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Abstract

We prove a version of the Cauchy-Davenport theorem for general lin-
ear maps. For subsets A,B of the finite field Fp, the classical Cauchy-
Davenport theorem gives a lower bound for the size of the sumset A+B

in terms of the sizes of the sets A and B. Our theorem considers a general
linear map L : Fn

p → F
m

p , and subsets A1, . . . , An ⊆ Fp, and gives a lower
bound on the size of L(A1 × A2 × . . . × An) in terms of the sizes of the
sets A1, . . . , An.

Our proof uses Alon’s Combinatorial Nullstellensatz and a variation
of the polynomial method.

1 Introduction

Let p be a prime, and let Fp denote the finite field of integers modulo p. The
classical Cauchy-Davenport theorem states that if A,B ⊆ Fp, then the sumset
A+B (defined to equal {a+b | a ∈ A, b ∈ B}) satisfies the inequality: |A+B| ≥
|A|+ |B| − 1, provided p ≥ |A|+ |B| − 1. It is instructive to compare this with
the elementary inequality |A+B| ≥ |A|+ |B|−1 for A,B ⊆ R (this has a simple
proof using the natural order on R). The Cauchy-Davenport theorem says that
this inequality continues to hold mod p, for p large enough.

The Cauchy-Davenport theorem can be seen as a statement about the size
of the image of the product set A × B under the the map + : Fp × Fp → Fp.
Here we study a similar phenomenon for general linear maps. Let L : Fn

p → F
m
p

be an Fp-linear map. For subsets A1, . . . , An ⊆ Fp, we define

L(A1, . . . , An) = {L(a1, . . . , an) | ai ∈ Ai for each i}.

(Equivalently, this is the image of A1 × A2 × . . . × An under L.) We are
interested in a Cauchy-Davenport theorem for L: given integers k1, . . . , kn,
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what is the minimum possible size, over subsets Ai ⊆ Fp with |Ai| = ki, of
|L(A1, . . . , An)|? This question is already interesting for the map L∗ : F3

p → F
2
p,

given by L(x, y, z) = (x+ y, x+ z).
Our main theorem, Theorem 2.2, gives a lower bound on the size of L(A1, . . . , An).

For now we just state an interesting special case of this theorem, where all the
|Ai| = k. While the bound itself is quite complex, the bound (surprisingly)
turns out to be tight for every linear map L when m = n− 1.

Theorem 1.1. Let m < n, and let L : Fn
p → F

m
p be a linear map with rank m.

Let v be a nonzero vector in ker(L) with minimal support, and let s be the size
of its support. Let k be an integer with p ≥ 2k − 1.

Then for every A1, . . . , An ⊆ Fp, with |Ai| = k for all i ≤ n, we have:

|L(A1, . . . , An)| ≥ (ks − (k − 1)s) · km−s+1.

Some remarks about this theorem:

• If m = n− 1 and p ≥ 2k − 1, this lower bound is optimal for every linear
map L. See Lemma 2.3.

If m = n− 1 and p < 2k − 1, this lower bound can be violated for every
linear map L.

• If our sets are taken to be subsets of R instead of Fp, then for m = n− 1,
an identical lower bound holds for every linear map L : Rn → R

m, and
this lower bound is optimal for every L. As in the case of the Cauchy
Davenport theorem, the lower bound also has an elementary proof using
the natural order on R.

• If m is small, and k is large, then the lower bound is approximately s ·km.

Thus for the map L∗ : F3
p → F

2
p mentioned above, if p ≥ 2k − 1, then for

every three sets A1, A2, A3 with |Ai| = k, we get that

|L∗(A1, A2, A3)| ≥ k3 − (k − 1)3 = 3k2 − 3k + 1,

and this is the best bound possible in term of k.

1.1 Proof Outline

Our proof is based on the Combinatorial Nullstellensatz [1], generalizing one of
the known proofs of the Cauchy-Davenport theorem.

The Combinatorial Nullstellensatz is an algebraic statement characterizing
multivariate polynomials Q(Y1, . . . , Yn) which vanish on a given product set
A1×. . .×An as those polynomials which lie in a certain explicitly given ideal. Let
us recall the Combinatorial Nullstellensatz proof [2, 1] of the Cauchy-Davenport
theorem. For given sets A1, A2 ⊆ Fp, one wants to prove a lower bound on the
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size of the sumset C = A1 + A2. Suppose C was small. The key step of this
proof is to consider the univariate polynomial T (X) ∈ Fp[X ], given by:

T (X) =
∏

c∈C

(X − c),

and the bivariate polynomial Q(Y1, Y2) ∈ Fp[Y1, Y2] given by:

Q(Y1, Y2) = T (Y1 + Y2) =
∏

c∈C

(Y1 + Y2 − c).

