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MAXIMAL SETS WITH NO SOLUTION TO x+ y = 3z

ALAIN PLAGNE AND ANNE DE ROTON

Abstract. In this paper, we are interested in a generalization of the notion of sum-free
sets. We address a conjecture first made in the 90s by Chung and Goldwasser. Recently,
after some computer checks, this conjecture was formulated again by Matolcsi and Ruzsa,
who made a first significant step towards it. Here, we prove the full conjecture by giving
an optimal upper bound for the Lebesgue measure of a 3-sum-free subset A of [0, 1], that
is, a set containing no solution to the equation x+ y = 3z where x, y and z are restricted
to belong to A. We then address the inverse problem and characterize precisely, among
all sets with that property, those attaining the maximal possible measure.

1. Introduction

The problem of sum-free sets or more generally of k-sum-free sets (k is a positive
integer) has a long history (see for instance [14]). A subset of a given (additively written)
semi-group, say, is said to be k-sum-free if it contains no triple (x, y, z) satisfying the
equation x + y = kz. In the case of integers, which was certainly the first historical
case of study, Ruzsa [10, 11] studied more general linear equations and introduced a
new terminology by distinguishing between what he called invariant and noninvariant
equations. Invariant equations, which correspond here to the fact that the sum of the
coefficients of the unknowns in the forbidden relation is equal to zero, lead to the existence
of trivial solutions – as appears for instance in the case of 2-sum-free sets (since x + x
is equal to 2x, whatever x is) – which have not to be considered and lead to special
developments: 2-sum-free sets, which are also and in fact mainly known as sets without
arithmetic progressions of length 3, are of great importance and their study is central in
additive combinatorics. We simply mention [12] for the latest development on the subject
which goes back at least to Roth [8]. In the present paper, we shall only deal with the
non invariant cases, that is, k is supposed different from 2. In this case, the problems
which appear are of a different kind.

The very basic question to maximize the cardinality of a set of integers included in
{1, 2, . . . , n} having no solution to the equation x+ y = z (sum-free sets) belongs to the
folklore and is easily solved (see for instance [4] or [5]). One cannot select more than
⌈n/2⌉ integers with the required property, and this is optimal. Interestingly, for a general
n, there are two kinds of extremal sum-free sets (see Theorem 1.1 of [4] for a precise
statement): the combinatorial one, namely the upper-half, {⌈(n+1)/2⌉, . . . , n} for which
the impossibility to solve the equation follows from a size condition; and the arithmetic
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one, in the present case the set of odd integers, for which a modular condition prevents
from the existence of a solution. Not only in the case of sum-free sets of integers is this
dichotomy emerging. In all these types of questions, when asked in a discrete setting, this
typology is subject to appear.

For k = 3 (and n 6= 4), Chung and Goldwasser [4] proved Erdős’ conjecture that ⌈n/2⌉
is the maximal size of a 3-sum-free set of positive integers less than n. They also prove,
at least when n ≥ 23 (see Theorem 1.3 in [4]), that the set of odd integers is the only
example attaining this cardinality.

For k ≥ 4, Chung and Goldwasser [3] discovered k-sum-free subsets of {1, 2, . . . , n}
with a size asymptotic to

∼
k − 2

k2 − 2

(

k +
8

k(k4 − 2k2 − 4)

)

n

as n tends to infinity. This was obtained thanks to an explicit construction of three inter-
vals of integers. They additionally conjectured that this was the actual exact asymptotic
maximal value. This conjecture was finally settled by Baltz, Hegarty, Knape, Larsson and
Schoen in [1]. These authors additionally proved an inverse theorem giving the structure
of a k-sum-free sets of this size : such sets have to be close from the set composed of the
three above-mentioned intervals.

In fact, Chung and Golwasser managed to predict the maximal size of a k-sum-free set
of integers less than n by studying the continuous analog of the problem in [3]; in other
words by introducing the study of k-sum-free subsets of reals number selected from [0, 1].
Indeed, a k-sum-free subset of [0, 1] leads, after a suitable dilation, to a k-sum-free set
of integers (but it is important to notice, this set will be mandatorily – in the typology
mentioned above – of a combinatorial nature).

