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Asymptotically optimal k-step nilpotency of quadratic algebras

and the Fibonacci numbers

Natalia Iyudu and Stanislav Shkarin

Abstract

It follows from the Golod–Shafarevich theorem that if k ∈ N and R is an associative algebra

given by n generators and d < n
2

4
cos−2( π

k+1
) quadratic relations, then R is not k-step nilpotent.

We show that the above estimate is asymptotically optimal. Namely, for every k ∈ N, there is a
sequence of algebras Rn given by n generators and dn quadratic relations such that Rn is k-step
nilpotent and lim

n→∞

dn

n2 = 1

4
cos−2( π

k+1
).
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1 Introduction

Throughout this paper K is an arbitrary field, Z+ is the set of non-negative integers and N is the
set of positive integers. For a set X, K〈X〉 stands for the free associative algebra over K generated
by X. We deal with quadratic algebras, that is, algebras R given as K〈X〉/I, where I is the ideal
in K〈X〉 generated by a collection of homogeneous elements (called relations) of degree 2.

Algebras of this class, their growth, their Hilbert series and nil/nilpotency properties have been
extensively studied, see [11, 12, 13] and references therein. One of the most challenging questions in
the area (see [12, 15]) is the Kurosh problem of whether there is an infinite dimensional nil algebra
in this class. A version of this question dealing with algebras of finite Gelfand–Kirillov dimension
was solved in [8]. The Golod–Shafarevich type lower estimates for the dimensions of the graded
components of an algebra play a crucial role in the study of quadratic algebras. These estimates
have many other applications, for instance, to p-groups and class field theory [5, 16].

Recall that a K-algebra R defined by the set X of generators and a set of homogeneous relations
inherits the degree grading from the free algebra K〈X〉. If X is finite, one can consider the Hilbert
series of R:

HR(t) =

∞
∑

q=0

(dim
K
Rq) t

q,

where Rq is the qth homogeneous component of R. The original Golod–Shafarevich theorem pro-
vides a lower estimate for the coefficients of HR. In the case of quadratic algebras the theorem
reads as follows [5, 11]. For two power series a(t) and b(t) with real coefficients we write a(t) > b(t)
if aj > bj for any j ∈ Z+, while |a(t)| stands for the power series obtained from a(t) by replacing
by zeros all coefficients starting from the first non-positive one.

Theorem GS. Let, n ∈ N, 0 6 d 6 n2 and R be a quadratic K-algebra with n generators and d
relations. Then HR(t) > |(1− nt+ dt2)−1|.

In particular, Theorem GS provides a lower estimate on the order of nilpotency of R.

Definition 1.1. A graded algebra R is called k-step nilpotent if Rk = {0}.
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Analysing the series K(t) = |(1 − nt+ dt2)−1| in a standard way, one can easily see that it is a
polynomial of degree < k if and only if

d

n2
> ϕk, where ϕk =

1

4
cos−2

( π

k + 1

)

. (1.1)

For the sake of convenience, we outline the argument. If (1−nt+dt2)−1 =
∞
∑

m=0
cmtm (the Taylor

series expansion), then K(t) is not a polynomial of degree < k precisely when cm > 0 for 0 6 m 6 k.
Next, if x2 − nx + d = (x − a)(x − b) (a and b are complex numbers in general), then an easy

computation yields that cm = (m+ 1)(n/2)m if a = b and cm = am+1−bm+1

a−b otherwise for m ∈ Z+.

It follows that cm > 0 for all m ∈ Z+ if a and b are real, which happens precisely when d 6
n2

4 . If

n2 > d > n2

4 , then a, b =
√
de±iα, where α = arccos n√

d
. Hence cm = am+1−bm+1

a−b = dm/2 sin(m+1)α
sinα

for m ∈ Z+. Clearly cm for 0 6 m 6 k are positive precisely when (k + 1)α < π. After plugging in
α = arccos n√

d
, (1.1) follows.

Formula (1.1) together with Theorem GS and the obvious fact that the sequence {ϕk} decreases
and converges to 1

4 implies the following corollary, which can be found in [11].

Corollary GS. If R is a quadratic K-algebra given by n generators and d < ϕkn
2 relations, then

dimRk > 0, where ϕk is defined in (1.1). That is, R is not k-step nilpotent. In particular, if

d 6
n2

4 , then dimRk > 0 for every k ∈ N and therefore R is infinite dimensional.

