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Inverses of Bipartite Graphs

Yujun Yang∗ and Dong Ye†

Abstract

Let G be a bipartite graph and its adjacency matrix A. If G has a unique perfect matching,

then A has an inverse A
−1 which is a symmetric integral matrix, and hence the adjacency matrix

of a multigraph. The inverses of bipartite graphs with unique perfect matchings have a strong

connection to Möbius functions of posets. In this note, we characterize all bipartite graphs with a

unique perfect matching whose adjacency matrices have inverses diagonally similar to non-negative

matrices, which settles an open problem of Godsil on inverses of bipartite graphs in [Godsil, Inverses

of Trees, Combinatorica 5 (1985) 33-39].

1 Introduction

Throughout the paper, a graph means a simple graph (no loops and parallel edges). If parallel edges and

loops are allowed, we use multigraph instead. Let G be a bipartite graph with bipartition (R,C). The

adjacency matrix A of G is defined such that the ij-entry (A)ij = 1 if ij ∈ E(G), and 0 otherwise. The

bipartite adjacency matrix B of G is defined as the ij-entry (B)ij = (A)ij = 1 for i ∈ R and j ∈ C. So B

is an |R| × |C|-matrix and

A =

[

0 B

B
⊺ 0

]

.

A perfect matching M of G is a set of disjoint edges covering all vertices of G. If a bipartite graph G

has a perfect matching, then its bipartite adjacency matrix B is a square matrix. Godsil proved that if

a bipartite graph G has a unique perfect matching, then B is similar to a lower triangular matrix with

all diagonal entries equal to 1 by permuting rows and columns ([5], see also [15]). So in the following, we

always assume that the bipartite adjacency matrix of a bipartite graph with a unique perfect matching

is a lower triangular matrix. Clearly, B is invertible and its inverse is an integral matrix (cf. [5, 17]).

If B−1 is non-negative (i.e. all entries are non-negative), then it is the bipartite adjacency matrix of

another bipartite multigraph: the ij-entry is the number of edges joining the vertices i and j. However,

the adjacency matrix of a graph G has a non-negative inverse if and only if the graph G is the disjoint

union of K2’s and K1’s (cf. Lemma 1.1 in [13], and [9]).

The inverse of B is diagonally similar to a non-negative integral matrix B
+ if there exists a diagonal

matrix D with -1 and 1 on its diagonal such that DB−1
D = B

+. So B
+ is a bipartite adjacency matrix
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of a bipartite multigraph that is called the inverse of the bipartite graph G in [5] (a broad definition of

graph inverse is given in the next section). The following is a problem raised by Godsil in [5] which is

still open [6].

Problem 1.1 (Godsil, [5]). Characterize the bipartite graphs with unique perfect matchings such that

B
−1 is diagonally similar to a non-negative matrix.

Figure 1: A bipartite graph with a unique perfect matching (left) and its corresponding digraph (right).

The bipartite graphs with unique perfect matchings are of particular interest because of the combi-

natorial interest of their inverses (cf. [5, 12]). Let G be a bipartite graph with a unique perfect matching

M , and (R,C) be the bipartition of G. Let D be the digraph obtained from G by orienting all edges

from R to C and then contracting all edges in M . Simion and Cao proved that the digraph D is acyclic

([15]). For example, see Figure 1. The acyclic digraph D corresponds to a poset (P ,≤) such that for

ai, aj ∈ P = V (D), there is a directed path from aj to ai in D if and only if ai ≤ aj in P . The Zeta

matrix Z of P is defined as follows (cf. Chapter 4 in [1])

(Z)ij :=

{

1 if ai ≤ aj;

0 otherwise,

The modified Zeta matrix Z(x) of P is obtained by replacing the entry 1 by a variable x for a comparable

pair of P which is not an arc of the digraph D. Then Z(1) = Z the Zeta matrix of P , and Z(0) = B

the bipartite adjacency matrix of G. Note that Z(0) is the adjacency matrix of D and Z(1) is the

adjacency matrix of the transitive closure of D. The Möbius function on the interval of [ai, aj ] in P is

µ(ai, aj) = (Z−1)ij (see Ex. 22 in Chapter 2 of Lovász on page 216 in [11]), and Z
−1 is the Möbius

matrix of (P ,≤). On the other hand, the Zeta matrix of a poset (P ,≤) is a lower triangular matrix,

corresponding to a bipartite adjacency matrix of a bipartite graph with a unique perfect matching. This

sets up a connection between inverses of bipartite graphs with unique perfect matchings and Möbius

functions of posets.

As observed in [5], if (P ,≤) is a geometric lattice (a finite matroid lattice [16]) or the face-lattice of

a convex polytope [2]), then the Möbius matrix of P is diagonally similar to a non-negative matrix (cf.

Corollary 4.34 in [1]). Godsil [5] proved that if G is a tree with a perfect matching, then the inverse of

its adjacency matrix is diagonally similar to a non-negative matrix. Further, it has been observed that if

G and H are two bipartite graphs with the property stated in Problem 1.1, then the Kronecker product

G⊗H is again a bipartite graph with the property [5]. The following is a partial solution to Problem 1.1.

