strongly regular graphs from unions of cyclotomic classes of order

N = pm1 p
n
2

In this subsection, we assume that N = pm1 p
n
2 , where m,n are positive integers, p1 and p2

are primes such that p1 ≡ 1 (mod 4) and p2 ≡ 3 (mod 4). Furthermore, we assume that p is
a prime such that ordpm1 (p) = φ(pm1 ), ordpn2 (p) = φ(pn2 ), and ordN (p) = φ(N)/2. Let q = pf

and Ci = γi〈γN 〉, 0 ≤ i ≤ N − 1, where f = ordN (p) and γ is a fixed primitive element of Fq.
Define

D =

pm−1
1 −1⋃

i=0

pn−1
2 −1⋃

j=0

Cpn2 i+pm1 j.

It is clear that D = −D.

Theorem 3.2. The size of the set {ψ(γaD) | a = 0, 1, . . . , q − 2} is at most five.

Proof: Let χe denote the multiplicative character of order e of Fq such that χe(γ) = ζe, where
ζe := exp (2πie ). Then χd

e = χ e
d
for any divisor d of e. Note that sinceD is a union of cyclotomic

classes of order N , we have {ψ(γaD) | a = 0, 1, . . . , q − 2} = {ψ(γaD) | a = 0, 1, . . . , N − 1}.
To prove the theorem, it is sufficient to evaluate the sums

Ta := N · ψ(γaD) =

pm1 pn2−1∑

ℓ=0

G(χ−ℓ
pm1 pn2

)

pm−1
1 −1∑

i=0

pn−1
2 −1∑

j=0

χℓ
pm1 pn2

(γa+pn2 i+pm1 j),

where a = 0, 1, . . . , N − 1.

For ℓ = 0, by noting that G(χ0
pm1 pn2

) = −1, we have

G(χ0
pm1 pn2

)

pm−1
1 −1∑

i=0

pn−1
2 −1∑

j=0

χℓ
pm1 pn2

(γa+pn2 i+pm1 j) = −pm−1
1 pn−1

2 .
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For ℓ = p1h but h 6≡ 0 (mod pm−1
1 ), we have

pm−1
1 −1∑

i=0

χp1h
pm1 pn2

(γp
n
2 i) =

pm−1
1 −1∑

i=0

χh
pm−1
1

(γi) = 0.

For ℓ = p2h but h 6≡ 0 (mod pn−1
2 ), we have

pn−1
2 −1∑

j=0

χp2h
pm1 pn2

(γp
m
1 j) =

pn−1
2 −1∑

j=0

χh
pn−1
2

(γj) = 0.

Note that for each a ∈ {0, 1, . . . , N − 1}, there is a unique i ∈ {0, 1, . . . , pm−1
1 − 1} such

that pm−1
1 | a + pn2 i; we write a + pn2 i = pm−1

1 ia. Define δia = 1 or 0 depending on whether
ia ≡ 0 (mod p1) or not. Similarly, for each a ∈ {0, 1, . . . , N − 1}, there is a unique j ∈
{0, 1, . . . , pn−1

2 − 1} such that pn−1
2 | a+ pm1 j; we write a+ pm1 j = pn−1

2 ja. Define δja = 1 or 0
depending on whether ja ≡ 0 (mod p2) or not.

For ℓ = pm1 h but h 6≡ 0 (mod p2), since G(χ
−h
pn2

) = −p f
2 by Theorem 2.1, we have

∑

h:gcd (h,p2)=1

G(χ−h
pn2

)

pm−1
1 −1∑

i=0

pn−1
2 −1∑

j=0

χh
pn2
(γa+pn2 i+pm1 j)

= −pm−1
1 p

f
2

∑

x∈Z∗
p2

pn−1
2 −1∑

y=0

pn−1
2 −1∑

j=0

χx+p2y
pn2

(γa+pm1 j)

= −pm−1
1 pn−1

2 p
f
2

∑

x∈Z∗
p2

χx
pn2
(γja)

= −pm−1
1 pn−1

2 p
f
2 (p2δja − 1).