Since C is small, T and Q are of low degree. By design, the polynomial Q
vanishes on every point (a1, a2) ∈ A1 × A2. Thus, by the Combinatorial Null-
stellensatz, one concludes that Q(Y1, Y2) must lie in a certain ideal. Then,
inspecting monomials and using the upper-triangular criterion for linear inde-
pendence, one shows that no low-degree polynomial of the form R(Y1 + Y2)
(with R(X) ∈ Fp[X ]) can lie this ideal. Since Q(Y1, Y2) = T (Y1 + Y2), this a
contradiction.

Our proof will follow the same high-level strategy, but with some important
differences. If L(A1, . . . , An) is small, we will find a multivariate polynomial
Q of low “complexity” which vanishes on A1 × A2 × . . .× An, and thus by the
Combinatorial Nullstellensatz, it must lie in a certain ideal I. We then use some
linear algebra arguments, along with the low complexity of Q, to show that Q
cannot lie in I, thus deriving a contradiction.

There are two new technical ingredients that enter the proof. The first in-
gredient appears in the construction of the polynomial Q. Since the range of L
is a high-dimensional vector space, there is no natural way of explictly giving
a polynomial vanishing on C = L(A1, . . . , An). Instead, we will use a dimen-
sion argument to show the existence of a suitable polynomial T (X1, . . . , Xm)
vanishing on C, and define Q(Y1, . . . , Yn) to be T (L(Y1, . . . , Yn)). The second
ingredient appears in the linear algebra argument showing that Q does not lie in
I. In order to make this argument, we will need Q to have a very special kind of
monomial structure. This monomial structure is enforced when we choose T ; it
is because of this requirement that we do not simply take T to be a low-degree
polynomial, but instead choose T from a larger space of polynomials satisfy-
ing some constraints (this is what we have termed low complexity in the above
description).

Organization of this paper In the next section we give a formal statement
of our main result. In Section 3 we prove our main result. In Section 4 we
discuss limitations of our methods to prove an optimal bound in the m < n− 1
case. We conclude with some open problems.

Notation We use [n] to denote the set {1, 2, . . . , n}. For a vector v ∈ F
n,

we define its support, denoted supp(v) to be the set of its nonzero coordinates,
namely {i ∈ [n] | vi 6= 0}. We use deg(h) to denote the total degree of a
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polynomial h, and degY (h) to denote the degree in the variable Y of the poly-
nomial h. We say a monomial M appears in a polynomial h if in the standard
representation of h as a linear combination of monomials, M has a nonzero
coefficient.

2 The main result

We first state our main theorem. It gives, for every linear map L : Fn
p → F

m
p , a

lower bound on the size of L(A1, . . . , An), in terms of the sizes of A1, . . . , An.

Definition 2.1. For a linear map L : Fn
p → F

m
p , we define the support-kernel

of L to be the set:

suppker(L) = {S ⊆ [n] | ∃v ∈ ker(L), v 6= 0, with supp(v) = S}.

Theorem 2.2. Let p be prime. Let n ≥ 2 be an integer. Let m < n.
Let L : Fn

p → F
m
p be a linear map of rank m. Let S be a minimal element of

suppker(L). Let S′ be a maximal subset of [n]\S such that 2S
′∪S ∩ suppker(L) =

{S}.
Let 1 ≤ k1, . . . , kn ≤ p. Let kmax = maxi∈S ki and kmin = mini∈S ki.

Suppose p ≥ kmax + kmin − 1.
Define

λ =

((

∏

i∈S

ki

)

−

(

∏

i∈S

(ki − 1)

))

·

(

∏

i∈S′

ki

)

.

Then for every A1, . . . , An ⊆ Fp with |Ai| = ki, we have:

|L(A1, . . . , An)| ≥ λ.

Taking all the ki to equal k, and observing that S′ has size m + 1 − s, we
get the theorem stated in the introduction.

The following lemma shows that when m = n− 1, and |A1| = |A2| = . . . =
|An|, then the above lower bound is the best possible.

Lemma 2.3. Let p be prime. Let n ≥ 2 be an integer. Let m = n− 1.
Let L : Fn

p → F
m
p be a linear map of rank m. Let S ⊆ [n] be the unique

element of suppker(L). Let S′ = [n]\S, and observe that 2S
′∪S∩suppker(L) = S.

Let k1 = k2 = . . . = kn = k.
Define

λ =

((

∏

i∈S

ki

)

−

(

∏

i∈S

(ki − 1)

))

·

(

∏

i∈S′

ki

)

.

Then:

1. If p ≥ 2k − 1, there exist A1, . . . , An ⊆ Fp with |Ai| = ki, such that:

|L(A1, . . . , An)| = λ.

2. If p < 2k − 1, there exist A1, . . . , An ⊆ Fp with |Ai| = ki, such that:

|L(A1, . . . , An)| < λ.