We thus arrive to the question of determining the maximal Lebesgue measure – denoted
thereafter µ – of a subset of [0, 1] having no solution to the equation x + y = kz. The
case k = 1 is easy and, as mentioned above, the cases k ≥ 4 were solved in [3]. However,
the case k = 3 was left open and remained the only one for which the optimal asymptotic
density was unknown. Nonetheless, it was precisely investigated and the set (composed
again of three intervals)

(1) A0 =

(

8

177
,
4

59

)

∪

(

28

177
,
14

59

)

∪

(

2

3
, 1

)

which does not contain a solution to the equation x+y = 3z, was identified in [3] as playing
an important role in the question. Notice that its measure is equal to 77/177 = 0.4350 . . .
In the sequel, we shall call A1, . . . ,A7 the seven sets defined as the union of A0 and
three points, one end-point of each interval appearing in the definition of A0, except
{8/177, 14/59, 2/3}. These seven sets are 3-sum-free. The quite precise following conjec-
ture was then formulated in [3] (and proposed again later in [7] after several computer-
aided checks):
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Chung-Goldwasser-Matolcsi-Ruzsa Conjecture . Let A be a measurable 3-sum-free
subset of [0, 1]. Then

µ(A) ≤
77

177
.

Moreover, if µ(A) = 77/177 and if A is maximal with respect to inclusion among the
3-sum-free subsets of [0, 1], then A ∈ {A1, . . . ,A7}.

Recently, Matolcsi and Ruzsa [7] made the first breakthrough towards the first part of
this conjecture by showing the following theorem.

Matolcsi-Ruzsa Theorem . Let A be a mesurable 3-sum-free subset of [0, 1]. Then its
measure satisfies

µ(A) ≤
28

57
= 0.49122 . . .

This result, the first one to prove a strictly less than 0.5 upper bound for 3-sum-free
subsets of [0, 1], is very noticeable because it shows in particular that in the case of 3-sum-
free sets, contrary to what happens in the other cases, the maximal size of such a subset
in [0, 1] is not the analog of that of a k-sum-free subset of integers (let us recall that such a
set has a density 1/2). This illustrates indeed the fact that the only known 3-sum-free set
of integers of maximal size is the set of odd numbers, a set of an arithmetic nature which
does not possess a continuous analog, contrarily to sets of combinatorial nature. This is
an important observation : in the case of the analogy of cyclic groups of prime order and
the torus, a recent theorem of Candela and Sisask (see Theorem 1.3 in [2]) shows that the
discrete model always converges towards the continuous one. Notice that a good reason
for this to happen, in this discrete case, is that even sets of an arithmetic nature can be
transformed without loss of generality in sets of a combinatorial nature with the same
density: multiplying an arithmetic progression by the inverse of its difference transforms
it into an interval. This does not happen in the case of present study and makes the
behaviour of maximal sets more difficult to handle.

In this paper, we first establish the optimal (in view of example (1)) upper bound for
the measure of 3-sum-free sets of [0, 1].

Theorem 1. Let A be a measurable 3-sum-free subset of [0, 1]. Then

µ(A) ≤
77

177
.

Then we solve the inverse associated problem.

Theorem 2. Let A be a measurable 3-sum-free subset of [0, 1] satisfying µ(A) = 77/177,
then there is an i ∈ {1, . . . , 7} such that A ⊂ Ai.

The full Chung-Goldwasser-Matolcsi-Ruzsa conjecture is thus proved.
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2. Notations and prerequisites

In what follows, we denote respectively by µ(X) and diam(X) = supX − inf X, the
Lebesgue measure and the diameter of a set X of real numbers. We shall denote by A+B
the Minkowski sumset of two subsets A and B of R, and by α ·A the α-dilate of A, that
is {αx for x ∈ A}. Notice in particular that 2 · A is included in, but in general different
from, A+ A.

While the behaviour of µ with respect to dilation is clear since one has

(2) µ(α · A) = αµ(A),

it is more complicated for the case of Minkowski addition. The basic estimate for the
measure of the sum of two measurable bounded subsets A and B of R is a standard
Brunn-Minkowski type [6] lower bound, namely

(3) µ∗(A+B) ≥ µ(A) + µ(B),

where µ∗ denotes the inner measure (the use of this tool is made necessary by the fact
that A+B is not necessarily measurable as shown by Sierpiński [13]).

Beyond this, the best known result is due to Ruzsa.

Lemma 1. (Ruzsa [9]) Let A and B be two bounded measurable subsets of R such that
µ(A) ≤ µ(B), then

(4) µ∗(A+B) ≥ min(2µ(A) + µ(B), µ(A) + diam(B)).

In particular, one has

(5) µ∗(A+ A) ≥ min(3µ(A), µ(A) + diam(A)).

