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Abstract

We present results on partitioning the vertices of 2-edge-colored graphs into
monochromatic paths and cycles. We prove asymptotically the two-color case
of a conjecture of Sárközy: the vertex set of every 2-edge-colored graph can
be partitioned into at most 2α(G) monochromatic cycles, where α(G) denotes
the independence number of G. Another direction, emerged recently from a
conjecture of Schelp, is to consider colorings of graphs with given minimum
degree. We prove that apart from o(|V (G)|) vertices, the vertex set of any 2-

edge-colored graph G with minimum degree at least (1+ε)3|V (G)|
4 can be covered

by the vertices of two vertex disjoint monochromatic cycles of distinct colors.
Finally, under the assumption that G does not contain a fixed bipartite graph
H, we show that in every 2-edge-coloring of G, |V (G)| − c(H) vertices can be
covered by two vertex disjoint paths of different colors, where c(H) is a constant
depending only on H. In particular, we prove that c(C4) = 1, which is best
possible.1

1 Background, summary of results.

In this paper, we consider some conjectures about partitioning vertices of edge-colored
graphs into monochromatic cycles or paths. For simplicity, colored graphs means
edge-colored graphs in this paper. In this context it is conventional to accept empty
graphs and one-vertex graphs as a path or a cycle (of any color) and also any edge as a
path or a cycle (in its color). With this convention one can define the cycle (or path)
partition number of any colored graph G as the minimum number of vertex disjoint
monochromatic cycles (or paths) needed to cover the vertex set of G. For complete
graphs, [6] posed the following conjecture.

Conjecture 1.1. The cycle partition number of any t-colored complete graph Kn is
t.

The t = 2 case of this conjecture was stated earlier by Lehel in a stronger form,
requiring that the colors of the two cycles must be different. After some initial
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Board Grant 11067, and OTKA Grant K 76099.
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results [2, 8],  Luczak, Rödl and Szemerédi [22] proved Lehel’s conjecture for large
enough n, which can be considered as a birth of certain advanced applications of the
Regularity Lemma. A more elementary proof, still for large enough n, was obtained
by Allen [1]. Finally, Bessy and Thomassé [4] found a completely elementary inductive
proof for every n.

The t = 3 case of Conjecture 1.1 was solved asymptotically in [15]. Pokrovskiy [24]
showed recently (with a nice elementary proof) that the path partition number of any
3-colored Kn is at most three (for any n ≥ 1). But then surprisingly Pokrovskiy [25]
found a counterexample to Conjecture 1.1 for all t ≥ 3. However, in the counterex-
ample all but one vertex can be covered by t vertex disjoint monochromatic cycles.

For general t, the best bound for the cycle partition number is O(t log t), see [9].
Note that it is far from obvious that the cycle partition number of Kn can be bounded
by any function of t.

We address the extension of the cycle and path partition numbers from complete
graphs to arbitrary graphs G. If we want these numbers to be independent of |V (G)|,
some other parameter of G must be included. We consider three of these parameters.

Let α(G) denote the independence number of G, the maximum number of pairwise
non-adjacent vertices of G. The role of α(G) in results on colorings of non-complete
graphs was observed in [10, 11, 16] and in Sárközy [27] who extended Conjecture 1.1
to the following.

Conjecture 1.2. The cycle partition number of any t-colored graph G is tα(G).

For t = 1, Conjecture 1.2 is a well-known result of Pósa [23] (and clearly best
possible). For t = 2 it is also best possible, shown by vertex disjoint copies of triangles,
each colored using two colors. To prove Conjecture 1.2 for t = 2 and arbitrary α(G)
seems very difficult (considering the complexity of the proof for α(G) = 1 in [4]).
Then again the counterexample of Pokrovskiy [25] shows that the conjecture is not
true in this form for any t ≥ 3. Perhaps the following weakening of the conjecture is
true.

Conjecture 1.3. Let G be a t-colored graph with α(G) = α. Then there exists a
constant c = c(α, t) such that tα vertex disjoint monochromatic cycles of G cover at
least n− c vertices.

Pokrovskiy’s example implies that c ≥ α must be true. We cannot prove this
conjecture even for t = 2, we can only prove the following weaker asymptotic result.

Theorem 1.4. For every positive η and α, there exists an n0(η, α) such that the
following holds. If G is a 2-colored graph on n vertices, n ≥ n0, α(G) = α, then
there are at most 2α vertex disjoint monochromatic cycles covering at least (1 − η)n
vertices of V (G).
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Recently, Schelp [28] suggested in a posthumous paper to strengthen certain Ram-
sey problems from complete graphs to graphs of given minimum degree. In particular,
he conjectured that with m = R(Pn, Pn), minimum degree 3m

4
is sufficient to find a

monochromatic path Pn in any 2-colored graph of order m.2 Influenced by this con-
jecture, here we pose the following conjecture.

Conjecture 1.5. If G is an n-vertex graph with δ(G) > 3n/4 then in any 2-edge-
coloring of G, there are two vertex disjoint monochromatic cycles of different colors,
which together cover V (G).

That is, the above mentioned Bessy-Thomassé result [4] would hold for graphs

with minimum degree larger than 3n/4. Note that the condition δ(G) ≥ 3|V (G)|
4

is
sharp. Indeed, consider the following n-vertex graph, where n = 4m. We partition the
vertex set into four parts A1, A2, A3, A4 with |Ai| = m. There are no edges from A1 to
A2 and from A3 to A4. Edges in [A1, A3], [A2, A4] are red and edges in [A1, A4], [A2, A3]
are blue, inside the classes any coloring is allowed. In such an edge-colored graph,
there are no two vertex disjoint monochromatic cycles of different colors covering G,
while the minimum degree is 3m− 1 = 3n

4
− 1.

We prove Conjecture 1.5 in the following asymptotic sense.

Theorem 1.6. For every η > 0, there is an n0(η) such that the following holds. If
G is an n-vertex graph with n ≥ n0 and δ(G) > (3

4
+ η)n, then every 2-edge-coloring

of G admits two vertex disjoint monochromatic cycles of different colors covering at
least (1 − η)n vertices of G.