Similarly, for ℓ = pn2h but h 6≡ 0 (mod p1), since G(χ
−h
pm1

) = p
f
2 by Theorem 2.1, we have

∑

h:gcd (h,p1)=1

G(χ−h
pm1

)

pm−1
1 −1∑

i=0

pn−1
2 −1∑

j=0

χh
pm1

(γa+pn2 i+pm1 j) = pm−1
1 pn−1

2 p
f
2 (p1δia − 1).

For the remaining cases, we consider the sum

∑

ℓ:gcd (ℓ,p1p2)=1

G(χ−ℓ
pm1 pn2

)

pm−1
1 −1∑

i=0

pn−1
2 −1∑

j=0

χℓ
pm1 pn2

(γa+pn2 i+pm1 j). (3.1)

Note that any multiplicative character of order pm1 p
n
2 can be written as χu

pm1
χv
pn2

for some
u ∈ Z∗

pm1
and v ∈ Z∗

pn2
. By Theorem 2.1, we have

G(χ−u
pm1
χ−v
pn2

) = p
f−h
2
b+ cη1(u)η2(v)

√−p1p2
2

,

7



where b, c 6≡ 0 (mod p), b2 + p1p2c
2 = 4ph, bp

f−h
2 ≡ 2 (mod p1p2), and η1 and η2 are the

quadratic characters of F∗
p1 and F∗

p2 , respectively. Then, the sum (3.1) is rewritten as

p
f−h
2

∑

u∈Z∗

pm
1

∑

v∈Z∗

pn
2

b+ cη1(u)η2(v)
√−p1p2

2

pm−1
1 −1∑

i=0

pn−1
2 −1∑

j=0

χu
pm1

(γa+pn2 i+pm1 j)χv
pn2
(γa+pn2 i+pm1 j)

=
p

f−h
2 b

2




∑

u∈Z∗

pm
1

pm−1
1 −1∑

i=0

χu
pm1

(γa+pn2 i)







∑

v∈Z∗

pn
2

pn−1
2 −1∑

j=0

χv
pn2
(γa+pm1 j)


 (3.2)

+
p

f−h
2 c

√−p1p2
2




∑

u∈Z∗

pm1

η1(u)

pm−1
1 −1∑

i=0

χu
pm1

(γa+pn2 i)







∑

v∈Z∗

pn2

η2(v)

pn−1
2 −1∑

j=0

χv
pn2
(γa+pm1 j)


 (3.3)

For (3.2), we have

p
f−h
2 b

2




∑

u∈Z∗

pm
1

pm−1
1 −1∑

i=0

χu
pm1

(γa+pn2 i)







∑

v∈Z∗

pn
2

pn−1
2 −1∑

j=0

χv
pn2
(γa+pm1 j)




=
p

f−h
2 b

2


 ∑

x∈Z∗
p1

pm−1
1 −1∑

y=0

pm−1
1 −1∑

i=0

χx+p1y
pm1

(γa+pn2 i)





 ∑

x′∈Z∗
p2

pn−1
2 −1∑

y′=0

pn−1
2 −1∑

j=0

χx′+p2y′

pn2
(γa+pm1 j)




=
p

f−h
2 b

2


pm−1

1

∑

x∈Z∗
p1

χx
p1(γ

ia)





pn−1

2

∑

x′∈Z∗
p2

χx′

p2(γ
ja)




=
p

f−h
2 b

2
pm−1
1 pn−1

2 (p1δia − 1)(p2δja − 1).

Let G(ηi), i = 1, 2, be the quadratic Gauss sums of Fpi, respectively. It is well known that

G(ηi) =
√

(−1)(pi−1)/2pi (see [18]). Then, for (3.3), we have

p
f−h
2 c

√−p1p2
2


 ∑

x∈Z∗
p1

pm−1
1 −1∑

y=0

η1(x)

pm−1
1 −1∑

i=0

χx+p1y
pm1

(γa+pn2 i)





 ∑

x′∈Z∗
p2

pn−1
2 −1∑

y′=0

η2(x
′)

pn−1
2 −1∑

j=0

χx′+p2y′

pn2
(γa+pm1 j)