We underline the fact that up to this lemma, the result presented in this paper is
self-contained.

We now state two more specific lemmas, due to Matolcsi and Ruzsa [7], that we shall
need in the present study. These intermediary results are not presented as lemmas in [7],
therefore, to ease the reading of the present paper, we include their respective (condensed)
proofs here. Before entering this, we note that the assumption that there is no solution
to x+ y = 3z with x, y, z ∈ A can be rewritten set-theoretically in the form

(6) (A+ A) ∩ (3 · A) = ∅ or, equivalently,

(

1

3
· (A+ A)

)

∩A = ∅.

Lemma 2. (Matolcsi-Ruzsa [7]) Let A be a measurable bounded 3-sum-free subset of R+.
One has

µ(A) ≤
2 supA− inf A

4
.
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Proof. Since, by definition, 1/3 · (A+A) and A are intersection-free and both included in
the interval [2 inf A/3, supA], we obtain

supA−
2

3
inf A ≥ µ∗

(

1

3
· (A+ A)

)

+ µ(A)

≥ min

(

µ(A),
1

3
(µ(A) + supA− inf A)

)

+ µ(A),

in view of (2) and (5). If 2µ(A) ≥ diam(A), then we obtain

supA−
2

3
inf A ≥

4

3
µ(A) +

1

3
(supA− inf A)

which gives the result. In the other case, we have

µ(A) ≤
1

2
diam(A) =

1

2
(supA− inf A) ≤

2 supA− inf A

4
,

since A ⊂ R
+. �

Here is the second lemma useful to our purpose.

Lemma 3. (Matolcsi-Ruzsa [7]) Let A be a measurable 3-sum-free subset of [0, 1] such
that supA = 1, then

µ(A) ≤
1

3
+

1

2
µ

(

A ∩

[

2

3
, 1

])

.

Proof. We define

a = inf A, A1 = A ∩

[

2

3
, 1

]

and ε =
1

3
− µ(A1)

and refine the argument used in the proof of Lemma 2 using that the three sets 1/3·(A+A),
A and [2/3, 1] \ A1 are disjoint in [2a/3, 1]. This gives

µ(A) ≤
1− ε

2
−

a

4
≤

1− ε

2
=

1

3
+

1

2
µ(A1),

that is, the result. �

3. Two central lemmas

The proof of the main theorem (Theorem 1) relies essentially on the following technical
lemma.

Lemma 4. Let A be a measurable 3-sum-free subset of [0, 1] such that supA = 1. Let

a = inf A and A1 = A ∩

[

2

3
, 1

]

and define

ε1 = inf A1 −
2

3
and ε2 =

(

1

3
− ε1

)

− µ(A1).
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If ε1 + 2ε2 ≤ 1/3, then one has

µ

(

A ∩

[

2

9
+

a

3
, 1

])

≤

{

1

3
− 1

6
ε1 if ε1 ≤

2

3
a,

1

3
− 1

24

(

ε1 −
2

3
a
)

if ε1 >
2

3
a.

Proof. We define the following three sets A2/3, A4/9 and A1/3:

A2/3 = A ∩

[

4

9
+

2

3
ε1,

2

3

]

, A4/9 = A ∩

[

1

3
+

1

2
ε1,

4

9
+

1

6
ε1

]

,

and

A1/3 = A ∩

[

2

9
+

1

3
(a+ ε1),

1

3
+

1

3
a

]

.

By (5), one gets

µ∗

(

1

3
· (A1 + A1)

)

≥ min

(

µ(A1),
1

3
(µ(A1) + diam(A1))

)

= min

(

1

3
− ε1 − ε2,

1

3

(

2

3
− 2ε1 − ε2

))

=
2

9
−

2

3
ε1 −

1

3
ε2(7)

using the assumption that ε1 + 2ε2 ≤ 1/3.
Since, by (6), the two sets 1/3 · (A1 + A1) and A2/3 are disjoint subsets of the interval

[4/9 + 2ε1/3, 2/3], one obtains, using (7),

(8) µ(A2/3) ≤ µ

([

4

9
+

2

3
ε1,

2

3

])

− µ∗

(

1

3
· (A1 + A1)

)

≤
ε2
3
.

We now prove that

(9) µ(A4/9) ≤
1

3
ε2.