4



3 Proof of the main theorem

For a linear map L : Fn
p → F

m
p and integers k1, . . . , kn, define:

µ(L, k1, . . . , kn)
def
= min

A1,A2,...,An⊆Fp

|Ai|=ki

|L(A1, . . . , An)|.

The proof of the main theorem, Theorem 2.2 has two steps. The first step
performs elementary operations on the linear map L to bring it into a simple
form, while preserving the value of µ(L, k1, . . . , kn). The second step applies the
polynomial method to give a lower bound on µ(L, k1, . . . , kn) for these simple
L. The allowable operations to simplify the linear map are listed in Lemma 3.1
and the lower bound for the simpler map is the subject of Theorem 3.2.

Lemma 3.1. Let L : Fn
p → F

m
p be a linear map, and let 1 ≤ k1, . . . , kn ≤ p.

1. Let L′ : Fm
p → F

m
p be a full rank linear transformation. Then µ(L, k1, . . . , kn) =

µ(L′ ◦ L, k1, . . . , kn).

2. Let L′′ : Fn
p → F

n
p be a linear map whose matrix is a diagonal matrix with

all diagonal entries nonzero. Then µ(L, k1, . . . , kn) = µ(L◦L′′, k1, . . . , kn).

3. Let π : [n] → [n] be a permutation. Let Lπ : F
n
p → F

n
p be the linear

map that permutes coordinates according to π (i.e.; Lπ(ei) = eπ(i)). Then
µ(L, k1, . . . , kn) = µ(L ◦ Lπ, kπ−1(1), . . . , kπ−1(n)).

Proof. 1. L′ is an isomorphism, so

|L′ ◦ L(A1, . . . , An)| = |L(A1, . . . , An)|.

Taking the minimum over the choices of the sets Ai, i ∈ [n], we get
µ(L, k1, . . . , kn) = µ(L′ ◦ L, k1, . . . , kn).

2. Applying L′′ to (A1, . . . , An) simply scales the set Ai by a factor of L′′
i,i.

In particular, L′′ preserves the sizes of the sets. So we have:

|L ◦ L′′(A1, . . . , An)| = |L(L′′
1,1A1, . . . , L

′′
n,nAn)| ≥ µ(L, k1, . . . , kn).

Taking the minimum over the choices of the sets Ai, i ∈ [n], we get µ(L ◦
L′′, k1, . . . , kn) ≥ µ(L′ ◦ L, k1, . . . , kn).

For the other direction, observe that any scaling is reversible by an inverse
scaling:

|L(A1, . . . , An)| = |L ◦ L′′(
1

L′′
1,1

A1, . . . ,
1

L′′
n,n

An)| ≥ µ(L ◦ L′′, k1, . . . , kn).

Taking the minimum over the Ai, i ∈ [n] gives the reverse inequality.
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3. Lπ permutes the indices of the sets, and so permutes the sizes of the sets.
Taking this into account, the size of the image should remain the same:

|L ◦ Lπ(Aπ−1(1), . . . , Aπ−1(n))| = |L(A1, . . . , An)| ≥ µ(L, k1, . . . , kn),

|L(A1, . . . , An)| = |L ◦ Lπ(Aπ−1(1), . . . , Aπ−1(n))|

≥ µ(L ◦ Lπ, kπ−1(1), . . . , kπ−1(n)).

Taking the minimum over the Ai, i ∈ [n] gives both directions of the
inequality.

Theorem 3.2. Let p be prime. Let m ≥ 1 be an integer.
Let U1, U2, . . . , Um, V ⊆ Fp be subsets of size |Ui| = ki for 1 ≤ i ≤ m, and

|V | = k̂. Suppose p ≥ k̂ + ki − 1 for each i.
Let

C = {(u1 + v, u2 + v, . . . , um + v)|ui ∈ Ui for each i, v ∈ V }.

Then

|C| ≥ k̂ ·

m
∏

i=1

ki − (k̂ − 1) ·

m
∏

i=1

(ki − 1).

3.1 Preliminaries: multivariate polynomials and Combi-

natorial Nullstellensatz

In preparation for our proof of Theorem 3.2, we recall the statement of the
Combinatorial Nullstellensatz, along with some important facts about reducing
multivariate polynomials modulo ideals of the kind that arise in the Combina-
torial Nullstellensatz.

Lemma 3.3 (Combinatorial Nullstellensatz [1]). Let F be a field, and let A1, . . . , An ⊆

F. For i ∈ [n], let Pi(T ) ∈ F[T ] be given by Pi(T ) =
∏

α∈Ai

(T − α).

Let h(Y1, . . . , Yn) ∈ F[Y1, . . . , Yn]. Then h(Y1, . . . , Yn) vanishes on A1× . . .×
An if and only if h lies in the ideal generated by P1(Y1), P2(Y2), . . . , Pn(Yn).