=
p

f−h
2 c

√−p1p2
2


pm−1

1

∑

x∈Z∗
p1

η1(x)χ
x
p1(γ

ia)





pn−1

2

∑

x′∈Z∗
p2

η2(x
′)χx′

p2(γ
ja)




=
p

f−h
2 c

√−p1p2
2

pm−1
1 pn−1

2 η1(ia)η2(ja)G(η1)G(η2)

=
p

f−h
2 c

√−p1p2
2

pm−1
1 pn−1

2 η1(ia)η2(ja)

√
(−1)

p1−1
2

+
p2−1

2 p1p2

= −p
f−h
2 c

2
pm1 p

n
2η1(ia)η2(ja).
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Thus, we obtain

Ta + pm−1
1 pn−1

2 = pm−1
1 pn−1

2 p
f
2 (−p2δja + p1δia) +

p
f−h
2 b

2
pm−1
1 pn−1

2 (p1δia − 1)(p2δja − 1)

−p
f−h
2 c

2
pm1 p

n
2η1(ia)η2(ja).

Now, we compute Sa := (Ta+p
m−1
1 pn−1

2 )/pm−1
1 pn−1

2 p
f
2 by considering the following four cases:

(i) If δja = δia = 0, we have Sa = p
−h
2 b
2 ± p

−h
2 c
2 p1p2.

(ii) If δja = 1, δia = 0, we have Sa = −p2 − p
−h
2 b
2 (p2 − 1).

(iii) if δja = 0, δia = 1, we have Sa = p1 − p
−h
2 b
2 (p1 − 1).

(iv) if δja = δia = 1, we have Sa = −p2 + p1 +
p
−h
2 b
2 (p1 − 1)(p2 − 1).

The proof is now complete. �

Corollary 3.3. If b, c ∈ {1,−1}, h is even, p1 = 2ph/2+b, and p2 = 2ph/2−b, then Cay(Fq,D)
is a strongly regular graph.

Proof: Since −D = D and 0 6∈ D, the Cayley graph Cay(Fq,D) is undirected and without
loops. It is also regular of valency |D|. The restricted eigenvalues of this Cayley graph,
as explained in [5, p. 134], are ψ(γaD), where a = 0, 1, . . . , q − 2. By Theorem 1.1, it
suffices to show that the set {ψ(γaD) | a = 0, 1, . . . , q − 2} has precisely two elements. We
substitute p1 = 2ph/2 + b, p2 = 2ph/2 − b, and b, c ∈ {1,−1} into the expressions for Sa in
the proof of Theorem 3.2, and find that Sa indeed take only two distinct values. This proves
that Cay(Fq,D) is a strongly regular graph. In particular, the two restricted eigenvalues r

and s (r > s) are given by r = 2p
f+h
2 −1

p1p2
and s = −2p

f+h
2 +p

f−h
2 −1

p1p2
, or s = −2p

f+h
2 −1

p1p2
and

r = 2p
f+h
2 −p

f−h
2 −1

p1p2
depending on whether b = 1 or b = −1. Furthermore, the parameters k, λ,

and µ of the strongly regular graph are given by k = pf−1
p1p2

, λ = s+ r+k+ sr, and µ = k+ sr.
�

Remark 3.4. One can show that the assumptions on p1, p2, b, c, and h are also necessary for
Cay(Fq,D) to be strongly regular by a similar proof to that of Corollary 5.2 in [10].

The construction of strongly regular Cayley graphs given in this subsection is a generalization
of Theorem 1.2 (ii) [10]. In [10], the six infinite series of strongly regular graphs in Table 1
below were obtained. Note that the case when m = 2 of the 1st series of Table 1 is the
example found by De Lange [20] and the case when m = 2 of the 2nd series of Table 1 is
the example found by Ikuta and Munemasa [15]. These six infinite series are combined and
generalized to three infinite families of strongly regular graphs in Table 2.