If A4/9 has measure zero, there is nothing to prove. Thus we denote by c1 the infimum
of A4/9 and by c2 its supremum, and assume they are distinct. We choose a decreasing
sequence (c1(n))n≥0 in A4/9 tending to c1 when n tends to infinity and < c2 (if c1 is in
A4/9, c1(n) = c1 will do). One has in view of 1/3 + ε1/2 ≤ c1 ≤ c1(n) < c2 ≤ 4/9 + ε1/6,

1

3

(

c1(n) +
2

3
+ ε1

)

≤ c1(n) ≤ c2 ≤
4

9
+

ε1
6

≤
1 + c1

3
≤

1 + c1(n)

3
,
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therefore

A4/9 = A ∩ [c1, c2]

= (A ∩ [c1, c1(n)]) ∪ (A ∩ [c1(n), c2])

⊂ (A ∩ [c1, c1(n)]) ∪

(

A ∩

[

1

3

(

c1(n) +
2

3
+ ε1

)

,
1

3
(c1(n) + 1)

])

⊂ (A ∩ [c1, c1(n)]) ∪

(

A ∩
1

3
·

(

c1(n) +

[

2

3
+ ε1, 1

]))

.

Since c1(n) ∈ A, , assumption (6) implies necessarily that in fact

(10) A4/9 ⊂ (A ∩ [c1, c1(n)]) ∪
1

3
·

(

c1(n) +

([

2

3
+ ε1, 1

]

\A1

))

,

which in turn gives

µ(A4/9) ≤ µ([c1, c1(n)]) +
1

3
µ

([

2

3
+ ε1, 1

]

\ A1

)

= (c1(n)− c1) +
1

3

(

1

3
− ε1 − µ(A1)

)

= (c1(n)− c1) +
1

3
ε2.

Letting n tend to infinity in this inequality finishes the proof of (9).
In the same fashion, if a ∈ A, one obtains

A1/3 = A ∩
1

3
·

(

a+

[

2

3
+ ε1, 1

])

= A ∩
1

3
·

(

a+

([

2

3
+ ε1, 1

]

\ A1

))

from which it follows

(11) µ(A1/3) ≤
1

3
ε2

and this remains true even if a 6∈ A by considering a sequence (a(n))n≥0 of elements of A
tending to a when n goes to infinity arguing similarly as in the proof of (9).

We now study separately the two inequalities in the statement of the Lemma.

First inequality.

Suppose first that ε1 ≤ 2a/3, which implies

sup

[

2

9
+

1

3
(a + ε1),

1

3
+

1

3
a

]

≥ inf

[

1

3
+

1

2
ε1,

4

9
+

1

6
ε1

]

,
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or, in other words, that A4/9 and A1/3 overlap. One then deduces from (8), (9) and (11)
that

µ

(

A ∩

[

2

9
+

a

3
, 1

])

≤ µ(A1) + µ(A2/3) +
1

2
ε1 + µ(A4/9) + µ(A1/3) +

1

3
ε1

≤

(

1

3
− ε1 − ε2

)

+ ε2 +
5

6
ε1 =

1

3
−

1

6
ε1.

And the inequality of Lemma 4 follows in this first case.

Second inequality.

Until the end of this proof, we assume that ε1 > 2a/3.
We shall need the sets B1/3 and C1/3 defined in the following way :

B1/3 = A ∩

[

1

3
+

1

3
a,

1

3
+

1

2
ε1

]

, C1/3 = A ∩

[

2

9
+

2

9
a,

2

9
+

1

3
ε1

]

.

The assumption on the relative sizes of ε1 and a shows that

1

3
·

(

2

3
+ ε1 +B1/3

)

⊂

[

1

3
+

a

9
+

ε1
3
,
1

3
+

ε1
2

]

⊂

[

1

3
+

a

3
,
1

3
+

ε1
2

]

.

If 2/3 + ε1 ∈ A, (6) shows that the set on the left is intersection-free with B1/3 and one
thus gets

(12) µ(B1/3) ≤ µ

([

1

3
+

a

3
,
1

3
+

ε1
2

])

−
1

3
µ(B1/3) =

ε1
2
−

a

3
−

µ(B1/3)

3
,

consequently

(13) µ(B1/3) ≤
3

4

(ε1
2
−

a

3

)

.

Once again, the same type of arguments as the ones used to prove (9) shows that this
remains true even if 2/3 + ε1 6∈ A.

Now the inclusion
1

3
· (B1/3 +B1/3) ⊂

[

2

9
+

2a

9
,
2

9
+

ε1
3

]

and (6) show that the set on the left-hand side of this inclusion and C1/3 are disjoint and
both included in the set on the right-hand side, that is, we obtain

(14) µ∗

(

1

3
· (B1/3 +B1/3)

)

+ µ(C1/3) ≤
ε1
3
−

2a

9
.