Asymptotic optimality of the last statement in Corollary GS was proved by Wisliceny [14].

Theorem W. For every n ∈ N, there exists a quadratic K-algebra R given by n generators and dn
relations such that R is finite dimensional and lim

n→∞
dn
n2 = 1

4 .

More specifically, Wisliceny has constructed a quadratic algebra given by n generators and
⌈

n2+2n
4

⌉

semigroup relations (that is, every relation is either a degree 2 monomial or a difference of
two degree 2 monomials), which is finite dimensional. Note that here and everywhere below ⌊t⌋ is
the largest integer 6 t, while ⌈t⌉ is the smallest integer > t, where t is a real number. The authors
[7] have improved the last result by showing that the minimal number of semigroup quadratic

relations needed for finite dimensionality of an algebra with n generators is exactly
⌈

n2+n
4

⌉

. The

number
⌈

n2+1
4

⌉

remains a conjectural answer to the same question in the class of general quadratic
(not necessarily semigroup) algebras.

1.1 Results

Note that if R is k-step nilpotent, then Rm = {0} for m > k and therefore R is finite dimensional
provided |X| < ∞, where X is the set of generators of R. Thus R is k-step nilpotent if and only if
HR is a polynomial of degree < k.

In this article we show that the first statement in Corollary GS is asymptotically optimal for
every k > 2. In order to formulate the exact statement, we shall introduce the following numbers.
For n ∈ N and k > 2 let

dn,k = min
n=a1+...+ak−1

max
16j6k−1

(a1 + . . .+ aj)(aj + . . .+ ak−1), (1.2)

where aj are assumed to be non-negative integers. It turns out that the integers dn,k are not too
far from ϕkn

2.

Lemma 1.2. For each n, k ∈ N with k > 2,

ϕkn
2 6 dn,k 6 ϕkn

2 + (1+ϕk)n
2 + 1

4 . (1.3)

In particular, lim
n→∞

dn,k

ϕkn2 = 1 for each k > 2.
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We have defined the numbers dn,k since they feature in the following theorem.

Theorem 1.3. Let k > 2. Then for every n ∈ N, there exists a quadratic K-algebra R given by n
generators and dn,k relations such that R is k-step nilpotent.

Corollary GS, Theorem 1.3 and Lemma 1.2 imply that the first statement in Corollary GS is
asymptotically optimal. Note that Anick [1, 2] conjectured that for any n ∈ N and 0 6 d 6 n2, there
is a quadratic K-algebra R with n generators and d relations such that HR(t) = |(1− nt+ dt2)−1|.
The problem whether this conjecture is true remains open. Theorem 1.3 can be considered as an
affirmative solution of its natural asymptotic version. It is also worth noting that for k = 2, the
statement of Theorem 1.3 is trivial, while the case k = 3 was done by Anick [1]. It is also worth
mentioning that the asymptotic optimality of the first statement in Corollary GS for k = 4 and for
k = 5 in the case |K| = ∞ was earlier obtained by the authors [6] building upon the ideas set in [3]
and using a completely different approach. We refer to [10] for a result on asymptotic optimality
of Theorem GS in a completely different sense.

Curiously enough, for some pairs (n, k) the estimate provided by Theorem 1.3 hits the mark.
We illustrate this observation by the following result dealing with the cases k = 4 and k = 5. Note

that ϕ4 = 3−
√
5

2 and ϕ5 = 1
3 . Recall that Fibonacci numbers are the members of the recurrent

sequence defined by F0 = F1 = 1 and Fn = Fn−1 + Fn−2 for n > 2.

Theorem 1.4. The equality dn,4 =
⌈

3−
√
5

2 n2
⌉

holds if and only if n is a Fibonacci number. The

equality dn,5 =
⌈

n2

3

⌉

holds if and only if n ∈ {1, 2} or n is divisible by 6.

Note that Theorem 1.4, Theorem 1.3 and Corollary GS imply that if k = 4 and n is a Fibonacci
number or if k = 5 and 6 divides n, then the minimal number of quadratic relations needed for the
finite dimensionality of an algebra with n generators is exactly ⌈ϕkn

2⌉. The proof of Theorem 1.3
is based upon the following general result. We start by introducing some notation.

