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Abstract

We introduce a general class of algorithms and supply a number of general results
useful for analysing these algorithms when applied to regular graphs of large girth. As
a result, we can transfer a number of results proved for random regular graphs into
(deterministic) results about all regular graphs with sufficiently large girth. This is
an uncommon direction of transfer of results, which is usually from the deterministic
setting to the random one. In particular, this approach enables, for the first time, the
achievement of results equivalent to those obtained on random regular graphs by a pow-
erful class of algorithms which contain prioritised actions. As examples, we obtain new
upper or lower bounds on the size of maximum independent sets, minimum dominat-
ing sets, maximum and minimum bisection, maximum k-independent sets, minimum
k-dominating sets and minimum connected and weakly-connected dominating sets in
r-regular graphs with large girth.

1 Introduction

Graphs of large girth have been of interest since the pioneering result in probabilistic graph
theory of Erdős [18] in the late 1950’s showing that, for any given positive integers k and
g, there exists a graph with girth at least g and chromatic number at least k, evincing the
global character of the chromatic number of a graph.

Since then, the interaction between the local and global behaviour of graphs has come
under much more scrutiny. We concentrate in this article on r-regular graphs, where r is
fixed, which provide interesting examples of sparse graphs. For such graphs, Borodin and
Kostochka [6] and Lawrence [35] (see also Catlin [7]) obtained a kind of antithesis of Erdős’
result, by showing that an r-regular graph with girth at least 4 has chromatic number at
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(r + 2), thereby disproving a conjecture of Grünbaum. Improvements came later, in

particular for large r, with Johansson [28] showing that the chromatic number of triangle-free
graphs of maximum degree r is at most 9r/ log r. More recently, a number of results have
appeared proving that some particular property is satisfied by all r-regular graphs having a
sufficiently large girth (see Section 2 for a number of examples).

In this paper, we prove properties of regular graphs with large girth by studying certain
algorithms (some pre-existing, some new) and showing a relationship between their behaviour
on random regular graphs and their behaviour on regular graphs of large girth.

By suitably choosing the algorithm to produce an appropriate structure, we obtain upper
or lower bounds on a variety of well studied graph parameters such as the size of the maximum
independent set, the minimum dominating set, the minimum bisection or the minimum
feedback vertex set, in all regular graphs of sufficiently large girth. Broadly speaking, we
show that an algorithm A belonging to a quite large class of algorithms, the size of the
structure produced by A is almost the same for r-regular graphs of very large girth, as it
is for a random r-regular graph. This can be viewed as a partial converse of existing one-
directional results which translate properties of regular graphs of large girth into highly likely
properties of random regular graphs. Throughout this paper, the degree in a regular graph
is a fixed number r, and ‘sufficiently large girth’ means that there exists g such that the
statement holds when the girth of the graphs under consideration is at least g.

Lauer and second author [34] introduced a new approach to proving properties of large
girth regular graphs, by analysing a greedy algorithm for independent sets. The method
used simple expectation, in contrast to more sophisticated sharp concentration techniques
that some of the results on triangle-free graphs employed. The particular greedy algorithm
analysed there bore a strong resemblance to the greedy algorithm analysed in [45] for random
regular graphs, and resulted in exactly the same asymptotic bound on the size of the indepen-
dent sets. This opened up the possibility that other algorithms which have previously been
analysed on random regular graphs might have analogues for regular graphs of large girth
which achieve the same bounds. In particular, there are many more sophisticated algorithms,
producing powerful bounds, which are based on iterating an operation involving a random
vertex of minimum degree (and then deleting it and some neighbours). Such algorithms are
called prioritised in [48], where a general approach to analysing them was introduced that
involved deprioritising the algorithms. This assists the analysis when the algorithm passes
through a number of phases. In the present paper we analyse a general class of algorithms,
which we call local deletion algorithms because they repeatedly carry out explorations of
neighbourhoods of vertices, and delete the edges that are exposed in the exploration. In
particular, we provide an explicit system of differential equations whose solutions track the
typical value of several natural variables as the algorithm is applied. The system is the
same as for corresponding algorithms applied to random regular graphs. Using this, we are
able to transfer the results on many algorithms, including the deprioritised ones mentioned
above, for random regular graphs into (deterministic) results about all regular graphs with
sufficiently large girth.

We obtain many new bounds on functions of graphs with large girth in this work, but we
see the main contribution as supplying a number of general results useful for analysing local
deletion algorithms, and in particular showing new relations between random regular graphs
and regular graphs of large girth. Many algorithms we analyse give results on global prop-
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erties of random graphs, despite the local nature of the algorithms. Moreover, the relevant
local structure of the graphs we consider is fixed — the r-regular tree. Further investigation
of this area may be interesting in light of the recent interest in graph limits in the sparse case.
See, for instance, Lovász [36], Hatami, Lovász and Szegedy [21], and the references therein.
Greedy algorithms are considered in connection with the development of constant-time ap-
proximation algorithms to compute a series of parameters of graphs with bounded degree
sequence, as in Elek and Lippner [17]. In particular, Gamarnik and Sudan [20] showed that,
for sufficiently large r, local algorithms (which include our local deletion algorithms) cannot
approximate the size of the largest independent set in an r-regular graph of large girth by
an arbitrarily small multiplicative error. However, this appears to say nothing about small
r, say r = 3.

A preliminary version of some of the ideas in this paper first appeared in the doctoral
thesis of the first author [23], of which the second author was the supervisor. In particular,
this included an early version of our incorporation of the results achievable by prioritised
algorithms acting on random regular graphs into the framework of [34] using ideas from [48].

2 Related work and examples of improved bounds

A number of graph parameters have been considered for r-regular graphs with large girth.
Since these are standard parameters, we refrain from defining them until their definition is
important. Kostochka [32] showed that a d-regular graph (d ≥ 5 and fixed) with sufficiently
large girth has chromatic number at most 2 + bd/2c. Hopkins and Staton [22] gave lower
bounds on the size of independent sets in cubic (i.e. 3-regular) graphs with large girth,
superseded by Shearer’s bounds [41, 42] for r-regular graphs in general. For cubic graphs on
n vertices (and sufficiently large girth), this bound was 0.4139n. Král, Škoda and Volec [33]
showed that a cubic graph of sufficiently large girth has a dominating set of size at most
0.299871n. For definitions of the graph parameters mentioned here, the reader may refer to
Sections 8 and 9, where we give a detailed account of our results mentioned in this section.

The above-mentioned paper [34] improved Shearer’s bounds on independent sets for all
r ≥ 7. The method of [34] was also extended by the present authors in [26] to obtain lower
bounds on the size of a maximum induced forest in large girth r-regular graphs. These are
equivalent to upper bounds on vertex feedback sets, or decycling sets.

As mentioned earlier, the first author’s thesis [23] contains an embryonic version of this
work. There, the above-mentioned bounds of Shearer on independent sets in large girth r-
regular graphs were all improved. The theory in the present paper permits these results to be
derived much more economically (see Section 8.2.1). (A significant part of the improvement is
that a general result has replaced the need to prove the ‘independence lemma’ of [34] for each
algorithm considered.) In the cubic case the new bound was 0.4328n. After the appearance
of [23], Kardoš, Král and Volec [29] used an adaptation of its technique to analyse a better
algorithm which improved the bound to 0.4352n. (We note that their method in this paper
seems much closer to the earlier [34], since the algorithm does not correspond to a prioritised
one: the probabilities chosen as parameters of the algorithm are fixed.) This result was yet
again improved, to 0.4361n, very recently by Csóka, Gerencsér, Harangi and Virág [8] using
invariant Gaussian processes on the (infinite) d-regular tree.
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Also evolving from the early version of our method in [23], Kardoš, Král and Volec [30]
found strong lower bounds on the size of maximum cuts in cubic graphs with large girth,
which improved on earlier bounds of Zýka [51], and the first author [24] found lower bounds
on the largest induced forest in regular graphs with large girth.

We apply our general results to many problems and improve, in various ways, all of the
results on sufficiently large girth graphs mentioned above. As special cases, we obtain new
lower bounds on the size of maximum independent sets, minimum dominating sets, maximum
and minimum bisection, maximum k-independent sets and minimum k-dominating sets in
r-regular graphs with large girth. In particular, for independent sets we improve the known
results: both the results in [29] and [8] (which only considered the cubic case), and in [34]
and [42] (for r ≥ 4). For dominating sets we improve the result in [33] (which considered only
the cubic case), and for higher degrees we give the first bounds specifically obtained for large
girth. These improve on a general upper bound due to Reed [40] and on refinements thereof
obtained by Kawarabayashi, Plummer and Saito [31] for graphs with a 2-factor. Additionally,
our upper bounds are stronger in the sense that they also hold for minimum dominating
sets which also have the additional property of being independent sets. Strangely perhaps,
relaxing the independence condition does not produce any easy significant improvement.
For maximum cuts in cubic graphs, we derive analytic lower bounds, based on differential
equations, such that the bounds obtained in [30] can be interpreted as long recurrences for
computing numerical approximations of our analytic result.

The method introduced in [34] produces explicit bounds on the parameter involved for
graphs of given girth. Using adaptations of this approach, Gamarnik and Goldberg [19]
obtained lower bounds for various paramaters in r-regular graphs with an explicit large
girth. Similarly, in [29] and [30] whose method evolved from [34], explicit values of girth
are given. In the present paper we have introduced, amongst other things, the use of sharp
concentration, which has resulted in the loss of a direct connection with explict girths. If
desired it would still be possible to extract a version of the bounds that we obtain as a
function of girth.

We observe here that greedy algorithms employed to obtain results on the chromatic
number of random regular graphs, as by Shi and Wormald [43], are not in the scope of
our methods at present. It is a conjecture of the second author that 4-regular graphs with
sufficiently large girth are all 3-colourable.

3 Introduction to the general results

In this work, we often consider some given property P that a set of vertices of an input graph
G might have, and consider the function

fP (G) = max{|U | : U ⊆ V (G) and U satisfies P}.

For instance, if P is the property of being an independent set, then fP (G) is the size of a
maximum independent set in G. Given a property P and a positive integer r, our main
objective is to find a constant c(r, P ) such that, if G is an arbitrary n-vertex r-regular with
sufficiently large girth, then fP (G) ≥ c(r, P )n. We also consider upper bounds similarly
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(though we could by complementation), and we may consider subsets of the edge set E(G),
or of V (G) ∪ E(G).

We say that a sequence of events An defined in probability spaces Ωn occurs asymptot-
ically almost surely (a.a.s.) if limn→∞P(An) = 1. We sometimes mix this notation with
other asymptotic notation such as O() and o() in the same statement. There is a natural
interpretation of this, for formal definitions see [49]. Given positive integers n > r (where
nr is even for feasibility), consider the probability space Gn,r of all r-regular graphs with
vertex set V = {1, . . . , n} with uniform probability distribution. It is a well known fact (see
for instance Bollobás [5] and Wormald [44]) that, for fixed integers r and g, the expected
number of vertices in Gn,r that lie in cycles of length at most g is bounded. An immediate
consequence of this, which has often been used, is that if a random r-regular graph a.a.s. has
no sets U satisfying P of cardinality at least cu(r, P )n, then any bound c(r, P ) as described
above must be less than cu(r, P ).

Another (coarse) consequence of the small number of short cycles in random regular
graphs is the following. Assume that fP (G) can only change by a bounded amount if a
bounded number of vertices and edges are deleted fromG and that fP (G) ≥ c(r, P )n for every
n-vertex r-regular graph G with sufficiently large girth. Then, for every δ > 0, an n-vertex
random r-regular graph G′ asymptotically almost surely satisfies fP (G′) ≥ (c(r, P ) − δ)n.
This will imply that all the results we obtain in the present paper for r-regular graphs of
large girth also apply essentially unchanged to random r-regular graphs, although our method
derives them via random r-regular graphs and makes such conclusions essentially redundant
in this case.

As a partial converse, if a random r-regular graph a.a.s. satisfies some property, then for
every fixed g > 0, a random r-regular graph with girth at least g a.a.s. satisfies the same
property. This also follows from the results in [5] and [44]. However, not all asymptotic
properties of random regular graphs hold for all r-regular graphs with girth sufficiently large.
For instance, connectedness in the case r ≥ 3. We refer the reader to [47] for this and other
basic results about random regular graphs.

The interest in properties of random regular graphs has contributed to the development of
a powerful method for analysing random processes, which establishes a connection between
the process and an associated differential equation or system of differential equations, and is
consequently known as the differential equation method. This was introduced by the second
author in [45, 46] and given a general framework for random regular graphs in [48], which
gave bounds on graph functions obtained a.a.s. from a certain class of algorithms. We show
in the present paper that the same bounds apply deterministically for regular graphs of
sufficiently large girth, for algorithms satisfying certain conditions. These conditions are not
very restrictive, being satisfied in all the cases where the result in [48] has been used so far.

A good deal of research has been devoted to analysing the performance of algorithms on
graphs with large girth. An approach introduced by Lauer and Wormald [34] is based on
judiciously defining an algorithm that outputs a set S with a property P , when applied to a
fixed r-regular input graph G of girth at least G, such that the expected size of S does not
depend on the choice of G. This expectation is of course a lower bound on the maximum
cardinality of a set satisfying P , and also an upper bound on the minimum set satisfying P .

In [34], and the ensuing papers based on its approach, by Hoppen and Wormald [26] and
Kardos, Král and Volec [30], the expected output sizes were computed precisely. To do this,
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exact probabilities are calculated for some particular local scenarios through the solution of a
system of recurrence equations. In a graph of large girth, the close neighbourhood of a vertex
is a tree. Restricting the algorithms to having a local nature ensures that their action on
the neighbourhood of a vertex is identical to their action on the neighbourhood of a vertex
of an infinite r-regular tree. To obtain amenable calculations, ‘independence lemmas’ are
established, showing that in the branches of the tree induced by vertices near a given vertex,
certain events are independent. This independence breaks down after a number of iterations
of the algorithm, the number increasing with the girth of the graph. In some cases, finding
suitable events that were independent has been a significant difficulty.

The main goal of our present work is to adapt the idea in [34], which essentially uses a
quite simple algorithm, to the much more powerful algorithms treated in [48]. The intrinsic
difficulty lies in the nature of these algorithms: they use different operations in single steps,
with prioritisation of the operations causing the ‘rules’ to change potentially with each step.
On the other hand, the analysis in [34] requires uniform rules for large ‘chunks’ of time. To
deal with this, we essentially ‘deprioritise’ the algorithms as in [48]. Additionally, we alter
the independence arguments by proving a relationship with random regular graphs, where a
much stronger independence property holds (see Lemma 6.3). This eliminates the need to
find suitable independent events on a case by case basis, and provides much of the power of
our approach, enabling easy direct evaluation of the relevant probabilities. However, since
random regular graphs contain some short cycles, we now require some sharp concentration
arguments, rather than the simple first moment method as in [34, 26].

Two examples of algorithms: independent and dominating sets

Before stating the main methodological results in this paper, we illustrate the type of
algorithm under consideration. To this end, we describe two randomised procedures that find
objects commonly studied in graph theory: a large independent set and a small dominating
set. Given a graph G = (V,E), an independent set in G is a set S ⊂ V such that the induced
subgraph G[S] has no edges. A dominating set in G is a set T ⊂ V such that any v ∈ V lies
in T or has a neighbour in T .

The randomised procedure Pind looks for a large independent set: starting with G0 = G,
consider the survival graph Gt defined as follows for t ≥ 1. Assuming that i is the minimum
degree of the vertices of Gt−1, the procedure chooses a vertex v of degree i uniformly at
random among all such vertices. The vertex v is added to the independent set, while the new
survival graph Gt is obtained by removing v and all its neighbours from Gt−1. The procedure
continues until the survival graph is empty. Clearly, this is a greedy procedure that yields a
maximal independent set.

In the case of dominating sets, we may consider a similar step-by-step randomised proce-
dure Pdom: starting with G0 = G, the following rule is applied at every step t ≥ 1. Let i be
the minimum degree of Gt−1, and choose a vertex v of degree i uniformly at random among
all such vertices in Gt−1. If i = 0 add it to the dominating set and remove it from Gt−1.
Otherwise choose a vertex w uniformly at random among all neighbours of v with largest
degree and add it to the dominating set. The new survival graph Gt is obtained by removing
w and all its neighbours from Gt−1.

The general case

These two algorithms can be viewed as examples of a more general class of randomised
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algorithms, which we call local deletion algorithms. Before giving formal definitions in the
next section, we summarise the main features of these algorithms.

1. Starting with an input graphG0 = G, a local deletion algorithm is an iterative algorithm
to obtain a set of interest O with the property that, at each step t ≥ 1, there is a
selection step, in which a set of vertices is selected at random in the survival graph
Gt−1 according to some probability distribution. In both Pind and Pdom a single vertex
is selected, and the probability distribution is uniform over all vertices with minimum
degree in the respective survival graph.

2. For each selected vertex v, there is an exploration step to obtain information about
vertices near v. This step repeats iterations which check the degrees of neighbours of
vertices already reached by the exploration step, and selects new vertices to be explored
using some randomised rule which takes these degrees into account.

3. There is an insertion step, which adds some subset of the vertices queried in the explo-
ration step, or some subset of the edges incident with them, to the set O. In this step,
the survival graph is then updated by deleting all vertices queried in the exploration
step. In Pind, the set of vertices added to the set consists of the single vertex v selected,
whilst in Pdom it is the vertex w, unless v is isolated, in which case v is added to the
set. More generally, we also define output functions whose values are determined by
the explored neighbourhood.

4. Both the exploration step and the insertion step should depend only on the isomorphism
type of the explored neighbourhood.

We also extend the concept so as to apply to vertex-coloured graphs. These are not proper
colourings: each vertex is merely assigned one of a finite list of colours. The type of a vertex
is the ordered pair consisting of its degree and its colour. Then, where ‘degree’ is mentioned
above, we may read ‘type.’ The insertion step becomes a recolouring step, where each queried
vertex is assigned one of a finite set of output colours, and the colours of their neighbours in
the survival graph may be changed. A local deletion algorithm with no vertex colour is called
native. Our present description, as above, is restricted to native local deletion algorithms,
but our results will be proved in the more general setting.

Although one possibility is to select just one vertex in each round, the algorithm may
also select a large number of vertices in a single step, which enables large output sets to be
obtained in a bounded number of steps of the algorithm. The price to pay is that ‘clashes’
may occur, where nearby vertices are both selected in the same round, so that their query
graphs intersect, leading to conflicts in the insertion step. These conflicts must be resolved
somehow.

A local deletion algorithm is said to be chunky if, at each round t ≥ 1, the set St of
vertices selected in the survival graph Gt−1 is obtained by selecting each of the remaining
vertices independently with some probability pt,i that depends on its degree i. The main
results in this work tell us that chunky local deletion algorithms can be analysed for regular
graphs with large girth and that their performance is very similar to the performance of
algorithms that have been previously considered in the random regular setting. Indeed, we
prove (see Theorem 5.3) that the expected size of the output set of a chunky local deletion
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algorithm is the same for every r-regular graph G whose girth is sufficiently large in terms of
the number of steps N undertaken by the algorithm. In other words, the performance of the
algorithm is independent of the particular input graph as long as the girth is large enough.
Moreover, we demonstrate (see Lemma 5.4) that the performance of the algorithm is almost
the same when the input graph contains a small number of short cycles, which is a.a.s. the
case for a random regular graph. As a consequence, computing the expected performance
of a chunky local deletion algorithm for a fixed input graph with large girth is equivalent to
computing its expected performance over random regular graphs (see Theorem 5.5).

In light of this equivalence, we may concentrate on the probability space of random regular
graphs, which is a convenient setting for analysing chunky local deletion algorithms. As it
turns out, we may show that the values of a series of variables associated with an application
of a local deletion algorithm follow the solutions of a system of differential equations (see
Theorem 6.4), which may be obtained explicitly using the ideas in the proof of Lemma 6.2.
This is summarised in Theorem 6.5, where we describe a general strategy for analysing a local
deletion algorithm that is defined through specific rules for the selection and exploration steps.
This analysis proceeds as if the algorithm acted on a random graph with restrictions on its
degree sequence, but its conclusions lead to deterministic results about regular graphs with
sufficiently large girth.