The proofs of Theorems 1.4 and 1.6 follow a method of  Luczak [21]. The crucial
idea is that the words “cycles” or “paths” in a statement to be proved are replaced by
the words “connected matchings”. In a connected matching, the edges of the matching
are in the same component of the graph.3 We prove first this weaker result, then we
apply to the cluster graph of a regular partition of the target graph. Through several
technical details, the regularity of the partition is used to “lift back” the connected
matching of the cluster graph to a path or cycle in the original graph. In our case,
the relaxed versions of Theorems 1.4 and 1.6 for connected matchings are stated and
proved in Section 2 (Theorem 2.4 and 2.5).

Another possibility to extend Conjecture 1.1 to more general graphs is to consider
a graph G, whose complement does not contain a fixed bipartite graph H. This brings
in a different flavor, since these graphs are very dense, they have

(

|V (G)|
2

)

−o(|V (G)|2)
edges. In return, we prove sharper results in this case. We also state a more general
conjecture.

2Some progress towards this conjecture have been done in [17] and [3].
3When the edges are colored, a connected red matching is a matching in a red component.
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Conjecture 1.7. Let H be a graph with chromatic number k + 1 and let G be an
t-edge-colored graph on n vertices such that H is not a subgraph of G. Then there
exists a constant c = c(H, k, t) such that kt vertex disjoint monochromatic paths of G
cover at least n− c vertices.

In Section 4, we prove Conjecture 1.7 for k = 1, t = 2 (Theorem 4.6) and in
particular, c(C4, 1, 2) = 1 (Theorem 4.8). Note that this conjecture is related to
Conjecture 1.3 by selecting H to be the complete graph of size k + 1.

2 Partitioning into connected matchings.

In this section we prove Conjectures 1.2 and 1.5 in weakened forms, replacing cycles
and paths with connected matchings (Theorems 2.4, 2.5). We notice first that the
t = 1 case of Conjecture 1.2 is due to Pósa [23].4

Lemma 2.1. The vertex set of any graph G can be partitioned into at most α(G)
parts, where each part either contains a spanning cycle, or spans an edge or a vertex.

For two colors, we need the following result, which is essentially equivalent to
König’s theorem. It was discovered in [11] and applied in [16].

Lemma 2.2. Let the edge set of G be colored with two colors. Then V (G) can be
covered with the vertices of at most α(G) monochromatic connected subgraphs of G.

Proof. For a graph G whose edges are colored with red and blue, let ρ(G) denote the
minimum number of monochromatic components covering the vertex set of G. Let
α∗(G) be the maximum number of vertices in G so that no two of them is covered by a
monochromatic component. Suppose that the red edges define connected components
C1, . . . , Cp and the blue edges define connected components D1, . . . , Dq. Define a
bipartite multigraph B with vertex classes C1, . . . , Cp and D1, . . . , Dq. For every
vertex v ∈ V (G), v ∈ Ai, v ∈ Bj we define the edge Ci, Dj in B. (In fact, B is the
dual of the hypergraph formed by the monochromatic components on V (G).)

Recall that ν(B) is the maximum number of pairwise disjoint edges in B and τ(B)
is the minimum cover, i.e., the least number of vertices in B that meet all edges of
B. From König’s theorem and from easy observations follows that

ρ(G) = τ(B) = ν(B) = α∗(G) ≤ α(G) (1)

finishing the proof. 2

Observe that (1) gives a stronger form of Lemma 2.2 (equivalent form of König’s
theorem).

4See also Exercise 3 on page 63 in [20].
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Proposition 2.3. For any 2-edge colored graph G, ρ(G) = α∗(G).

Theorem 2.4. If the edges of a graph G are colored red and blue, then V (G) can
be partitioned into at most 2α(G) monochromatic parts, where each part is either an
edge, or a single vertex, or contains a connected matching or a spanning cycle.

It is worth noting that Theorem 2.4 is best possible, although it is weaker than
Conjecture 1.2. Indeed, let G be formed by k vertex disjoint copies of Ks, where
s ≥ 3. We color E(G) so that in each Ks the set of blue edges forms a Ks−1. Here
α(G) = k, and we need two parts to cover each Ks, one in each color.
Proof of Theorem 2.4. Set V = V (G). By Lemma 2.2, we can cover V by the
vertices of some p red and q blue monochromatic components, C1, . . . , Cp, D1, . . . , Dq,
where p + q ≤ α(G). We partition V into the doubly and singly covered sets. Let
Aij = Ci ∩Dj and Si = Ci − ∪jAij, Tj = Dj − ∪iAij, where 1 ≤ i ≤ p, 1 ≤ j ≤ q.

Fix Mi, a largest red matching in Ci for every i, and then let Nj be a largest
blue matching in Dj − ∪iV (Mi). These p + q ≤ α(G) monochromatic matchings are
connected. Delete the vertices of these matchings from V and for convenience keep
the same notation for the truncated sets, so Aij, Si, Tj denote the sets remaining after
all vertices of these matchings are deleted. Denote the remaining graph by G1, and
its vertex set by V1. Partition V1 into three sets, A = ∪p

i=1 ∪q
j=1 Aij, S = ∪p

i=1Si, T =
∪q

j=1Tj. Observe that there are no edges between S and T .
Edges of G1 can only be inside S (colored blue) or inside T (colored red). Applying

Lemma 2.1 for the blue and red graphs G1[S], G1[T ], we can cover S∪T by α(G1[S])+
α(G1[T ]) parts, where each part contains a monochromatic spanning cycle or it is an
edge or a vertex. Now A is a collection of isolated points in G1; we just cover it with its
vertices. Altogether, we partitioned V1 into |A|+α(G1[S])+α(G1[T ]) ≤ α(G1) ≤ α(G)
parts and together with the monochromatic connected matchings Mi, Nj , there are
at most 2α(G) parts as required. 2

Theorem 2.5. Let G = (V,E) be an n-vertex graph with δ(G) ≥ 3n/4, where n is
even. If the edges of G are 2-colored with red and blue, then there exist a red connected
matching and a vertex-disjoint blue connected matching, which together form a perfect
matching of G.