Definition 1.5. Let X be the union of pairwise disjoint sets A1, . . . , Ak and

M = M(A1, . . . , Ak) =
⋃

16j6q6n

Aq ×Aj ⊆ X ×X. (1.4)

We introduce the following partial ordering on M , generated by the partition {A1, . . . , Ak}. Namely,
for distinct elements (a, b) and (c, d) of M , we write (a, b) ≺ (c, d) if (a, b) ∈ Al × Aj and (c, d) ∈
Am ×Ar with m > r > l > j.

Definition 1.6. For a homogeneous degree 2 polynomial g in the free algebra K〈X〉, the (uniquely
determined) finite subset S of X ×X such that g =

∑

(x,y)∈S
cx,yxy with cx,y ∈ K \ {0} is called the

support of g and is denoted S = supp (g).

The next result is one of the main tools in the proof of Theorem 1.3.

Theorem 1.7. Let k ∈ N, {A1, . . . , Ak} be a partition of a set X and M be the set defined in

(1.4). Assume also that {fα}α∈Λ is a family of homogeneous degree 2 elements of the free algebra

K〈X〉 such that
⋃

α∈Λ
supp (fα) = M and each supp (fα) is a chain in M with respect to the partial

ordering ≺ on M , generated by the partition {A1, . . . , Ak} as in Definition 1.5. Then the algebra

R = K〈X〉/I with I = Id{fα : α ∈ Λ} is (k + 1)-step nilpotent.

We conclude the introduction by providing a specific example of an application of Theorem 1.7.
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Example 1.8. Let X = {a, b, c, p, q, x, y, z} be an 8-element set partitioned into 3 subsets A1 =
{a, b, c}, A2 = {p, q} and A3 = {x, y, z}. Let M and the partial ordering ≺ on M be as in

Definition 1.5. Consider the following 25 quadratic relations:

f1 = xc, f2 = xa, f3 = xp+ ab, f4 = yz + qc, f5 = pq,

f6 = yc, f7 = ya, f8 = yp+ bb, f9 = yy + qb,

f10 = zc, f11 = za, f12 = zp+ cb, f13 = yx+ qa,

f14 = xb, f15 = xq + ac, f16 = xz + pc, f17 = zz + qq + ca,

f18 = yb, f19 = yq + bc, f20 = xy + pb, f21 = zy + qp+ ba,

f22 = zb, f23 = zq + cc, f24 = xx+ pa, f25 = zx+ pp+ aa.

It is straightforward to verify that the support of each fj is a chain in (M,≺) and that the union

of supp (fj) for 1 6 j 6 25 is M . Theorem 1.7 ensures that the algebra given by the 8-element

generator set X and the relations fj with 1 6 j 6 25 is 4-step nilpotent. Incidentally, 25 =
⌈

ϕ4 ·82
⌉

,

which means (see Corollary GS) that a quadratic algebra given by 8 generators and 6 24 relations

is never 4-step nilpotent.

2 Combinatorial lemmas

Theorem 1.7 allows us to construct k-step nilpotent quadratic algebras with few relations. In order
to do this, we need an estimate on the number of relations in an algebra featuring in Theorem 1.7.
Recall that the width w(X,<) of a partially ordered set (X,<) is the supremum of the cardinalities
of antichains in X.

Lemma 2.1. Let k ∈ N, {A1, . . . , Ak} be a partition of a finite set X and M ⊆ X2 be the set

defined in (1.4) with the partial ordering ≺ introduced in Definition 1.5. For 1 6 q 6 k, let

Bq =
⋃

j>q>m
Aj ×Am. Then w(M,≺) = max{|B1|, . . . , |Bk|}.

Proof. It is a straightforward exercise to verify that each Bq is an antichain in (M,≺) and that
every antichain is contained in at least one of the sets Bq.

We also need the following observation.

Lemma 2.2. Let k > 2 and α0, α1, . . . , αk−1 > 0 be defined by the fromulae α0 = 0, α1 = ϕk and

αj =
ϕk

1−αj−1
for 2 6 j 6 k − 1. Then

0 = α0 < α1 < . . . < αk−1 = 1, (2.1)

αj(1− αj−1) = ϕk for 1 6 j 6 k − 1 (2.2)

and max
16j6k−1

(αj − αj−1) = ϕk (attained for j = 1 and for j = k − 1). (2.3)

Proof. Obviously, (2.2) is a direct consequence of the definition of αj. Next, (2.3) follows easily
from (2.1). Indeed, assuming that (2.1) holds, we have αk−1 = 1, which implies αk−2 = 1 − ϕk.
Since αj − αj−1 = ϕk

1−αj−1
− αj−1 and 0 6 αj−1 6 1 − ϕk for 1 6 j 6 k − 1, (2.3) follows from the

elementary fact that the function ϕk

1−x − x on the interval [0, 1 − ϕk] attains its maximal value at
the end-points.