Now let P1(T ), . . . , Pn(T ) ∈ F[T ] be polynomials, with deg(Pi) = ki. Let I
be the ideal generated by 〈Pi(Yi)〉i∈[n].

Given this setup, we now discuss the operation of reducing a polynomial
mod I. A monomial

∏n
i=1 Y

ei
i is called legal for I if ei < ki for each i ∈ [n].

Given a polynomial h, there is a canonical reduction mod I, denoted h, with
the property that h ≡ h mod I, and that every monomial appearing in the
expansion of h is legal for I (equivalently, for each i we have degYi

(h) < ki).
This canonical reduction can be obtained as follows. Reducing a polynomial
mod Pi(Yi) = Y ki

i −
∑ki−1

j=0 ajY
j
i is simply the act of repeatedly replacing every

occurrence of Y ki

i with
∑ki−1

j=0 ajY
j
i , until the Yi degree is less than ki. Reducing
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the polynomial h mod Pi(Yi) in succession for each i ∈ [n] gives the canonical
reduction h.

Here are some important (and easy to verify) points about canonical reduc-
tion:

1. h ∈ I if and only if h = 0.

2. The map h 7→ h is F-linear.

It will be important for us to understand the degrees of the monomials in

h. Let M =

n
∏

i=1

Y ei
i be a monomial, and consider its reduction M mod I. If

ei < ki for each i ∈ [n], then we have M = M. Furthermore, if there is some
ei ≥ ki, then degM < deg(M). This is because the act of replacing Y ki

i with
a lower degree polynomial in Yi strictly decreases the degree. Combining these
two facts, we get the following fact.

Fact 3.4. With notation as above, let h(Y1, . . . , Yn) ∈ F[Y1, . . . , Yn]. Suppose
M is a monomial that (1) appears in h, (2) has deg(M) = deg(h), and (3) is
legal for I.

Then M appears in the canonical reduction h.

This is because M = M, and the canonical reductions of the other mono-
mials will have smaller degree than M, and will therefore leave M untouched.

Very similar considerations give us the following related fact.

Fact 3.5. With notation as above, let h(Y1, . . . , Yn) ∈ F[Y1, . . . , Yn]. Suppose
M is a monomial that (1) appears in h, (2) has deg(M) = deg(h), and (3) is
legal for I.

Then M appears in h.

3.2 Correlated sumsets and the polynomial method

We now prove Theorem 3.2.

Proof. We begin by defining some sets of monomials which will be useful to us.
In the polynomial ring Fp[Y1, . . . , Ym, Z], consider the following set of mono-

mials:

Γ = {Y e1
1 Y e2

2 · · ·Y em
m Ze|0 ≤ ei ≤ ki − 1 for each i, and 0 ≤ e ≤ k̂ − 1,

and e > 0 ⇒ ei = ki − 1 for some i}.

We will also consider the polynomial ring Fp[X1, . . . , Xm]. To each monomial
M(Y1, . . . , Ym, Z) ∈ Γ, we associate a monomial φ(M) ∈ Fp[X1, . . . , Xm] as
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follows. If M(Y1, . . . , Ym, Z) = Y e1
1 Y e2

2 · · ·Y em
m Ze, then define:

φ(M) =































m
∏

i=1

Xei
i if e = 0

(

m
∏

i=1

Xei
i

)

·Xe
j if e > 0, where j is the first index

so that ej = kj − 1.

Let ∆ = {φ(M) | M ∈ Γ} be the set of all such monomials constructed in
this way.

Note that φ is a bijection, and φ preserves the degree of each monomial.
Thus, φ also gives a bijection when we restrict to monomials in Γ and ∆ of fixed
total degree. We defined φ so that φ−1 would have the following description:
Let X

f1
1 X

f2
2 · · ·Xfm

m ∈ ∆. Let ei = min{fi, ki − 1} for each i ∈ [m]. Let

e =

m
∑

i=1

fi −

m
∑

i=1

ei. Then

φ−1(Xf1
1 X

f2
2 · · ·Xfm

m ) = Y e1
1 Y e2

2 · · ·Y em
m · Ze.

Note that by choice of e, φ−1 preserves degree.
With these definitions in hand, we proceed with the main parts of the proof.

Interpolating a polynomial

Suppose for contradiction that |C| < k̂ ·

(

m
∏

i=1

ki

)

− (k̂ − 1) ·

(

m
∏

i=1

(ki − 1)

)

.

Since |∆| = |Γ| = k̂ ·

m
∏

i=1

ki − (k̂− 1) ·

m
∏

i=1

(ki − 1), there is a non-zero polynomial

f(X1, . . . , Xm) =
∑

K∈∆

cKK(X1, . . . , Xm) which vanishes on C. By the definition

of C, this means that g(Y1, . . . , Ym, Z)
def
= f(Y1 + Z, . . . , Ym + Z) is a non-zero

polynomial vanishing on every point (u1, u2, . . . , um, v) ∈

m
∏

i=1

Ui × V .