Proof. Let C1 be a largest monochromatic component, say red. Theorem 1.4 in
[17] yields |C1| ≥ 3n/4. Let U = V \ V (C1). Any vertex u in U can only have less
than n/4 red neighbors. Therefore, the blue degree of u is at least n/2. This implies
that the blue neighborhoods of any two vertices in U which are not connected with
a blue edge intersect. Therefore, if U 6= ∅, then U is covered by a blue component
of G, say C2. If U = ∅, then define C2 as a largest blue component in G. Set
p = |V (C1) \ V (C2)|, q = |V (C2) \ V (C1)|, where p ≥ q by the choice of C1. Let G1
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be the graph, which we get from G by deleting the blue edges inside C1 \C2 and the
red edges inside C2 \ C1. Note that in Cases 2 and 3 C2 \ C1 = ∅. We distinguish
three cases.

Case 1: Suppose |C1| < n. By the maximality of C1 and C2, there are no edges
between C1 \ C2 and C2 \ C1. Therefore, q < n/4 and p < n/4. We claim that
G1 satisfies the Dirac-property5, δ(G1) ≥ n/2. Indeed, we deleted at most n/4 − 1
edges at any vertex, and thus the remaining degree is more than n/2 at each vertex.
Therefore, there is a Hamiltonian cycle, that also contains a perfect matching. This
perfect matching consists of a connected red matching and a connected blue matching
covering G.

Case 2: Suppose |C1| = n and p ≤ n/2. Now we claim that G1 satisfies the
Chvátal-property6: if the degree sequence in G1 is d1 ≤ d2 ≤ . . . ≤ dn, then dk +
dn−k ≥ n for k ≤ n/2. Indeed, the degrees of the p vertices in C1 \ C2 are at least
3n/4−p+1, where p ≤ n/2. The rest of the degrees are unchanged being at least 3n/4.
That yields 3n/4 − p + 1 + 3n/4 = 3n/2 − p + 1 > n in the Chvátal-condition. This
implies the existence of a Hamiltonian cycle, which contains a perfect matching. This
perfect matching contains a connected red matching and a connected blue matching,
which together cover G.

Case 3: Suppose |C1| = n and p > n/2. That is, |C2| − p < n/2. Again, we
claim that there is a perfect matching in G1. Assume to the contrary that the largest
matching is imperfect. By Tutte’s theorem, there exists a set X of vertices in G1

such that the number of odd components in G1 \X is larger than |X|, which implies
that |X| < n/2. Let all the components (not just the odd ones) be D1, D2, . . . , Dℓ

in increasing order of their size, ℓ ≥ |X| + 1. Note that ℓ ≥ 2 always holds, even for
X = ∅, as n is even. Notice, that any potential edge in G between two components
of G1 \X is a blue edge inside C1 \C2 that was deleted. Let H be the graph formed
by the vertices in G \ X, and the blue edges in C1 \ C2. Since |X| < n/2, we have
|V (H)| > n/2.

Suppose first that |X| = x < n/4. Let us consider the smallest component D1

and put |D1| = d1. We claim that

d1 + x ≤ n− |D1 ∪X|. (2)

For d1 = 1, using n being even, we also get (2) from |D1 ∪X| = 1 + x ≤ n/2. When
x = 0 then (2) is true as ℓ ≥ 2, when x = 1 then (2) is true because n is even. For
x ≥ 2 and d1 ≥ 2 we have |D1 ∪X| = d1 + x ≤ d1x ≤ n− |D1 ∪X|, implying (2).

From (2), the blue neighborhoods of any two vertices in D1 intersect in H, and
D1 is covered by a blue component C ′

2. Using x < n/4, we get |C ′
2| ≥ 3n/4 − d1 −

5Exercise 21 on page 75 in [20].
6Exercise 21 on page 75 in [20].
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x + 1 + d1 − 1 = 3n/4 − x > n/2. That is a contradiction since C2 was the largest
blue component and |C2| < n/2.

Now we may assume n/4 ≤ |X| < n/2. Since |X| < n/2 we have V (H) > n/2.
If we prove that H is connected, then we get a contradiction again, since C2 was
the largest blue component, and |C2| < n/2. Assume to the contrary that we can
partition the vertices of H into A and B with no edges between them. We may
assume |A| ≥ |B|, and therefore |A| > n/4. We have two subcases.

Case 3.a: Suppose A ∩Di 6= ∅ for 1 ≤ i ≤ ℓ. Let v be a vertex in B and assume
v ∈ Dj. There is no edge of G from v to A ∩Di, for each i 6= j, 1 ≤ i ≤ ℓ: An edge
from G1 is impossible, because i 6= j; a blue edge from C1 \C2 is impossible, because
(A,B) is a cut in H. Therefore, the degree of v in G is at most n − 1 − ℓ + 1 ≤
n− (|X| + 1) ≤ n− 1 − n/4 < 3n/4, a contradiction.

Case 3.b: Suppose A ∩Dj = ∅ for a fixed j, 1 ≤ j ≤ ℓ. Let v be a vertex in Dj.
There is no edge from v to any vertex u of A: An edge from G1 is impossible, because
u ∈ Di, where i 6= j. A blue edge from C1 \ C2 is impossible, because (A,B) is a
cut. Therefore, the degree of v in G is at most n− 1 − |A| ≤ n− 1 − n/4 < 3n/4, a
contradiction. 2

3 Applying the Regularity lemma.

As in many applications of the Regularity Lemma, one has to handle irregular pairs,
that translates to exceptional edges in the reduced graph. To prove such a variant of
Theorem 2.4, first Lemma 2.2 is tuned up. A graph G on n vertices is ε-perturbed if
at most ε

(

n
2

)

of its edges are marked as exceptional (or perturbed). For a perturbed

graph G, let G− denote the graph obtained by removing all perturbed edges.

Lemma 3.1. Suppose that G is a 2-edge-colored ε-perturbed graph on n vertices,
n ≥ ε−1/2. Then all but at most f(α(G))

√
εn vertices of G can be covered by the

vertices of α(G) monochromatic connected subgraphs of G−, where f is a suitable
function.