Thus it remains to verify (2.1). For 0 < t 6 1 consider the rational function ft(x) =
t

1−x and for

m ∈ Z+ let f
[m]
t be the mth iterate of ft: f

[0]
t (x) = x and f

[m]
t = ft ◦ . . . ◦ ft m times for m ∈ N.

We start with an elementary observation

4



if 0 6 t 6 1
4 , then the sequence {f [m]

t (0)}m∈Z+ is strictly increasing

and converges to the fixed point wt =
1−

√
1−4t
2 ∈

[

0, 12
]

of ft.
(2.4)

For instance, to justify (2.4), one can use induction with respect to m to prove the chain of

inequalities 0 6 f
[m]
t (0) < f

[m+1]
t (0) < wt.

Next, it is easy to verify that if 1
4 < t 6 1, then ft(x) > x for x ∈ [0, 1). Hence,

f
[m+1]
t (0) > f

[m]
t (0) provided 0 6 f

[m]
t (0) < 1. (2.5)

For each m ∈ Z+, we consider the rational function hm(t) = f
[m]
t (0) of the variable t. Now we

observe that (2.3) follows from the claim

for every m ∈ N, ϕm+1 is the smallest solution of the equation hm(t) = 1 on
(

1
4 , 1

]

. (2.6)

Indeed, assume that (2.6) holds. By (2.4), 0 < hm(t) < 1
2 for every m ∈ N and t ∈

(

0, 14
]

. Since
the sequence {ϕm} is decreasing, hj(t) < 1 whenever j 6 m and 0 6 t < ϕm+1. Using (2.6) with
m = k − 1 and (2.5), we now have

0 = f [0]
ϕk
(0) < f [1]

ϕk
(0) < . . . < f [k−1]

ϕk
(0) = hk−1(ϕk) = 1.

On the other hand, by definition of αj , αj = f
[j]
ϕk
(0) for 0 6 j 6 k − 1 and (2.3) follows.

Thus it remains to prove (2.6). Using the obvious recurrent relation hj+1(t) =
t

1−hj(t)
together

with the initial data h0 = 0, one can use the induction with respect to m to verify that

hm(t) = t am−am

am+1−am+1 for m ∈ Z+ and t ∈
[

1
4 , 1

]

, where a = a(t) = 1+i
√
4t−1
2 .

Hence for t ∈
[

1
4 , 1

]

,

hm(t) = 1 ⇐⇒ (a/a)m = (a− t)/(a− t) ⇐⇒ eimα(t) = eiβ(t), (2.7)

where
α(t) = 2 arccos 1

2
√
t

and β(t) = 2π − 2 arccos
(

1
2t − 1

)

are the arguments of the unimodular complex numbers a/a and (a − t)/(a − t). The case m = 1
is trivial. Assuming that m > 2 and using (2.7), we see that the smallest t ∈

[

1
4 ,

1
2

]

satisfying
hm(t) = 1 must satisfy mα(t) = β(t). Since the function mα(t) − β(t) on the interval

[

1
4 ,

1
2

]

is strictly increasing (look at the derivative) and has values of opposite signs at the ends, there
is exactly one tm ∈

[

1
4 ,

1
2

]

satisfying mα(tm) = β(tm). Then tm is the smallest solution of the
equation hm(t) = t on the interval

[

1
4 , 1

]

. Since ϕm+1 ∈
[

1
4 ,

1
2

]

, (2.6) will follow if we show that
mα(ϕm+1) = β(ϕm+1). This is indeed true: plugging in ϕm+1 = 1

4 cos2(π/(m+2))
, we have

mα(ϕm+1) = 2m arccos
(

cos
(

π
m+2

))

= 2πm
m+2 ;

β(ϕm+1) = 2π − 2 arccos
(

2 cos2
(

π
m+2

)

− 1
)

= 2π − 2 arccos
(

cos
(

2π
m+2

))

= 2π − 4π
m+2 = 2πm

m+2 .