By (3), this yields
2

3
µ
(

B1/3

)

+ µ(C1/3) ≤
ε1
3
−

2a

9
.
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Then, using this and (13), we derive

µ(B1/3) + µ(C1/3) =

(

2

3
µ
(

B1/3

)

+ µ(C1/3)

)

+
1

3
µ
(

B1/3

)

≤
ε1
3
−

2a

9
+

1

4

(ε1
2
−

a

3

)

=
11

24
ε1 −

11

36
a.

We finally deduce from (8), (9), (11) and the preceding inequality, that

µ

(

A ∩

[

2

9
+

a

3
, 1

])

≤ µ(A1) + µ(A2/3) +
ε1
2
+ µ(A4/9) + µ(B1/3) + µ(A1/3)

+
a

3
+ µ(C1/3)

≤

(

1

3
− ε1 − ε2

)

+ ε2 +
1

2
ε1 +

1

3
a+

11

24
ε1 −

11

36
a

=
1

3
−

1

24
ε1 +

1

36
a

=
1

3
−

1

24

(

ε1 −
2

3
a

)

.

Hence the announced inequality. �

The second central lemma, needed for the proof of Theorem 2, deals with attaining the
bound 1/3 in Lemma 4. Here it is.

Lemma 5. Let A be a measurable 3-sum-free subset of [0, 1] such that supA = 1. We
define

a = inf A, A1 = A ∩

[

2

3
, 1

]

, ε1 = inf A1 −
2

3
and ε2 =

(

1

3
− ε1

)

− µ(A1).

We assume ε1 + 2ε2 ≤ 1/3 and a > 0. Then, µ (A ∩ [2/9 + a/3, 1]) = 1/3 implies

ε1 = ε2 = 0.

Proof. In this proof we will use freely the notation introduced in the preceding lemma.
We first apply Lemma 4 to A. The precise inequality obtained there implies that

we cannot have ε1 > 2a/3, since we would get µ(A ∩ [2/9 + a/3, 1]) < 1/3. Thus
µ (A ∩ [2/9 + a/3, 1]) = 1/3 implies ε1 ≤ 2a/3 and then ε1 = 0 in view of the precise
formula in this case.

We now turn to the core of this proof and show that

(15) ε2 = 0

and assume for a contradiction that ε2 6= 0.
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Following carefully the proof of Lemma 4 shows that µ (A ∩ [2/9 + a/3, 1]) = 1/3 im-
plies

(16) µ(A1/3) = µ(A4/9) = µ(A2/3) =
ε2
3
, and µ

([

1

3
,
1

3
+

a

3

]

∩ A

)

= 0,

this last equality being tantamount to saying that the intersection of A1/3 and A4/9 has
measure zero.

The function f :
(

x 7→ µ([1/3, x] ∩A4/9)
)

is a non-decreasing non-negative continuous
function on [1/3, 4/9] such that f is identically 0 on [1/3, (1+a)/3] and f(4/9) = ε2/3 > 0.
We define c̃1 as the following infimum

c̃1 = inf{x ∈ [1/3, 4/9], f(x) > 0}.

We have

(17) c̃1 ≥
1 + a

3
.

Furthermore, µ([1/3, x]∩A4/9) = 0 for any x ∈ [1/3, c̃1], whereas µ
(

A4/9 ∩ [c̃1, c̃1 + η]
)

> 0
for any η > 0.

We choose a real number η such that 0 < η < min(a, ε2)/3. Let v be any element of
[c̃1, c̃1 + η] ∩ A4/9. We have, using (17),

1

3
< v < c̃1 + η < c̃1 +

a

3
≤ c̃1 +

(

c̃1 −
1

3

)

< c̃1 + 2

(

c̃1 −
1

3

)

= 3c̃1 −
2

3

from which it follows that

1

3

(

v +
2

3

)

≤ c̃1 ≤ c2 ≤
4

9
≤

1

3
(v + 1),

on recalling that c2 = supA4/9. Going back to the proof that µ(A4/9) = ε2/3 in Lemma
4, the preceding inequalities allow to obtain

A4/9 ⊂ (A ∩ [c1, c̃1]) ∪ (A ∩ [c̃1, c2]) ⊂ (A ∩ [c1, c̃1]) ∪
1

3
·

(

A ∩

(

v +

[

2

3
, 1

]))

.