In Section 7, we show that algorithms in a large class considered previously in the random
regular setting can be ‘chunkified’, that is, they can be turned into chunky local deletion
algorithms with negligible influence on their performance (see Theorem 7.2). This is the final
ingredient for deriving deterministic bounds for graphs with large girth from previously known
results (or, more correctly, their proofs) on random regular graphs. In particular, we give an
extension to the large girth context of [48, Theorem 1], which determines the performance of a
general class of algorithms in terms of the solutions of differential equations (see Theorem 8.1).
The remainder of Section 8 gives some applications of this result, whereby we translate known
results on random regular graphs into results on regular graphs of sufficiently large girth.
Section 9 provides many more applications of our general results. Finally, we make some
comments on extensions of our results in Section 10.

4 Local deletion algorithms

The aim of this section is to formally define the class of local deletion algorithms. The basic
descriptions are in Section 4.1. In the subsequent section, we consider a particular family of
local deletion algorithms which select a relatively large number of vertices in each step. This
motivates the term “chunky.” Since our object is the topic of graphs of large girth, in this
section all graphs are simple, i.e. have no loops or multiple edges.

4.1 Definitions for the general case

Let D be a positive integer. At this point, and in the remainder of this paper, the distance
between two vertices u and v in a graph G is denoted by dG(u, v), while the distance between
u and a subgraph H is given by dG(u,H) = min{dG(u, v) : v ∈ H}. (The subscript G may
be omitted if the graph is clear from context.)
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In order to give a precise description of a local deletion algorithm, it is necessary to prop-
erly define each of the steps mentioned in the informal description given in the introduction.
This includes defining how to choose a set of vertices in each round (selection rule), how
to explore the neighbourhood of a chosen vertex (local rule), and how to update the graph
based on this exploration (recolouring rule).

Definition (Transient, output and neutral colours, coloured graph, type of a vertex). We
shall assume that we have two sets of colours C and E, which denote respectively the set
of transient colours, which are assigned to the vertices in the survival graph, and the set of
output colours, which are assigned to the vertices that are deleted from the survival graph.
We will apply our results to r-regular graphs in which all vertices initially have the same
transient colour, which we call neutral. Moreover, we assume that the sets C and E have
special colours, denoted by ∝′ and ∝, respectively, which will be useful when dealing with
clashes. A coloured graph refers to a graph whose vertices are assigned colours in the set C
of transient colours. Given a coloured graph G and a vertex v ∈ V (G), the type τG(v) of v
is the ordered pair (c, d), where c is the colour and d is the degree of v in G.

Definition (Selection rule). A selection rule is a function Π that, for a nonempty coloured
graph G = (V,E), gives a probability distribution πG on the power set of V with the prop-
erties that

(i)
∑

v∈S⊆V πG(S) =
∑

w∈T⊆V πG(T ) for every v, w ∈ V such that τG(v) = τG(w);

(ii) πG(S) = 0 if S contains any vertex whose colour is ∝′.

Thus, the probability that a vertex v lies in the set of selected vertices is determined by
its type τG(v). For instance, a single vertex can be selected, with probability determined by
its type. Alternatively, the selection may be done by assigning probabilities pj for choosing
a vertex of type j and then adding each vertex to the set independently with probabability
determined by its type.

Next, in order to define how the algorithm performs its exploration step, we introduce
the concept of query graph. For this, we need to introduce a wildcard for an undetermined
type, which we denote �. We regard � formally as a different type, which has no colour or
degree. We call the other types vertex types if we need to distinguish them from �.

Definition (Query graph). An h-vertex query graph is a nonempty coloured graph H with
vertex set {1, . . . , h} such that each vertex v ∈ V (H) is associated with a finite (possibly
empty) multiset `v, each of whose elements is a type (either vertex type or �). A query graph
has depth D if every vertex is at distance at most D− 1 from the vertex with label 1, which
is called the root of the query graph.

The set of all query graphs is denoted by Q, while the set of query graphs of depth D is
denoted by QD. To avoid ambiguity arising from automorphisms, a copy of a query graph
H in a coloured graph G is formally defined as follows.

Definition (Copy of a query graph). Given a coloured graph G and a query graph H, a copy
of H in G rooted at v ∈ V (G) is a function ψ : V (H)→ V (G) with the following properties:
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(i) ψ(1) = v;

(ii) ψ is a (graph theoretical) colour-preserving isomorphism from H to a subgraph of G;

(iii) for every w ∈ V
(
ψ(H)

)
the multiset `w given by the types of neighbours of w in

G−E
(
ψ(H)

)
contains the multiset of vertex types in `ψ−1(w) (respecting multiplicities).

In the description of the algorithm, a copy ψ of a query graph will be used to record
the information obtained after the selection of a vertex v and some subsequent exploration
steps in an underlying graph G. The names 1, 2, . . . of the vertices in the query graph record
the order in which the vertices are explored in the copy, so that the root of the query graph
corresponds to the vertex v at the start of the exploration step. The multiset `j associated
with a vertex j = ψ−1(w) indicates the information that the local rule may use on the types
of the neighbours of w in G that are not adjacent to w in the copy of the query graph. The
fact that the depth is limited by D − 1 implies that the deletion of all vertices of the image
of a query graph whose root is mapped to v cannot affect the degree of any vertex whose
distance from v is larger than D.

In Figure 4.1, we show a query graph H of depth 2 and an embedding of this query graph
into a larger graph. For simplicity, we assume that there is a single colour available, so that
types are defined by their degrees. In the embedding of H into the larger graph, the edges
of H are represented by solid lines, while the edges associated with the open adjacencies of
H, or with the degree of such an open adjacency, are represented by dashed lines.

Figure 4.1: A query graph H and its embedding in a larger graph

The exploration steps mentioned above perform repetitions of a basic query operation,
defined as follows.

Definition (Open adjacencies, querying, and exposing an edge). Let G be a coloured graph,
H a query graph and ψ a copy of H in G associated with the subgraph ψ(H). Define the
set Ui = {(i, τ) : i ∈ V (H) and τ ∈ `i}. An element (i, τ) ∈ Ui is called an open adjacency of
i with type τ . Assume that each element of `i has already been associated with a neighbour
of ψ(i). Querying an open adjacency (i, τ) consists of selecting u.a.r. a neighbour, u, of ψ(i)
that is associated with a copy of τ . When such an open adjacency is queried, we say that
the edge ψ(i)u of G has been exposed.

Next we define the crucial randomised rule determining how query graphs are extended.
This uses a symbol ∗ to denote that the exploration is terminated.
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Definition (Local subrule, terminal open adjacencies, depth). A local subrule is a function
φ that, for each H ∈ Q, specifies a probability distribution φH on the set U ∪ {∗}, where
U = {(i, τ) : i ∈ V (H) and τ ∈ `i} is the set of open adjacencies. We require that φH(f) = 0
if f is an open adjacency whose type has colour ∝′. An open adjacency with the latter
property is called terminal and all others are non-terminal. Moreover, we require that there
is a natural number D such that, given any query graph H, φH(f) = 0 for every open
adjacency f = (i, τ) for which the distance from i to the root is at least D− 1. The minimal
such D is the depth of φ. Finally, we require that φH(∗) = 0 if H is a single vertex u such
that `u contains at least one �, but no other type.

The last condition above ensures that the local subrule explores at least one open adja-
cency unless the initial vertex chosen has degree 0.

We say that a local subrule is normal if it always queries an open adjacency of the form
(i, �), if there is one in the query graph. Most algorithms described in this paper use normal
subrules. Given a query graph H, the randomised choice of an open adjacency of H (or
of interrupting the exploration step) according to the probability distribution φH will be
referred to as an application of the local subrule φ to H.

To conclude the description of the exploration step, we define how the algorithm uses a
local subrule, together with querying, to build a copy of a query graph rooted at v.

Definition (Local rule). The local rule L = Lφ associated with a local subrule φ is a function
that maps an ordered pair (v,G), where G is a coloured graph and v ∈ V (G), to a copy ψ of
a query graph H in G. The image of (v,G) under Lφ is defined inductively as follows: start
with the query graph H0 that has a single vertex labelled 1 associated with the multiset `1

containing one copy of � associated with each neighbour of v in G. Let ψ0 be the bijection
that maps 1 to v. On subsequent steps k > 0, the local rule applies the local subrule for
Hk−1 and then:

(i) If the outcome is ∗, the output ψ is defined to be ψk−1.

(ii) If the outcome is (i, �), the local rule queries it, obtaining a vertex u adjacent to
w = ψ(i). Let τ be the type of u. A new query graph Hk is defined by replacing the
occurrence of � in `i associated with u by τ , while the copy ψk of Hk in G is equal to
ψk−1.

(iii) If the outcome is an open adjacency (i, τ) with τ 6= �, then the local rule queries
it, obtaining a neighbour u of w having type τ . By induction, {w, u} is not an edge
of ψk−1(Hk−1). If u /∈ V (ψ(Hk−1)), define the query graph Hk from Hk−1 by adding
a new vertex labelled j = |V (Hk−1)| + 1. A new multiset `j is created, with one �
associated with each neighbour of u in G other than w. Moreover, the multiset `i is
updated by removing the occurrence of τ associated with u. The copy ψk of Hk in G
is the extension of ψk−1 obtained by mapping |V (Hk−1)|+ 1 to u. On the other hand,
if u ∈ V (ψ(Hk−1)), say u = ψk−1(j), the query graph Hk is obtained from Hk−1 by
adding the edge ij and by removing the items corresponding to u and w from `i and
`j respectively. The copy ψk of Hk in G is equal to ψk−1.

The copy ψ of the query graph H obtained when this process stops is called the query
graph obtained by the local rule. Furthermore, if the local subrule associated with the local
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rule has depth D, it is clear that the query graph produced cannot have a vertex at distance
larger than D−1 from its root, so that the local rule is said to have depth D in this case. Note
also that querying an open adjacency (i, �) does not alter the query graph, whilst querying an
open adjacency (i, τ), where τ is a vertex type, always adds an edge, and possibly a vertex,
to the query graph.

Definition (Recolouring rule). A recolouring rule is a (possibly randomised) function c that,
given a query graph H ∈ Q, assigns an output colour other than ∝ to each vertex i of H
such that � /∈ `i and a transient colour other than ∝′ to each of the other vertices in H and
to each element τ 6= � in a multiset `i for i ∈ V (H). In the latter, a type whose colour is
already ∝′ is always assigned ∝′. Optionally, c also assigns an output colour to each edge of
H.

In the algorithm, the recolouring rule defines how the algorithm uses the information
given in the exploration step to update the survival graph, the output vector and the transient
colours on vertices. For many algorithms there is no need to colour edges, but it is convenient
for some, so we include this as an option. Our algorithms do not assign transient colours to
edges.

Definition (Local deletion algorithm). A local deletion algorithm consists of a triple (Π, L, c)
with Π = {Πt}Nt=1 for some N , where each Πt is a selection rule, and where L is a local rule
and c is a recolouring rule. The depth of the algorithm is the depth of the local subrule φ
associated with L. Applied to an input graph G = (V,E), the algorithm runs for N steps and
then outputs a vector ω according to the following prescription. Assume that the transient
colours are in a set C and the output colours in a set E disjoint from C. The algorithm starts
with G0 = G, all of whose vertices initially have neutral transient colour, and repeats the
following step t, t = 1, . . . , N . Step t is as follows:

(i) (selection step) obtain a set St ⊂ V (Gt−1) using the selection rule Πt;

(ii) (exploration step) for each v ∈ St, obtain a copy ψv of a query graph Hv ∈ Q through
the application of the local rule L = Lφ to Gt−1 and v;

(iii) (clash step) a vertex u is called a clash if at least one of the following applies: (a) u
lies in ψv for at least two vertices v ∈ St; (b) u lies in a single ψv but is adjacent to a
vertex in some ψw, where u 6= w; (c) u lies in a single ψv but is adjacent to a vertex in
ψv through an edge in Gt − E(ψv(Hv)). Let B be the set of all clashes.

(iv) (recolouring step) the survival graph Gt is obtained from Gt−1 as follows. At first, the
algorithm queries each open adjacency whose type is not �, and the vertices found are
placed in a multiset W . All vertices and edges which are specified colours by c are
recoloured accordingly, with the exception that clash vertices and all incident edges are
assigned ∝. Vertices in G −

⋃
v∈St ψv(Hv) which were placed in W must appear in at

least one list `i in a query graph. Recolour each one with the colour assigned by c to
the corresponding element τ in `i, unless they appear two or more times in W , in which
case they are recoloured ∝′. All vertices and edges receiving output colours, and all
exposed edges, are deleted.
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In each step, any random choices must follow the prescribed distributions conditional
upon the graph Gt. The output of the algorithm is the vector ω whose jth component is the
set of vertices receiving the jth output colour.

Actually, instead of having to clash colours ∝ and ∝′, we could have required all vertices
involved in clashes to be assigned a single output colour ∝. However, we assign a second
(transient) colour to vertices involved in the clashes described in the recolouring step as a
signal to avoid querying their open adjacencies.

The algorithms described in Section 3 did not use colours, but can be recast as local
deletion algorithms. We next give an example of a local deletion algorithm that makes
intrinsic use of colours, inspired by the algorithm in [30].

A local deletion algorithm for cuts in cubic graphs

Let G = (V,E) be a graph. Given A ⊆ V , the (edge) cut induced by A is the set of all
edges in E with one endpoint in A and the other in V \A. We are interested in the size of a
maximum cut in a cubic graph.

To describe the algorithm, we need two output colours, red and blue (as well as the clash
colour ∝). To denote the transient colour of a vertex in the survival graph which has r of
its neighbours in the input graph G red, and b blue, we use rb, or r, b if necessary for clarity.
Thus, 00 denotes the neutral transient colour, since initially every vertex has no blue and no
red neighbours. For economy we dispense with separately recording the degree 3− r− b, and
we say that a vertex with transient colour rb has type rb. At step t, the algorithm selects
u.a.r. a vertex v with type rb, where rb is the type of highest priority that appears in the
survival graph Gt, according to a given priority list. If r > b, v is coloured blue and deleted
from Gt, and the types of its neighbours are updated with an additional blue neighbour. If
r < b, the same thing happens with blue replaced by red and, in the case r = b, v is assigned
red or blue uniformly at random and deleted from the survival graph, and the types of its
neighbours are updated accordingly. This procedure may be described formally as a local
deletion algorithm as follows.

The selection rule chooses u.a.r. a vertex in Gt from those whose type has highest priority
according to the following prescription. Any type rb with r ≥ 2 or b ≥ 2 has higher priority
than the rest (any ordering within these gives the same result), and apart from this,

10 > 01 > 11 > 00

where rb > r′b′ means that rb has higher priority than r′b′.
The local rule is based on a normal local subrule which, for a given query graph, always

chooses to query (1, �), if it appears in `1, and to terminate otherwise. In other words, after a
vertex v is selected, the local rule builds a copy of the query graph rooted at v which consists
of the single vertex v and a multiset with the types of its neighbours in the survival graph.

If the type of v is rb and r > b, the recolouring rule c assigns blue to v and the colour
r′, b′ + 1 to each element r′b′ in the multiset associated with it. This accounts for the fact
that after colouring v blue, any neighboor of v has one more blue neighbour, which will be
reflected in its new colour in the recolouring step of the algorithm. If r < b, it assigns red to
v and r′ + 1, b′ to each element r′b′ in the multiset associated with it. Finally, if r = b, the
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recolouring rule colours v randomly with blue or red with uniform probability, and recolours
the open adjacencies associated with it accordingly.

To refer to algorithms such as those in Section 3 that do not really need colours, we use
the following.

Definition (Native local deletion algorithm). This is a local deletion algorithm with only
two transient colours, being neutral and ∝′, and three output colours. The set of vertices of
output Colour 1 is interpreted as the output set O, as usual ∝ denotes clash vertices, and the
rest of the deleted vertices are of Colour 2.

We adopt the convention of defining native local deletion algorithms without colours in
an obvious way: the local and recolouring rules simply determine which vertices and edges
are deleted and which are added to the output set.

4.2 Chunky local deletion algorithms

To facilitate analysis we can restrict the kind of algorithms under scrutiny, without sacrificing
the power of the results to the accuracy we are interested in. A local deletion algorithm is
said to be chunky if the probability distribution associated with the selection rule Πt at step
t is defined as follows for every t ∈ {1, . . . , N}:

(1) there are fixed real numbers pt,j ∈ [0, 1] for every type j, called the governing probabil-
ities of the chunky algorithm;

(2) the selection rule Πt is such that the probability of a nonempty set S is given by
πG(S) =

∏
v∈S pt,τG(v).

In other words, in a chunky local deletion algorithm, each vertex v of Gt−1 with type j
is added to the set St randomly, independently of all others, with probability pt,j. This
separation into N chunks of time with a good deal of independence within each chunk is
useful, especially as we will in practice keep N fixed independently of the size of the input
graph. If T = {1, . . . , R} denotes the set types, we call the matrix (pt,j)1≤t≤N,1≤j≤R a matrix
of probabilities of the algorithm, and we define the granularity of the algorithm to be the
maximum entry in this matrix. Such a matrix is general enough for any algorithm with a
fixed number of colours that is intended to act only upon graphs with maximum degree r,
as there is a bounded number of types in this case.

We illustrate using the procedure for finding an independent set in a graph G discussed in
Section 3. This can be turned into a chunky local deletion algorithm if, instead of choosing
a single vertex of minimum degree in the survival graph in each step, the selection rule
produces a subset St by including each such vertex with some probability p. Assuming there
are no clashes, the survival graph Gt is updated by incorporating the changes prescribed by
each query graph separately. However, if there are clashes, some recolouring is involved. For
instance, if two vertices in St are adjacent, they will be coloured with ∝. In this way, the
vertices with the output colour designating them for the final independent set will retain the
property of actually being an independent set. This is a workable approach if we ensure that
clashes are rare, by choosing p to be small. For large n, most vertices have output colours
(rather than clash colours) by the end of the algorithm.
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5 Analysis of chunky local deletion algorithms

The aim of this section is to show that, for any fixed r ≥ 2, chunky local deletion algorithms
give essentially the same performance, for the random variables of interest, when applied to
any r-regular graph of sufficiently large girth. This will be proved in two main steps. First we
establish that the expected values of these random variables is the same for every n-vertex
r-regular graph with girth at least g, provided that g is sufficiently large in terms of the
number of steps of the algorithm. We then show that the variables are sharply concentrated
around these same expected values as long as the number of short cycles is ‘small,’ which
holds trivially for graphs with large girth and is a well known property of random regular
graphs. This establishes the desired connection between these two types of graphs.

For our purposes in this section, we are given an r-regular graph G in which all vertices
initially have neutral transient colour. We perform the chunky algorithm making all random
choices in advance, as follows. With each t ∈ {0, 1, 2, . . . , N − 1} and each possible type
j, we associate a random set Sj(t) ⊆ V , where a vertex is placed in Sj(t) with probability
pt,j. All these choices are made independently of each other and independently of the other
sets Sj′(t

′). In addition, for each copy φH of any query graph H in G, we specify an open
adjacency (or ∗) according to the probability distribution specified by the local subrule φ,
and also, if ∗ is specified and the recolouring rule c is randomised, the values of the colours
assigned by c. All of this gives us a function Υ defined on all copies of query graphs in G.

Given Υ and the sets Sj(t), define G0 = G, and to determine Gt from Gt−1 as follows. For
a vertex v whose type in Gt−1 is j, place v in the set St if and only if v ∈ Sj(t). Then use the
function Υ iteratively via the local subrule to obtain the query graphs (just as determined by
the local rule in the chunky algorithm). Finally, apply steps (iii) and (iv) in the description
of the local deletion algorithm, using Υ to determine any random choices in the recolouring
rule. This determines a ‘survival’ graph Gt and the colours of the vertices deleted. Note that
the value of Υ at any particular point in its domain is used at most once. This is because for
each query graph produced by the local rule, there are two possibilities. Either the selected
vertex has degree at least 1 and, according to the local subrule, at least one open adjacency
is queried, with the corresponding edges subsequently deleted, or it has degree 0 and is given
an output colour and deleted according to the recolouring rule.

We may now prove an upper bound on the “speed” at which random choices in some
part of the graph may affect random choices made in another part of the graph. First, affix
a label Lv = (Lv1,Lv2) to each vertex v where Lv1 = {t : v ∈ Sj(t)}, and Lv2 consists of the
action of Υ on all the copies of query graphs whose root is v. Note that these labels are all
determined before generating the process (Gt)t≥0.