Hence mα(ϕm+1) = β(ϕm+1), which completes the proof.

3 Proof of Theorem 1.7

For k ∈ N, we denote Nk = {1, 2, . . . , k}. Assume the contrary. Then the set Ω of j = (j1, . . . , jk+1) ∈
N
k+1
k such that there are x1 ∈ Aj1 , . . . , xk+1 ∈ Ajk+1

for which x1 . . . xk+1 /∈ I is non-empty. We

endow N
k+1
k with the lexicographical ordering < counting from the right-hand side. That is, j < m

5



if and only if there is l ∈ Nk+1 such that jl < ml and jr = mr for r > l. Since < is a total ordering
on the finite set Nk+1

k and Ω ⊆ N
k+1
k is non-empty, Ω has a unique element j minimal with respect

to <. Since j ∈ Ω, there are x1 ∈ Aj1 , . . . , xk+1 ∈ Ajk+1
for which x1 . . . xk+1 /∈ I.

Now we shall construct inductively m1, . . . ,mk+1 ∈ Nk and monomials u1, . . . , uk+1 in K〈X〉 of
degree k + 1 such that

ml > ml−1 if l > 2; (3.1)

ul /∈ I; (3.2)

ul = vlwlxl+1xl+2 . . . xk+1, where wl ∈ Aml
and vl is a monomial of degree l − 1. (3.3)

We start by setting u1 = x1 . . . xk+1 and m1 = j1 and observing that (3.1–3.3) with l = 1 are
satisfied. Assume now that 2 6 l 6 k + 1 and that m1, . . . ,ml−1 and u1, . . . , ul−1 satisfying the
desired conditions are already constructed.

If ml−1 < jl, then we set ml = jl, wl = xl, ul = ul−1 and vl = vl−1wl−1. Using the induction
hypothesis, we see that (3.1–3.3) are satisfied. It remains to consider the case ml−1 > jl. In
this case wl−1xl ∈ M and therefore there is α ∈ Λ such that (wl−1, xl) ∈ supp (fα). Let S =
supp (fα) \ {(wl−1, xl)}. Since fα ∈ I,

wl−1xl =
∑

(a,b)∈S

ca,bab (modI) with ca,b ∈ K.

Using (3.3) for l − 1 and the above display, we get

ul−1 =
∑

(a,b)∈S

ca,bvl−1abxl+1 . . . xk+1 (modI).

Since supp (fα) is a chain in M with respect to ≺, for every (a, b) ∈ S, either (a, b) ≺ (wl−1, xl) or
(wl−1, xl) ≺ (a, b). If (a, b) ≺ (wl−1, xl), b is contained in Aq with q < jl. Using the definition of Ω
and the minimality of j in Ω, we obtain

vl−1abxl+1 . . . xk+1 ∈ I if (a, b) ∈ S, (a, b) ≺ (wl−1, xl).

According to the last two displays

ul−1 =
∑

(a,b)∈S

(wl−1,xl)≺(a,b)

ca,bvl−1abxl+1 . . . xk+1 (modI).

By (3.2) for l − 1, ul−1 /∈ I. Thus, using the above display, we can pick (a, b) ∈ S such that
(wl−1, xl) ≺ (a, b) and vl−1abxl+1 . . . xk+1 /∈ I. Now we set ul = vl−1abxl+1 . . . xk+1, wl = b,
vl = vl−1a and take ml such that wl = b ∈ Aml

.
Since wl−1 ∈ Aml−1

and (wl−1, xl) ≺ (a, b) = (a,wl), we have ml > ml−1. Thus (3.1–3.3) are
satisfied. This completes the inductive procedure of constructing m1, . . . ,mk+1 and u1, . . . , uk+1.
By (3.1), mj for 1 6 j 6 k + 1 are k + 1 pairwise distinct elements of the k-element set Nk. We
have arrived to a contradiction, which proves that R is (k + 1)-step nilpotent.