As previously, assumption (6) yields

A4/9 ⊂ (A ∩ [c1, c̃1]) ∪
1

3
·

(

v +

([

2

3
, 1

]

\ A1

))

.

But the sets A4/9 and 1/3 · (v + ([2/3, 1] \ A1)) have the same measure ε2/3 while
A ∩ [c1, c̃1] has measure zero. We therefore deduce that, for any v in [c̃1, c̃1 + η] ∩A4/9,

(18) A4/9 =
1

3
·

(

v +

([

2

3
, 1

]

\ A1

))
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up to a set of measure zero. Choosing u 6= u′ in [c̃1, c̃1 + η] ∩A4/9 (such u and u′ do exist
since µ ([c̃1, c̃1 + η] ∩A) 6= 0), and applying (18) consecutively to v = u and v = u′, we
get, up to sets of measure zero,

u+

([

2

3
, 1

]

\ A1

)

= u′ +

([

2

3
, 1

]

\ A1

)

.

This implies that

ε2 = 3µ

([

2

3
, 1

]

\ A1

)

= 0,

a contradiction. Assertion (15) is therefore proved. �

4. Proof of Theorem 1

Let us begin with a simple consequence of Lemma 4.

Lemma 6. Let A be a measurable 3-sum-free subset of [0, 1] such that supA = 1 and
µ(A) ≥ 5/12. Then,

µ

(

A ∩

[

inf A

3
+

2

9
, 1

])

≤
1

3
.

Proof. Define ε1 and ε2 as in the statement of Lemma 4. The assumptions and Lemma 3
show that

5

12
≤ µ(A) ≤

1

3
+

1

2
µ

(

A ∩

[

2

3
, 1

])

=
1

2
(1− ε1 − ε2),

or, equivalently, ε1 + ε2 ≤ 1/6, which implies ε1 + 2ε2 ≤ 2(ε1 + ε2) ≤ 1/3 and makes it
possible to apply Lemma 4, which in turns concludes the proof. �

We can now prove Theorem 1, the main result of this paper.

Proof of Theorem 1. We may, without loss of generality, assume that sup(A) = 1, since
otherwise, we consider (1/ sup(A)) · A. Since 77/177 > 5/12, we may also assume that
µ(A) ≥ 5/12, otherwise there is nothing to prove. Therefore, applying Lemma 6, we get

(19) µ(A) ≤
1

3
+ µ(R) where a = inf A and R = A ∩

[

a,
2

9
+

1

3
a

]

.

Notice that

(20) µ(R) ≤ µ

([

a,
2

9
+

1

3
a

])

=
2

9
−

2a

3
.

Since R is non-empty (its measure is at least 1/12, by assumption), we define

r = supR, R′ =
1

r
· R and R′

1 = R′ ∩

[

2

3
, 1

]

=
1

r
·

(

R ∩

[

2

3
r, r

])

and put

η1 = inf R′
1 −

2

3
, η2 =

1

3
− η1 − µ(R′

1).
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We distinguish two cases.

Case 1: η1 + 2η2 ≤ 1/3.

We apply Lemma 4 to the set R′ and get

µ (R′) ≤
1

3
+ µ

(

R′ ∩

[

a

r
,
2

9
+

a

3r

])

.

This implies

(21) µ (R) ≤
r

3
+ µ

(

R ∩

[

a,
2r

9
+

a

3

])

=
r

3
+ µ (R0) ,

if we denote

R0 = R ∩

[

a,
2r

9
+

a

3

]

.

If R0 = ∅, then by (20), (21) and the inequality r ≤ 2/9 + a/3, we obtain

µ(R) ≤ min

(

r

3
,
2

9
−

2a

3

)

≤ min

(

2

27
+

a

9
,
2

9
−

2a

3

)

≤
2

21
,

this maximum value being attained for a = 4/21. Thus, in this case we must have

µ(A) ≤
1

3
+

2

21
=

3

7
<

77

177
and we are done.

From now on, we therefore assume that R0 is a non empty set and we define b = supR0.
Applying Lemma 2 to R0 together with the obvious inequality µ(R0) ≤ b− a yields

µ(R0) ≤ min

(

2b− a

4
, b− a

)

≤ min

(

r

9
−

1

12
a,

2r

9
−

2

3
a

)

since b ≤ 2r/9 + a/3. Therefore, by (21), we have

µ(R) ≤ min

(

4r

9
−

1

12
a,

5r

9
−

2

3
a

)

.