Theorem 1.2 (Godsil, [5]). Let G be a bipartite graph with a unique perfect matching M such that G/M

is bipartite. Then B
−1 is diagonally similar to a non-negative matrix.
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Godsil’s result was generalized to weighted bipartite graphs with unique perfect matchings by Panda

and Pati in [14]. In this paper, we provide a solution to Problem 1.1 as follows.

Theorem 1.3. Let G be a bipartite graph with a unique perfect matching M . Then B
−1 is diagonally

similar to a non-negative matrix if and only if G does not contain an odd flower as a subgraph.

To define odd flower, we need more notation. Let G be a bipartite multigraph with a perfect matching

M . A path P of G is M -alternating if E(P )∩M is a perfect matching of P . For two vertices i and j of G,

let τ(i, j) be the number of M -alternating paths of G joining i and j. Further, let τo(i, j) be the number

of M -alternating paths P of G joining i and j such that
∣

∣E(P )\M
∣

∣ is odd, and τe(i, j) be the number

of M -alternating paths P joining i and j such that
∣

∣E(P )\M
∣

∣ is even. For a subset S = {x1, x2, ...xk}

of V (G), the M -span of S is defined as a subgraph of G consisting of all M -alternating paths joining xi

and xj for any xi, xj ∈ S, denoted by SpanM (S). An M -span is called a flower if the vertices of S can be

ordered such that τo(xi, xj) 6= τe(xi, xj) if and only if |i − j| ≡ 1 (mod k). A flower is odd if there is an

odd number of vertex pairs {xi, xj} with τo(xi, xj) > τe(xi, xj). For example, see Figure 2. In Section 4,

it will be shown that the existence of an odd flower means simply that the vertices in S induce a cycle

with an odd number of negative edges in the inverse of G.

Figure 2: An odd flower: thick edges form a perfect matching M .

2 Inverses of weighted graphs

A weighted multigraph (G,w) is a multigraph with a weight-function w : E(G) → F\{0} where F is a

field. We always assume that a weighted multigraph has no parallel edges since all parallel edges e1, ..., ek

joining a pair of vertices i and j can be replaced by one edge ij with weight w(ij) =
∑

w(ei). The

adjacency matrix of a weighted multigraph (G,w), denoted by Aw, is defined as

(Aw)ij :=

{

w(ij) if ij ∈ E(G);

0 otherwise

where loops, with w(ii) 6= 0, are allowed. A weighted multigraph (G,w) is invertible over F if its adjacency

matrix Aw is invertible over F. Note that Aw is a symmetric matrix. Its inverse A
−1
w is also symmetric

and therefore is the adjacency matrix of some weighted graph, which is called the inverse of (G,w). The

inverse of (G,w) is defined as a weighted graph (G−1, w−1) whose vertex set is V (G−1) = V (G) and

whose edge set is E(G−1) = {ij | (A−1
w )ij 6= 0}, and whose weight function is w−1(ij) = (A−1

w )ij . Note

that this definition of graph inverse is different from the definitions given in [5] and [12].
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Let G be a graph. A Sachs subgraph of G is a spanning subgraph with only copies of K2 and cycles

(including loops) as components. For example, a perfect matching M of G is a Sachs subgraph. For

convenience, a Sachs subgraph is denoted by S = C ∪M where C consists of the cycles of S (including

loops), and M consists of all components of S isomorphic to K2. The following result shows how to

compute the determinant of the adjacency matrix of a graph.

Theorem 2.1 (Harary, [8]). Let G be a graph and A be the adjacency matrix of G. Then

det(A) =
∑

S

2|C|(−1)|C|+|E(S)|,

where S = C ∪M is a Sachs subgraph.

If G is a bipartite graph with a Sachs subgraph S = C ∪M , then every cycle C in C is of even size

and hence its edge set can be decomposed into two disjoint perfect matchings of C. Therefore, G has at

least 2|C| perfect matchings. So if G is a bipartite graph with a unique perfect matching M , then M is

the unique Sachs subgraph of G. Hence we have the following corollary of the above result, which can

also be derived easily from a result of Godsil (Lemma 2.1 in [5]).

Corollary 2.2. Let G be a bipartite graph with a unique perfect matching M . Then

det(A) = (−1)|M|,

where A is the adjacency matrix of G.

By Corollary 2.2, the determinant of the adjacency matrix of a bipartite graph G with a unique perfect

matching is either 1 or −1. So a bipartite graph with a unique perfect matching is always invertible.

The inverse of a graph can be characterized in terms of its Sachs subgraphs as shown in the following

theorem, which was originally proved in [17]. However, to make the paper self-contained, we include the

proof here as well.

Theorem 2.3 ([17]). Let G be a graph with adjacency matrix A, and

Pij = {P |P is a path joining i and j 6= i such that G\V (P ) has a Sachs subgraph S}.