Application of the Combinatorial Nullstellensatz

For each 1 ≤ i ≤ m, let Pi(Yi) =
∏

a∈Ui

(Yi − a). Also let P (Z) =
∏

a∈V

(Z − a).

By the Combinatorial Nullstellensatz,

g(Y1, . . . , Ym, Z) ≡ 0 (mod I),

where I is the ideal generated by the Pi(Yi), i ∈ [m] and P (Z).
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Explicitly, we have that:

∑

K∈∆

cKK(Y1 + Z, Y2 + Z, . . . , Ym + Z) ≡ 0 (mod I),

where at least one cK is nonzero.
Consider the canonical reduction g of g mod I: since g ∈ I we get that

g = 0. On the other hand, we have by linearity of canonical reduction:

g =
∑

K∈∆

cKK(Y1, Y2, . . . , Ym, Z),

where K(Y1, Y2, . . . , Ym, Z) is the canonical reduction mod I of K(Y1 + Z, Y2 +
Z, . . . , Ym + Z). By Fact 3.4, any monomial M that appears in the expansion
of K(Y1 +Z, Y2 +Z, . . . , Ym +Z) with deg(M) = deg(K) and is legal for I, also
appears in K(Y1, Y2, . . . , Ym, Z).

Arriving at a contradiction

We may now summarize the strategy for the rest of the proof. We will first find
an ordering of the monomials in ∆ such that:

1. If K,K′ are monomials in ∆ with deg(K′) < deg(K), then K′ is smaller
than K in the ordering.

2. For each K ∈ ∆, there is some monomial MK(Y1, . . . , Ym, Z) with the
following four properties:

(a) MK appears the expansion of K(Y1 + Z, Y2 + Z, . . . , Ym + Z),

(b) deg(MK) = deg(K),

(c) MK is legal for I,

(d) MK does not appear in the expansion ofK′(Y1+Z, Y2+Z, . . . , Ym+Z)
for any K′ ∈ ∆ smaller than K in the ordering.

Once we have such an ordering, consider the largest K in the ordering for
which cK 6= 0. By Fact 3.4, MK appears in K(Y1, . . . , Ym, Z). For every other
K′ ∈ ∆ with cK′ 6= 0, we will show that K′(Y1, . . . , Ym, Z) does not include the
monomialMK; this then shows thatMK appears in g with a nonzero coefficient,
contradicting our equation g = 0. This gives the desired contradiction.

Monomial MK does not appear in K′ (for K′ 6= K with cK′ 6= 0)

Suppose K′ ∈ ∆, K′ 6= K and cK′ 6= 0. We will show that MK does not appear
in K′. By choice of K, we have that K′ is smaller than K in the ordering, and
hence that deg(K′) ≤ deg(K).

Suppose MK appeared in K′. Then the following chain of inequalities:

deg(MK) ≤ deg(K′) ≤ deg(K′(Y1+Z, . . . , Ym+Z) ≤ deg(K′) ≤ deg(K) = deg(MK),
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(because of the equality of the endpoints, this is a chain of equalities), shows that
deg(MK) = deg(K′(Y1 + Z, . . . , Ym + Z)). Thus by Fact 3.5, we can conclude
that MK appears in K′(Y1 +Z, . . . , Ym +Z). But this contradicts the property
that MK does not appear in K′(Y1 + Z, . . . , Ym + Z) for any K′ ∈ ∆ that is
smaller than K in the ordering. Thus MK cannot appear in K′.

The ordering of ∆

All that remains now is to define the ordering of ∆, and to prove the desired
properties of this ordering.

Arrange the monomials in ∆ in order of increasing total degree. Within
each fixed total degree, order by decreasing degZ(φ

−1(K(X1, . . . , Xm))). Then
for K(X1, . . . , Xm) ∈ ∆ in that ordering, set MK = φ−1(K(X1, . . . , Xm)) =
Y e1
1 Y e2

2 · · ·Y em
m Ze. We claim that MK satisfies the four properties listed above.

(a) MK appears the expansion of K(Y1 + Z, Y2 + Z, . . . , Ym + Z):

We show that the coefficient of MK in K(Y1+Z, Y2+Z, . . . , Ym+Z) is non-

zero. By the definition of ∆, degXi
(K) ≤ k̂+ ki − 2 < p for i ∈ [m],K ∈ ∆.