Example 3.5. Table 2 gives generalizations of strongly regular graphs in Table 1. Here,
the parameters p,N, h, b satisfy the conditions of Corollary 3.3, i.e., p is a prime such that
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Table 1: Some strongly regular graphs obtained in [10]. The parameters r, s are the two
nontrivial eigenvalues of Cay(G,D), i.e., the two values in {ψ(γaD) | a = 0, 1, . . . , q− 2}. The
parameters λ and µ of the strongly regular graphs can be computed by λ = s + r + sr + k
and µ = k + sr.

No. p N h b v k r s

1 2 3m · 5 2 1 24·3
m−1 24·3

m−1−1
15

8·22·3m−1
−1−1

15
−7·22·3m−1

−1−1
15

2 2 5m · 3 2 1 24·5
m−1 24·5

m−1−1
15

8·22·5m−1
−1−1

15
−7·22·5m−1

−1−1
15

3 3 5m · 7 2 −1 312·5
m−1 312·5

m−1−1
35

17·36·5m−1
−1−1

35
−18·36·5m−1

−1−1
35

4 3 7m · 5 2 −1 312·7
m−1 312·7

m−1−1
35

17·36·7m−1
−1−1

35
−18·36·7m−1

−1−1
35

5 3 17m · 19 4 −1 3144·17
m−1 3144·17

m−1−1
323

161·372·17m−1
−2−1

323
−162·372·17m−1

−2−1
323

6 3 19m · 17 4 −1 3144·19
m−1 3144·19

m−1−1
323

161·372·17m−1
−2−1

323
−162·372·17m−1

−2−1
323

[Z∗
N : 〈p〉] = 2, b, c ∈ {1,−1}, p1 = 2ph/2 + b, p2 = 2ph/2 − b, h ≡ 0 (mod 2), and bp

f−h
2 ≡

2 (mod p1p2), where h is the class number of Q(
√−p1p2). It is easy to see by induction that

ordN (p) = φ(N)/2 for all pairs (p,N) in Table 2. Furthermore, since (pp
m−1
1 pn−1

2 )
p1−1

2
p2−1

2 ≡
p

p1−1
2

p2−1
2 (mod p1p2), the condition bp

f−h
2 ≡ 2 (mod p1p2) can be rewritten as bp

p1−1
2

p2−1
2 ≡

2p
h
2 (mod p1p2), which is independent of m and n. There are only these three series satisfying

the conditions of Corollary 3.3 when p1 ≤ 107.

Table 2: Generalizations of the strongly regular graphs in Table 1. The parameters λ and µ
of the strongly regular graphs can be computed by λ = s+ r + sr + k and µ = k + sr.

No. p N h b v k r, s

7 2 3m · 5n 2 1 24·3
m−1·5n−1 24·3

m−1
·5n−1−1
15 r = 8·22·3m−1

·5n−1
−1−1

15

s = −7·22·3m−1
·5n−1

−1−1
15

8 3 5m · 7n 2 −1 312·5
m−1·7n−1 312·5

m−1
·7n−1−1

35 r = 17·36·5m−1
·7n−1

−1−1
35

s = −18·36·5m−1
·7n−1

−1−1
35

9 3 17m · 19n 4 −1 3144·17
m−1 ·19n−1 3144·17

m−1
·19n−1−1

323 r = 161·372·17m−1
·19n−1

−2−1
323

s = −162·372·17m−1
·19n−1

−2−1
323

3.2 Skew Hadamard difference sets from unions of cyclotomic classes of

order N = 2pm1

In this subsection, we assume that
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1. p1 ≡ 3 (mod 8), (p1 6= 3),

2. N = 2pm1 ,

3. 1 + p1 = 4ph, where h is the class number of Q(
√−p1),

4. p is a prime such that ordN (p) = φ(pm1 )/2.