Proof. Set α = α(G) and remove from V (G) a set X of at most
√
εn vertices so that

in the remaining graph H each vertex is incident to at most
√
εn perturbed edges.

Let T denote the (possibly edgeless) hypergraph whose edges are those sets T ⊂
V (H) for which |T | = α+1 and no monochromatic component of H− covers more than
one vertex of T . (Each T ∈ T is a witness showing α∗(H−) ≥ α+1.) We call pairwise
disjoint hyperedges T1, T2, . . . , Tk in T independent, if there are no perturbed edges in
the k-partite graph defined by the Ti-s. Set c = 3α2

and let R = R(3, 3, . . . , 3, α + 1)
be the c-color Ramsey number, the smallest m such that in every c-coloring of the
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edges of Km either there is a triangle in one of the first c−1 colors or a Kα+1 in color
c.

Claim 3.2. Select in T as many pairwise independent hyperedges as possible, say
T1, T2, . . . , Tk. Then k < R.

Proof. Fix an ordering within each of the sets Ti; if x ∈ Ti is the j-th element
in this order in Ti, we write ind(x) = j. Suppose for contradiction that k ≥ R and
consider a coloring of the pairs among T1, T2, . . . , Tk defined as follows. Color a pair
Ti, Tj (1 ≤ i < j ≤ k) by their “color pattern” on the pairs x ∈ Ti, y ∈ Tj with
ind(x) 6= ind(y). There are α2 such pairs (none of them is a perturbed edge) thus
x, y is a red edge, a blue edge or not an edge in H. So we have a c-coloring on the
pairs Ti, Tj , the color when all the α2 pairs are not edges of H is called special. By
the assumption k ≥ R, we have either α + 1 Ti-s with any pair of them colored with
the special color or three Ti-s with all three pairs colored with the same non-special
color. We show that both cases lead to contradiction.

In the latter case we have a triple, say T1, T2, T3 and different indices i, j, such
that p ∈ T1, q, r ∈ T2, s ∈ T3, ind(p) = ind(q) = i, ind(r) = ind(s) = j and pr, ps, qs
are all edges of H colored with the same color. Thus r, p, s, q is a monochromatic
path of H−, intersecting T2 in two vertices, contradicting to the definition of T2.

In the former case we have say T1, T2, . . . , Tα+1 pairwise colored with the spe-
cial color. For i = 1, 2, . . . , α + 1, select vi ∈ Ti such that ind(vi) = i. Observe
that {v1, . . . , vα+1} spans an independent set in G, contradicting the assumption that
α(G) = α. 2

Let Y denote the set of vertices in H sending at least one perturbed edge to
∪k

i=1Ti. Observe that |Y | ≤ (α+1)R
√
εn and by the maximality of k, Z = ∪k

i=1Ti∪Y
meets all edges of T , thus removing X ∪Z from V(G) leaves a subgraph F ⊂ G with
α∗(F−) ≤ α. Therefore, applying Proposition 2.3 to F−, ρ(F−) ≤ α. The theorem
follows, since (using the assumption 1 ≤ √

εn)

|X ∪ Z| ≤ √
εn + R(α + 1) + (α + 1)R

√
εn ≤ (1 + 2R(α + 1)

√
εn,

i.e. f(α) = (1 + 2R(α + 1)) is a suitable function. 2

Now we are ready to prove a perturbed version of Theorem 2.4.

Theorem 3.3. Let G be an ε-perturbed 2-edge-colored graph on n vertices, n ≥ ε−1/2.
Then there exists a Z ⊂ V (G) such that |Z| ≤ (f(α(G)) + α(G))

√
εn and V (G) \ Z

can be partitioned into at most 2α(G) classes, where each part in G− either contains
a connected monochromatic spanning matching or a monochromatic spanning cycle
or it is an edge or a single vertex.
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Proof. Using Lemma 3.1, we can remove from V (G) a set of at most f(α)
√
εn

vertices such that for the remaining graph H, the following holds. The vertices
V (H) can be covered by the vertices of at most α(G) monochromatic components of
H−, say with p red and q blue monochromatic components, C1, . . . , Cp, D1, . . . , Dq,
where p + q ≤ α(G). We may suppose that each vertex of H is incident to at
most

√
εn perturbed edges, as this is automatic from the proof of Lemma 3.1. The

p + q components yield a partition of V (H) into doubly and singly covered sets. Let
Aij = Ci ∩ Dj and Si = Ci − ∪jAij, Tj = Dj − ∪iAij , where 1 ≤ i ≤ p, 1 ≤ j ≤ q.
First let Mi be a largest red matching induced by H− in Ci for every 1 ≤ i ≤ p,
and then Nj be a largest blue matching induced by H− in Dj − ∪iV (Mi), for every
1 ≤ j ≤ q. Observe that these matchings are connected in H−. Delete all vertices
of these matchings from V (H) and for convenience keep the same notation for the
truncated sets (so Aij, Si, Tj denotes the sets remaining after all vertices of these
matchings are deleted). The remaining graph is denoted by F . Partition V (F ) into
three sets, A = ∪p

i=1 ∪q
j=1 Aij, S = ∪p

i=1Si, T = ∪q
j=1Tj. Observe that edges of F− can

be only inside S (colored blue) or inside T (colored red). Now we follow the proof
method of Lemma 2.1 (see Exercise 3 on page 63 in [20]) to partition most of the
vertices in V (F ) into at most α(G) monochromatic cycles.

We apply the following procedure to subsets U of one of the sets A, S, T . Observe
that F−[U ] is an independent set if U ⊂ A, edges of F−[U ] are all blue if U ⊂ S,
edges of F−[U ] are all red if U ⊂ T .