4 Proofs of Theorem 1.3 and Lemma 1.2

Let k > 2, n ∈ N and a1, . . . , ak−1 ∈ Z+ be such that a1 + . . . + ak−1 = n. In order to prove
Theorem 1.3, it suffices to prove that there is a quadratic K-algebra R given by n generators and

d = max
16j6k−1

(a1 + . . .+ aj)(aj + . . .+ ak−1)

6



relations such that R is k-step nilpotent.
Let X be an n-element set of generators. Since a1+. . .+ak−1 = n, we can present X as the union

of the pairwise disjoint sets A1, . . . , Ak−1 with |Aj | = aj for 1 6 j 6 k−1. Consider the set M ⊂ X2

defined in (1.4) and the partial ordering ≺ on M generated by the partition {A1, . . . , Ak−1}. For
1 6 j 6 k − 1, let Bj =

⋃

q>j>m
Aq × Am. Clearly, |Bj | = (a1 + . . . + aj)(aj + . . . + ak−1). Hence

d = max{|B1|, . . . , |Bk−1|}. By Lemma 2.1, w(M,≺) = d. According to the Dilworth theorem (see
[4] for a short inductive proof) the width of a finite partially ordered set P is precisely the minimal

number of chains needed to cover P . Hence, we can write M =
d
⋃

q=1
Cq, where each Cq is a chain in

M . Now we consider the homogeneous degree 2 elements of K〈X〉 given by

fq =
∑

(a,b)∈Cq

ab for 1 6 q 6 d.

Clearly supp (fq) = Cq. Thus the union of the supports of fq is M and each supp (fq) is a chain
in M . By Theorem 1.7, the algebra R given by the relations fq for 1 6 q 6 d is k-step nilpotent.
This completes the proof of Theorem 1.3.

Now we shall prove Lemma 1.2. By Theorems GS and 1.3, dn,k > ϕkn
2 for every k > 2 and

n ∈ N. This proves the first inequality in (1.3). It remains to prove the second one. By Lemma 2.2,
there are α0, . . . , αk−1 ∈ [0, 1] such that 0 = α0 < α1 < . . . < αk−1 = 1 and αj(1 − αj−1) = ϕk for
1 6 j 6 k − 1. Now for 0 6 j 6 k − 1 let bj = ⌈nαj − 1

2⌉. Clearly 0 = b0 6 b1 6 . . . 6 bk−1 = n.
Now we set aj = bj − bj−1 for 1 6 j 6 k − 1. Then aj ∈ Z+ and a1 + . . .+ ak−1 = n. Hence

dn,k 6 max
16j6k−1

(a1+. . .+aj)(aj+. . .+ak−1) = max
16j6k−1

bj(n−bj−1) = max
16j6k−1

⌈

nαj−1
2

⌉

·
⌊

n(1−αj−1)+
1
2

⌋

.

It is easy to see that for every α, β ∈ [0, 1],

⌈

nα− 1
2

⌉

·
⌊

nβ + 1
2

⌋

− αβn2 6
α+β
2 n+ 1

4 .

From the last two displays and the equalities αj(1− αj−1) = ϕk it follows that

dn,k 6 ϕkn
2 +

n

2
max

16j6k−1
(1 + αj − αj−1) +

1

4
.

By Lemma 2.2, the maximum in the above display equals ϕk. Thus dn,k 6 ϕkn
2 + 1+ϕk

2 n + 1
4 ,

which completes the proof of Lemma 1.2.

5 4-Step nilpotency and the Fibonacci numbers

First, we derive an explicit formula for dn,4.

Lemma 5.1. For every n ∈ N,

dn,4 = min
{⌈

√
5−1
2 n

⌉2
, n

⌈

3−
√
5

2 n
⌉}

. (5.1)

Proof. Using (1.2) with k = 4 and denoting a = a1 and b = a3, we obtain

dn,4 = min{max{na, nb, (n − a)(n− b)} : a, b ∈ Z+, a+ b 6 n}.

An obvious symmetry consideration yields

dn,4 = min{max{na, nb, (n − a)(n − b)} : a, b ∈ Z+, b 6 a, a+ b 6 n}.

7



Since nb 6 na and (n− a)(n− b) > (n− a)2 when a, b ∈ Z+ satisfy b 6 a 6 n, we have

dn,4 = min{max{na, (n − a)2} : a ∈ Z+, 2a 6 n}. (5.2)

Now, assume that a ∈ Z+ satisfies 2a 6 n. Solving a quadratic inequality we see that na >

(n− a)2 holds precisely when a > ϕ4n. Hence (5.2) can be rewritten as

dn,4 = min{an, bn}, where
an = min{na : a ∈ Z+, ϕ4n 6 a 6 n/2} and bn = min{(n− a)2 : a ∈ Z+, a 6 ϕ4n}.