Also, there is at most one i such that degXi
(K) > ki − 1. Call this index j

if it exists, and let l = degXj
(K). Since φ−1(K) extracts the largest powers

of Yi in K(Y1 + Z, Y2 +Z, . . . , Ym +Z) up to ki − 1 for i ∈ [m], we get that
the coefficient of MK is 1 if j does not exist and

(

l
kj−1

)

if j exists. In both

cases, the coefficient of MK is non-zero in Fp as l < p.

(b) deg(MK) = deg(K):

Recall that φ is a bijection from one set of monomials to another which pre-
serves the degree of the monomials. So deg(MK) = degφ−1(K(X1, . . . , Xm)) =
deg(K).

(c) MK is legal for I:

Recall that writing K = X
f1
1 X

f2
2 · · ·Xfm

m , we have

φ−1(K) = Y e1
1 Y e2

2 · · ·Y em
m · Ze,

where ei = min{fi, ki − 1} for each i ∈ [m], and e =

m
∑

i=1

fi −

m
∑

i=1

ei. So

ei ≤ ki − 1, ∀i ∈ [m]. It remains to show that e ≤ k̂ − 1. Suppose
fi ≤ ki − 1, ∀i ∈ [m]. Then ei = fi, ∀i ∈ [m] and so e = 0. Otherwise,
fi ≤ ki − 1 for all but one i ∈ [m], call this index j. We have ei = fi for
i 6= j and ej = kj − 1. So

e = fj − ej ≤ k̂ + kj − 2− (kj − 1) = k̂ − 1.

(d) MK does not appear in the expansion of K′(Y1 +Z, Y2 +Z, . . . , Ym +Z) for
any K′ ∈ ∆ smaller than K in the ordering:
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To show that the monomials selected by φ−1 do not appear in any previous
entries of the ordering, first note that the degree of MK is too large to have
appeared in any previous K′ ∈ ∆ of lower total degree. Next, consider the
expansion of a previous K′(Y1+Z, Y2+Z, . . . , Ym+Z) in the ordering of the

same total degree, then MK′ = φ−1(K′(X1, . . . , Xm)) = Y
e′
1

1 Y
e′
2

2 · · ·Y
e′n
m Ze′

must have e′i < ei ≤ ki − 1 for some i ∈ [m], as e′ ≥ e. By the way φ is
defined, this means that degXi

(K′) = e′i, so degYi
(K′(Y1+Z, Y2+Z, . . . , Ym+

Z)) = e′i. But degYi
(MK) = ei > e′i. So MK cannot be a monomial in the

expansion of K′(Y1 + Z, Y2 + Z, . . . , Ym + Z).

This completes the proof that the ordering of ∆ has the desired properties,
and hence we arrive at a contradiction.

Thus we must have that |C| ≥ k̂ ·

(

m
∏

i=1

ki

)

− (k̂ − 1) ·

(

m
∏

i=1

(ki − 1)

)

.

3.3 Proving the main result

We now combine Lemma 3.1 and Theorem 3.2 to prove our main theorem,
Theorem 2.2.

Proof of Theorem 2.2:
By basic linear algebra, we have that |S| ≤ m+ 1, and |S ∪ S′| = m+ 1.
We first get rid of the coordinates in [n] \ (S ∪ S′). Observe that taking

away elements from any of the sets Ai cannot increase the size of the image

|L(A1, . . . , An)|. Let a ∈
∏

i∈[n]\(S∪S′)

Ai. Fix the coordinates in [n] \ (S ∪ S′) to

a and consider the resulting map M : Fm+1
p → F

m
p (i.e., M(x) = L(x, a)). If

L′ : Fm+1
p → F

m
p is the linear map obtained by restricting the coordinates of

[n] \ (S ∪ S′) to 0, then the image L′

(

∏

i∈S∪S′

Ai

)

is a translate of the image of

M

(

∏

i∈S∪S′

Ai

)

. So we have:

|L(A1, . . . , An)| ≥

∣

∣

∣

∣

∣

M

(

∏

i∈S∪S′

Ai

)∣

∣

∣

∣

∣

= L′

(

∏

i∈S∪S′

Ai

)

.

Then a lower bound on L′

(

∏

i∈S∪S′

Ai

)

gives a lower bound on |L(A1, . . . , An)|.

The next step is to use the simple transformations in Lemma 3.1 to greatly
simplify our linear map L′, while preserving µ(L, k1, . . . , kn). The transforma-
tions allow us to apply elementary row operations on L′, scale the columns of
L′, and rearrange the columns of L′.

As L′ has rankm, ker(L′) has rank 1. Consider a nonzero vector v ∈ ker(L′).
Then S must be the support of v. Let î be the index in S that minimizes ki,
i.e. î = argmini∈S ki.