Let q = pf , where f = ordN (p). Let ζq−1 = exp( 2πi
q−1) and P be a prime ideal in Z[ζq−1]

lying over p. Then, Z[ζq−1]/P is the finite field of order q and written as Z[ζq−1]/P =

{ζ iq−1 | 0 ≤ i ≤ q − 2} ∪ {0}, where ζq−1 = ζq−1 +P. Hence, γ := ζq−1 is a primitive element
of Fq = Z[ζq−1]/P. Let ωP be the Teichmüller character of Fq. Then, ωP(γ) = ζq−1. Put

χN := ω
q−1
N

P . Then χN is a multiplicative character of order N of Fq. For this χN , by the
results of [19], we have

G(χ2
N ) = G(χpm1

) = p
f−h
2

(
b+ c

√−p1
2

)
, (3.4)

where b, c 6≡ 0 (mod p), b2 + c2p1 = 4ph, and bp
f−h
2 ≡ −2 (mod p1). By our assumption

that 1 + p1 = 4ph, we have b, c ∈ {−1, 1}, where the sign of c depends on the choice of P.
In particular, in [12], it was shown that bc ≡ −√−p1 (mod P). On the other hand, since
1 + p1 = 4ph, we have (1 +

√−p1)(1−
√−p1) ∈ P, from which it follows that 1 +

√−p1 ∈ P

or 1−√−p1 ∈ P for any prime ideal P in Q(ζq−1) lying over p. We may choose a prime ideal
P such that 1 +

√−p1 ∈ P. Then, bc ≡ −√−p1 (mod P) with b, c ∈ {−1, 1} implies that
bc = 1. From now on, we fix this choice of P.

Let Ci = γi〈γN 〉, where 0 ≤ i ≤ N − 1, and γ is the fixed primitive element of Fq as above.
It is clear that −1 ∈ C0 or −1 ∈ Cpm1

depending on whether p ≡ 1 (mod 4) or p ≡ 3 (mod 4).

Let
J = 〈p〉 ∪ 2〈p〉 ∪ {0} (mod 2p1)

and define

D =

pm−1
1 −1⋃

i=0

⋃

j∈J
C2i+pm−1

1 j.

From the facts that 2 is a nonsquare of Fp1 and that the reduction of 〈p〉 ≤ Z∗
N modulo

2p1 is the subgroup of index 2 of Z∗
2p1 we deduce that J (mod p1) = Zp1 , and D = −D or

D ∩ −D = ∅ depending on whether p ≡ 1 (mod 4) or p ≡ 3 (mod 4).

Theorem 3.6. The size of the set {ψ(γaD) | a = 0, 1, . . . , q − 2} is precisely two.

Proof: Set A := (−1)
p−1
2

(m−1)p
f−1
2

−h√p∗ and B := (−1)
p−1
2

f−1
2 p

f−1
2
√
p∗, where

√
p∗ =√

(−1)
p−1
2 p.

First of all, we note that (−1)
f−1
2 = (−1)m−1 since p1 ≡ 3 (mod 8). It follows that phA = B.

Secondly, since D is a union of cyclotomic classes of order N , we have {ψ(γaD) | a =
0, 1, . . . , q − 2} = {ψ(γaD) | a = 0, 1, . . . , N − 1}.

11



It is sufficient to evaluate the sums

Ta := N · ψ(γaD) =

2pm1 −1∑

ℓ=0

G(χℓ
2pm1

)

pm−1
1 −1∑

i=0

∑

j∈J
χ−ℓ
2pm1

(γa+2i+pm−1
1 j),

where a = 0, 1, . . . , N − 1.

For ℓ = 0, by noting that G(χ0
2pm1

) = −1, we have

G(χ0
2pm1

)

pm−1
1 −1∑

i=0

∑

j∈J
χ0
2pm1

(γa+2i+pm−1
1 j) = −pm1 .

For ℓ = 2h but h 6≡ 0 (mod p1), since J (mod p1) = Zp1 , we have
∑

j∈J
χ−2h
2pm1

(γp
m−1
1 j) =

∑

j∈J
χ−h
p1 (γ

j) = 0.

For ℓ = p1h but h 6≡ 0 (mod pm−1
1 ), we have

pm−1
1 −1∑

i=0

χ−p1h
2pm1

(γ2i) =

pm−1
1 −1∑

i=0

χ−h

pm−1
1

(γi) = 0.