Lemma 5.1. Consider a chunky local deletion algorithm whose local rule has depth D. Let
G be a graph, let Gt be the survival graph defined above, and let F be a subgraph of G. Then
F ∩Gt, and the types of its vertices, are determined by the subgraph induced by the vertices
whose distance in G from F is at most 2Dt, together with the labels of those vertices, up to
label-preserving isomorphisms.

Proof The nature of the change in type of a vertex w at step t, and whether w is deleted
in step t, is dependent only on the copies of query graphs existing in Gt−1 which w is in
or adjacent to, together with the labels on the root vertices of such copies. The set of such
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copies is determined by the graph F ′∩Gt−1, where F ′ = G[{v : dG(v, F ) ≤ 2D}]. The lemma
now follows by induction on t and the triangle inequality.

A rooted graph is a graph with one vertex distinguished, and called the root. If the graph
is a tree T , we call it a rooted tree, and its height (i.e. maximum distance of a vertex from
the root) is denoted h(T ). Let Tr,h denote the balanced r-regular tree with height h, that is,
the rooted tree in which every non-leaf vertex has degree r and every leaf is at distance h
from the root.

For a vertex v in a graph G, let the s-neighbourhood of v be the subgraph of G induced
by the set of vertices whose distance to v is at most s, viewed as a rooted graph with root v.
If a vertex does not survive in Gt, we define its s-neighbourhood to be empty.

Corollary 5.2. Fix r and h, and consider a chunky local deletion algorithm A whose local
rule has depth D. Let G be an r-regular graph of girth greater than 4Dt+ 2h and apply A to
G with all vertices initially of neutral transient colour.

(i) Let F be a vertex-coloured version of a subgraph of Tr,h, and fix a positive integer t.

Consider an embedding T̂ of Tr,h in G. Then P(Gt ∩ T̂ = F ) (where equality requires
the colours of Gt to match the colours of F ) is a constant depending on A and r but
independent of the choice of the graph G and the embedding T̂ .

(ii) Let T be a coloured rooted tree of height at most h and fix a vertex v ∈ V (G). Then the
probability that the h-neighbourhood of v in Gt is isomorphic to T (where isomorphism
requires the colours to be preserved) after t steps is a constant pt,T,h = pt,T,h(A, r)
independent of the choice of the graph G and the vertex v.

Proof Define GT̂ to be the subgraph of G induced by all vertices within distance 2Dt of T̂ .

By Lemma 5.1, for an embedding T̂ of T in G, the intersection of Gt and T̂ is determined by
the label-preserving isomorphism type of the subgraph induced by the vertices of GT̂ . By the
girth hypothesis, the graph GT̂ is a tree whose isomorphism type (ignoring the vertex labels)

is independent of the choice of G and T̂ . The labels are assigned independently with the
same probability distribution to each vertex. The result follows for (i). Then (ii) follows by
applying (i) to all graphs F whose component containing the root of Tr,h is isomorphic to T

(with matching colours), and such that v is the root of T̂ , and summing the probabilities.
Instead of proving facts about the number of vertices with each output colour, it will be

convenient to consider output functions that are slightly more general.

Definition (Output function, active copy). An output function W is a function determined
by fixed numbers cH,L,J via the recurrence

W (t+ 1) = W (t) +
∑
H,L,J

cH,L,JWH,L,J (t ≥ 0), W (0) = 0. (5.1)

Here H ∈ Q, L ∈ L2 where L2 is the (finite) set of possible values of the label Lv2, J ⊆ V (H),
and WH,L,J is determined by the set of copies of H generated in step t+1 of the algorithm, as
follows. We call such copies of H active, and we refer to the vertices ψ(V (H)) as the vertices
of the copy ψ. Then WH,L,J is the number of active copies ψ of H for which Lv2(ψ) = L,
where v is the root vertex ψ(1), and such that the set of clash vertices of ψ is precisely ψ(J).
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Note that the function W (t) that counts vertices of a given output colour is an example
of an output function. This is obtained by setting cH,L,J equal to the number of vertices
coloured with that output colour when the query graph H has Lv2 = L for v and the set of
clash vertices is J .

Theorem 5.3. Let G be an r-regular graph on n vertices with girth larger than 4DN +
max{2, 6D}, all of whose vertices initially have neutral transient colour. Let Yk(t) denote the
number of vertices of type k in the survival graph Gt in a chunky local deletion algorithm A
whose local rule has depth D, where 0 ≤ t ≤ N . Also let W (t) be an output function. Then,
for each such t, the vector

sr,A(t) = sr,A(t, n) =
(
EY1(t), . . . ,EYR(t),EW (t)

)
is independent of the choice of G.

Proof Applying Corollary 5.2(ii) with h = 1, we may sum pt,T,1 over all T with root of
type k, to obtain the probability, independent of G, that any given vertex of G is of type
k in Gt. Multipying by n gives EYk(t), which proves the first part, as the girth is at least
4DN + 2. The proof for W (t) is similar, but requires girth at least at least 4DN + 6D. The
expected value of W (t+ 1)−W (t) is fixed provided that, for each copy ψ of any query graph
H, the probability that ψ is active and L = Lv2, where v is the root of ψ, and additionally
J is the set of clash vertices in this copy in step t + 1, is a fixed number given H, L and
J . This is true for t ≤ N − 1 by Corollary 5.2 with h = 3D, since the intersection of the
(3D)-neighbourhood of v with Gt−1 determines all these things.

The next result shows that the key random variables of a chunky local deletion algorithm
are concentrated near the values suggested by the constants given in the previous two results,
provided the input graph has few short cycles.

Lemma 5.4. Given a positive integer N , let G be an r-regular graph with n vertices, at most
Θ < n2/3 of which are in cycles of length less than or equal to 4DN + 6D + 2. Consider N
steps of a chunky local deletion algorithm A of depth D applied to G. Then the following
hold.

(i) Given t ∈ {0, . . . , N} and a coloured rooted tree T of height at most h ≤ 2D(N − t) +
3D + 1, let At,T,h denote the number of vertices in Gt whose coloured h-neighbourhood
in Gt is isomorphic to T . Then, for some positive constant C determined by the local
and recolouring rules, the degree r and the number of steps N ,

P
(
|At,T,h − npt,T,h| ≥ Cn2/3

√
Θ + 1

))
≤ n−1/3,

where pt,T,h is defined in Corollary 5.2(ii).

(ii) Define Yk(t), W (t) and sr,A(t, n) as in Theorem 5.3. Set s(t) =
(
Y1(t), . . . , YR(t),W (t)

)
and, given C > 0, consider the event F (C) that ||s(t)− sr,A(t, n)||∞ ≥ Cn2/3

√
Θ + 1

for some t ∈ {0, 1, . . . , N}. Then, for some constants C and C ′ determined by r, N
and the local and recolouring rules,

P
(
F (C)

)
≤ C ′n−1/3.
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Proof We first prove part (i). A vertex in G is said to be good if its distance from every
vertex lying in a cycle of length at most 4DN + 6D + 2 is larger than 2D(N + 1), and bad
otherwise. Note that the set B of bad vertices of G has size at most CΘ where C is constant
given r, D and N .

Let t and T be as in the hypothesis. By Corollary 5.2 and linearity of expectation,

EAt,T,h = (n− |B|)pt,T,h + |B|O(1) = npt,T,h +O(Θ)

for fixed r, D and N . On the other hand,

Var(At,T,h) =
∑
v∈V

Var(Xv,T,h) +
∑

v 6=w∈V

Cov(Xv,T,h, Xw,T,h),

whereXv,T,h is the indicator random variable for the event that v has coloured h-neighbourhood
T after t steps of the algorithm.

Being an indicator, Xv,T,h has variance at most 1. If the distance between v and w is
greater than 4D(N + 2), then the variables Xv,T,h and Xw,T,h are independent, and hence
their covariance is 0. For all other pairs, the covariance has absolute value at most 1. Thus

Var(At,T,h) = O(n) +O(n|B|) = O(n(Θ + 1)).

By Chebyshev’s inequality, P
(
|At,T,h − EAt,T,h| ≥

√
n1/3 Var(At,T,h)

)
≤ n−1/3, giving (i).

For part (ii), we argue in a fashion similar to the proof of Theorem 5.3. Yk(t) is just a
sum of At,T,1 over appropriate trees T , so the required concentration these components of
s(t) follows from (a). For the final component, W (t), one can define an indicator variable to
denote that a copy ψ of a query graph H is active, with given value L of Lv2 where v is the
root of ψ, and given set J of clash vertices in this copy in step t+ 1. Using the fact from (i)
that the numbers of vertices with given neighbourhoods are concentrated, and again arguing
as for (i) using Chebyshev’s inequality, the sum of these indicators, which equals WH,L,J as
in (5.1), is concentrated, to the extent claimed, except for an event with probability n−1/3.
Summing over all H, L and J and applying the union bound shows that W (t+ 1)−W (t) is
similarly concentrated, up to a constant factor in the error, with probability O(n−1/3). Doing
the same for t gives the result required to complete (ii).

The conclusion of Lemma 5.4 could easily be strengthened by using a slightly more com-
plicated inductive argument involving Azuma-type inequalities, but this is not needed.

Lemma 5.4(ii) may be applied directly to random regular graphs.

Theorem 5.5. Let A be a chunky local deletion algorithm performing N steps applied to a
random r-regular graph G ∈ Gn,r. The vector s(t) =

(
Y1(t), . . . , YR(t),W (t)

)
produced after t

steps of the algorithm is a.a.s. within C ′1n
2/3 of sr,A(t, n) in L∞-norm, where C ′1 is a constant

for given N , R and D, uniformly over all t ∈ {0, . . . , N}.

Proof In a random regular graph, the expected number of cycles of length at most 4D(N+1)
is bounded (see [4] or [47]), so the result immediately follows from Lemma 5.4(ii).

Theorem 5.5 implies that the output vector produced by a chunky local deletion algorithm
A applied to a random n-vertex r-regular graph and the vector of expected output of A
applied to an n-vertex r-regular graph G with sufficiently large girth a.a.s. differ by o(n).
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A useful consequence is that, given a chunky local deletion algorithm A, we may estimate
the value of sr,A(n) by analysing the performance of A on random regular graphs. This is a
crucial factor in our approach, as it allows us to make use of the powerful machinery already
developed for analysing random regular graphs. This will be addressed in the next section.

To obtain our results, we need to limit the number of clashes in order to obtain a con-
nection between the results of a chunky local deletion algorithm and other local deletion
algorithms with the same local rule and recolouring function. We define a pre-clash in a
chunky local deletion algorithm of depth D to be a pair of vertices of distance at most 2D
apart, which are both chosen for inclusion in the set St in a given step t. The number of
clashes will be bounded above by a constant times the number of pre-clashes.

Recall that the granularity of a chunky algorithm is the maximum entry in its matrix of
probabilities.

Lemma 5.6. The expected number of pre-clashes in step t of any chunky algorithm of depth
D and granularity ε, applied to a graph on n vertices and maximum degree r, is O(ε2n),
where the implicit constant depends only on D and r.

Proof The number of pairs of vertices of distance at most 2D is O(n), and the probability
that both vertices are chosen in St is at most ε2, so this follows immediately from the union
bound.

6 Explicit bounds from chunky algorithms

In light of Theorem 5.3, to obtain explicit bounds on the value of an output function when
a local deletion algorithm is applied to a graph with sufficiently large girth, we can try to
determine the value of the vector sr,A(t) in Theorem 5.3. Owing to Theorem 5.5, it suffices
to determine this vector for random regular graphs. In this section we address this issue,
developing what will eventually be part of some machinery which lets us translate some
existing results on random regular graphs to results for regular graphs of large girth.

We will need to analyse the behaviour of a chunky local deletion algorithm D on an
n-vertex random r-regular graph (as usual, rn is assumed even and the probability space
of all random regular graphs is denoted by Gn,r). To this end, we shall use a well known
model introduced by Bollobás [4], which can be described as follows. Consider rn points in
n buckets labelled 1, . . . , n, with r in each bucket, and choose uniformly at random (u.a.r.) a
pairing P = a1, . . . , arn/2 of the points such that each ai is an unordered pair of points, and
each point is in precisely one pair ai. We use Pn,r to denote this probability space of random
pairings. Each pairing corresponds to an r-regular pseudograph (i.e., graph with possible
loops and multiple edges) with vertex set 1, . . . , n and with an edge for each pair. A pair
with points in buckets i and j gives rise to an edge joining vertices i and j. (If i = j a loop
is formed.) A straightforward calculation shows that the simple r-regular graphs (i.e. those
with no loops or multiple edges) on n vertices are produced each with the same probability,
and hence an n-vertex r-regular graph can be produced u.a.r. by choosing a pairing u.a.r. and
rejecting the result if it has loops or multiple edges. The probability that a random pairing
produces an r-regular graph tends to the positive constant e(1−r2)/4 as n tends to infinity
(Bender and Canfield [3]). There is an obvious generalisation of Pn,r to P(r), where bucket
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i contains ri points. Provided that the elements of r are bounded, the probability that the
resulting graph is simple is bounded below. Conditioning on this event gives the model G(r)
of uniformly random graphs with degree sequence r. (See [47] for more details.)

The pairing model may be redefined slightly by specifying that the pairs are chosen
sequentially: the first point in the next random pair can be selected using any rule whatsoever,
depending only on the choices made up to that point together with some independent random
input, as long as the second is chosen u.a.r. from the remaining points. This is called exposing
the pair containing the first point, and this property is sometimes called the independence
property of the pairing model. For instance, one can require that the next point chosen
to be exposed comes from the lowest-labelled bucket available, from a bucket with fewest
unpaired points, or from the bucket containing one of the points in the previous completed
pair if any such points are still unpaired. In particular, for any algorithm applied to the final
random graph, the process for generating the pairs can be determined by the order in which
the algorithm queries the edges of the graph. We call the process that generates the pairs
governed by an algorithm in this way a pairing process. For simplicity, we will often refer to
a pairing as a (pseudo)graph and to a bucket as a vertex. The fact that we are dealing with
a pairing instead of the underlying pseudograph will be clear from context.

We need to provide a definition of local deletion algorithms, in particular local rules, so as
to act upon pairings. There is an obvious way to do this, provided the set Q of query graphs
includes all coloured pseudographs. We will assume this property of Q henceforth. Recall
that, at every step t, once a vertex v is selected, the algorithm queries vertices in the survival
graph Gt−1 to build a query graph rooted at v. This query graph then determines (perhaps
with randomisation) which vertices are added to the output set and which are deleted from
or recoloured in Gt−1 to create Gt. In the context of the pairing process described in the
previous paragraph, querying an open adjacency (i, �) is equivalent to specifying, for an
unpaired point j in bucket i, the type τ(j) of the bucket containing the mate of j, while
querying an open adjacency (i, τ) corresponds to selecting any point j in bucket i with
τ(j) = τ and choosing an unpaired point k in a bucket of type τ to complete a pair with j.
The point k is chosen randomly among all unpaired points in buckets that had type τ(j) at
the moment that bucket i was queried. The random choice of v can similarly be incorporated,
creating a pairing process that generates the edges of the random pseudograph just as the
algorithm requires them. Instead of a survival graph, we have for pairings a survival pairing,
containing just the unexposed pairs in the pairing process after t steps of the algorithm, and
a corresponding survival pseudograph, which we call Gt. The clash step is interpreted in an
obvious way. Note that a vertex with a loop is will automatically be a clash.

It is easy to check that, conditional on the pseudograph of the pairing being simple, the
above description of the local rule in the pairing corresponds to the local rule as applied to
the graph corresponding to the pairing. In view of the correpondence of models described
earlier, this immediately gives the following useful result.

Lemma 6.1. Suppose that when a local deletion algorithm is applied to a random pairing
with nk = nk(n) vertices of type k for each k, the survival pseudograph Gt has property P
with probability p(n). If the same algorithm (i.e. with the same selection and local rules and
recolouring function) is applied to a random graph with nk = nk(n) vertices of type k for each
k, then the survival graph after t steps has property P with probability at most cp(n), where
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c is a constant depending only on the maximum degree of the input graph.

When applying local deletion algorithms to a pairing, we will often for simplicity speak
of applying it to the associated pseudograph. The next result is our basic tool describing
how the proportion of vertices of each type in the survival graph is expected to change due
to an application of the local rule to a single vertex in the survival graph. For a coloured
pseudograph G on n vertices, let nk denote the number of vertices of type k in G, define the
vector ñ = (n1/n, . . . , nR/n), and let the degree of a vertex of type k be denoted d(k).

Lemma 6.2. Let r and D be positive integers. Given a local rule Lφ of depth D and a
recolouring rule c, let R denote the number of types when a local deletion algorithm with these
rules is applied to graphs with degrees bounded above by r. Let i, k ∈ {1, . . . , R} be types and
let H be a query graph. Then there exist functions fk,i and gH,i : RR

≥0 → R which, for all

ε > 0, are Lipschitz continuous in D(ε) := {(ñ1, . . . , ñR) ∈ RR
≥0 :

∑R
k=1 d(k)ñk ≥ ε}, such

that the following is true. Let G be a random pseudograph with degree sequence (r1, . . . , rn)
generated by the pairing model, where 0 ≤ rk ≤ r for all k, and fix a colouring of G. Let nk
denote the number of vertices of type k. Consider i ∈ {1, . . . , R} such that ni > 0 and fix a
vertex v of type i in G. Let Hv be the (random) query graph obtained by one application of
Lφ to v in G, and let G′ be the survival graph obtained from G after the clash and recolouring

steps. Assume that M =
∑n

j=1 rj =
∑R

k=1 d(k)nk > εn for some ε > 0. The following hold
with the constants implicit in O() terms independent of the rk.

(i) For any query graph H,

P(Hv = H) = gH,i(ñ) +O(1/n).

(ii) The number Yk of vertices of type k in G′ satisfies

E(Yk) = nk + fk,i(ñ) +O(1/n).

Moreover, the expected number of vertices that are assigned colour ∝′ in the recolouring step
is O(1/n).

Proof Recall that the survival graph G′ is derived from G by deleting all edges in the copy
of the query graph Hv obtained through an application of the local rule Lφ to v in G, and by
recolouring or deleting vertices in this copy, as well as recolouring vertices associated with
the open adjacencies of H.

Before addressing the claims directly, we find it useful to bound the (conditional) prob-
ability that either of the following two events occurs: (a) one of the open adjacencies in
Hv is incident with a vertex within Hv (that vertex is then a clash); (b) two or more open
adjacencies in Hv are incident with the same vertex (that vertex is then assigned colour ∝′).
As noted before, we may assume that, when a pair is exposed, the mate of the starting point
is distributed u.a.r. over the remaining available points. Because of this, the (conditional)
probability of event (a) is bounded above by s2/S, where s is the number of points in the
vertices of Hv and S is the number of unpaired points in G− V (Hv). Clearly, s ≤ r|V (Hv)|,
S ≥ M − r|V (Hv)| and |V (Hv)| ≤ mr,D−1 ≤ 1 + rD, where mr,D−1 denotes the number of
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vertices in a balanced r-regular tree of height D− 1. Hence the probability of (a) is bounded
above by r2m2

r,D−1/(M − rmr,D−1) = O(1/M) = O(1/n). Similarly, the (conditional) proba-
bility of event (b) is O(1/n), as the number of points in buckets outside Hv is Ω(M) and hence
the probability two open adjacencies have mates in the same bucket is O(1/M). Observe
that, since the recolouring step assigns colour ∝′ only if (b) occurs, the expected number of
vertices that are assigned colour ∝′ in the recolouring step is O(1/n), which gives the final
statement of the lemma.

Next, we show that part (ii) is a direct consequence of part (i). We argue at first that,
conditional upon the query graph Hv, the quantity E(Yk)−nk is determined up to a O(1/n)
term. Indeed, consider the vertices that have type k in G. The type of one of these vertices
may be different from k in G′ if it is in the copy of the query graph Hv, or if it is the end of
an open adjacency (whose type is necessarily k) in this copy of Hv. The expected number
of these vertices that change type is determined by the action of the (possibly randomised)
recolouring function c on Hv, independently of the degree sequence. On the other hand,
consider the vertices that have type k (and whose colour is not ∝′) in G′ but do not have
this type in G. These vertices come from two sources: those that have degree d(k) + 1 in G
and are the end of an open adjacency of Hv, which in addition is assigned the colour of k by
the recolouring function c, and those with the correct degree that lie in Hv and are assigned
the colour of k by c. Again, the expected number is a function of the recolouring rule. In
this discussion we have somewhat ignored events (a) and (b), but their probabilities are
determined by the degree sequence of the graph, and the expected changes in the quantities
due to their occurrence are similarly determined up to a O(1/n) error.