In any step of the procedure, consider a maximal path P of F−[U ] and let x be
one of its endpoints. If x is an isolated vertex in F−[U ], define C∗ = {x}. If x has
degree one in F−, let y be its neighbor on P and define C∗ = {x, y}. If x has degree
at least two in F−, let z be the neighbor of x on P (in F−), which is the furthest from
x. Now C∗ is defined as the cycle obtained by connecting the endpoints of the edge
xz on the path P . Let Y be the set of perturbed neighbors of x in F−. That is, the
set of vertices in V (F ), which are adjacent to x by exceptional edges. The step ends
with removing C∗ ∪ Y from V (F ) and defining the new F,A, S, T as the truncated
sets.

This procedure decreases α(F ) at each step, because any independent set of the
truncated set can be extended by x to an independent set of F . Therefore, at most
α(G) steps can be executed. Now apart from the union of the sets Y s, at most α(G)
monochromatic C∗-s partition V (F ). Together with the p + q ≤ α monochromatic
connected matchings Ni,Mj we have the required covering. The number of uncovered
vertices are at most f(α)

√
εn (lost when the matchings were defined) plus α

√
εn

(when the cycles are defined). 2
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3.1 Building cycles from connected matchings.

Next we show how to prove Theorem 1.4 from Theorem 3.3 and the Szemerédi Reg-
ularity Lemma [29]. The material of this section is fairly standard by now (see
[9, 12, 13, 14, 15] so we omit some of the details. We need a 2-edge-colored version
of the Szemerédi Regularity Lemma.7

Lemma 3.4. For every integer m0 and positive ε, there is an M0 = M0(ε,m0) such
that for n ≥ M0 the following holds. For any n-vertex graph G, where G = G1 ∪ G2

with V (G1) = V (G2) = V , there is a partition of V into ℓ + 1 clusters V0, V1, . . . , Vℓ

such that

• m0 ≤ ℓ ≤ M0, |V1| = |V2| = . . . = |Vℓ|, |V0| < εn,

• apart from at most ε
(

ℓ
2

)

exceptional pairs, all pairs Gs|Vi×Vj
are ε-regular, where

1 ≤ i < j ≤ ℓ and 1 ≤ s ≤ 2.

Proof of Theorem 1.4. Given η and α, first we fix a positive ε sufficiently
small so that the claimed bound (f(α) + α)

√
ε in Theorem 3.3 is much smaller than

η. Then we choose m0 sufficiently large compared to 1/
√
ε (so Theorem 3.3 can be

applied). Let G be a graph on n vertices with α(G) = α, where n ≥ M0 with M0

coming from Lemma 3.4. Consider a 2-edge-coloring of G, that is G = G1 ∪G2. We
apply Lemma 3.4 to G in order to obtain a partition of V , that is V = ∪0≤i≤ℓVi.
Define the following reduced graph GR: The vertices of GR are p1, . . . , pℓ, and there
is an edge between vertices pi and pj if the pair (Vi, Vj) is either exceptional8, or if
it is ε-regular in both G1 and G2 with density in G exceeding 1/2. The edge pipj is
colored with the color, which is used on the most edges from G[Vi, Vj] (the bipartite
subgraph of G with edges between Vi and Vj). The density of this majority color is
still at least 1/4 in G[Vi, Vj ]. This defines a 2-edge-coloring GR = GR

1 ∪GR
2 .

We claim that α(GR) ≤ α(G) = α. Indeed, we apply the standard Key Lemma9

in the complement of GR and G. Note that a non-exceptional pair is 2ε-regular in
G as well. If we had an independent set of size α + 1 in GR, then we would have an
independent set of size α + 1 in G, a contradiction.

We now apply Theorem 3.3 to the ε-perturbed 2-edge-colored GR (note that the
condition in Theorem 3.3 is satisfied since ℓ ≫ 1/

√
ε). We cover most of GR by at

most 2α(GR) ≤ 2α(G) = 2α subgraphs of (GR)−, where each subgraph in (GR)− is
either a connected monochromatic matching or a monochromatic cycle or an edge or
a single vertex. Finally, we lift the connected matchings back to cycles in the original

7For background, this variant and other variants of the Regularity Lemma see [18].
8That is, ε-irregular in G1 or in G2. Also, these edges are marked exceptional in GR.
9Theorem 2.1 in [18].
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graph using the following10 lemma in our context, completing the proof. Indeed, the
number of vertices left uncovered in G is at most

(f(α) + α)
√
εn + 3ǫn + ǫn = (f(α) + α)

√
εn + 4ǫn ≤ ηn,

using our choice of ǫ. Here the uncovered parts come from Theorem 3.3, from Lemma
3.5 and V0. 2

Lemma 3.5. Assume that there is a monochromatic connected matching M (say
in (G1

R)−) saturating at least c|V (GR)| vertices of GR, for some positive constant
c. Then in the original G there is a monochromatic cycle in G1 covering at least
c(1 − 3ε)n vertices.

Proof of Theorem 1.6. We combine the degree form and the 2-edge-colored
version of the Regularity Lemma.

Lemma 3.6. For every positive ε and integer m0, there is an M0 = M0(ε,m0) such
that for n ≥ M0 the following holds. For any n-vertex graph G, where G = G1 ∪ G2

with V (G1) = V (G2) = V , and real number ρ ∈ [0, 1], there is a partition of V into
ℓ+ 1 clusters V0, V1 . . . , Vℓ, and there are subgraphs G′ = G′

1∪G′
2, G

′
1 ⊂ G1, G

′
2 ⊂ G2

with the following properties:

• m0 ≤ ℓ ≤ M0, |V0| ≤ ε|V |, |V1| = . . . = |Vℓ| = L,

• degG′(v) > degG(v) − (ρ + ε)|V | for all v ∈ V ,

• the vertex sets Vi are independent in G′,

• each pair G′|Vi×Vj
is ε-regular, 1 ≤ i < j ≤ ℓ, with density 0 or exceeding ρ,

• each pair G′
s|Vi×Vj

is ε-regular, 1 ≤ i < j ≤ ℓ, 1 ≤ s ≤ 2.