Clearly, the minimum in the definition of an is attained for a = ⌈ϕ4n⌉ and the minimum in the
definition of bn is attained for a = ⌊ϕ4n⌋. Hence an = n⌈ϕ4n⌉ and bn = ⌈(1 − ϕ4)n⌉2. Using the

equalities ϕ4 =
3−

√
5

2 and 1− ϕ4 =
√
5−1
2 , we see that (5.1) follows from the above display.

Corollary 5.2. The equality dn,4 =
⌈

ϕ4n
2
⌉

holds if and only if either
⌈

ϕ4n
2
⌉

is divisible by n or
⌈

ϕ4n
2
⌉

is a square of a positive integer.

Proof. Let m =
⌈

ϕ4n
2
⌉

. From Lemma 5.1 it follows that dn,4 is always either divisible by n or is a
square. Thus the equality m = dn,4 can only hold if either m is divisible by n or m is a square.

Ifm is divisible by n, we can writem = nj for some j ∈ N. Now it is easy to see that j =
⌈

3−
√
5

2 n
⌉

and therefore, by Lemma 5.1, dn,4 > jn = m. On the other hand, choosing a = j and using (5.2),
we get dn,4 6 max{nj, (n − j)2} = nj. Thus dn,4 = nj = m.

If m is a square, we can write m = j2 for some j ∈ N. Now it is easy to see that j =
⌈

√
5−1
2 n

⌉

and therefore, by Lemma 5.1, dn,4 > j2 = m. On the other hand, choosing a = n − j and using
(5.2), we get dn,4 6 max{n(n− j), j2} = j2. Thus dn,4 = j2 = m.

Proof of the first part of Theorem 1.4. Let F0, F1, . . . be the Fibonacci sequence and ϕ =
√
5+1
2 be

the golden ratio number. Using the formula Fn = ϕn−(−ϕ)−n

√
5

together with the equality ϕ4 = ϕ−2,

one can easily verify that
⌈

ϕ4F
2
k

⌉

= F 2
k−1 if k is odd and

⌈

ϕ4F
2
k

⌉

= FkFk−2 if k is even. Thus if n
is a Fibonacci number, then

⌈

ϕ4n
2
⌉

is either divisible by n or is a square.
To show the converse, we use the following criterion of recognizing the Fibonacci numbers due

to Möbius [9]. It says that a positive integer n is a Fibonacci number if and only if the interval
(ϕn − n−1, ϕn + n−1) contains an integer. Furthermore, if m is an integer belonging to (ϕn −
n−1, ϕn+ n−1), then m is the next Fibonacci number after n.

First, assume that n ∈ N and
⌈

ϕ4n
2
⌉

is divisible by n. Then ϕ4n
2 + θ = nk, where k ∈ N

and 0 < θ < 1. Since ϕ4 = 2 − ϕ, it follows that ϕn − (2n − k) = θ
n and therefore 2n − k ∈

(ϕn − n−1, ϕn + n−1). By the criterion of Möbius, n is a Fibonacci number. Finally, assume that
⌈

ϕ4n
2
⌉

is a square number. Since ϕ4 = ϕ−2, this means that n2

ϕ2 + θ = k2, where k ∈ N and

0 < θ < 1. It immediately follows that k =
⌈

n
ϕ

⌉

. In other words k = n
ϕ + α with 0 < α < 1.

Squaring the last equality, we get k2 = n2

ϕ2 + θ = n2

ϕ2 +
2nα
ϕ + α2. In particular, 2nα

ϕ < θ < 1. Hence

ϕα < ϕ2

2n . Thus the equality k = n
ϕ + α implies n = ϕk − ϕα and

ϕα <
ϕ2

2n
=

ϕ2

2(ϕk − ϕα)
<

ϕ2

2(ϕk − ϕ2/2n)
.

Since n > k, we have

ϕα <
ϕ2

2(ϕk − ϕ2/2k)
<

1

k
,

where the last inequality is satisfied for k > 2. Now the above display and the equality n = ϕk−ϕα
imply that n belongs to the interval (ϕk − k−1, ϕk + k−1). By the criterion of Möbius, both k and
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n are Fibonacci numbers provided k > 2. If k = 1 or k = 2, a direct computation yields n = 2 or
n = 3 respectively, which are Fibonacci numbers as well.