For ℓ = pm1 , since G(χ
pm1
2pm1

) = B by Theorem 2.2, we have

G(χ
pm1
2pm1

)

pm−1
1 −1∑

i=0

∑

j∈J
χ
pm1
2pm1

(γa+2i+pm−1
1 j) = Bpm−1

1 (−1)a.

For the remaining cases, we evaluate the sum

∑

ℓ∈〈p〉
G(χℓ

2pm1
)

pm−1
1 −1∑

i=0

∑

j∈J
χ−ℓ
2pm1

(γa+2i+pm−1
1 j) +

∑

ℓ∈−〈p〉
G(χℓ

2pm1
)

pm−1
1 −1∑

i=0

∑

j∈J
χ−ℓ
2pm1

(γa+2i+pm−1
1 j).

By Theorem 2.2, we have

G(χℓ
2pm1

) = A

(
b+ c

√−p1
2

)2

for ℓ ∈ 〈p〉, where b, c are the same as in the evaluation (3.4) of G(χpm1
). By the choice of P,

it is expanded as

G(χℓ
2pm1

) = A

(
1− p1 + 2

√−p1
4

)
.

Since χℓ
2pm1

(−1)
√
p∗ =

√
p∗ for any odd ℓ by the assumption p1 ≡ 3 (mod 8), i.e., f is odd,

the above sum is reformulated as

A

(
1− p1 + 2

√−p1
4

) ∑

ℓ∈〈p〉

pm−1
1 −1∑

i=0

∑

j∈J
χ−ℓ
2pm1

(γa+2i+pm−1
1 j)

+A

(
1− p1 − 2

√−p1
4

) ∑

ℓ∈−〈p〉

pm−1
1 −1∑

i=0

∑

j∈J
χ−ℓ
2pm1

(γa+2i+pm−1
1 j).
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Note that 〈p〉 can be written as {x + 2p1y |x ∈ 〈p〉(mod 2p1), y ∈ {0, 1, . . . , pm−1
1 − 1}}.

Furthermore, there is a unique i ∈ {0, 1, . . . , pm−1
1 − 1} such that a+ 2i ≡ 0 (mod pm−1

1 ); we
write a+ 2i = pm−1

1 ia. Then, the above sum is rewritten as

A

(
1− p1 + 2

√−p1
4

) ∑

x∈〈p〉(mod 2p1)

pm−1
1 −1∑

y=0

pm−1
1 −1∑

i=0

∑

j∈J
χ−x
2pm1

(γa+2i+pm−1
1 j)χ−2p1y

2pm1
(γa+2i+pm−1

1 j)

+A

(
1− p1 − 2

√−p1
4

) ∑

x∈−〈p〉(mod 2p1)

pm−1
1 −1∑

y=0

pm−1
1 −1∑

i=0

∑

j∈J
χ−x
2pm1

(γa+2i+pm−1
1 j)χ−2p1y

2pm1
(γa+2i+pm−1

1 j)

= pm−1
1 A

(
1− p1 + 2

√−p1
4

) ∑

x∈〈p〉(mod 2p1)

∑

j∈J
χ−x
2p1

(γia+j)

+pm−1A

(
1− p1 − 2

√−p1
4

) ∑

x∈−〈p〉(mod 2p1)

∑

j∈J
χ−x
2p1

(γia+j)

= pm−1
1 A

(
1− p1 + 2

√−p1
4

)
 ∑

x∈〈p〉(mod 2p1)

χ−x
2p1

(γia)





∑

j∈J
χ−j
2p1

(γ)




+pm−1A

(
1− p1 − 2

√−p1
4

)
 ∑

x∈〈p〉(mod 2p1)

χx
2p1(γ

ia)





∑

j∈J
χj
2p1

(γ)


 .

PutXa :=
∑

j∈J χ
−j
2p1

(γ) and Ya :=
∑

x∈〈p〉(mod 2p1)
χ−x
2p1

(γia). Let η be the quadratic character
of Fp1 and ψp1 be the canonical additive character of Fp1 . Noting that 2 is a nonsquare in
Fp1 . For i ∈ Z2p1 \ {0, p1} it holds that

∑

x∈〈p〉(mod 2p1)

χ−x
2p1

(γi) =
∑

x∈〈p〉(mod 2p1)

χ−ix
2 (γ)χ

p1−1
2

ix
p1 (γ)

= (−1)i
1

2

∑

x∈F∗
p1

(1 + η(x))ψp1(−2−1ix)

= (−1)i
−1 + η(−2−1i)G(η)

2
= (−1)i

−1 + η(i)
√−p1

2
.