Let ε ≪ ρ ≪ η ≪ 1, m0 sufficiently large compared to 1/ε and M0 obtained from
Lemma 3.6. Let G be a graph on n > M0 vertices with δ(G) > (3

4
+ η)n. Consider a

2-edge-coloring of G, that is G = G1 ∪G2. We apply Lemma 3.6 to G. We obtain a
partition of V , that is V = ∪0≤i≤ℓVi. We define the following reduced graph GR: The
vertices of GR are p1, . . . , pℓ, and there is an edge between vertices pi and pj if the pair
(Vi, Vj) is ε-regular in G′ with density exceeding ρ. Since δ(G′) > (3

4
+η− (ρ+ε))|V |,

calculation11 shows that δ(GR) ≥
(

3
4

+ η − 2ρ
)

ℓ > 3
4
ℓ. The edge pipj is colored again

with the majority color, and the density of this color is still at least ρ/2 in K(Vi, Vj).

10As in [12, 13, 14, 15].
11See a similar computation in [26].
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Applying Theorem 2.5 to GR, we get a red connected matching and a vertex-
disjoint blue connected matching, which together form a perfect matching of GR.
Finally we lift the connected matchings back to cycles in the original graph using
Lemma 3.5. The number of vertices left uncovered in G is at most

√
εn ≤ ηn. 2

4 Excluding bipartite graphs from the complement.

In what follows, we prove the t = 2, k = 1 case of Conjecture 1.7. As every bipartite
graph is a subgraph of a complete bipartite graph, we may assume that the graph
H forbidden in the complement of G is Kp,p. Note that the constant c we get could
be greatly improved even using the same arguments with more involved calculations,
however, it would be still far from being optimal. We use the following well-known
theorems.

Theorem 4.1 (Erdős-Gallai [5]). 12 If G is a graph on n vertices with |E(G)| >
ℓ(n− 1)/2, then G contains a cycle of length at least ℓ + 1.

Theorem 4.2 (Kővári-T. Sós-Turán [19]). 13 If G is a graph on n vertices such
that Kp,p is not a subgraph of G, then |E(G)| ≤ (p−1)1/pn2−1/p+(p−1)n ≤ 2pn2−1/p.

Lemma 4.3. Let p and n be positive integers such that n ≥ (10p)p. Let G be an n-
vertex graph such that Kp,p 6⊂ G. Then any 2-edge-coloring of G contains a monochro-
matic cycle of length at least n/4.

Proof. By Theorem 4.2 and by the lower bound on n,

e(G) ≥
(

n

2

)

− 2pn2−1/p = n2/2 − n/2 − 2pn2−1/p ≥ n2/2 − n/2 − n2/5 ≥ n2/4,

so one of the colors, say red, is used at least n2/8 times. Then using Theorem 4.1 in
the red subgraph we get a red cycle of length at least n/4. 2

For a bipartite graph G with classes A,B, the bipartite complement G[A,B] of G
is obtained via complementing the edges between A and B, and keeping A and B
independent sets.

Lemma 4.4. Let 0 < ǫ < 1 and n ≥ (50p)p/ǫ. Let G be a bipartite graph with classes
A and B, |A| = |B| = n such that Kp,p 6⊂ G[A,B]. Then there is a path of length at
least (2 − ǫ)n in G.

12See also Exercise 28 on page 76 in [20].
13See also Exercise 37 on page 77 in [20].

13



Proof. First we prove a weaker statement.

Claim 4.5. Let G′ be a bipartite graph with classes A′ and B′ with |A′| = |B′| = m ≥
(20p)p such that Kp,p 6⊂ G

′
[A′, B′]. Then there is a path of length at least m/2 in G′.

Proof. By Theorem 4.2, e(G′) ≥ m2 − 8pm2−1/p > m2/2 = (2m)2/8, so by Theorem
4.1 G′ contains a path of length at least m/2. 2

Let P be a longest path in G. Using Claim 4.5 with G = G′, we have that
|P | ≥ n/2. Assume for a contradiction that P is shorter than (2 − ǫ)n. Because
G is bipartite, we can choose A′ ⊂ (G − P ) ∩ A and B′ ⊂ (G − P ) ∩ B with
|A′| = |B′| > ǫn/3. By Claim 4.5, G[A′, B′] contains a path P ′ with at least ǫn/6
vertices.

Consider the last 2p vertices of P and the last 2p vertices of P ′. There is an edge
e between these set of vertices by the assumption. Adding e to P ∪ P ′, there is a
path, which contains all but 2p vertices of P , and all but 2p vertices of P ′, hence it
is longer than P , a contradiction. Here we used that ǫn/6 > 4p. 2

Theorem 4.6. Let G be an n-vertex graph such that Kp,p 6⊆ G. Then any 2-edge-
coloring of G contains two vertex disjoint monochromatic paths of distinct colors
covering at least n− 1000(50p)p vertices.

Proof. Consider the vertex disjoint blue path, red path pair (P1, P2), which cover
the most vertices, and let G′ = G \ {P1 ∪ P2}. Suppose there are n1 vertices in G′,
where n1 > 1000(50p)p. As n > n1 > 1000(50p)p, by Lemma 4.3 at least n/4 vertices
are covered by P1 ∪P2. Let t = 10(50p)p < n1/100. We split the proof into two cases.

Case 1: One of the paths, P2 say, is shorter than t. Using that 3t < n/4 we have
that the length of P1 is at least 2t in this case. Now G′ does not contain a red path
of length t, but by Lemma 4.3 it contains a monochromatic cycle of length at least
n1/4 > 4t, which must be blue. Hence, G′ contains a blue path, say P3, of length at
least 4t.

Denote L1, the set of last 2t vertices of P1 and L3, the set of last 2t vertices of P3.
There is an edge e between L1 and L3 as 2t > p and Kp,p 6⊆ G. If e was blue then
we use e to connect the paths P1, P3, and we find a blue path longer than P1 vertex
disjoint from P2, a contradiction.

Hence all edges between L1 and L3 are red, and we can apply Lemma 4.4 for the
red bipartite graph between L1 and L3 with ǫ = 1/8. (Note that 2t ≥ 8(50p)p, so
indeed the lemma is applicable.) It yields a red path P4 of length (2 − 1/8)2t in
L1 ∪ L3. Let P ′

1 be P1 without the last 2t vertices. Now P ′
1 and P4 are disjoint and

cover more vertices than P1 and P2, which is a contradiction.