Using (19) and r ≤ 2/9 + a/3, we get

µ(A) ≤
1

3
+ min

(

4

9

(

2

9
+

a

3

)

−
1

12
a,

5

9

(

2

9
+

1

3
a

)

−
2

3
a

)

≤
1

3
+ min

(

8

81
+

7

108
a,

10

81
−

13

27
a

)

≤
77

177
,
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this value being attained uniquely in a = 8/177.

Case 2 : Assume now that η1 + 2η2 > 1/3.

In particular, η1 + η2 > 1/6. The assumptions and Lemma 3 give µ(R′) ≤ 5/12, thus

(22) µ(R) ≤
5r

12
.

We now prove that

(23) µ(R) ≤ max

(

1

2
(r − a),

2r − a

6

)

.

Indeed, if µ(R) > (r − a)/2 = diam(R)/2, then (5) implies

µ∗(R +R) ≥ µ(R) + diam(R) = µ(R) + (r − a).

Since 1/3 · (R +R) ⊂ [2a/3, 2r/3] and (1/3 · (R +R)) ∩ R = ∅, we get

µ

(

R ∩

[

a,
2

3
r

])

= µ

(

R ∩

[

2

3
a,

2

3
r

])

≤
2

3
(r−a)−µ∗

(

1

3
· (R +R)

)

≤
1

3
(r−a)−

1

3
µ(R).

It follows that

µ(R) = µ

(

R ∩

[

a,
2

3
r

])

+ µ

(

R ∩

[

2

3
r, r

])

≤
1

3
(r − a)−

1

3
µ(R) +

r

3
− (η1 + η2)r

≤
1

3
(r − a)−

1

6
(r − a) +

r

6

=
2r − a

6

and assertion (23) is proved.
Synthetizing (22), (19) and (23), we finally obtain

µ(A) ≤
1

3
+ min

(

max

(

1

2
(r − a),

1

3
r −

1

6
a

)

,
5

12
r

)

.

Taking into account r ≤ 2/9 + a/3, we get

µ(A) ≤
1

3
+ min

(

max

(

1

9
−

1

3
a,

2

27
−

1

18
a

)

,
5

54
+

5

36
a

)

.

If a < 2/15, this yields

µ(A) ≤
1

3
+ min

(

1

9
−

1

3
a,

5

54
+

5

36
a

)

=
22

51
,

this maximum being attained uniquely in a = 2/51. If a ≥ 2/15,we have

µ(A) ≤
1

3
+ min

(

2

27
−

1

18
a,

5

54
+

5

36
a

)

=
1

3
+

(

2

27
−

1

18
a

)

≤
1

3
+

2

27
=

11

27
.
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Since both 22/51 and 11/27 are < 77/177, we obtain, in this second case, that µ(A) <
77/177.

This concludes the proof of Theorem 1.
�

5. The inverse result: proof of Theorem 2

This section is devoted to the proof of the structural characterization of 3-sum-free sets
with maximal measure. We start with a lemma which contains the core of the structural
result.

Lemma 7. Let A be a measurable 3-sum-free subset of [0, 1] satisfying µ(A) = 77/177.
Then µ(A∆A0) = 0 where A∆A0 stands for the symmetric difference between A and A0

as defined in formula (1).

Proof. Let us assume that we have a set A ⊂ [0, 1] with no solution to the equation
x + y = 3z such that µ(A) = 77/177. We can assume that sup(A) = 1, otherwise
(1/ supA) · A would contradict Theorem 1.

For the sake of clarity, we recall the notation we shall use in this proof, namely

a = inf A, A1 = A ∩

[

2

3
, 1

]

, ε1 = inf A1 −
2

3
, ε2 =

1

3
− ε1 − µ(A1),

R = A ∩

[

a,
2

9
+

1

3
a

]

, r = supR, R′
1 =

(

1

r
· R

)

∩

[

2

3
, 1

]

,

and

R0 = R ∩

[

a,
2

9
r +

a

3

]

, b = supR0.

If we examine the proof of Theorem 1, we notice first that we must have µ(A) =
1/3 + µ(R) that is,

(24) µ

(

A ∩

[

2

9
+

a

3
, 1

])

= µ(A \R) =
1

3
.