As a consequence, E(Yk) − nk = ∆k(Hv) + O(1/n) for a function ∆k depending only on
the rules, not the degree sequence. Hence the expected value of Yk is given by

E(Yk) = nk +
∑
H∈QD

P(Hv = H) ·∆k(H) +O(1/n),

as the number of query graphs in QD with maximum degree bounded by r is a constant
depending on r, D and the number of colours available. The claim of part (ii) thus follows
from part (i).

Let Hv,j denote the (random) query graph obtained after j steps of the local subrule
when applying the local rule starting with a vertex v of type i in G. To prove part (i), we

show by induction on j that, for a given H, P(Hv,j = H) = g
(j)
H,i(ñ) + O(1/n), where g

(j)
H,i

is Lipschitz continuous on D(ε). After the local rule is initiated, but before any application
of the local subrule, the only possible query graph H is a singleton {1} with a multiset `1

containing i copies of �. This starts the induction off with j = 0. For the inductive step, we
may assume that H is a tree; otherwise, at some point in the process, the query operation
would have exposed an open adjacency incident with a vertex within the query graph, which
has probability O(1/n) as explained above. Hence, the query graph H has been derived in
one of two possible ways. In the first, it is derived from a query graph H ′ by adding the
vertex that has largest label in H, which we may denote by u. At the same time, the multiset
associated with the unique neighbour w of u, is adjusted appropriately. There is a unique H ′

with this property. The second possibility is to derive it from a query graph H? by replacing
an occurrence of � in a multiset associated with a vertex in H? by a vertex type.

22



In the first case, by induction P(Hv,j−1 = H ′) = g
(j−1)
H′,i (ñ) + O(1/n). The probability

that H was obtained from H ′ is the probability that the open adjacency (w, τ(u)) is queried,
where τ(u) is the type of the image of u in G, which is equal to φH′(w, τ(u)). In the second
case, for each element in the multiset S(H) = {(w, τ) : w ∈ H and � 6= τ ∈ `w}, let H?

w,τ be
the same as H but with one occurrence of τ replaced by � in `w. Then P(Hv,j−1 = H?

w,τ ) =

g
(j−1)
H?
w,τ ,i

(ñ) + O(1/n). Moreover, the probability that the open adjacency (w, �) is queried is

φH?
w,τ

(w, �), while the probability that the outcome of this query is τ is, in the pairing model,

equal to d(τ)nτ
(∑R

s=1 d(s)ns
)−1

+O(1/n). This implies that the function g
(j)
H,i defined by

g
(j)
H,i(ñ) = g

(j−1)
H′,i (ñ)φH′(w, τ(u)) +

∑
(w,τ)∈S(H)

g
(j−1)
H?
w,τ ,i

(ñ)φH?
w,τ

(w, �) d(τ)nτ∑R
s=1 d(s)ns

satisfies the required properties for the induction to go through.
To conclude the proof of (i), note that

P(Hv = H) =
∑
j≥0

P(Hv,j = H)φH(∗).

For later reference, note that the proof of Lemma 6.2 implies that the way a local rule
acts on query graphs with cycles is irrelevant asymptotically. Hence, every extension of a
local deletion algorithm for graphs to one for pseudographs gives the same functions fk,i.

The next lemma is very useful for explicit evaluation of the functions fk,i, and rests heavily
on the fact that we only use deletion algorithms.

Lemma 6.3. When a local deletion algorithm is applied to a random pairing as in Lemma 6.1,
after each step the survival pairing, conditional on history of the algorithm, is distributed
u.a.r. given the degrees and transient colours of the surviving vertices.

Proof The algorithm can be formulated as a pairing process in which the pairs in the survival
pairing consist precisely of the pairs that are not yet exposed in the process. So this lemma
follows immediately from the independence property of the pairing process stated above.

Note that one corollary of this lemma is a fact that is in any case rather obvious: the
transient colours do not affect the distribution of the survival pairing.

Lemma 6.2 refers to one step in a local deletion algorithm, and we are now ready to
extend this to analysis of a complete algorithm. Assume that the selection step preceding
the exploration and recolouring steps is that of a chunky algorithm where vertices of type
i are chosen with probability pi, and we are to perform step t in a local deletion algorithm
with given local and recolouring rules. The expected number of vertices of degree i selected
for the set St is np̃i where p̃i = pini/n, with ni being the number of vertices of type i in the
current graph. The expected change in ni/n suggested by Lemma 6.2 is thus approximately∑r

i=0 p̃ifj,i(ñ) (for 0 ≤ i ≤ r).
With a slight abuse of notation, we use W to denote the random value of an output

function, and also use a phrase such as ‘let W be an output function’ to denote the choice
of the constants cH,L,J in (5.1). In the remainder of the paper, assuming that local, selection
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and recolouring rules are given and letting W be an output function, we analogously define
the function

fR+1,i(ñ) =
∑

H∈Qi,L

cH,L,∅ aH,L gH,i(ñ), (6.1)

where Qi denotes the set of query graphs whose root vertex has type i, aH,L is the probability

that L(v)
2 = L given that the query graph is H, and gH,i is the function given in Lemma 6.2(i).

We restrict to the case J = ∅ because the influence of clashes is negligible, as observed in
Lemma 6.2.

The next result asserts that the vertex degree counts, and output function, of an appli-
cation of a chunky local deletion algorithm a.a.s. approximate the solution of the difference
equation suggested by the expected changes estimated above. The error in the approxima-
tion will depend on the maximum entry ε in the probability vectors. As the proof reveals,
for fixed N an error of order ε2Nn is unavoidable to the first degree of approximation due
to the occurrence of clashes. We impose the condition N ≤ C/ε to achieve eventually an
error O(εn). Recall that G(r) denotes the model of random graphs with degree sequence
r = (r1, . . . , rn), with the uniform distribution.

Theorem 6.4. Consider a chunky local deletion algorithm applied to G ∈ G(r), all of whose
vertices initially have neutral transient colour, for N steps with matrix of probabilities Q =
(pt,j), and let W be an output function. Let nk denote the number of vertices of type k in G,
and let ε = maxt,j pt,j. For C a fixed constant and N ≤ C/ε, consider the quantities zj(t),
where j ∈ {1, . . . , R + 1} and t ∈ {0, . . . , N}, given iteratively by

zj(t) = zj(t− 1) +
R∑
i=1

pt,izi(t− 1)fj,i(z(t− 1)),

where zj(0) = nj/n for 1 ≤ j ≤ R, zR+1(0) = 0, and the functions fj,i are those appearing
in Lemma 6.2. Then, a.a.s. the number of vertices of type j in the survival graph is nzj(t) +
O(εn), for all j ∈ {1, . . . , R}, and the value of the output function W (t) at step t is nzR+1(t)+
O(εn), uniformly for 0 ≤ t ≤ N . Here the constant implicit in O(εn) depends on C and on
the local and recolouring rules but is otherwise independent of N and of the pt,i (and in
particular of ε). Furthermore it is independent of r provided max ri ≤ r for some fixed r.

Part of the proof of this theorem uses a deprioritised algorithm, as defined in the next
section, so we defer the proof until then. We note here that, if so desired, ‘a.a.s.’ in the
conclusion can be improved to ‘with probability 1− exp(−nc) for any c < 1/3’, by using [46,
Theorem 6.1] for the main application of the differential equation method inside the proof
of Theorem 6.4. However this would not improve the later consequences for graphs of large
girth.

Suppose that the matrix of probabilities of a chunky local deletion algorithm satisfying the
statement of Theorem 6.4 is such that, for each i, the quantities pt,i/ε can be interpolated by
a fixed piecewise Lipschitz continuous function pi(x) whose domain is rescaled to [0, C], that
is, pt,i/ε = pi(ε(t− 1)) for all relevant t. Then the difference equation in Theorem 6.4 defines
the approximate solution by Euler’s method, with step size ε, of the differential equation
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system

y′j(x) =
R∑
i=1

pi(x)yi(x)fj,i(y1, . . . , yR) (1 ≤ j ≤ R + 1) (6.2)

on the interval [0, C] with initial conditions

yj(0) = nj/n (1 ≤ j ≤ R), yR+1(0) = 0, (6.3)

where nj is the number of vertices of type j in the input graph for the algorithm. Here and
in other differential equations in our paper, differentiation is with respect to the variable x.

The next result may be viewed as converse to Theorem 6.4, as it shows that, for any system
of differential equations of the form (6.2) arising from a local rule Lφ and a recolouring rule c,
there is a chunky local deletion algorithm with such rules whose performance on large graphs
is a.a.s. determined within a small error by this system of differential equations. Note that,
although the functions pi were motivated by comparison with probabilities, they do not need
to be bounded above by 1.

Theorem 6.5. Fix r > 0. Consider a local rule Lφ, a recolouring rule c and a set of
non-negative piecewise Lipschitz-continuous functions pi(x) (1 ≤ i ≤ R) on [0, C] for some
C > 0. Define fj,i to be the functions in Lemma 6.2, and let fR+1,i be defined with respect to
an output function W as in (6.1). Let the functions yj be determined by the solution of (6.2)
with initial conditions (6.3). Then the following hold.

(i) For all ε′ > 0 there is an ε > 0 with ε < ε′, and a chunky local deletion algorithm A(ε′)
with local rule Lφ, recolouring rule c and of granularity at most ε′ as follows. If A(ε′) is
applied to a random n-vertex graph G ∈ G(r) with max ri ≤ r, then a.a.s. as n→∞, the
number Yj(t) of vertices of type j in the survival graph Gt satisfies |Yj(t)− nyj(εt)| < ε′n
and |W (t)− nyR+1(εt)| < ε′n, for all 1 ≤ j ≤ R and t ∈ {0, . . . , bC/εc}.

(ii) For all ε′ > 0, there exists a positive constant g such that the chunky local dele-
tion algorithm A(ε′/2) of (i) has the following property. Let Gn be an n-vertex, r-
regular graph with girth at least g. Let Yj(t) denote the number of vertices of type j
in the survival graph and W (t) the value of the output function W , after t steps of
the algorithm. Then, with ε as in (i), |E(Yj(t))− nyj(εt)| < ε′n (1 ≤ j ≤ R) and
|E(W (t))− nyR+1(εt)| < ε′n, for all t ∈ {0, . . . , bC/εc}.

Proof To prove part (i), choose ε such that 0 < ε < ε′, pi(x) < 1 for all 0 ≤ i ≤ r and
0 ≤ x ≤ C and let N = bC/εc. This determines a chunky local deletion algorithm A with
local rule Lφ and recolouring rule c. Then define pt,i = εpi(εt − ε) for all 1 ≤ t ≤ N . The
difference equation in Theorem 6.4 gives precisely the solution of (6.2) by Euler’s method
with step size ε (apart from a final possible partial step). Hence, applying that theorem, we
conclude that a.a.s. Yj(t) = nyj(εt) + O(εn) (1 ≤ j ≤ R) and W (t) = nyR+1(εt) + O(εn),
uniformly for 0 ≤ t ≤ N . Part (i) follows upon taking ε sufficiently small.

For part (ii), given ε′ > 0, let A = A(ε′/2) defined in part (i). Apply Theorem 5.3 to
find g = g(ε′) for which the vector sr,A(t, n) of expected values of the components of s(t) =(
Y1(t), . . . , YR(t),W (t)

)
is independent of the n-vertex r-regular input graph G whenever the

girth of G is at least g. By Theorem 5.5 the size of each component of s(t), when applied to
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a random r-regular graph, is a.a.s. sr,A(t, n) + o(n). Finally, part (i) implies that the size of
each component of s(t), when applied to a random regular graph, is a.a.s within ε′n/2 of the
corresponding component nyj(εt), which implies the desired result.

This result summarises the general strategy for analysing a local deletion algorithm de-
fined through appropriate selection, local and recolouring rules. Indeed, it tells us that, once
we fix local and recolouring rules, and well-behaved selection probability functions, we may
devise a chunky local deletion algorithm A whose behaviour for a random graph in G(d) a.a.s.
follows the solutions of a system of ordinary differential equations, which can be derived ex-
plicitly from the local, recolouring and selection rules. Moreover, when applied to any fixed
n-vertex r-regular graph with sufficiently large girth, the expected value crn of the output
function W at the end of the algorithm is very close to the value achieved almost surely for
random graphs. In particular, if the output function counts the number of elements in a set
satisfying some particular property, this implies that every r-regular graph with sufficently
large girth contains a set with this property whose size is bounded by crn.

7 Deprioritised algorithms and proof of Theorem 6.4

The aim of this section is to prove Theorem 6.4 and some further useful results. The main
ingredient in our proofs is the concept of deprioritised algorithms, that is, algorithms that
resemble other algorithms in which random choices are made using a priority list of possible
operations, but with the priority list replaced by an appropriate set of probabilities. For
instance, the algorithms for independent and dominating sets introduced in Section 3 are
prioritised in that the selection step chooses only vertices with minimum degree in the survival
graph. We say that this prioritisation is degree-governed, as defined below. In particular,
recall the procedure Pind, which at every step chooses a vertex with minimum degree in the
survival graph and deletes it along with its neighbours. In order to deprioritise this algorithm,
one may estimate the probability pt,j that, at the t-th step of the algorithm, the minimum
degree of Gt−1 is equal to some fixed degree j. Then, instead of just choosing a vertex with
minimum degree, one first chooses the degree i with probability pt,i. A vertex v of degree i
is then selected uniformly at random. In [48] it was shown that a certain class of algorithms
yield almost the same results when deprioritised appropriately.

This idea is easily generalized for algorithms on coloured graphs, as follows.

Definition (Type-governed or degree-governed deprioritised algorithm). A type-governed
deprioritised algorithm is an iterative algorithm whose input is an n-vertex coloured graph G
with colours in a bounded set C and maximum degree r, and with the following properties.
Let the possible types with such colours and degrees be enumerated 1, . . . , R. At each step k,

(i) a number i ∈ {1, . . . , R} is chosen with probability pi(k, n) (where
∑

i pi(k, n) = 1);

(ii) a vertex v of type i is chosen uniformly at random;

(iii) a (possibly randomised) rule is applied to the coloured graph, depending on v, which
colours some vertices with output colours, then possibly recolours some vertices with
colours in C, and finally deletes some vertices.
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Such an algorithm is called degree-governed if there is only one colour and only one output
colour, in which case colours can be ignored in the usual way.

The random choices in such an algorithm are normally assumed to be independent of
the previous steps of the algorithm, and of the graph G, with the exception of the usual
dependencies within the application of the local rule. To use the above definition in a precise
manner, we would need to define what constitutes a ‘rule’ in (iii), which will be done for
certain deprioritised algorithms below. Note that if, in step (ii), there are no vertices of type
i, then the algorithm cannot be followed; we say that it is stuck, and it is terminated.

Working towards the relationship between deprioritised algorithms and chunky local dele-
tion algorithms, we immediately focus on a special class of deprioritised algorithms. Note
that parts (i) and (ii) of the above definition provide a selection rule as required for native
local deletion algorithms.

Definition (Amenable deprioritised algorithms). A deprioritised algorithm is said to be
amenable in an interval [0,M) if it is type-governed and satisfies both of the following.

1. pi(k, n) = p̃i (k/n) for a fixed set of piecewise Lipschitz continuous functions p̃i :
[0,M ]→ [0, 1] (1 ≤ i ≤ R), called relative selection functions, such that

∑R
i=1 p̃i(x) = 1

for every x ∈ [0,M ].

2. the randomised rule in part (iii) of the definition of deprioritised algorithms consists of
an exploration step followed by a recolouring step as in the definition of local deletion
algorithms.

Note that an amenable deprioritised algorithm is a local deletion algorithm and is defined
by its relative selection functions p̃i, the local rule and the recolouring function.

We first consider the random graph G ∈ G(r).

Theorem 7.1. Let r have some probability distribution over the possible degree vectors with
maximum entry r. Consider an amenable deprioritised algorithm D with local rule Lφ, re-
colouring function c, and relative selection functions p̃i, and consider an application of this
algorithm to an n-vertex random graph G ∈ G(r) with neutral colouring. Let Nj be the (ran-
dom) number of vertices of type j in G (1 ≤ j ≤ R), let W be an output function and set
NR+1 = 0. For fixed δ′ > 0, let T be the first step of the algorithm for which there exists j,
1 ≤ j ≤ R, such that p̃j(x) > 0 for some x with |x− T/n| < δ′ and the number of vertices of
type j in the survival graph is less than δ′n. Let y be given by the solution of the differential
equation system

y′j(x) =
R∑
i=1

p̃i(x)fj,i(y1, . . . , yR) (1 ≤ j ≤ R + s) (7.1)

with initial conditions yj(0) = Nj/n for 1 ≤ j ≤ R and yR+1(0) = 0, where fj,i is defined as
in Lemma 6.2 and equation (6.1). Then a.a.s. the value W (t) of the output function after
step t is nyR+1(t/n) + o(n), and the number Yj(t) of vertices of type j in the survival graph
Gt is nyj(t/n) + o(n), uniformly for 0 ≤ t ≤ T .
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Proof With a slight abuse of notation, let Gt denote the survival graph (actually, pseu-
dograph) obtained after t steps of the algorithm applied to a random pairing in the pairing
model with degree sequence r and all vertices neutral. Similarly, define Yj(t) and W (t) for
this random pseudograph, and set Y(t) = (Y1(t), . . . , YR(t),W (t)). We show that the ran-
dom vector Y(t) is a.a.s. sharply concentrated near the solution of the differential equation
system (7.1), using the differential equation method as presented in [45] or [46]. The proof
is by induction over the intervals on which the relative selection functions p̃i are Lipschitz
continuous. Let tk denote the first value of t for which t/n lies in the kth such interval. The
inductive hypothesis is that the claimed approximation holds for tk−1 ≤ t ≤ min{T, tk}. In
particular, at t = tk, each coordinate of the vector is a.a.s. within o(n) of the differential
equation solution. Initially, of course the two coincide precisely.

In the inductive step, we are only examining the part of the process from xk to xk+1,
where xk = tk/n and x0 = 0. Note that we can assume that the functions pj(t) = p̃j(t/n)
are Lipschitz continuous in the corresponding t-interval, since a discontinuity after tk+1 − 1
does not affect the process before tk+1. Also we may extend them to be continuous, say
by making them constant, on intervals before and afterwards. Define D ⊆ RR+2 to be the
interior of the set of all (x, y1, . . . , yR+1) satisfying xk − δ′ < x < xk+1 + δ′, −1 < yi < C for
all i ≤ R + 1 and x, and additionally δ′/2 < yi for each i ≤ R such that p̃i(x

′) > 0 for some
x′ with |x′ − x| < δ′/2. Here C is a suitably large constant such that Cn is a deterministic
upper bound on the value of any of the variables Yi. For i ≤ R any C > 1 will suffice, whilst
for the output function, some such C exists because this function is initially zero and its
variation in one application of the local rule is a constant that depends on the query graph
that is active at this step, and hence is bounded.

Then D is bounded, connected and open for δ′ > 0 sufficiently small. To apply [45,
Theorem 1] requires verifying a few conditions, which we clarify below. We use the simple
modification in [46, Theorem 6.1] that specifies that these conditions only need to be verified
up to a stopping time T ′, which we define as min{T, tk+1}. (The proof of this is quite easy,
given [45, Theorem 1].) See also [46, Theorem 5.1] for some minor variations we make use of
here. Note that the vector (t/n,Y/n) must remain inside D and cannot come within distance
δ/2 of its boundary, up until the time T ′. We use the domain D to give ‘elbow-room’ within
which the process behaves well, and the stopping time T ′ for a convenient explicit stopping
point beyond which we have no need of continuing the analysis.

The conditions of the theorem, and the reasons that they hold, are the following after
some suitable trivial modifications. (For instance we shift 0 to xk. Also, in the theorem,
m is a suitable upper bound on the number of steps the process can take. Since each step
deletes at least one vertex, one can choose m > n(xk+1 + δ′) so it can be ignored.) Here we
define Ht to be the history of the process, which consists of the sequence of coloured graphs
G0, . . . , Gt.