14



Case 2: Both P1 and P2 have length at least t. Without loss of generality, in
G′ Lemma 4.3 implies the existence of a blue cycle C of length at least n1/4 ≥ 4t.
Denote R1 the set of the last t vertices of P1, R2 the set of the last t/2 vertices of P2,
and C1 any set of consecutive t vertices of C. There are no blue edges between R1

and C1, otherwise P1 could be replaced with a longer blue path. Now by Lemma 4.4,
with ǫ = 1/8, there is a red path P3 in G(R1, C) of length 15t/8. Let B be the set of
the first and last t/4 vertices of P3. For each vertex v in B, there is a red path Pv of
length 13t/8 starting at v, which is a subpath of P3. If there is a red edge e = (u, v)
between R2 and B, then P2∪e∪Pv contains a red path with at least |P2|+13t/8−t/2
vertices which together with the disjoint P1 − R1 cover more vertices than the pair
(P1, P2), a contradiction.

Therefore, there are only blue edges between B and R2. Since |B ∩P1| ≥ p, there
are at least t/2−p+ 1 vertices of R2 having neighbors in B∩P1. Let R′

2 be the set of
those vertices. If there is a blue edge f between R′

2 and C, then P1∪f ∪C contains a
blue path which together with the disjoint P2 −R2 cover more vertices than the pair
(P1, P2), a contradiction.

Therefore, all the edges between R′
2 and C are red. We already know that there

are no red edges from R′
2 and B ∩ C. But we have that |R′

2| ≥ p and |B ∩ C| ≥ p,
which is a contradiction. 2

The following proposition, which is a 1-colored version of one of our main results,
Theorem 4.8, is also a special case of R(Pm, Cn), determined in [7].

Proposition 4.7. If G is a graph on n vertices and C4 6⊆ G, then G contains a path,
which covers n− 1 vertices.

Proof. Denote by P a longest path of G. Let a and b be the first and last vertex of
P . If P contains less than n− 1 vertices, then there are two vertices x and y not in
P . Let us consider the pairs ax, xb, by, ya. If none of them spans an edge in G, then
they span a C4 in G, which is a contradiction. If any of them spans an edge in G,
then it extends P , which is again a contradiction. 2

The following result, the two-color version of Proposition 4.7, shows that Conjec-
ture 1.7 is true for H = C4 with c(C4)=1.

Theorem 4.8. Let G be a graph such that |V (G)| ≥ 7 and C4 6⊆ G. If the edges of
G are colored red and blue, then there exist two vertex-disjoint monochromatic paths
of different colors covering n− 1 vertices.

For simplicity, we refer to edges of G as black edges, and think of G as Kn with
a 3-edge-coloring, but monochromatic paths should be blue or red, and sometimes
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when we write ”edge of G” we mean ”red or blue edge of G”. We trust that this will
not confuse the reader.

Remark 2. The value n − 1 in Theorem 4.8 is best possible, as shown by the
following example. Let v1 and v2 be two different vertices in Kn. If v1x is black for
all x, and v2y is red for all y, y ∈ V (Kn) \ v1, and all other edges are blue, then any
two monochromatic paths can only cover at most n− 1 vertices.

The condition |V (G)| ≥ 7 is somewhat unexpected, since the statement is true if
|V (G)| ≤ 4. On five vertices, let G5 = K1 ∪ C4 and color the edges of C4 alternately
red and blue. On six vertices, let G6 be the complement of C6 and color the long
diagonals red and the short diagonals blue. One can easily check that pairs of vertex
disjoint red and blue paths must leave two vertices uncovered in these graphs.

Proof Theorem 4.8. Fix a blue path P1 = a1 . . . ai and a red path P2 = b1 . . . bj
such that i + j is as large as possible, and under this condition |i − j| is as small as
possible. Let G′ be G \ (P1 ∪ P2). If G′ contains only one vertex, then we are done.
Therefore, we may choose a U ⊆ V (G′) such that U = {x, y} for some x 6= y. Since
i+ j is maximal, there are no blue edges between {a1, ai} and G′ and there are no red
edges between {b1, bj} and G′. We consider two cases, according whether min i, j = 1
(say then i = 1).

Case 1: i = 1. If there is a blue edge between b1 and G′, then that one edge and
b2 . . . bj would be a better pair of paths (with smaller difference of the sizes), which
is a contradiction, unless j = 2. In this case, X = V (G) \ {b1, b2} has at least five
vertices and (using that no C4 in G) one can easily see that X has either a blue edge
or a red P3 and both contradicts the choice of P1, P2.

Case 2: i, j ≥ 2. Since there is no black C4, there is an non-black edge of G
between some of the endpoints of P1 and some of the endpoints of P2. We call such
an edge a cross-edge.

Claim 4.9. If both endpoints of a cross-edge are connected to G′ by a non-black edges
of G, then we can increase the number of vertices covered by the two monochromatic
paths.

We may assume that a1b1 is a cross-edge and it is blue. There is a blue edge be-
tween b1 and G′, say b1z. Now zb1a1 . . . ai and b2 . . . bj are two monochromatic paths,
which cover more vertices than P1 and P2. 2

In what follows, we may assume that a1b1 is a blue cross-edge, and b1z is black
for any vertex z of G′. Let v ∈ V (P1) ∪ V (P2) \ b1. If vz1 and vz2 were two black
edges for some z1, z2 ∈ G′, then vz1b1z2 would be a black 4-cycle, a contradiction.
Therefore, v is adjacent to all but one vertex in G′. In particular, there are red edge
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from both a1 and ai to G′ and a blue edge from bj to G′. Therefore, the edges a1bj
and aibj are both black by Claim 4.9.

Case 2.1: j = 2. If there were two (red) edges between ai and G′, say aiz1 and aiz2,
then b1a1 . . . ai−1 and z1aiz2 would cover more vertices than P1 ∪ P2, a contradiction.
Therefore, |V (G′)| = 2, that is U = G′. We may assume aix is red and aiy is black.
It follows that a1y is red and a1x is black, otherwise a1yaibj would be a black C4.
contradiction. Since |V (G)| ≥ 7, we now get i > 2. Therefore, ai−1 6= a1.