Furthermore, we cannot be in Case 2 of the proof of Theorem 1 since the conclusion is
then that µ(A) ≤ 22/51 < 77/177. Therefore we must be in Case 1 (and more precisely
subcase R0 6= ∅) and several inequalities occurring in the course of the proof must actually
be equalities. In particular, we must have

a =
8

177
, r =

2

9
+

a

3
=

14

59
, and b =

2r

9
+

a

3
=

4

59
.

Now, since a > 0, Lemma 5 shows that (24) implies ε1 = ε2 = 0, thus µ(A1) = 1/3 =
µ(A \R), therefore, up to a set of measure zero, we have

(25) A = R ∪

(

2

3
, 1

)

.
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Moreover, in the course of the proof of Theorem 1 we also applied Lemma 4 to (1/r) ·R,
so, in the equality case, similar arguments as above yield, up to a set of measure zero,

R ∩ [2r/9 + a/3, r] = (2r/3, r) = (28/177, 14/59).

What remains of A is, by definition, contained in [a, b]. It follows that up to a set of
measure zero

A ⊂

(

8

177
,
4

59

)

∪

(

28

177
,
14

59

)

∪

(

2

3
, 1

)

= A0.

This implies the statement of the lemma since A and A0 have the same measure. �

Before coming to the proof of our inverse theorem, we recall a kind of prehistorical
lemma in our context.

Lemma 8. Let X and Y be two subsets of R. Let α, β, γ, δ ∈ R such that X ⊂ (α, β),
µ∗(X) = β − α, Y ⊂ (γ, δ), µ∗(Y ) = δ − γ, then

X + Y = (α+ γ, β + δ).

Proof. Let v ∈ (α+γ, β+δ). It can be written as v = φ+χ with φ ∈ (α, β) and χ ∈ (γ, δ).
Let

θ =
1

2
min(|φ− α|, |φ− β|, |χ− γ|, |χ− δ|).

It follows that (φ−θ, φ+θ) ⊂ (α, β) and (χ−θ, χ+θ) ⊂ (γ, δ). Since X and Y are of full
measure, we must have µ∗(X ∩ (φ− θ, φ+ θ)) = µ∗(Y ∩ (χ− θ, χ + θ)) = 2θ. Moreover,
the set v − (φ− θ, φ+ θ) = (χ− θ, χ+ θ) and it follows that we must also have

µ∗((v −X) ∩ (χ− θ, χ+ θ)) = µ∗(Y ∩ (χ− θ, χ+ θ)) = 2θ.

Consequently the two full-measure in (χ − θ, χ + θ) sets ((v − X) ∩ (χ − θ, χ + θ)) and
Y ∩ (χ− θ, χ+ θ)) must intersect which shows that there are a x in X and a y in Y such
that v − x = y or v = x+ y ∈ X + Y . Hence the result, this being valid for any v. �

Here is a lemma generalizing (6) which will be key in the proof of Theorem 2. Its proof
is immediate.

Lemma 9. Let A be a 3-sum-free set. Then
(

1

3
· (A+ A)

)

∩A = ∅ and ((3 ·A)−A) ∩ A = ∅.

We are now ready to conclude the proof of the Chung-Goldwasser-Matolcsi-Ruzsa con-
jecture and prove Theorem 2.

Proof of Theorem 2. Applying Lemma 7 gives that, under the hypothesis of the theorem,
µ(A∆A0) = 0. Equivalently, A is of the form

A = U ∪ V ∪ A1 ∪ Z
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with

U ⊂

[

8

177
,
4

59

]

, V ⊂

[

28

177
,
14

59

]

, and A1 ⊂

[

2

3
, 1

]

,

these three sets being of maximal measure in their respective intervals; and µ(Z) = 0.
Having noticed that if a set is of full measure in a given interval then dilating it by

a constant factor transforms it as a full measure set in the dilated interval, an easy
computation, based on Lemma 8, shows that

(3 · V − V ) ∪

(

1

3
· (A1 + A1)

)

=

(

14

59
,
98

177

)

∪

(

4

9
,
2

3

)

=

(

14

59
,
2

3

)

.

In the same way, we compute that

(3 · U)− U =

(

4

59
,
28

177

)

and

(3 · V )− A1 =

(

−
31

59
,

8

177

)

.

By Lemma 9, the union of all these sets is intersection-free with A, therefore A is contained
in its complementary set in [0, 1], namely

A ⊂

[

8

177
,
4

59

]

∪

[

28

177
,
14

59

]

∪

[

2

3
, 1

]

.

It follows that Z = ∅.
Studying the different cases with the endpoints leads to the result. �
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