Hence, we have

Xa =
∑

j∈〈p〉 (mod 2p1)

χ−j
2p1

(γ) +
∑

j∈2〈p〉 (mod 2p1)

χ−j
2p1

(γ) + 1

=
1−√−p1

2
+

−1−√−p1
2

+ 1 = 1−√−p1
and

Ya = (−1)ia
−1 + η(ia)

√−p1
2

, ia 6= 0, p1.

Thus, we obtain

Ta + pm1

= Bpm−1
1 (−1)a +

pm−1
1 A

4

(
(1− p1 + 2

√−p1)(1−
√−p1)Ya + (1− p1 − 2

√−p1)(1 +
√−p1)Ya

)
.
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We compute Ta + pm1 by considering the following six cases:

(i) ia = 0: In this case, we have a ≡ 0 (mod 2), Ya = p1−1
2 , and Ta + pm1 = pm−1

1 (A4 (p
2
1 −

1) +B).

(ii) ia = p1: In this case, we have a ≡ 1 (mod 2), Ya = −p1−1
2 , and Ta+p

m
1 = pm−1

1 (A4 (−p21+
1)−B).

(iii) ia ∈ 〈p〉: In this case, we have a ≡ 1 (mod 2), Ya = 1−√−p1
2 , and Ta+p

m
1 = pm−1

1 (A4 (p
2
1+

2p1 + 1)−B).

(iv) ia ∈ −〈p〉: In this case, we have a ≡ 1 (mod 2), Ya = 1+
√−p1
2 , and Ta+p

m
1 = pm−1

1 (A4 (1−
p21)−B).

(v) ia ∈ 2〈p〉: In this case, we have a ≡ 0 (mod 2), Ya = −1+
√−p1
2 , and Ta + pm1 =

pm−1
1 (A4 (p

2
1 − 1) +B).

(vi) ia ∈ −2〈p〉: In this case, we have a ≡ 0 (mod 2), Ya = −1+
√−p1
2 , and Ta + pm1 =

pm−1
1 (A4 (−p21 − 2p1 − 1) +B).

By the assumption that 1 + p1 = 4ph and the fact that phA = B, it is easily checked that
Ta + pm1 , a = 0, 1, . . . , N − 1, take precisely two values. The proof is now complete. �

Corollary 3.7. The set D is a skew Hadamard difference set or a Paley type partial difference
set according as p ≡ 3 (mod 4) or p ≡ 1 (mod 4).

Proof: By Theorem 3.6, the set {ψ(γaD) | a = 0, 1, . . . , q − 2} has precisely two elements,
which are

1

N

(
−pm1 ± pm−1

1

(
A

4
(p21 − 1) +B

))
=

1

2

(
−1± (−1)

(p−1)(m−1)
2

√
(−1)

p−1
2 pf

)
.

By Lemma 3.1, the assertion of the corollary follows immediately. �

The construction of skew Hadamard difference sets and Paley type partial difference sets
given in this subsection is a generalization of Theorem 1.3 (ii) [12]. In particular, in [12], one
example of skew Hadamard difference sets with parameters (p,N, h, b, v) = (3, 2 · 11, 1, 1, 35)
was given. Unfortunately, we can not generalize this example to N = 2 · 11m because p = 3
does not satisfy the condition ordN (p) = φ(N)/2 for m > 1. Below are some infinite series of
skew Hadamard difference sets and Paley type partial difference sets obtained by Corollary 3.7.