11



With the above row and column operations at our disposal, we perform the
following reduction of the problem. First, permute the columns so that the
columns with indices in S are on the left and move column î so that it is the
first column. Then the last m columns are now linearly independent. This is
because if they were linearly dependent, there would be a nonzero vector in the
kernel of L whose support does not include î. So there would be two nonzero
vectors in ker(L) with different supports, which is impossible. Next, apply the
sequence of elementary row operations that turns the last m columns into the
identity matrix. Scale each row so that the first element is either 0 or 1. Finally,
scale each of the last m columns so that they again form the identity matrix.
We are left with a column of 1’s and 0’s followed by the m by m identity matrix.
We will call this matrix L̂′, the reduction of L′.

L̂′ =





















1
...
1 Im
0
...
0





















.

Considering the projection P of the image of L̂′(
∏

i∈S Ai,
∏

i∈S′ Ai) onto the
first |S|−1 coordinates, we find ourselves in the setting of Theorem 3.2. Letting
U = Aî, and {V1, . . . , V|S|−1} = {Ai | i ∈ S − {î}}, Theorem 3.2 tells us that

|P | ≥
∏

i∈S

ki −
∏

i∈S

(ki − 1).

Finally, note that as a′ varies in the set
∏

i∈S′ Ai, the sets L̂′(U, V1, . . . , V|S|−1, a
′)

are all translates of P and are disjoint (the disjointness follows from the fact
that suppker(L) ∩ 2S∪S′

= {S}). Hence, the total size of the image of L̂′ is at
least |P | ·

∏

i∈S′ |Ai|, which is at least:

((

∏

i∈S

ki

)

−

(

∏

i∈S

(ki − 1)

))

·

(

∏

i∈S′

ki

)

,

as desired.

Proof of Lemma 2.3:
We first provide a tight example for our lower bound when p ≥ 2k−1. Using

the same transformations as above, we produce the simple linear transformation
L̂ from L. Lemma 3.1 implies that providing a tight example for L̂ implies the
existence of a tight example for L. We claim that setting Ai = {0, . . . , ki − 1}
attains the smallest possible image size

(
∏

i∈S ki −
∏

i∈S(ki − 1)
)

·
∏

i∈S′ ki.
As before, every choice of a ∈

∏

i/∈S Ai yields |P | distinct points in the image

of L̂, where P is the projection of L̂(
∏

i∈S Ai,
∏

i∈S′ Ai) onto the first |S| − 1

12



coordinates. So it suffices to show that |P | ≥
(
∏

i∈S ki −
∏

i∈S(ki − 1)
)

. This
is equivalent to showing that equality is attained in Theorem 3.2 when the sets
are all taken to be intervals starting from 0.

Suppose we have sets Ui = {0, . . . , ki−1}, i ∈ [m] and V = {0, . . . , k̂−1}. We
want to show that C = {(u1+v, u2+v, . . . , um+v)|ui ∈ Ui for each i ∈ [m], v ∈

V } has size exactly equal to k̂ ·

m
∏

i=1

ki−(k̂−1)·

m
∏

i=1

(ki−1) as long as p ≥ k̂+ki−1.

In particular, this will give a tight example when the set sizes are all the same.
Let Cj = {(u1+j, u2+j, . . . , um+j)|ui ∈ Ui for each i ∈ [m]}, j = 0, . . . , k̂−

1. Then C =
⋃k̂−1

j=0 Cj . We start with |C0| =

m
∏

i=1

ki, and ask how many addi-

tional elements we add when we take the union with C1:

|C1 − C0| = |C1| − |C1 ∩C0|

=

m
∏

i=1

ki −

m
∏

i=1

(ki − 1).

Since p ≥ k̂ + ki − 1, none of the sums that we take exceed p − 1, so we

will continue to add

m
∏

i=1

ki −

m
∏

i=1

(ki − 1) for each successive Cj . Total this gives

m
∏

i=1

ki + (k̂ − 1) ·

(

m
∏

i=1

ki −

m
∏

i=1

(ki − 1)

)

, which is equal to k̂ ·

m
∏

i=1

ki − (k̂ − 1) ·

m
∏

i=1

(ki − 1).

We now show that the lower bound is not tight when p < 2k − 1. In fact,
the same example of taking the sets to be intervals will produce an image whose
size is strictly smaller than our lower bound. Let Ui = {0, . . . , k − 1}, i ∈ [m]
and V = {0, . . . , k − 1} in the statement of Theorem 3.2. We want to show
that C = {(u1 + v, u2 + v, . . . , um + v)|ui ∈ Ui for each i ∈ [m], v ∈ V } has size
strictly less than km+1 − (k − 1)m+1.