(a) There is a constant C ′ such that for all t < T ′ and all 1 ≤ j ≤ R + 1,

|Yj(t+ 1)− Yj(t)| < C ′

always. This holds since one application of the local rule alters the degrees of only a bounded
number of vertices and changes the value of the output function by a bounded quantity.
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(b) For all j and uniformly over all t < T ′,

E(Yj(t+ 1)− Yj(t)|Ht) = f̃j(t/n,Y(t)/n) + o(1)

for suitable functions f̃j. As t < T , we have Yj(t) ≥ δ′n for all j such that p̃j(t/n) > 0.
Hence, the algorithm does not terminate at this step. By Lemma 6.3, the survival pairing
is distributed u.a.r. given the types of its vertices. Hence we may apply Lemma 6.2(ii)
to conclude that, for j ≤ R, the expected change in Yj(t) resulting from the next step of
the algorithm (which determines Y(t)) is equal to f̃j(t/n,Y(t)/n) + o(1) where f̃j(x,y) =∑R

i=1 p̃i(x)fj,i(y). Moreover, the expected change in the value of the output function at each
step is determined by the query graphs explored at each step, and hence the expected change
in W (t) is given by f̃R+1(x,y) =

∑R
i=1 p̃i(x)fR+1,i(y) with fR+1,i defined in (6.1). Note that

these computations are valid even conditional upon the history of the process up to this step.

(c) For each j the function fj is Lipschitz continuous on D. This follows from Lemma 6.2,
since amenability implies that the relative selection functions p̃i are Lipschitz continuous,
and also the number M of Lemma 6.2 is at least Yr ≥ δ′n/2 on D. Moreover, D contains the
closure of

{(0, y1, . . . , yR+1) : P(Yj(0) = yjn, 0 ≤ j ≤ R + 1) 6= 0 for some n}.

The conclusion of the theorem is as follows.

(i) The system of differential equations

y′j(x) = f̃j(x, y1, . . . , yR+1), j = 1, . . . , R + 1

has a unique solution in D for yj : R→ R, which we denote by ỹj, passing through

ỹj(xk) = Yj(tk)/n 1 ≤ j ≤ R + 1,

and which extends to points arbitrarily close (in Euclidean distance say) to the boundary of
D. (Here Yj(tk)/n is deterministic if k = 0.)

(ii) Asymptotically almost surely

Yj(t) = nỹj(t/n) + o(n)

uniformly for tk ≤ t ≤ min{σn, T ′} and for each j, where σ = σ(n) is the supremum of those
x to which the solution can be extended.

Suppose that Yj(t) has not yet reached a point such that the condition in the definition
of T ′ holds. Immediately, by the definition of T ′, if Yj(t) is sufficiently close to nỹj(t/n), the
point ỹj(t/n) has distance at least δ′/4 (say) from the boundary of D. Thus, the approxima-
tion in (b) a.a.s. holds for tk ≤ t ≤ T ′.

By the inductive hypothesis, we have a.a.s.

Yj(tk)/n = yj(xk) + o(1) 1 ≤ j ≤ R + 1,

and hence ỹj(xk) = yj(xk) + o(n) a.a.s. Since the derivatives in the differential equation
system are Lipschitz, the standard property of solutions of differential equations implies that
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ỹj(x) = yj(x) + o(n) uniformly for all xk ≤ x < min{σ, xk+1}. Thus, from (b) above and the
ensuing conclusions, a.a.s.

Yj(t) = nyj(t/n) + o(n)

uniformly for tk ≤ t ≤ min{T ′, tk+1} = min{T, tk+1} and for each 1 ≤ j ≤ R + 1. The
differential equation system in (i) becomes that of (7.1). This proves the inductive hypothesis.

Note. We may permit the following variation of type-governed deprioritised algorithms: ac-
cording to part (ii) of the definition of the algorithm, the next vertex of type i is chosen u.a.r.
If the algorithm is local, the next vertex of type i may be chosen by any rule whatsoever
that depends only on the outcomes of the previous applications of the local rule. (Similarly,
somewhat more restrictively, it is valid to permit the rule to depend only on the set of edges
incident with vertices that have so far been deleted by the algorithm.) The conclusion of
Theorem 7.1 holds in this case also. This is because then the choice of the next vertex
depends only on the history Ht and the survival graph Gt occurs u.a.r. among the possible
pseudographs generated by the pairing, given the types of its vertices, and Lemma 6.2 per-
mits any rule for choosing the next vertex, provided its type i is selected with the correct
probability pi.

Proof of Theorem 6.4 Let A denote the given chunky local deletion algorithm. As
discussed before, it is enough to apply the algorithm to the random pseudograph with degree
sequence r obtained from the pairing model. We will define a deprioritised algorithm whose
behaviour is similar to that of A, within errors O(εn) in the values of the cardinalities of the
relevant sets. Define Yj (1 ≤ j ≤ R + 1) as in the proof of Theorem 7.1. By induction on t,
0 ≤ t ≤ N − 1, we will show for each j that

Yj(t) = nzj(t) +O(ε2tn) a.a.s. (7.2)

(where, of course, the constant in O() does not depend on t). We may assume that this is
true for some t− 1 ≥ 0, and consider step t. For 1 ≤ i ≤ R, let Si denote the set of vertices
of type i in the survival graph Gt−1 chosen by A in this step, and put Zi = |Si|. Then Zi has
a binomial distribution with expected value pt,iYi(t − 1) ≤ εn, and so by Chernoff’s bound,
with probability e−Ω(n),

|Zi − pt,iYi(t− 1)| ≤ ε2n, |Zi| < 2εn; (7.3)

and we may assume these henceforth.
Now consider a process Ã which consists of repeatedly applying the following step, be-

ginning with Gt−1.
At each step, let S ′i denote the set of vertices of Si that remain, and still have the degree

d(i) associated with type i, in the current survival graph. Let i be minimum such that S ′i is
nonempty, select a vertex v u.a.r. from S ′i, apply the local rule to v, and update the output
sets and the survival graph according to the query graph obtained. We say that this step
processes v.

The process Ã naturally breaks up into R phases, where phase i consists of processing
vertices in S ′i (1 ≤ i ≤ R), normally until none of these are left. Vertices of Si that remain
in the survival graph after phase i must then have lost at least one neighbour during the
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process Ã. However, there is also an abnormal variation. Conditional upon the history of Ã
to the end of phase i − 1, we may stop phase i prematurely, before it even begins, if fewer
than ε2n vertices lie in S ′i at the end of the previous phase. In this case we say the phase is
skipped and the process proceeds to the next phase.

Phase i of the process Ã is essentially a deprioritised algorithm, the only difference being
that it contains the following two variations. Firstly, the choice of the next vertex of type i is
restricted to vertices in the set S ′i. By the note after Theorem 7.1, such restriction does not
alter the applicability of that theorem. Secondly, there is a stopping rule (stop prematurely
when no vertices remaining in Si are still of degree d(i), or if S ′i is too small at the start). The
conclusion of the theorem still applies at this stopping time. (To see why, see [46, Section
4.2] and the proof of Theorem 6.1 of that paper.)

Let Ỹj(ξ) denote the number of vertices of type j (or, in the case j = R + 1, the value

of the output function W ) after ξ steps of the process Ã. We may now apply Theorem 7.1
with δ′ = ε2 (and the note as discussed above), and with

p̃j =

{
1 if j = i
0 otherwise,

(7.4)

to conclude that phase i of Ã a.a.s. finishes with

Ỹj(ξi)/n = ỹj(ξi/n) + o(n) 1 ≤ j ≤ R + 1, (7.5)

where ξi denotes the last step of phase i (which is random and we will examine shortly),
ξ0 = 0, and the variables ỹj satisfy the equations (7.1) with initial conditions

ỹj(ξi−1/n) = Ỹj(ξi−1)/n.

Of course in the case i = 0, Ỹj(ξi−1) is defined to be Yj(t− 1), the random variable inputted
to the process A, which by induction on t satisfies Yj(t − 1) = nzj(t − 1) + O(ε2tn). Recall
that pi = 1 in phase i, the functions fj,i are Lipschitz, and the length ξi − ξi−1 of phase i is
O(εn) by (7.3). Hence

ỹj(ξi/n) =
Ỹj(ξi−1)

n
+
ξi − ξi−1

n
fj,i
(
ỹ(ξi−1/n)

)
+O(ε2)

=
Ỹj(ξi−1)

n
+
ξi − ξi−1

n
fj,i
(
ỹ(0)

)
+O(ε2)

where ỹ = (ỹ1, . . . , ỹR+1). Thus, by induction using (7.5), the final values at the end of the

process Ã are a.a.s. given by

ỹj(ξR/n) = ỹj(0) +
R∑
i=0

ξi − ξi−1

n
fj,i
(
ỹ(0)

)
+O(ε2) (7.6)

for 1 ≤ j ≤ R + 1.
Before proceeding, we need to bound the effect of the vertices being deleted during the

process Ã. We call a vertex susceptible if it is a member of S =
⋃R
i=1 Si and has distance

31



at most 2D from some other vertex in S. In the terminology of Section 5, a vertex of S
is susceptible if it forms a pre-clash with some other vertex of S. Let At denote the set of
susceptible vertices.

We next claim that, for some constant C0 > 0 depending only on r and on the number of
colours, conditional on the graph Gt−1, P(|At| > C0ε

2n) = e−Ω(n). To establish this claim first
note that by (7.3), the probability that a given vertex is contained in S and is furthermore
susceptible is O(ε) (noting that D is fixed, determined by the local rule, and the maximum
degree of Gt−1 is at most the fixed number r). Hence E|At| = O(ε2n).

On the other hand, sharp concentration of |At| can easily be proved as follows. Note
that a simple switching (replacing two pairs on four points in the pairing by any two other
pairs on the same points) can only change |At| by an amount bounded by a function of
D and r. For the case of r-regular graphs, [47, Theorem 2.19] immediately implies that
P(|At| > E|At| + ε2n) = e−Ω(n). In this case we have Gt−1, which is not regular, but it is
easily checked that the proof of that theorem still applies, and the constants in the bounds
are independent of the degree sequence of Gt−1 as long as the maximum degree is r. Hence,
we have shown the claim holds, and we may proceed assuming |At| ≤ C0ε

2n.
We now turn to consideration of the lengths of the phases, i.e. ξi − ξi−1. Note that a

non-susceptible vertex in S of type i will definitely retain degree τ(i) in the survival graph
until at least the start of phase i. Hence, if the phase is not skipped, the number of vertices
of degree d(i) in Si available for processing must be between Zi and Zi − At, and the phase
cannot finish until there are at most δ′n = ε2n of them left. It follows that

ξi − ξi−1 = Zi +O(ε2n). (7.7)

On the other hand, if the phase is skipped then ξi − ξi−1 = 0 and Zi − At < ε2n, so (7.7)
holds in all cases. Thus, by (7.3) and (7.6), we may assume that

ỹj(ξR/n) = ỹj(0) +
R∑
i=1

pt,i
Yi(t− 1)

n
fj,i
(
ỹ(0)

)
+O(ε2).

Recall that ỹ(0) = Y(t − 1)/n, so by the inductive claim (7.2) for t − 1, we may assume
ỹj(0) = zj(t − 1) + O1(ε2(t − 1)) for each j. We use O1() to distinguish the constant here,
which is bounding the inductive error, from the other error bound constants. By the Lipschitz
property of each fj,i, it follows that fj,i

(
ỹ(0)

)
= fj,i

(
z(t−1)

)
+O(ε2(t−1)) = fj,i

(
z(t−1)

)
+

O(ε) since t ≤ N = O(1/ε) by hypothesis in the theorem. Hence, using pt,i ≤ ε and Yi ≤ n,
together with (7.5) for i = R, and then (7.2) again for the second step, we obtain

Ỹj(ξR)/n = zj(t− 1) +O(ε2(t− 1)) +
R∑
i=1

pt,i
Yi(t− 1)

n

(
fj,i
(
z(t− 1)

)
+O(ε)

)
= zj(t− 1) +O1(ε2(t− 1)) +

R∑
i=1

pt,izi(t− 1)(fj,i
(
z(t− 1)

)
+O(ε2)

= zj(t) +O1(ε2(t− 1)) +O(ε2).

To establish (7.2) inductively, it only remains to show that Ỹj(ξR) = Yj(t) +O(ε2n) a.a.s.

This fact is easy to see, because, in view of (7.7), the processes Ã and A process the same
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vertices except for a set of O(ε2n) vertices, each of which has a bounded effect on the value
of Yj or Ỹj. We now have (7.2), so it is true for t = N . Recalling that εt ≤ εn = O(1),
we deduce that the value of the output function at the end of the algorithm is equal to
nzR+1(N) +O(εn), and the conclusion of the theorem follows.

Before proceeding, we note that the conclusion of Theorem 7.1 can be restated as follows.

Alternative Conclusion for Theorem 7.1. Let δ > 0 and let x0 be the infimum of
all x ≥ 0 for which there exists j such that p̃j(x) > 0 and yj(x) < δ. Then a.a.s. Yj(t) =
nyj(t/n) + o(n) and W (t) = nyR+1(t/n) + o(n) for all t ≤ b(x0 − δ)nc.

To see why this follows, define δ′ = δ/2 and note that the conclusion of Theorem 7.1
implies that for 0 ≤ t ≤ T the value of Yj(t) differs from nyj(t/n) by at most o(n), so that
step T a.a.s. does not occur before n(x0 − δ). Note also that the proof of the theorem itself
gives the alternative conclusion quite directly.

Theorem 7.2. Assume the hypotheses of Theorem 7.1, let δ > 0 and define x0 as in the
alternative conclusion given above. Then there exists a number ε, 0 < ε < δ, and a chunky
local deletion algorithm A with the same local and recolouring rules as D, and granularity at
most δ, such that, when both algorithms are applied to Gn,r, a.a.s. ||YA(t)−YD(bεntc)|| ≤ δn
for all 0 ≤ t ≤ b(x0−δ)/εc, where YA(t),YD(t) ∈ RR+1 denote the vectors whose components
j ≤ R and R + 1 are the number of vertices of type j in the survival graph, and the value of
the output function, respectively, after t steps of the algorithm.

Proof Put δ′ = δ/2 and let y = (y1, . . . , yR+1) denote the solution of the differential equation
system (7.1) in the domain D used in the proof of Theorem 7.1 up until the endpoint is
reached.

Define pi(x) = p̃i(x)/yi(x), where yi is precisely the solution function just determined,
for all 0 ≤ x ≤ x0. Then, on this interval, the differential equation system (7.1) is identical
to (6.2), with the same initial conditions. Hence, this theorem follows from Theorem 6.5(i)
applied with ε′ = δ and C = x0 − δ, and the alternative conclusion of Theorem 7.1 with t
replaced by bεntc. Note that the fact that the functions p̃i(k, n) are bounded implies that
the floor function has no significant effect.

Theorem 7.2 has an immediate consequence for regular graphs with sufficiently large girth
which will be useful in the next section.

Theorem 7.3. Fix integers r,D ≥ 1. Consider an amenable deprioritised algorithm D with
local rule Lφ of depth D, recolouring function c and relative selection functions p̃i. Let W be
an output function. Let y be given by the solution of the differential equation system (7.1)
with initial conditions y1(0) = 1 and yj(0) = 0 for j > 1, where fj,i is defined as in Lemma 6.2
and (6.1). Let δ > 0 and define x0 = x0(δ) as the infimum of all x ≥ 0 for which there exists
j such that p̃j(x) > 0 and yj(x) < δ. Then there exists some ε > 0 with ε < δ, a constant
g, and a chunky local deletion algorithm A with local rule Lφ, recolouring function c and
granularity at most δ such that, for every n-vertex r-regular graph G with girth at least g,

||sr,A(G, t)− ny(εt)||∞ < δn,

for 0 ≤ t ≤ b(x0 − δ)/εc, where sr,A(G, t) is the vector of expected values for algorithm A
defined in Theorem 5.3.
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Proof Let δ > 0 and x0 be as stated. Theorem 7.1 implies that the performance of D
applied to a random r-regular graph is a.a.s. determined by the solution of (7.1) up until the
quantity T defined there. Note that the definition of x0 ensures that T ≥ (x0 − δ)n a.a.s.
By Theorem 7.2 (applied with δ replaced by δ/2), there is a chunky local deletion algorithm
A′ whose performance in Gn,r is tracked by a vector Y that differs from its counterpart in
an application of D by at most (δ/2)n. The ‘steps’ of that algorithm are of size ε < δ.
The algorithm A′ is obtained in the proof of Theorem 7.2 by appealing to Theorem 6.5(i).
The girth g and the algorithm A may be obtained from the further information given in
Theorem 6.5(ii), using ε′ = δ/2.

For the performance of the chunky algorithm on a graph of large girth, the bound on
the expected number of susceptible vertices was enough in [34] to be able to say that the
effect of these vertices is negligible (since there are O(1/ε) chunks). However in that case
the analysis required some ‘independence lemmas’ showing that certain appropriate events
were independent in the branches of the trees induced by the vertices near a given vertex,
which we will not need in the current approach. In addition to the obvious advantage of
not needing to prove this independence, our strategy extends to algorithms whose actions
depend on what happens in two branches simultaneously, for which no such independence
can be expected to hold. The (small) price we had to pay for avoiding independence lemmas
is that we needed to analyse the effect of the vertices that have small distance apart on the
variables Yi, and this requires sharp concentration arguments.

8 Applications

There is a long list of algorithms which fit in the definition of local deletion algorithms that
have already been analysed to obtain properties of random regular graphs, either with direct
arguments in the spirit of [45, 46], or through a general-purpose theorem using deprioritised
algorithms [48, Theorem 1]. In this section, we consider the latter theorem, combining its
results with those of the present paper, in particular Lemma 6.2 and Theorem 7.3. We
show that the analysis of deprioritised algorithms acting on random regular graphs in [48]
may be carried over to the large girth setting, at least for a general class of algorithms
including basically all those to which it has been applied. We consider various concrete
instances, showing that several bounds that are known to hold asymptotically for random
regular graphs, by virtue of their use of [48, Theorem 1], immediately imply deterministic
bounds for graphs whose girth is sufficiently large. Other applications of our general results,
including new instances of applicability of [48, Theorem 1], are found in Section 9.

In all the applications we will use Lemma 5.6 to show that the output set of the chunky
algorithm is (for the properties being considered) within εn size of the desired set. Recall
that this error term arises from possible clashes of query graphs in an application of a local
deletion algorithm.

8.1 Extension of a general theorem on deprioritised algorithms

In this subsection we use the results from the previous sections to build on the results
from [48]. In that paper, there are shown to exist a general class of deprioritised algo-
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rithms whose performances on random regular graphs are determined (a.a.s.) by their basic
operations. For such an algorithm, if the input graph is r-regular, each basic operation is one
of several types, called Opi for 1 ≤ i ≤ r, where Opi consists of selecting a vertex v of degree
i in the survival graph u.a.r., and then applying a specified sequence of randomised tasks
(including deletion of v). Actually, these operations are defined in terms of pairings, but we
may extend any operations for graphs to pairings in the obvious way, and as explained in the
comment just after Lemma 6.2 the way they act on query graphs with loops or multiple edges
is irrelevant. Provided that the operations satisfy certain conditions, the conclusion of [48,
Theorem 1] is that there is a randomised algorithm using these operations, such that a.a.s. at
some point in the algorithm the output set size is asymptotic to ρn and, for i = 1, . . . , r, the
number of vertices of degree i is asymptotic to ρi. Here ρ and ρi are specific constants that
can be computed by solving a system differential equations. See the end of this subsection
for a statement of a special case of [48, Theorem 1]. Its hypotheses are fairly technical, and
are mainly used to ensure that a system of differential equations associated with the random
process has a solution that can be extended arbitrarily close to the boundary of the region in
which the variables are meaningful (for instance, in the region where variables representing
probabilities lie in [0, 1]). We omit the precise conditions here in the general case, since
our present concern is to make further deductions in some cases where the conditions have
already been verified by existing papers in the literature, so we rely on these references for
verification of the hypotheses. The general result relates to the pairing model Pn,r discussed
in Section 6. As explained there, this implies corresponding results for random graphs. Note
that the result does not mention the number of vertices of degree 0 in the final graph. In
general, these are irrelevant, because the operations can normally be designed such that all
vertices of degree 0 are immediately deleted in any step in which they are formed, so their
number in the survival graph is always 0.