Thus we have proven that
⌈

ϕ4n
2
⌉

is either divisible by n or is a square number precisely when n
is a Fibonacci number. By Lemma 5.2, dn,4 =

⌈

ϕ4n
2
⌉

if and only if n is a Fibonacci number.

6 5-Step nilpotency

In this section we prove the second part of Theorem 1.4. As in the previous section we start by
simplification the formula defining dn,5.

Lemma 6.1. If n ∈ N is even, then dn,5 = n
2

⌈

2n
3

⌉

. If n ∈ N is congruent to −1 modulo 6, then

dn,5 = n
⌈n(n+1)

3n+1

⌉

. If n ∈ N is congruent to 1 or to 3 modulo 6, then dn,5 =
n+1
2

⌈

2n2

3n+1

⌉

.

Proof. Using the symmetry in (1.2) with respect to reversing the order of aj , we have

dn,5 = min{S(a) : a ∈ Z
4
+, a1 + a2 + a3 + a4 = n, a1 6 a4}, where

S(a) = max{na1, na4, (a1 + a2)(a2 + a3 + a4), (a1 + a2 + a3)(a3 + a4)}.
(6.1)

It is easy to see that the minimum in (6.1) can not be attained when a2 = 0 if n > 1 (the case
n = 1 is trivial anyway). If a1 < a4 and a2 > 0, one can easily check that S(a′) 6 S(a), where
a′ is obtained from a by increasing a1 by 1 with simultaneous decreasing of a2 by 1. Similarly, if
a1 = a4 and |a2 − a3| > 1, S(a′) 6 S(a), where a′ is obtained from a by increasing the smaller of
a2 and a3 by 1 with simultaneous decreasing of the bigger one by 1. It follows that among a ∈ Z

4
+

for which the minimum in (6.1) is attained there must be at least one point satisfying a1 = a4 and
|a2 − a3| 6 1. Thus the minimum in (6.1) is attained at a point a of the shape a = (α, β, β, α) if n
is even and it is attained at a point a of the shape a = (α, β+1, β, α) if n is odd. Substituting this
data into (6.1), we get

dn,5 =
n

2
min{max{2a, n − a} : a ∈ Z+, a 6 n/2} if n is even (6.2)

and
dn,5 = min{max{na, (n + 1)(n − a)/2} : a ∈ Z+, a 6 n/2} if n is odd. (6.3)

Since max{2a, n − a} = n − a if 3a 6 n and max{2a, n − a} = 2a if 3a > n, (6.2) implies that
dn,5 = min

{

n
⌈

n
3

⌉

, n2
⌈

2n
3

⌉}

= n
2

⌈

2n
3

⌉

if n is even (the two numbers in the last minimum are equal in
all cases except for the numbers n congruent to −2 modulo 6 in which case the second one is less
by 1).

Next, max{na, (n+1)(n−a)/2} = (n+1)(n−a)/2 if a 6
n(n+1)
3n+1 and max{na, (n+1)(n−a)/2} =

na if a >
n(n+1)
3n+1 . Plugging this into (6.3), we get dn,5 = min{n

⌈n(n+1)
3n+1

⌉

, n+1
2

⌈

2n2

3n+1

⌉

}. Considering

the cases of n being 1, 3 and −1 modulo 6 separately, we see that dn,5 = n
⌈n(n+1)

3n+1

⌉

if n is congruent

to −1 modulo 6 and dn = n+1
2

⌈

2n2

3n+1

⌉

ff n ∈ N is congruent to 1 or to 3 modulo 6.

From Lemma 6.1 it immediately follows that dn,5 =
n2

3 = ϕ5n
2 if 6 is a factor of n. Considering

the exact formula provided by Lemma 6.1 and treating the possible remainders for the division of
n by 6 as separate cases, one easily sees that dn,5 − n2

3 > 1 and therefore dn,5 > ⌈ϕ5n
2⌉ if n is not

divisible by 6 and n > 3. It is easy to verify that the equality dn,5 =
⌈

ϕ5n
2
⌉

holds for n = 1 and
for n = 2. This completes the Proof of Theorem 1.4.

We conclude by reminding that the following particular cases of the Anick’s conjecture [1] remain
unproved.
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Conjecture 6.2. There is a k-step nilpotent K-algebra given by n generators and d quadratic

relations whenever d > ϕkn
2.

Conjecture 6.3. There is a finite dimensional K-algebra given by n generators and d quadratic

relations whenever d > n2

4 .
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