As before, let Cj = {(u1+j, u2+j, . . . , um+j)|ui ∈ Ui for each i ∈ [m]}, j =

0, . . . , k−1. Then C =
⋃k−1

j=0 Cj . Note that the element (k−1+p−k+1, . . . , k−
1+ p− k+1, k− 1+ p− k+1) = (0, . . . , 0) ∈ Cp−k+1 is in C0. But this was one
of the “new” elements of Cp−k+1 that we counted in the argument for the tight
example, which was previously not in any of the Ci, for i < p− k + 1. Hence,
the number km+1 − (k− 1)m+1 is a strict overcount for the number of elements
in the image.
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4 Linear maps of smaller rank

Our lower bound in the general case n > m−1 is not tight for every linear map.
The main reason for this is that our proof strategy only uses information about
the support of vectors in the kernel of L (and not the actual vectors). As the
following example shows, ifm < n−1 the optimal lower bound for L(A1, . . . , An)
may not be determined solely be the set of all supports of vectors in ker(L).

Example 4.1. Let p be a large prime, and let k ≪ p. Consider the following
2× 4 matrices over Fp:

M =

[

1 0 2 1
0 1 1 2

]

,

M ′ =

[

1 0 100 1
0 1 1 100

]

.

Define L : F4
p → F

2
p and L′ : F4

p → F
2
p by L(x) = Mx and L′(x) = M ′x.

Observe that suppker(L) and suppker(L′) both equal
(

[4]
≥3

)

.

Letting A1, A2, A3, A4 = {1, 2, . . . , k} ⊆ Fp, then |L(A1, A2, A3, A4)| ≤ 16k2.
In contrast, we will show in Lemma 4.3 that |L′(A′

1, A
′
2, A

′
3, A

′
4)| ≥ 100k2,

for any k-elements sets A′
1, A

′
2, A

′
3, A

′
4 ⊆ Fp,

Our analysis of this example will use some results on “sums of dilates”. For
a constant λ and a set A, we define the dilate λA denote the set {λa | a ∈ A}.
We will use the following result of Pontiveros [4] (which builds on a beautiful
result of Bukh [3]) on sums of dilates in Zp.

Lemma 4.2. For every coprime λ1, · · · , λn ∈ Z, there exists a constant α > 0
such that |λ1X+λ2X+ · · ·+λnX | ≥

(
∑

λi

)

· |X |−o(|X |), for sufficiently large
prime p, and every X ⊆ Zp, with |X | ≤ αp.

We use this estimate on the size of the sum of dilates, to construct linear
maps with arbitrarily large image.

Lemma 4.3. For every positive integer constant c, there is a linear map L :
F
4
p → F

2
p such that for every A1, A2, A3, A4 ⊆ Fp with |Ai| = k, and any prime

p sufficiently larger than k, we have:

L(A1, A2, A3, A4) ≥ ck2.

Proof. Consider the linear map

L(A1, A2, A3, A4) = {(a1+c·a3+a4, a2+a3+c·a4)| (a1, a2, a3, a4) ∈ A1×A2×A3×A4}

and let A1, A2, A3, A4 ⊆ Fp be any k-elements sets.
By Ruzsa triangle inequality [5],

|A4 + c2A4| ≤
|A4 + cA3| |cA3 + c2A4|

|cA3|
=

|A4 + cA3| |A3 + cA4|

|A3|
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From Lemma 4.2 we know that |A4+ c2A4| ≥ c2|A4|, assuming p sufficiently
larger than k = |A4|.

Hence |A4 + cA3| · |A3 + cA4| ≥ c2|A4||A3| = c2k2.
Without loss of generality, assume that |A3 + cA4| ≥ ck.
In particular, fixing a2 ∈ A2, and an element (a3 + c · a4) ∈ A3 + cA4, the

subset {(a1+(c·a3+a4), a2+a3+c·a4)|a1 ∈ A1} has at least k elements, all with
the same second coordinate. Therefore holding some element a2 ∈ A2 fixed, and
letting a3 ∈ A3, a4 ∈ A4 be any elements, we obtain |A3 + cA4| distinct second
coordinates, and so

|{(a1 + c · a3 + a4, a2 + a3 + c · a4)}|a1 ∈ A1, a3 ∈ A3, a4 ∈ A4}| ≥ ck2

We conclude that |L(A1, A2, A3, A4)| ≥ ck2.

5 Questions

We conclude with some interesting open questions.

1. The main open question is to obtain the best bound for the Cauchy-
Davenport problem for every linear map.

2. Even for the case m = n− 1 and all the ki equal to k, we do not know the
optimal bound for the Cauchy-Davenport problem when p < 2k − 1. Our
method can be extended to give a better bound, but we believe that this
is not the optimal bound.

3. What can be said about the “symmetric” Cauchy-Davenport problem:
what is smallest possible size of L(A,A, . . . , A) over all sets A with |A| =
k? This seems to be closely related to the theory of sums of dilates.

4. Even over R, finding the optimal bound for the Cauchy-Davenport prob-
lem for every linear map seems nontrivial.

5. It will be interesting to study analogues of other theorems of additive
combinatorics in the setting of linear maps.
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