Example 3.8. Table 3 shows all possible skew Hadamard difference sets and Paley type partial
difference sets obtained by applying Corollary 3.7 to all p1 ≤ 106 except for the case when
p1 = 11 and m = 1. In particular, the 3rd case of Table 3 gives skew Hadamard difference
sets and the other cases give Paley type partial difference sets. Here, the parameters p,N, h, b
satisfy the conditions of Corollary 3.7, i.e., p is a prime such that [Z∗

N : 〈p〉] = 2, 1+p1 = 4ph,

and bp
f−h
2 ≡ −2 (mod p1), where h is the class number of Q(

√−p1). Note that it is easy to
prove by induction that ordN (p) = φ(N)/2 for all pairs (p,N) in Table 3. Furthermore, since

p
pm−1
1 (p1−1)/2−h

2 ≡ p
pm−1
1 (p1+1)

4
− pm−1

1 −1

2
−h+1

2 (mod p1),

the condition bp
f−h
2 ≡ −2 (mod p1) can be rewritten as bp

p1−1−2h
4 ≡ −2 (mod p1), which is

independent of m.
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Table 3: Some Paley type partial difference sets and skew Hadamard difference sets obtained
by Corollary 3.7.

No. p N h b v

1 5 2 · 19m 1 1 59·19
m−1

2 17 2 · 67m 1 1 1733·67
m−1

3 3 2 · 107m 3 1 353·107
m−1

4 41 2 · 163m 1 1 4181·163
m−1

5 5 2 · 499m 3 1 5249·499
m−1

4 Concluding remarks

In this paper, we have given two constructions of strongly regular graphs and skew Hadamard
difference sets, which are generalizations of those given by the first and third authors [10,
12]. As a consequence, we obtain three infinite series of strongly regular graphs with new
parameters and a family of skew Hadamard difference sets in (Fq,+), where q = 353·107

m−1
.

The results on strongly regular graphs have implications on association schemes.

Given a d-class (symmetric) association scheme (X, {Rℓ}0≤ℓ≤d), we can take the union of
classes to form graphs with larger edge sets (this process is called a fusion), but it is not
necessarily guaranteed that the fused collection of graphs will form an association scheme on
X. If an association scheme has the property that any of its fusions is also an association
scheme, then we call the association scheme amorphic. A well-known and important example
of amorphic association schemes is given by the cyclotomic association schemes on Fq when
the cyclotomy is uniform [4].

In [16], A.V. Ivanov conjectured that if each nontrivial relation in an association scheme
is strongly regular, then the association scheme must be amorphic. This conjecture turned
out to be false. A first counterexample was found by Van Dam [8] in the case when the
association scheme is imprimitive. Afterwards, Van Dam [9] and Ikuta and Munemasa [15]
gave more counterexamples in the case when the association scheme is primitive. However,
there had been known only a few counterexamples in the primitive case. Recently, in [11],
the authors generalized the counterexamples of Van Dam and Ikuta-Munemasa into infinite
series using strongly regular Cayley graphs based on index 2 Gauss sums of type N = pm1
and type N = pm1 p2. Our generalization (Corollary 3.3) of the second construction in [10]
produces further new counterexamples to Ivanov’s conjecture and association schemes with
very interesting properties. More precisely, under the same assumptions as in Corollary 3.3,
define

Dk =

pm−1
1 −1⋃

i=0

pn−1
2 −1⋃

j=0

Cpn2 i+pm1 j+pm−1
1 pn−1

2 k

for each 0 ≤ k ≤ p1p2 − 1. Let R0 = {(x, x) |x ∈ Fq} and

Rk := {(x, y) |x, y ∈ Fq, x− y ∈ Dk−1}.
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Then, one can similarly prove that (Fq, {Rk}0≤k≤p1p2) is a pseudocyclic and non-amorphic
association scheme in which every nontrivial relation is a strongly regular graph. Table 2
yields three new infinite series of pseudocyclic and non-amorphic association schemes, where
each of the nontrivial relations is strongly regular. Moreover, further fusion schemes of these
association schemes are possible by applying Corollary 3.2 and Theorem 4.1 of [15]. In
particular, Examples 1 and 2 of [15] are generalized into an infinite series by using the above
association scheme with p = 2, b = 1, (p1, p2) = (5, 3), and h = 2.
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