In this section, we restrict ourselves to native local deletion algorithms (so, in particular,
the type of a vertex is just its degree), and consider a local rule L and recolouring function c
from such an algorithm. We can specify the sequence of random tasks for Opi (after selection
of v) to consist of two steps. First, obtain a copy H of a query graph via L. Next, add c(H)
to the output set O, and delete the vertices in H. Thus, Opi consists precisely of parts (ii)
and (iii) in the definition of a certain kind of degree-governed deprioritised algorithm. We
call such an operation Opi a degree-governed query operation, and say that it arises from
L and c. Note that we continue to assume that every local rule is defined on all coloured
pseudographs, though only its action on graphs will matter, by the note after Lemma 6.2.

Given appropriate operations Opi for 1 ≤ i ≤ r, let ρ(Op1, . . . ,Opr) and ρi(Op1, . . . ,Opr)
denote the constants referred to above which are determined in the conclusion of [48, Theorem
1].

Theorem 8.1. Fix r ≥ 1, a local rule L and an recolouring function c. Suppose that Opi,
1 ≤ i ≤ r, are degree-governed query operations arising from L and c, and that the pairing
versions of these operations satisfy the assumptions of [48, Theorem 1]. Let ρ, ρ1, . . . , ρr be
the constants defined above. Then, for all δ > 0, there exists a chunky native local deletion
algorithm A with the very same local rule L and recolouring function c, and granularity at
most δ, such that when A is applied to any n-vertex r-regular graph G of sufficiently large
girth, there is a step T in which the expected size of the set O1 of vertices with output colour
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1 is within δn of ρn, and where the expected number of vertices of degree i in the survival
graph GT is within δn of ρin for 1 ≤ i ≤ r. Moreover, the number of vertices with colour ∝′
or ∝ at step T is at most δn.

Proof The conclusion of [48, Theorem 1] asserts the existence of a randomised algorithm, and
it is straightforward to check that the proof of [48, Theorems 1 and 2] consists of constructing
an amenable deprioritised algorithm whose steps (ii) and (iii) consist of Opi for vertices of
degree i. More precisely, it is a parametrised family of algorithms. (Note in particular
that the definition of pi in [48, Equation (4.2)] depends only on fixed functions of x = t/n
where t is the step number of the algorithm.) The first assumption of [48, Theorem 1]
is that each operation Opi satisfies [48, Eq. (2.2)] when (in the notation of the present
paper) the number, Yr, of vertices of degree r, is at least εn (for some predetermined ε >
0). In terms of the present paper, this requires that for some fixed functions fk,i (x,y) =
fk,i (x, y1, . . . , yr+1), the expected increase in Yk in one step of the algorithm involving Opi is
fk,i(t/n, Y1(t)/n, . . . , Yr+1(t)/n) + o(1) for i = 1, . . . , r, k = 1, . . . , r + 1. Here Yr+1 denotes
the size of the output set, and the convergence in o(1) must be uniform over all states of the
algorithm with Yr ≥ εn.

Since Opi arises from L and c, we may apply Lemma 6.2(b) and (c), and we deduce
that these functions fk,i exist and must be exactly the same as the functions appearing in
Lemma 6.2, at least where all arguments are nonnegative and Yr > εn. (Note that j in [48]
corresponds to r + 1 in the present paper). Theorem 7.3 refers to the same functions fk,i.

We pause to summarise the proof of [48, Theorem 2]. Probability functions p̃i are con-
structed to complete the definition of a deprioritised algorithm that uses the operations Opi
mentioned above. The probabilities are strategically altered slightly from some that are
naturally associated with the original native local deletion algorithm which always selects a
random minimum degree vertex. The alteration is introduced in order to keep the required
variables strictly positive, and it uses an arbitrarily small parameter ε1. With these proba-
bilities, the solution of the differential equations given by (7.1) (c.f. [48, Equation (3.5)]) is

named ỹ(1) = (ỹ
(1)
1 , . . . , ỹ

(1)
r+1) to differentiate it from the solution ỹ which arises when the

natural probabilities are used. The initial condition in both cases is (0, . . . , 0, 1, 0), so in

particular ỹ
(1)
r (0) = 1. Keeping ε fixed, these two vector solution functions are shown to be

arbitrarily close to each other up to a point xm, when ε1 is arbitrarily close to 0 (see [48,
(4.25)]). By definition of xm, the solution ỹ is such that (x, ỹ) lies inside a domain Dε for
0 ≤ x ≤ xm. As part of the definition of this domain, ỹr ≥ ε at all points inside it. The
proof also makes use of other quantities x1, . . . , xm−1, being points at which the derivatives
associated with the non-deprioritised algorithm are discontinuous.

Given δ > 0, to apply Theorem 7.3 we need to determine x0, which is the infimum of all
x ≥ 0 for which there exists j such that p̃j(x) > 0 and ỹ

(1)
j (x) < δ. We claim (shortly to be

justified) that for δ sufficiently small, the functions p̃j in the proof of Theorem 2 of [48] are

defined in such a way that guarantees that x0 is at least as large as the quantity x
(1)
m defined

in [48]. As stated at the end of that proof, x
(1)
m can be taken arbitrarily close to xm. (Warning:

there is a different quantity x0 in that paper, but it equals 0 and does not play a significant
role.) Actually, this is a necessary feature of that proof, by its very nature: if p̃j(x) > 0

and ỹ
(1)
j (x) became arbitrarily small, there would be no guarantee that there are any vertices

available for selection and application of Opj. To see why the claim is true, first observe that
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in Part 2 of the proof of [48, Theorem 2], the probability vector in the deprioritised algorithm
is defined so that p̃r = 1 and p̃i = 0 for i < r on an interval [0, ε1] where ε1 > 0 is one of the
parameters of the family of algorithms. This interval can be regarded as a “burn-in” period
for the deprioritised algorithm (in [48] it is called the preprocessing subphase): vertices of
degree r are selected each time in the selection step, and the fact that they are abundant (for
sufficiently small ε1) guarantees that the steps of the algorithm can (a.a.s.) be carried out as
prescribed. (The burn-in period is the basic reason that ỹ(1) 6= ỹ.) On [0, x1], the function

ỹ
(1)
r is bounded away from 0, and on [ε1, xm], the functions ỹ

(1)
j (1 ≤ j ≤ r) are all bounded

away from 0. These claims follow from some of the observations in the proof in [48], as we

describe in more detail below. This then implies that x0 ≥ x
(1)
m as desired.

The claim about ỹ
(1)
r follows directly from the facts mentioned above, which imply that

ỹr(x) ≥ ε) for 0 ≤ x ≤ xm, and that the difference between ỹ(1) and ỹ can be made arbitrarily
small by choice of the parameters ε1, . . .. It remains to check that the functions yi remain
positive on [ε1, xm] (1 ≤ i ≤ r − 1). Being continuous, they will then be bounded below by
a positive constant. First, in the interval [ε1, x1], called phase 1, this is shown in [48, (4.16),

(4.18), (4.19)]. The general argument for the later phases, covering the interval [x1, x
(1)
m ], is

a minor variation of the argument for the first phase. In summary, the main features work
like this. In phase k, there is a preprocessing subphase which gets all ỹi strictly positive.
Then, ỹ

(1)
d−k must remain positive by definition of the phases (i.e. the number xk) except

perhaps in the final phase, where it can reach 0 at xm. The definition of x
(1)
m < xm excludes

that case. By definition of the probabilities, ỹ
(1)
d−k has zero derivative in phase k and hence

remains positive. For all other 1 ≤ i ≤ r − 1, ỹ
(1)
i cannot reach 0 because by hypothesis (B)

in [48], its derivative is at least −C2ỹ
(1)
i for some constant C2 (so it is bounded below by an

exponentially decaying function). In the case i = m, ỹ
(1)
i is prevented from reaching 0 by

the definition of the domain Dε,M of [48, (3.3)], which requires yd > ε, and the fact that xm
cannot exceed the first point that the solution leaves the domain Dε,M .

Given this, we may apply Theorem 7.3 to deduce that, for all δ′ > 0, there is ε > 0, a
constant g and a chunky native local deletion algorithm A with local rule Lφ and granularity
at most δ′ such that ∣∣∣∣∣∣sr,A(G, t)− nỹ(1)

i (εt)
∣∣∣∣∣∣
∞
< δ′n,

for 0 ≤ t ≤ b(x0 − δ′)/εc, where sr,A(G, t) denotes the vector whose components j ≤ r and
r + 1 are the expected number of vertices of type j in the survival graph and the expected
cardinality of the output set of colour 1 when A is applied for t steps to an r-regular input
graph G with girth at least g.

Since x
(1)
m ≤ x0, we can replace x0 by x

(1)
m in this statement. By the fact mentioned above

that ỹ(1) and ỹ can be made arbitrarily close by appropriate choice of parameters, we can
substitute one for the other in this conclusion, at the expense of replacing δn by 2δn. Since ỹr
has bounded derivative on Dε, and x

(1)
m can be made arbitrarily close to xm, we deduce that

by terminating A at an appropriate point corresponding to x
(1)
m , we can achieve the expected

size of output colour 1 to be at most Cδ′n different from ỹr+1(xm)n, for some constant C
independent of δ′. Taking δ′ < δ/C gives the required result for output colour 1. A similar
argument applies to all other variables.

For cubic graphs, if [48, Theorem 1] applies then the deprioritised algorithm exhibits at
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most two “phases.” There is often only one, as in the example in the next section, and then
the hypotheses are simpler, so we state this special case here. The condition ξ > 0 ensures
that there is only one phase (i.e. m = 1, in the terminology of [48]).

Theorem 8.2. ([48, Theorem 1], special case) Consider any algorithm consisting of repeated
operations Opi, i = 1, . . . , 3 as described above, applied to Pn,3. For 0 ≤ k ≤ 3, let Yk(t)
denote the number of buckets of degree k in the survival graph after t steps of the algorithm.
Denote the graph induced by the removed pairs by Gt, which therefore has Yk(t) vertices of
degree 3 − k. Similarly, let Y4(t) denote the cardinality of the output set. Assume that for
some fixed functions fk,i(x, y1(x), . . . , y4(x)) and for k = 1, . . . , 4, i = 1, . . . , 3,

E
(
Yk(t+ 1)− Yk(t) | Gt ∧ {opt = Opi}

)
= fk,i(t/n, Y1/n, . . . , Y4/n) + o(1)

where, for some fixed ε > 0, the convergence in o(1) is uniform over all t and Gt for which
Yi(t) > 0 and Y3(t) > εn. Assume furthermore that

(i) there is an upper bound, depending only upon the number of pairs exposed, and on the
number of elements added to the output set, during any one operation;

(ii) the functions fk,i are rational functions of x, y1, . . . , y4 with no pole in the domain
Dε = {(x,y) : 0 ≤ x ≤ 3, 0 ≤ yj ≤ 3 for 1 ≤ j ≤ 4, y3 ≥ ε};

(iii) there exist positive constants C1, C2 and C3 such that for 1 ≤ i < 3, everywhere on Dε,
fk,i ≥ C1yk+1 − C2yk when k 6= i, and fk,i ≤ C3yk+1 for all i.

Consider y = (y1, y2, y3, y4) and the differential equation

dyk
dx

=
β

β + α
fk,2 (x,y) +

α

β + α
fk,1 (x,y) (8.1)

where α = f1,2 (x,y) and β = −f1,1 (x,y), with initial conditions y(0) = 1 for k = 3 and 0
otherwise. Define ỹ to be the solution of this differential equation, extended for 0 ≤ x ≤ x1,
where x1 is defined as the infimum of those x > 0 for which at least one of the following
holds: β + α ≤ ε; ỹ2 ≤ 0; or the solution (x, ỹ) leaves Dε. Finally, assume that β (x, ỹ) > 0
for 0 ≤ x ≤ x1, and f2,2(0, ỹ(0)) > 0.

Then there is a randomised algorithm on Pn,3 for which a.a.s. there exists t such that
Y4(t) = nỹ4(x1) + o(n) and Yk(t) = nỹk(x1) + o(n) for 1 ≤ k ≤ 3. Also ỹ1(x) ≡ 0 for
0 ≤ x ≤ x1.

8.2 Previously analysed deprioritised algorithms

In this section we discuss quick and direct applications of Theorem 8.1 using deprioritised
algorithms whose applications to random regular graphs were previously analysed via [48,
Theorem 1].

First we need to address the problem that the output of an algorithm might not be in
exactly the right form to solve a problem. For instance, an algorithm may be aiming to create
an output set that is a dominating set, but some of the clash vertices might need to be added
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to the output set in order for it to dominate all other vertices of the input graph. We say
that a set S ⊆ V (G) ∪ E(G) in an n-vertex graph G is ε-far from a property P if some set
S ′ in G has P and |S∆S ′| ≤ εn. The number of clash vertices is restricted in Theorem 8.1.

In the remainder of this subsection, we list some of these results.

8.2.1 Maximum independent set

Asymptotic lower bounds on the size of a maximum independent set (see Section 3) in a
random r-regular graph were obtained by Wormald [45]. The simpler of the two algorithms
analysed in [45] was chunkified and then analysed directly for large-girth graphs in [34]. With
Theorem 8.1 in hand, we can easily deduce that the stronger results of the second algorithm
also carry over to the large-girth case.

However, slightly better results for the random case were obtained by Duckworth and
Zito [16] using a prioritised native local deletion algorithm that achieves its improvement
by looking more carefully into the neighbourhood of the selected vertices. More precisely,
given i ∈ {1, . . . , r}, the operation Opi consists of picking a vertex v of degree i u.a.r. in the
survival graph, adding it to the independent set and removing it along with its neighbours
from the survival graph, unless the minimum degree j ∈ N(v) is such that:

(1) there are at least two vertices of degree j ≤ i among the neighbours of v, or

(2) there is a single vertex u of degree j ≤ i among the neighbours of v, and either

(a) i = 2 and the minimum degree in N(u) \ {v} is smaller than the minimum degree
in N(v) \ {u}, or

(b) 2 < i < r − 1, the minimum degree of N(u) \ {v} is larger than i, and the sum of
all degrees in N(u) \ {v} is smaller than that in N(v) \ {u}.

If this happens, a vertex u ∈ N(v) of degree j is added to the independent set, and is deleted
from the survival graph along with its neighbours. It is easy to see that this can be expressed
as a native local deletion algorithm, and we leave the definition of the local rule as an exercise
for the reader.

The argument in [16] applies [48, Theorem 1], and the bound on the size of the independent
set is the bound on the size attained a.a.s. by the output set of the algorithm. By Theorem 8.1,
for any fixed δ > 0, there is g > 0 and a chunky local deletion algorithm with the same local
and recolouring rules, whose output on r-regular graphs of girth at least g is an independent
set whose expected size differs from the output of the original algorithm by at most δn. By
letting δ → 0, we deduce that essentially the same bounds hold in the large girth case.

To state the resulting bounds, we may use the same figures as in [16] since the quoted
figures are, by their nature, some positive constant less than the real number determined
from the solution of the associated differential equations. These give lower bounds α(r)n on
the maximum independent set in an r-regular graph of sufficiently large girth, which are the
best known for all r ≥ 4. Table 8.1 shows α(r) for a few small values of r. For comparison,
we provide the best known upper bounds αu(r) on the best possible values of α(r). That is,
αu(r) ≥ α for all α such that there exists g for which all r-regular graphs of girth at least
g have an independent set of cardinality at least αn. The values of αu(r) were obtained by
McKay [38] using random regular graphs as described for cu(r, P ) in Section 3.
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r 3 4 5 6 7
α(r) 0.43475 0.39213 0.35930 0.33296 0.31068
αu(r) 0.45537 0.41635 0.38443 0.35799 0.33567
γ(r) 0.27942 0.24399 0.21852 0.19895 0.18329
γ`(r) 0.2641 0.2236 0.1959 0.1755 0.1596

Table 8.1: Lower bounds α for maximum independent sets, and upper bounds γ for minimum
independent dominating sets. Best possible values are αu and γ` respectively.

The lower bounds α(r) are now the best known for large girth r-regular graphs when r ≥ 4.
Improvements for the case r = 3 (cubic graphs) are discussed separately in Section 9.1.

8.2.2 Minimum independent dominating set

Duckworth and Wormald [13, 14] gave upper bounds on the size of a minimum independent
dominating set (see Section 3) in a random r-regular graph through a deprioritised version of
the algorithm described in the introduction. It so happens that these are still the best known
upper bounds on the size of any dominating sets in these graphs. The bounds are based on
the size ρn of the output set of this algorithm (which is an independent set) at the point
when the number of vertices in the survival graph falls to ξn for some preselected ξ > 0. An
independent dominating set may be obtained by judiciously adding some of the surviving
vertices greedily. Clash vertices can also be treated in this way after we apply Theorem 8.1.
We deduce that, for all ε > 0, there is a deprioritised algorithm is applied to a graph G with
sufficiently large girth it a.a.s. produces an independent set that is ε-close to an independent
dominating set of size at most ρn + ξn. Since the numerical bounds on ρ + ξ reported
in [13, 14] are strictly greater than the true values, we deduce the same upper bounds γ(r)n
on the minimum independent dominating set in an r-regular graph of sufficiently large girth.
See Table 8.1 for some specific values of γ(r) (more are supplied in [14]), and also lower
bounds γ`(r) obtained via random regular graphs (see Zito [50]).

The upper bound γ(3) improves that obtained by Král, Škoda and Volec [33] (0.299871).
The only existing bounds we know for r ≥ 4 come from Löwenstein and Rautenbach [37],
who showed that n-vertex graphs with minimum degree at least 2 and girth g ≥ 5 have a
dominating set of size at most

(
1/3 + 2/(3g)

)
n.

8.2.3 Maximum k-independent set

For any positive integer k, a k-independent set of a graph is a set of vertices such that the
minimum distance between any two vertices in the set is at least k+1. Let αk(G) be the size
of a largest k-independent set in the graph G. Duckworth and Zito [15], and Beis, Duckworth
and Zito [2] obtained lower bounds on αk(G) for random r-regular graphs through the analysis
of an algorithm which satisfies the requirements for Theorem 8.1, and whose operations one
can easily check to be degree-governed query operations. Whenever a vertex v is selected,
the algorithm tries to find in G one or more balanced r-regular trees of height dk/2e of which
v is a leaf, in a precise way which we do not need to describe here. If it succeeds, it deletes
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all vertices in the tree and adds its root to the k-independent set. Otherwise, it deletes all
edges corresponding to open adjacencies that were queried. In this case, the local rule is not
normal, as it might be that only some edges of a vertex were queried before finding a new
vertex of degree less than r, at which point the local exploration is terminated. Similarly
to the case of independent sets in Section 8.2.1, Theorem 8.1 shows that the lower bounds
given in [2] must also be valid lower bounds for the size of the largest k-independent set in
r-regular graphs of sufficiently large girth.

8.2.4 Minimum k-dominating set

For any positive integer k, a k-dominating set of a graph G = (V,E) is a set of vertices S such
that every vertex v ∈ V is at distance at most k from S. Duckworth and Mans [11] analysed
an algorithm that creates small k-dominating sets in random r-regular graphs, which may
be stated as a native local deletion algorithm as follows. At each step, the selection rule
chooses a vertex v with minimum degree u.a.r. in the survival graph. The local rule builds
a query graph using a normal local subrule: starting from v, it unveils the vertex types
of its neighbours and chooses an open adjacency with maximum degree, which leads to a
new vertex (or closes a cycle, in which case we say that there is a clash). This is repeated
iteratively for each new vertex until a vertex u at distance k from v is reached, unless there
is a clash or the rule selects a vertex of degree 1, interrupting the process. Finally, the local
rule finds the k-neighbourhood of u in the survival graph. In the recolouring step, u is added
to the output set and the remaining vertices in the copy of the query graph are deleted.

Using [48, Theorem 1], the authors of [11] analysed a deprioritised version of this algo-
rithm. Implicit in their argument is the requirement that the leftover vertices do not affect
their bounds, which they must have checked numerically as for the dominating set example
in 8.2.2. Applying Theorem 8.1 as for the above examples, these are also valid bounds for
r-regular graphs with large girth.

8.2.5 Maximum k-separated matching

For any positive integer k, a k-separated matching in a graph is a set of edges such that the
minimum distance between any two edges in the set is at least k. For k = 1, this is just the
maximum matching problem, and random r-regular graphs a.a.s. have perfect matchings if
r ≥ 3 for n even as they are r-connected a.a.s. [4, 47]. For k ≥ 2, Beis, Duckworth and Zito [2]
found lower bounds on the size of a maximum k-separated matching in a random r-regular
graphs by analysing an algorithm which is equivalent to one satisfying the requirements of
Theorem 8.1. For k = 2, this is the maximum induced matching problem, and the algorithm
is analogous to the algorithm for independent sets. In each round, it selects a vertex u of
minimum positive degree and then chooses a neighbour v of u with minimum degree among
all such neighbours. The edge uv is added to the output set and both u and v are deleted
from the survival graph, along with all adjacent vertices.