Case 2.1.1: a1x is black. Consider the edges ai−1x and ai−1b2. If both of them
were black, then a1xai−1b2 would be a black C4. If both of them were red, then
b1b2ai−1xai and a1 . . . ai−2 would cover more vertices than P1 ∪ P2. If b2ai−1 is blue,
then b1a1 . . . ai−1b2 and aix cover more vertices than P1 ∪ P2.

If ai−1x is blue, then consider the existing blue edge between b2 and U . If
b2x were blue, then b1a1 . . . ai−1xb2 and ai would cover more vertices than P1 ∪ P2.
Therefore, b2y is a blue edge. Consider now the edge b1ai. If b1ai were red, then
b2b1aix and a1 . . . ai−1 would cover more vertices than P1 ∪ P2. If b1ai were blue,
then xai−1aib1a1 . . . ai−2 and b2 would cover more vertices than P1 ∪ P2. Therefore,
b1ai ∈ G. Now we consider the edge xy. If xy is blue, then a1 . . . ai−1xy and b1b2
cover more vertices than P1 ∪ P2. If xy is red, then b1a1 . . . ai−1 and aixy cover more
vertices than P1 ∪ P2. Finally, if xy ∈ G, then xyaib1 is a black 4-cycle. This shows
that ai−1x is not blue.

Now one of ai−1x and ai−1b2 is red and the other one is black. If ai−1x is red, then
consider ai−1y. If ai−1y is red, then aixai−1y and b1a1 . . . ai−2 cover more vertices than
P1 ∪P2. If ai−1y is blue, then b1a1 . . . ai−1y and aix cover more vertices than P1 ∪P2.
If ai−1y ∈ G, then b2ai−1yai is a black 4-cycle.
If ai−1b2 is red and ai−1x is black, then look at ai−1y. If ai−1y is black, then xai−1yb1
is a black C4. If ai−1y is blue, then b1a1 . . . ai−1y and aix cover more vertices than
P1∪P2. If ai−1y is red, then b1a1 . . . ai−2 and b2ai−1y cover the same number of vertices
as P1∪P2. At the same time, if i ≥ 4, |i−j| is smaller, giving a contradiction. On the
other hand, if i = 3, then ai and b1b2ai−1ya1 and ai cover more vertices than P1 ∪P2.

Case 2.1.2: a1x is red. If i ≥ 4, then a2 . . . ai and xa1y cover the same number
of vertices as P1 ∪ P2 with a smaller |i − j|, a contradiction. Therefore, i = 3 that
is |V (G)| = 7. If b2y is blue, then look at a2y. If a2y is blue, then b1a1a2yb2 and
a3x cover more vertices than P1 ∪ P2. If a2y is red, then b1 and a3xa1ya2 cover more
vertices than P1 ∪ P2. Therefore, a2y is black. Now if a2b2 is black, then b2a3ya2 is
a black C4. If a2b2 is blue, then b1a1a2b2y and a3x cover more vertices than P1 ∪ P2.
Therefore, a2b2 is red. Now a2x must be blue and b2x black. Consider now b1a3. If
b1a3 is blue, then a3b1a1a2x and b2 cover more vertices than P1 ∪ P2. If b1a3 is red,
then a2b2b1a3xa1y cover V (G). Finally if b1a3 is black, then b1a3b2x is a black C4.

Therefore, b2y is black and b2x is blue. Consider b1a3. If b1a3 is black, then b1a3b2y
is a black C4. If b1a3 is red, then b2b1a3xa1y and a2 cover more vertices than P1 ∪P2.
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If b1a3 is blue, then b1a3a2 and xa1y cover more vertices than P1 ∪ P2.
Case 2.2: j > 2. Consider the edge b1bj. If b1bj is blue, then ai . . . a1b1bj plus a blue

edge from bj to G′ and b2 . . . bj−1 cover more vertices than P1 ∪ P2, a contradiction.
If b1bj is red, then consider b2b1bj . . . b3, a red path of length j. By Claim 4.9, there is
a cross-edge adjacent to two of a1, ai, b2, b3, and one of these vertices, say c (different
from b1) is non-adjacent to G′. That is, b1xcy is a C4 in G, a contradiction. We
conclude b1bj ∈ G. Now aibjb1z is a path on 4 vertices in G, for any z ∈ G′. Therefore,
any edge aiz, where z ∈ G′, is a red edge. If there is a red edge b2z, where z ∈ G′,
then b1a1 . . . ai−1 and xaizb2 . . . bj cover more vertices than P1 ∪ P2, a contradiction.
Thus there is a blue edge e from b2 to G′. Now consider the edge b2ai. If it were blue,
then b1a1 . . . aib2 extended with e and b3 . . . bj would cover more vertices than P1∪P2,
a contradiction. If b2ai was red, then b1a1, . . . ai−1 and xaib2, . . . bj would cover more
vertices than P1 ∪ P2, a contradiction. We conclude that b2ai ∈ G.

Next look at the pair a1, b2. It must be an edge G, otherwise a1b2aibj is a C4 in
G, a contradiction. If a1b2 is red, then let f be a red edge from a1 to U , say f = a1x.
Now a2 . . . ai−1 and yaixa1b2 . . . bj cover more vertices than P1 ∪ P2, a contradiction.
We conclude that a1b2 is blue.

Consider the edge aib1. If it is red, then a1 . . . ai−1 and xaib1 . . . bj form a better
pair. If aib1 is blue, then b1ai . . . a1b2e and b3 . . . bj form a better pair. We conclude
aib1 ∈ G. Now the bjaib1z is a path on 4 vertices in G, for any z ∈ G′. Therefore any
bjz in G would form a C4. That is, all bjz are blue edges.

Let z be the endvertex of e in G′. Now ai . . . a1b2zbjx and b3 . . . bj−1 cover more
vertices than P1 ∪ P2, giving a final contradiction. 2
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[29] E. Szemerédi, Regular partitions of graphs, Colloques Internationaux C.N.R.S.
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