For k ≥ 3, the algorithm resembles what has been done for k-independent sets (see
Section 8.2.3). In step t, the algorithm selects u.a.r. a vertex v with minimum degree and
it tries to find one or more balanced r-regular trees of height dk/2e of which v is a leaf. If
it succeeds, one edge of each such tree is added to the k-separated matching, otherwise all
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edges corresponding to open adjacencies that have been queried are deleted. The arguments
used for independent sets in Section 8.2.1 imply that the lower bounds given in [2] must also
be valid lower bounds for the size of a largest k-separated matching in r-regular graphs of
sufficiently large girth.

9 More applications

In this section we present additional applications of our work. The applications in the first
and second subsections use Theorem 8.1, this time for algorithms that had not been analysed
before for random regular graphs. The other applications deal with local deletion algorithms
directly, and use Theorem 6.5 or Theorem 7.3.

9.1 Independent sets in large girth cubic graphs

The main result in [29] is expressed in terms of the fractional chromatic number, but the
basic result proved is that a certain algorithm produces an independent set with a given
(large) expected size. In this section we apply our new analysis to the essentially the same
algorithm, achieving basically the same result, but more precise analytically. A fractional
colouring of a graph G is an assignment of weights to the independent sets in G such that,
for each vertex v of G, the sum of the weights of the independent sets containing v is at
least 1. The fractional chromatic number of cf (G) of G is the minimum sum of weights of
independent sets forming a fractional colouring. The result on independent sets from [29]
was essentially almost the same as the following, but the upper bound on α was obtained
by approximate computations. The proof here provides a simple application of the theory
presented in the present paper, and also paves the way for Section 9.2.

Theorem 9.1. For all α < 3 + 3
2

log 2 − 15
2

√
2 arctan(

√
2/4) = 0.43520602 · · · , every cubic

graph G of sufficiently large girth (depending on α) contains an independent set of size at
least αn, where n is the number of vertices of G.

Proof The algorithm analysed in [29] is basically a local deletion algorithm of unbounded
depth. Its local rule can be obtained by the following modification of the greedy (prioritised)
independent set algorithm in Section 3, in which minimum degree vertices are randomly
placed into the growing independent set. First, recall the presentation of that algorithm in
Section 8.2.1. For the case that the minimum degree is 2, Op2 is modified as follows. Instead
of placing the randomly chosen vertex v of degree 2 immediately into the independent set,
explore along a path P of degree 2 vertices starting with v (choosing either neighbour at
random to start the exploration) until reaching a vertex, u, whose other neighbour w has
degree 3 (or is v). Insert u, together with all vertices at even distance from u backwards along
the path P , into the independent set, and delete all vertices inserted and their neighbours
(which includes w). Although this would translate into an unbounded depth version of a
local rule, its performance can be approximated by terminating after exploring d vertices,
and considering d arbitrarily large (but fixed). Note that a path of degree 2 vertices whose
last vertex is joined to a vertex of degree 1 is immediately “gobbled up” by the prioritised
algorithm, which via the prioritisation picks on the vertex of degree 1 and then the other
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vertices along the path before picking on a degree 2 vertex. This causes the above definition
of the local rule to be a little simpler than the original.

We claim that an obvious ‘chunkified’ version of this algorithm is equivalent to the algo-
rithm described in [29]. We do not prove this or even make the statement rigorous, because
we will see shortly that analysis of the prioritised algorithm defined above gives the same
result numerically as in [29]. The present approach has the advantage of providing a new
analytic explanation of that result in terms of the solutions of natural differential equations.

We will apply Theorem 8.1. (We could alternatively apply Theorem 7.3 but that would
boil down to the almost the same thing, after unwinding the notation.) For cubic graphs, we
may refer to the hypotheses of Theorem 8.2. The main computation required is to find the
functions fk,i determined by Opi, i = 1 and 2.

In computing the functions fk,i, we consider the application to pairings of a local rule
which agrees with the current rule for simple graphs. By our remark after Lemma 6.2, the
way in which it is modified to deal with loops and multiple edges does not affect the equations
beyond the error term. We can assume nk is the number of vertices of degree k in the random
pairing, and n3 > εn (noting condition (ii) in Theorem 8.2). Then, during an application of
the local rule, during which a bounded number of pairs are been exposed, the probability
that a randomly chosen point is in a vertex of degree 2 is

p :=
2n2

n1 + 2n2 + 3n3

+O(1/n).

In the following, we take p to stand for the expression above, rather than a fixed function.
Note that n3 > εn implies p is bounded away from 1.

We can assume that n1 = 0 in all computations of expected changes. This follows from
the fact that the solution of the differential equations we eventually derive will have ỹ1 = 0
as given by Theorem 8.1. (The reader unfamiliar with the method may prefer to include the
terms for n1, and then note that n1 is so small as to be negligible.)

For k = 1, 2 and 3, let φk denote the expected change in the number of vertices of degree
k in the survival graph due to exposing the second (randomly chosen) point of a pair and
deleting that point. If x denotes the vertex containing the second point, the probability that
x has degree 2 is p, and for degree 3, it is 1− p (assuming n1 = 0). Hence,

φ1 = p, φ2 = −p+ (1− p) = 1− 2p, φ3 = −(1− p) = p− 1.

To find fk,i, we need to compute the expected change in the number of vertices of degree
k conditional on the history of the process and on the application of operation Opi. We first
consider the more complicated case, when Op2 is performed. Let X denote the number of
degree 2 vertices in the path P between v and w (not counting v or w) and let pj = P(X = j)
(all this is conditional on the history of the process). Then the expected change to the vector
(n1, n2, n3) in one operation is (ignoring terms O(1/n), and counting only the event that at
most d vertices are explored)

−δ3 + 2φ+ pe
(
p(φ− δ2) + (1− p)(−δ3 + 2φ)

)
+ (1− pe)φ+

d−1∑
j=0

−(j + 1)δ2pj
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where δi is the unit vector with 1 in the ith position, φ = (φ1, φ2, φ3) and pe = P(X is even).
Here the term −δ3 is from deletion of w, 2φ is for the two other pairs emanating from w
that are deleted, −(j + 1)δ2 from the deletion of the vertices in the path P as well as v, the
factor multiplying pe is for the deletion of the other vertex z adjacent to v (as, in the case
X is even, v is inserted into the independent set and z is deleted) whilst the term (1− pe)φ
accounts for the deletion of just one pair emanating from v in the case X is odd. (The event
w = v has probability O(1/n).)

Note that pe is the sum of pj for j < d and j even, and pj = pj(1 − p). So pe =
(1+p)−1 +od(1) and, recalling that p is bounded away from 0,

∑
(j+1)pj = (1−p)−1 +od(1),

where od(1) denotes a function of d (different at different occurrences) that tends to 0 as
d → ∞. Hence, the probability of exploring more than d vertices is O(pd) = od(1), and
finally the expected change to (n1, n2, n3), ignoring od(1) terms, is

−δ3 +
−pδ2 − (1− p)δ3 + 2(2 + p)φ

1 + p
− δ2

1− p
.

This vector is (using Maple for this and later calculations)(
2p(2 + p)

1 + p
,
−p+ 2(2 + p)(1− 2p)

1 + p
− 1

1− p
, −1 +

−(1− p) + 2(2 + p)(p− 1)

1 + p

)
=

(
2p(2 + p)

1 + p
,

3− 12p+ 3p2 + 4p3

1− p2
,

2(−3 + p+ p2)

1 + p

)
,

which determines (f12, f22, f32) up to od(1), as long as for this interpretation we drop the
O(1/n) error term from the definition of p in order to make the functions fi,j independent of
n. For Op1, just one vertex of degree 1 is deleted, and the expected change vector is

−δ1 + p(−δ2 + φ) + (1− p)(−δ3 + 2φ) = (−1 + 2p− p2, 2− 6p+ 2p2,−3 + 4p− p2),

giving (f11, f21, f31) (subject to the same interpretation as above). It only remains to compute
the expected change to the size of the output set. In Op2, the probability that at least j
vertices are added to the output set is p2j (j < d/2), and hence the expected number added
is f42 = 1/(1 − p2) + od(1). Clearly f41 = 1. It is now relatively straightforward that the
hypotheses of Theorem 8.2 hold with these functions fk,i provided the solution leaves Dε
before the other termination conditions come into force. This can be checked (at least, for
sufficiently large d) by first solving the “pure” differential equation system

y′2 =
(1− 3p)(p2 + 2p+ 3)

p3 + p2 + 3p+ 1
, y′3 =

2(p− 1)(p2 + 2p+ 3)

p3 + p2 + 3p+ 1
, y′4 =

(1 + p)(1 + 2p)

p3 + p2 + 3p+ 1

where p = 2y2/(2y2 + 3y3) (which is the interpretation noted above). Recall that y′1 must be
identically 0. We deal with the od(1) terms later.

Putting s = 2y2 + 3y3, and noting that p′ = 2y′2/s− s′p/s, we find

p′ =
2(1− p)(p2 + 2p+ 3)

s(p3 + p2 + 3p+ 1)
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and then that dp/ds = p′/s′ = (p−1)/2s. Hence (using s = 3 when p = 0, which holds when
x = 0) we find s = 3(1− p)2. Thus

dy4

dp
=

3(1− p)(2p2 + 3p+ 1)

2(p2 + 2p+ 3)
. (9.1)

As s = 3(1 − p)2, we have y3 = (1 − p)3, and we may now deduce, using y′3 < 0 for p < 1,
that (x, ỹ) leaves Dε when y3 = ε and p = 1−O(ε). At this point, x = x1. Since the system
is well behaved (the derivative functions are Lipschitz) inside Dε, the solutions of the “true”
system, which contains the extra od(1) terms, differ from the solutions of the pure system by
od(1). Hence, since y′3 is bounded away from 0 when p is bounded away from 1, the point of
exiting Dε is at x = x̄1 = x1 + od(1).

Let x̂1 denote the value of x at which p reaches 1. Then equation (9.1) can be integrated
from 0 to 1 to yield

y4(x̂1) = 3 +
3

2
log 2− 15

2

√
2 arctan(

√
2/4) = 0.43520602 · · · .

By taking ε sufficiently small, x1 can be made arbitrarily close to x̂1. The constant ρ referred
to in Theorem 8.1 is y4(x̄1), and we have seen that this can be made arbitrarily close to
y4(x̂1) by taking d large and ε small. Theorem 8.1 now implies the stated result.

9.2 Independent sets: improved result

As mentioned in [29], the approach used for Theorem 9.1 can be extended. We show here
that this is relatively painless with our new machinery.

After exploring locally in the neighbourhood of a vertex, it is not at all obvious what the
best choice is for placing vertices into the output set. Observe that the previous theorem
improves the result from the earlier algorithm, suggesting the paradigm of inserting u into the
independent set (along with every second vertex along the path) in preference to the vertex
adjacent to u in P . If this is attempted for both paths of degree 2 vertices starting at v,
and the two vertices placed in the output set have odd distance apart, this strategy is clearly
non-optimal, and the other choice should be made in one of the paths. Given the information
so far, either path is as good for the adjustment as the other. However, exploring the paths
emanating from w gives more information, and the same paradigm can be applied to those
paths. One way of extending this idea using the paradigm gives the following result. (The
constants arising in this theorem are approximations of constants determined analytically.)

Theorem 9.2. The constant in Theorem 9.1 can be improved to α0 = 0.43757463. Moreover,
the fractional chromatic number of a cubic graph with sufficiently large girth is at most
1/α0 ≈ 2.2853.

Proof Modify the local rule in the proof of Theorem 9.1 as follows, in the case of Op2.
Explore the maximal path P of vertices of degree 2 containing v (so P can extend in two
directions from v). Let w1 and w2 denote two vertices outside P which are adjacent to the
ends of P . See Figure 9.1. The case that one of these vertices wi is equal to v, and indeed
any cases in which cycles are discovered, can be ignored, as seen in the proof of Theorem 9.1.
So we may assume that both w1 and w2 have degree 3.
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(a) (b)

(c) (d)

Figure 9.1: Exploration

In each case, vertices are placed alternately in and not in the output set, and we only
need to mention the extremal ones placed in it, which we will call terminal vertices. If P has
an odd number of vertices, as in Figure 9.1(a), the vertices of P adjacent to w1 and w2 are
the terminal vertices. Otherwise, explore similarly the path P ′ containing w2 in the graph
with P removed. Let w3 and w4 be the vertices of degree 3 adjacent to its ends. If P ′ has
an even number of vertices, as in Figure 9.1(b), the choice of terminals on P ′ clearly has no
effect at w3 and w4 (one will be adjacent to a terminal, and one not) so it is best to place
vertices of odd distance from w2 into the output set (restricting to vertices in P and P ′).
If P ′ has an odd number of vertices, as in Figure 9.1(c) and (d), then its end vertices will
be nominated as terminals (following the paradigm described above), and w2 (and hence the
vertex adjacent to w1) will be in the output set if and only if w2 has odd distance from w3

(and consequently from w4).
We can derive the functions fi,j for this version of Op2 using the same argument as in the

previous theorem, ignoring o1(d) terms for the same reason. The probability P has 2i − 1
vertices is

h2i−1 =
2i−1∑
j=1

pj−1p2i−j−1 = (2i− 1)(1− p)2p2i−2.

In this event the expected change in (n1, n2, n3) is (ignoring those negligible terms)

−(2i− 1)δ2 − 2δ3 + 4φ.

Summing over all i gives the part of the expected change due to the case of |V (P )| odd:(
4p(p2 + 1)

(1 + p)2
,
8p5 − 5p4 − 6p2 − 8p+ 3

(1− p)(1 + p)3
,
2(2p− 3)(1 + p2)

(1 + p)2

)
. (9.2)

The expected change in the output set size from this case is∑
i≥1

ih2i−1 =
1 + 3p2

(1− p)(1 + p)3
.
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Similarly, the probability P has 2i vertices is h2i = 2i(1 − p)2p2i−1; in this case, let the
number of degree 2 vertices between w2 and w3 be j, and between w2 and w4, k. The
probability of this event is h2ipjpk.

There are three subcases. If j and k are both even, let them be 2i1 − 2 and 2i2 − 2
respectively (it is convenient to keep i1 and i2 ≥ 1). Then the expected change in (n1, n2, n3)
is −(2i+2i1 +2i2−4)δ2−4δ3 +6φ, and in the output set it is i+ i1 + i2−1 as w2 is included.
See Figure 9.1(a). Multiply these expressions by h2ipjpk and sum over all relevant i, i1 and
i2 to get (

12p2

(1 + p)4
,
8p(3p3 − 3p2 − 3p+ 1)

(1 + p)5(1− p)
,
4p(3p− 5)

(1 + p)4

)
(9.3)

and
4p(p2 + 1)

(1 + p)5(1− p)
.

If just one of j and k is even and the other odd, let them be 2i1 − 2 and 2i2 − 1. See
Figure 9.1(b). The expressions are −(2i+2i1 +2i2−5)δ2−4δ3 +2φ (note that 2i+2i1 +2i2−5
vertices of degree 2 are deleted and two are created, w1 and either w3 or w4), and i+i1+i2−1.
Multiplying by 2h2ipjpk (accounting for two cases, j or k being even) and summing gives(

8p3

(1 + p)4
,
4p2(4p3 − 9p2 − 4p+ 1)

(1 + p)5(1− p)
,
8p2(p− 3)

(1 + p)4

)
(9.4)

and
8p(p2 + 1)

(1 + p)5(1− p)
.

If both j and k are odd, let them be 2i1 − 1 and 2i2 − 1. See Figure 9.1(c). The expressions
are −(2i+2i1 +2i2−3)δ2−4δ3 +4φ (here w3 and w4 are deleted), and i+ i1 + i2. Multiplying
by h2ipjpk and summing gives(

8p4

(1 + p)4
,
2p3(8p3 − 9p2 − 8p+ 1)

(1 + p)5(1− p)
,
8p3(p− 2)

(1 + p)4

)
(9.5)

and
2p3(p2 + 3)

(1 + p)5(1− p)
.

Summing the vectors in (9.2–9.5) gives the vector (f12, f22, f32) up to od(1). Continuing with
the method as before, we find once again that dp/ds = (p− 1)/2s and then

dy4

dp
=

3(1− p)(2p5 + 9p4 + 18p3 + 22p2 + 8p+ 1)

2(p4 + 4p3 + 8p2 + 14p+ 3)(1− p2)
.

The integral of this can be expressed as a sum over the roots of a quartic polynomial, and
Maple evaluates the integral from 0 to 1 as 0.43757463 · · · .

As remarked in [29], if we can define a random independent set X in a graph G such
that each vertex has probability at least α of appearing in X, then the fractional chromatic
number cf (G) of G is at most 1/α. Theorem 9.2 shows that α0 (or any constant less than the
constant y4(1) defined in its proof) is a lower bound on the size of a maximum independent
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set in a cubic graph of sufficiently large girth. The proof via Theorem 8.1 uses a chunky
local deletion algorithm which produces a random independent set whose expected size is
at least α0. The subgraph induced by the vertices of Gt of distance at most 4D from v,
where the local rule has depth D, determines precisely the probability that v is added to
the independent set in the next step of the algorithm. (In the extreme case, v has distance
D from the root of the query graph, some other vertex of which at distance 2D from v is
a clash vertex.) Corollary 5.2(i) implies that this probability does not depend on v. Hence
every vertex is in the independent set with probability at least α0, and so by the conclusion
above, cf (G) ≤ 1/α0 ≈ 2.285325.

9.3 Large cuts in random cubic graphs

In [30] it is shown that every cubic graph with n vertices and girth at least g0 = 16353933
contains an edge cut of size at least 1.33008n. This used a computation that numerically
iterated a recurrence g0 times. Since the method was based on [23], which employed some of
the ideas in the present paper (including some use of deprioritised algorithms), it is not too
surprising that the algorithm in [30] is a chunky local deletion algorithm that derives in a
natural way from the prioritised algorithm A described at the end of Section 4.1. (However,
A is not directly described in [30].) We analyse an amenable deprioritised algorithm whose
behaviour approximates that of A to find a lower bound on the size of a maximum cut in a
cubic graph. The algorithm used in [30] can be viewed as just one example of a family of
such deprioritised algorithms that we use.

In order to describe our result, we define the system of differential equations

u′ =
−6u(6u+ s)

d
, v′ =

36u2 − 12uv − s2 − 4sv

d
, w′ =

2(−6uw + 2sv − sw)

d
(9.6)

where s = 3u+ 2v + w and d = s2 + 6su+ 12uv.

Theorem 9.3. Let (u, v, w) denote the solution of (9.6) as functions of x ≥ 0 with initial
conditions (u, v, w) = (1, 0, 0) at x = 0. Let x̂0 denote the minimum x > 0 for which v(x) = 0.
Let z(x), 0 ≤ x ≤ x̂0, satisfy

z′ =
6su+ 24uw + s2 + 4sw + 36uv

d
, z(0) = 0.

Then, for all δ > 0, every n-vertex cubic graph with sufficiently large girth has an edge cut
of size at least cn where c = z(x̂0) + 3

2
u(x̂0) + 3

2
w(x̂0)− δ.

Note: For small δ, using a standard second order Runge-Kutta solution method we get
c ≈ 1.330209040. (Here x̂0 ≈ 0.8274171475.)

Proof We will define an appropriate amenable deprioritised algorithm related to A for use
with Theorem 7.3, beginning with a small δ > 0 and ε > 0 whose relationship will be specified
later.

We can streamline the argument with the foresight that, because of the chosen prioriti-
sation, only the types 00, 01 and 11 will be present in any great numbers at a given time.
The local subrule is normal, so after a vertex is probed, the types of all its neighbours are
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determined. Only one vertex is probed in the local rule, with the exception that if a vertex
is going to be given an output colour, and has a neighbour u with transient colour r′b′ where
r′ + b′ = 2, then u is probed and included in the query graph. Its (output) colour is de-
termined and none of its other neighbours are affected; since they have nontransient colours
they are not in the survival graph. That is, each Oprb with r + b = 3 is amalgamated with
the previous operation.

Before defining the relative selection functions, we consider the fj,i defined in Lemma 6.2.
In the present case these are fk`,ij where k` is the type of vertices whose expected changes
are being tracked, and ij is the type of the operation (i + j ≤ 2 given the amalgamation
described above). We use yk` for the variables in the argument of an f relating to the (scaled)
number of vertices of type k`. Directly considering the pairing model as in Section 9.1, and
assuming that i > j, which applies when the operation colours the deleted vertex blue, it is
easy to derive

fk`,ij(y) = −δk`,ij + (3− i− j)
(

(3− k − `+ 1)yk,`−1

s
− (3− k − `)yk`

s

)
(9.7)

where s =
∑

ij(3 − i − j)yij, and δk`,ij is the Kronecker delta: 1 if k = i and ` = j, and 0
otherwise. Of course, s represents the number of unpaired points in the pairing. When i > j
the formula is the same as (9.7), except that yk,`−1 is replaced by yk−1,`.

We are at liberty to define any relative selection functions, but we provide some motiva-
tion without full justification. Following the general argument in [48], we note that in the
prioritised algorithm the operations, at least reasonably early in the process, after an initial
one of type 00, will consist of types 10, 01 and 02. We want all other operations to have
probability 0, and we desire the derivatives of y10 and y02 to be 0 (so these variables remain
0). We therefore write the equations

p̃10fτ,10 + p̃01fτ,01 + p̃02fτ,02 = 0, (τ = 10 and 02)

and solve these simultaneously with p̃10 + p̃01 + p̃02 = 1, to obtain

p̃01 =
s2 − 12y00y01

d
, p̃10 =

6sy00

d
, p̃02 =

24y00y01

d
, (9.8)

where s = 3y00 + 2y01 + y11 and d = s2 + 6sy00 + 12y00y01.
Start with a ‘burn-in’ phase of length ε > 0; that is, for x ∈ [0, ε], define the relative

selection functions p̃rb(x) = 1 if rb = 00 and p̃rb(x) = 0 otherwise. The differential equation
system (7.1) then has a unique solution ỹ on this interval. For x ≥ ε, we need to use ỹ(ε)
to define the selection functions. To this end, consider the differential equation system (7.1)
where the functions p̃ij are defined as in (9.8) as functions of y, and with initial conditions
being y(ε) = ỹ(ε). All p̃ij not appearing in (9.8) are defined to be 0. The solution ỹ then
extends until it approaches a singularity of the derivative functions. With this definition of
ỹ, we may now define the relative selection functions p̃10 as the functions of x determined
from (9.8). To distinguish these from the functions ỹ(ε) of y referred to in the computation,

we denote them p̃
(1)
ij (x). Then the system (7.1), with relative selection functions p̃

(1)
ij , and the

same initial conditions, still has unique solution ỹ.
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We may now apply Theorem 7.3, for appropriate δ. The crucial question issue is the
determination of x0. By definition this is determined by the first point at which some variable
yij is below δ when the corresponding relative selection function is positive. The only such
functions that are ever positive are for ij = 00 for x ≤ ε, and 10, 01 and 02 thereafter. By
the nature of the burn-in phase it is easy to see that there is some ε > 0 such that y00 > 1/2
on [0, ε], and the remaining variables exceed δ at x = ε, where ε → 0 as δ → 0. For x ≥ ε,
for ij ∈ {10, 02}, the derivative of yij is precisely 0 by the equations determining the relative
selection functions. So x0 is determined by the first point after ε such that y01 falls below δ.
Noting that y′01 > 0 for small x ≥ 0, the point of interest is when y01 falls back close to 0.

The differential equation system described above for the interval x ≥ ε, involving p̃ij as
functions of y, would be exactly the system (9.6) with (u, v, w) = (y00, y01, y11) if we set
all other variables yij to zero. If the initial conditions are shifted slightly so that (1, 0, 0)
applies to both systems, it follows that the trajectories of the systems would be identical:
the only other variable we have not explicitly guaranteed to have zero derivative is y20, and
this remains zero because y10 does. Moreover, until y01 returns to 0 it is easy to prove that
s and d remain bounded away from 0 and so the derivative functions are all Lipschitz in
a neighbourhood of the solution trajectories. Hence, by well known properties of ordinary
differential equations, by taking ε and δ sufficiently small, the two systems’ solutions can be
brought arbitrarily close to each other. It follows that, in addition, x0 can be made arbitrarily
close to x̂0.

Let yR be the variable corresponding to the output edges. It is straightforward to check
that y′R corresponds to the derivative of z given in the theorem, as follows. An operation of
type 10 or 01 in expectation increases the output edge set by 1+4y11/s, where 1 is for the edge
to the coloured neighbour and 4y11/s is twice the expected number of white neighbours of
type br (there being two such neighbours potentially). All other neighbours can be neglected
by the argument above. Similarly, type 02 increases the output edge set by 2 + 2y11/s in
expectation.

We deduce from Theorem 7.3 that for all δ > 0 there is a chunky local deletion algorithm
A1 with the same local and recolouring rules, which, applied to any cubic graph of sufficiently
large girth, for which the output set of edges, after a number of steps corresponding to(
x̂0 + O(δ)

)
n, has size at least z(x̂0)n − δn and the numbers of vertices of types 00 and

11 are similarly close to u(x̂0)n and w(x̂0)n respectively. Moreover, the numbers of vertices
of any other type os at most δn. From numerical solution of (9.6), we find x̂0 ≈ 0.8274,
u(x̂0) ≈ 0.00279 and w(x̂0) ≈ 0.0511.

In [30], the algorithm runs a second phase where, in the absence of any other types besides
00, a vertex of type 11 is randomly coloured red with probability 1/2 and blue otherwise.
However, we can easily avoid analysis of this phase (and also explain why the choice of 1/2
for this probability makes no difference to the final result) using the results in Section 6.
By Lemma 6.1, we may start with a random pairing instead of a random graph, from the
beginning of the present argument, to reach the same conclusions as above (indeed, this is the
method of the proof of Theorem 7.3). Then Lemma 6.3 allows us to analyse the remaining
part of the process by taking a random pairing with the given numbers of vertices of types 00
and 11, and few other vertices. Since the number of type 00 vertices is approximately u(x̂0)n
and type 11 approximately w(x̂0)n, there are approximately 17 times as many of the latter as
the former. So at this point we may abandon the local deletion algorithm and consider instead
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the structure of this random pairing. Starting at any vertex and exposing an unexposed pair,
the expected number of unexposed points in the new vertex, after exposing this pair, is at
most 2/17. Continuing the exploration of a component in the random pairing using the
standard analysis for random graphs using branching processes, we find the expected size of
each component is bounded, and the probability there are more than M vertices in the same
component as a given start vertex is at most e−CM for some constant C. The probability of
finding a cycle before reaching M vertices in a component is O(M2/n). Thus, letting XM

denote the number of vertices in components that are not trees of size at most M , we have
EXM = O(e−C

′M). Markov’s inequality implies P(XM/n > δ) = O(e−C
′M/δ). Lemma 6.1

allows us to transfer this statement to the random graph, rather than pairing, if we write the
bound as e−C

′′M where C ′′ is another constant.
Every tree component in the graph can be bicoloured. Since all but O(δn) vertices

are of type either 11 or 00, which have degree 1 and 3 in the tree respectively, we get
(3/2)u(x̂0)n + (1/2)w(x̂0)n + O(δn) edges of type red-blue internally in such components.
Additionally, each vertex of type 11 gives one more red-blue edge externally. The total is
(3n/2)

(
u(x̂0) + w(x̂0)

)
+ O(δn) edges which can be added to the output set. As δ can be

taken arbitrarily small, the result follows.
We note that the analysis of the “second phase” in the above proof shows that all ways of

performing that phase by properly bicolouring all components of size at most M will achieve
the stated bounds for the output set, provided the granularity is small enough to make clash
vertices insignificant. We can easily define such chunky algorithms, for instance based on the
rule referred to in [30] where choosing type 11 has the lowest priority, and one could even
use the rule that all such edges are coloured blue. The argument used for independent sets
in Section 9.2, is easily applied to show that the probability that any given edge lies in the
cut produced by such an algorithm is at least 0.88680. This leads to the upper bound of
1.12765 (almost the same as in [30]) on the (suitably defined) fractional cut covering number
of a cubic graph with large girth.

9.4 Minimum and maximum bisection

Given a graph G = (V,E) with |V | even, a bisection of G is a partition of its vertex set
into two parts with the same cardinality, and the size of the bisection is the number of edges
crossing between the parts. Dı́az, Do, Serna and Wormald [9, 10] obtained upper bounds on
the size of a minimum bisection, also known as the bisection width, and lower bounds on
the size of a maximum bisection in a random r-regular graph. Table 9.1 shows the results,
where β(r)n is an upper bound a.a.s. on the bisection width of a random r-regular graph, as
n → ∞. In the case of r = 4, ε is any positive quantity. By a quirk of the proof method,
(r/2 − β)n provides a corresponding asymptotically almost sure lower bound on the size of
the maximum bisection. For r = 3, the bisection width upper bound is weaker than the
deterministic (1/6 + ε)n that Monien and Preis [39] showed for all 3-regular graphs, but the
complementary bound 1.3259n on maximum bisection is still interesting.

We argue that, with our approach, the applicability of these bounds extends to all regular
graphs of sufficiently large girth. Since it is easy to adapt the arguments of Section 9.3 to
this situation, we only give a general description of the proof.

To derive the original bounds, Dı́az et al. analysed a randomised procedure that resembles
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r 3 4 5 6 7 8 9 10 11 12
β(r) 0.1741 1/3 + ε 0.5028 0.6674 0.8502 1.0386 1.2317 1.4278 1.624 1.823

Table 9.1: Upper bounds on bisection width

the algorithm for large cuts of Section 9.3. Indeed, it may be described as a local deletion
algorithm with the same local rule, but different selection and recolouring rules. There
are again two output colours, denoted red and blue, to mark vertices already assigned to
each class of the partition, while the remaining vertices have transient colours indicating the
number of neighbours in each of these classes. Let rb denote the type of a vertex with r red
neighbours and b blue neighbours. At each step, the procedures in [9, 10] choose two vertices,
which are called a symmetric pair, with types xy and yx, respectively. The values of x and
y are determined according to a priority ordering for types, and vertices are chosen u.a.r.
amongst those with highest priority in the survival graph. The way in which each chosen
vertex is coloured depends on the application: assuming that x ≥ y, the vertices of type xy
and yx are coloured red and blue if the algorithm aims for a small bisection, and the other
way round if the algorithm aims for a large bisection. The survival graph is then updated
just as in the case of large cuts. This prescription make sure that the two classes of the
partition are balanced and that symmetric types have the same distribution in the survival
graph if the input graph is random regular. The algorithm proceeds in this way until there is
a small proportion of vertices remaining, which are then split evenly between the two classes
in a final cleanup step, with negligible influence on the size of the cut.

To obtain the same bounds with the current approach, the algorithm needs to be slightly
modified. This is because our definition of a local deletion algorithm does not allow vertices
to be chosen in pairs. To address this issue, given x > y, we modify the prioritised algorithm
so that instead of a symmetric pair of vertices of types xy and yx, it chooses a vertex with
type xy or yx, with equal probabilities. Using this idea we can arrange that the expected
number of vertices of any type processed in a given chunk is essentially the same as if
symmetric pairs were used, and this symmetry is preserved in the differential equations we
derive. Theorem 7.3 could then be used to show that a.a.s. the numbers of vertices of types
xy and yx are equal to the desired accuracy, and this inequality may be corrected in a final
cleanup step, in which leftover vertices and vertices with clash colours are assigned colours
arbitrarily, and then vertices may be swapped between red and blue to create the desired
balance.

As an alternative way to deal with the same issue, it would be very straightforward to
extend our method to permit a finite number of vertices of specified types, rather than just
one, to be chosen in each step of a local deletion algorithm.

9.5 Minimum connected and weakly-connected dominating sets

Let G = (V,E) be a graph and let S ⊆ V be a dominating set. The set S is a connected
dominating set if G[S] is connected and a weakly-connected dominating set if the subgraph of
G whose edge set consists of all edges incident with vertices in S is connected. Duckworth and
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Mans [12] determined upper bounds on the size of minimum connected and weakly-connected
dominating sets in random r-regular graphs. Using the terminology of the current paper,
this was done by analysing local deletion algorithms.

One of their algorithm for connected dominating sets, RAND ONE CDS, may be described
as follows. In the first step, it selects a vertex v u.a.r. and adds it to the output set, deleting it
from the survival graph. In subsequent steps, the algorithm chooses a vertex v u.a.r. among
all vertices whose degree is less than r, then selects a neighbour u of v u.a.r. If u has degree
r, v is added to the output set. If the degree of u is less than r, the algorithm simply removes
the edge uv from the survival graph. This is easy to rephrase as a local deletion algorithm;
note that the local rule is not normal.

The algorithm for weakly-connected dominating sets is the same except for one modifi-
cation: if u has degree r, then u, rather than v, is added to the output set.

These algorithms were analysed in [12] using the differential equation method as presented
in [46, Theorem 6.1]. Here, we may analyse their performance by considering the system of
differential equations (7.1) with p̃i(x,y) = yi(x)/(

∑
k 6=r yk(x)) and the functions fj,i naturally

induced by the rules of the algorithms. We also include a short initial “burn-in” phase to
ensure a good supply of vertices of degree less than r, as in the proof of Theorem 9.3,
without affecting the resulting bounds. For fixed δ′ > 0, Theorem 7.1 implies that the
random variable tracking the number of vertices of degree r in the survival graph is governed
by nyr(x) and that the size of the output set approaches C(δ′)n, where C(δ′) = T/n with T
given by the theorem. It is easy to see that as δ′ → 0 the value of C(δ′) is achieved as yr(x)
approaches zero, and hence the result coincides with the result obtained in [12], as they both
analyse the same process. We apply Theorem 7.3 to conclude that the same holds for regular
graphs with large girth. (Note that we do not need to deprioritise these algorithms because
there is no prioritisation between vertices of degree less than r, and the number of these
vertices a.a.s. stays positive until the algorithm finishes.) As for the dominating set example
in Section 8.2.2, we rely on the numerical solutions of the differential equations to deduce
that a negligible proportion of the vertices remain uncovered at the end of the algorithm,
and clash vertices are also sufficiently small in number. In this case, however, we need to
ensure that the final set of vertices has the required connectivity properties. There is also an
additional problem: since the algorithm given by Theorem 6.5 is chunky, instead of starting
with a single connected (resp. weakly-connected) component, it creates many of them (in fact
O(ε′n) components where ε′ is given in that theorem). Because of this and the other vertices
not yet dominated, to produce a connected (resp. weakly-connected) dominating set from
the output produced by the chunky algorithm, we still need to greedily add vertices to the
output set. However, any connected component can be merged with some other connected
component with the addition of at most two vertices to the output set, and hence the bounds
reported are not affected. We deduce that the upper bounds shown in [12] to hold for random
r-regular graphs using these two algorithms also hold for r-regular graphs with sufficiently
large girth. (Here we again use the observation that the bounds were of necessity generous
by some positive additive constant.)

There were further algorithms analysed in [12], but it is a little harder to apply our present
methods to them, and we refrain from doing so in the present paper.
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9.6 Maximum induced forest and minimum feedback vertex set

An induced forest in a graph G = (V,E) is an acyclic induced subgraph of G. The size of
the induced forest G[S] is defined to be |S|. Using a chunky local deletion algorithm, and
analysing it in the large-girth setting, the authors [26] obtained lower bounds on the size of a
maximum induced forest in r-regular graphs with large girth. The set of vertices not in such
a forest is a minimum feedback vertex set, or decycling set, which is defined as a minimum
set of vertices whose removal destroys all cycles. That work followed [34] quite closely, by
directly considering graphs with large girth and proving independence lemmas as required.

It would be straightforward to obtain the same results by analysing the algorithm in [26],
which is a local deletion algorithm with a normal subrule, via the machinery in the present
paper. There are six colours available: three output colours, which we call purple, yellow
and ∝, and three transient colours, which we call neutral, blue and ∝′. The intuition is that
purple vertices represent the set O of vertices added to the forest, blue vertices have exactly
one neighbour in the forest (and therefore are available to be added to O without inducing
cycles in the input graph), yellow vertices are adjacent to at least two vertices in the forest
(and therefore have been deleted to avoid the creation of cycles) and neutral vertices are not
adjacent to any vertex in the forest. More precisely, there is a first step where the algorithm
chooses neutral vertices u.a.r., adds each such vertex v to the set of purple vertices, colours its
neutral neighbours blue (and of course deletes v from the survival graph). In the subsequent
steps, the algorithm selects blue vertices u.a.r. and adds them to the set of purple vertices.
Their neutral neighbours become blue, while their blue neighbours become yellow and hence
are deleted from the survival graph.

For the chunky local deletion algorithm associated with the local, selection and recolouring
rules naturally derived from the above discussion, we may compute the functions fk,i defined
in Lemma 6.2 using calculations similar to those in Section 9.1, and then apply Theorem 6.5.
The resulting differential equations are equivalent to those in [26] by a straightforward sub-
stitution of variables, and hence the same results follow. A degree-governed version of this
algorithm will be analysed using Theorem 7.3 in [25]. (See also [24] where this is described
in a less economical direct approach.)

10 Final remarks

The kinds of bounds we obtain for r-regular graphs with large girth sometimes carry over to
graphs with large girth and maximum degree r. This is true, for instance, if P is monotone,
that is, if H satisfies P then every subgraph of H also satisfies P in G. Fix a monotone
property P and suppose that there exists g > 0 such that every r-regular graph H with girth
at least g contains an induced subgraph H0 satisfying P such that |H0| ≥ γ|V (H)| (and hence
fP (H) ≥ γ). It is not hard to see that, given an n-vertex graph G with maximum degree r
and girth at least g, we may construct a graph G′ by taking copies of G and joining vertices
in different copies so as to make G′ r-regular. This can be done without decreasing the girth
if sufficiently many copies of G are used. In particular, given a monotone property P , we
have the inequality fP (G)/n ≥ fP (G′)/|V (G′)|, since this holds for the copy of G containing
the largest number of vertices in a maximum induced subgraph with property P in G′. Thus
bounds for r-regular graphs with large girth imply bounds for graphs with large girth and
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maximum degree r. For instance, the property of having chromatic number at most k is
monotone, and for k = 1, this means that the graph is an independent set. Hence, we may
deduce results about the size of a largest independent set in a graph in terms of its maximum
degree, using the results of Sections 8.2.1 and 9.2.

We note that our methods can readily be extended so as to apply to r-regular bipartite
graphs, or indeed multipartite graphs, of large girth. Most of the technical results would go
through with little effort. In particular, the sharp concentration result via switchings in the
proof of Theorem 6.4 is easily modified appropriately.

A general open problem is to determine how much the definition of local deletion algo-
rithms can be relaxed, without losing the connection between random regular graphs and
regular graphs of large girth.
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[18] P. Erdős, Graph theory and probability, Canadian Journal of Mathematics 11 (1959),
34–38.

[19] D. Gamarnik and D.A. Goldberg, Randomized greedy algorithms for independent sets
and matchings in regular graphs: exact results and finite girth corrections, Combin.
Probab. Comput. 19(1) (2010), 61–85.

[20] D. Gamarnik and M. Sudan, Limits of local algorithms over sparse random graphs,
http://arxiv.org/abs/1304.1831.

[21] H. Hatami, L. Lovász and B. Szegedy, Limits of local-global convergent graph sequences,
http://arxiv.org/abs/1205.4356.

[22] G. Hopkins and W. Staton, Girth and independence ratio. Canadian Mathematical
Bulletin 25:179–186, 1982.

[23] C. Hoppen, Properties of graphs with large girth, Doctoral thesis, University of Waterloo,
2008.

[24] C. Hoppen, The analysis of a prioritised probabilistic algorithm to find a large induced
forest in regular graphs with large girth, In: A of A’10 - 21st International Meeting
on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algo-
rithms, 2010, Vienna, Austria. Discrete Mathematics and Theoretical Computer Science
1 (2010), 375–388.

[25] C. Hoppen, Large induced forests in regular graphs with large girth, preprint.

[26] C. Hoppen and N. Wormald, Induced forests in regular graphs with large girth, Com-
binatorics, Probability and Computing 17(3) (2008), 389–410.

[27] W. Hurewicz, Lectures on Ordinary Differential Equations, MIT Press, 1958.

56



[28] A. Johansson, Asymptotic choice number for triangle-free graphs, DIMACS Tech. Report
19-5 (1996).
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