If G has an inverse (G−1, w), then

w(ij) =















1

det(A)

∑

P∈Pij

∑

S

2|C|(−1)|C|+|E(S)∪E(P )| if i 6= j;

1

det(A)
det(Ai,i) otherwise

where S = C ∪M is a Sachs subgraph of G\V (P ) and Ai,i is the matrix obtained by deleting i-th row and

i-th column from A.

Proof. Let G be an invertible graph and (G−1, w) be its inverse. Assume G has n vertices and V (G) =

{1, 2, ..., n}. By the definition of the inverse of a graph, w(ij) = (A−1)ij .

Note that A is symmetric and hence A
−1 is also symmetric. By Cramer’s rule,

(A−1)ij = (A−1)ji =
cij

det(A)
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where cij = (−1)i+j det(Ai,j) where Ai,j is the matrix obtained from A by deleting i-th row and j-th

column. Let Mi,j be the matrix obtained from A by replacing the (i, j)-entry by 1 and all other entries

in the i-th row and j-th column by 0. Then by the Laplace expansion, cij = det(Mi,j)

If i = j, then det(Mi,i) = det(Ai,i). So w(ii) = (A−1)ii =
cii

det(A)
=

det(Mi,i)

det(A)
=

det(Ai,i)

det(A)
. So the

theorem holds for i = j. In the following, assume that i 6= j.

Let mkl be the (k, l)-entry of Mi,j . Recall that the Leibniz formula for the determinant of Mi,j is

det(Mi,j) =
∑

π∈Sn

sgn(π)
∏

mkπ(k),

where the sum is computed over all permutations π of the set V (G) := {1, 2, ..., n}. Since all (i, l)-entries

(l 6= j) of Mi,j are equal to 0 but the (i, j)-entry is 1, only permutations π such that π(i) = j contribute

to the the determinant of Mi,j . Let Πi→j be the family of all permutations on V (G) = {1, 2, ..., n} such

that π(i) = j. Denote the cycle of π permuting i to j by πij . For convenience, πij is also used to denote

the set of vertices which corresponds to the elements in the permutation cycle πij , for example, V (G)\πij

denotes the set of vertices in V (G) but not in πij . Denote the permutation of π restricted on V (G)\πij

by π\πij . Then

det(Mi,j) =
∑

π∈Πi→j

sgn(π)
∏

k∈V (G)\{i}

mkπ(k)

=
∑

π∈Πi→j

(

sgn(πij)
∏

k∈πij\{i}

mkπ(k)

) (

sgn(π\πij)
∏

k∈V (G)\πij

mkπ(k)

)

.

By the definition of Mi,j , if k 6= i or l 6= j, then mkl = (A)kl, the (k, l)-entry of A.

If the permutation cycle πij does not correspond to a cycle of G, then for some k ∈ πij , kπ(k) is

not an edge of G and hence mkπ(k) = 0. So sgn(πij)
∏

k∈πij\{i}
mkπ(k) = 0. If the permutation cycle

πij does correspond to a cycle in the graph G, let P be the path from j to i following the permutation

order in πij . Then sgn(πij)
∏

k∈πij\{i}
mkπ(k) = (−1)|E(P )|. Note that sgn(π\πij)

∏

k∈V (G)\π mkπ(k) is

the determinant of the adjacency matrix of the graph G\V (P ). By Theorem 2.1, it follows that

sgn(π\πij)
∏

k∈V (G)\π

mkπ(k) =
∑

S

2|C|(−1)|C|+|E(S)|,

where S = C ∪M is a Sachs subgraph of G\V (P ). For the case that G\V (P ) has no Sachs subgraphs,

then
(

sgn(πij)
∏

k∈πij\{i}
mk,π(k)

) (

sgn(π\πij)
∏

k∈V (G)\πij
mk,π(k)

)

= 0. Hence,

det(Mi,j) =
∑

P∈Pij

(−1)|E(P )|
(

∑

S

2|C|(−1)|C|+|E(S)|
)

=
∑

P∈Pij

∑

S

2|C|(−1)|C|+|E(S)∪E(P )|,

where S = C ∪ M is a Sachs subgraph of G\V (P ). The theorem follows immediately from w(ij) =
det(Mi,j)

det(A)
. This completes the proof.

For a bipartite graph G with a unique perfect matching, the weight function of its inverse (G−1, w)

can be simplified as shown below.

Theorem 2.4. Let G be a bipartite graph with a unique perfect matching M , and let

Pij = {P |P is an M -alternating path joining i and j}.
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Then G has an inverse (G−1, w) such that

w(ij) =











∑

P∈Pij

(−1)|E(P )\M| if i 6= j;

0 otherwise.

Proof. Let G be a bipartite graph with a unique perfect matching M . By Corollary 2.2, G has an inverse

which is a weighted graph (G−1, w).

For any two vertices i and j, let P be a path joining i and j.

Claim: G\V (P ) has a Sachs subgraph if and only if P is an M -alternating path.

Proof of Claim: If P is an M -alternating path, then G\V (P ) has a perfect matching. So G\V (P ) has

a Sachs subgraph.

Now assume that G\V (P ) has a Sachs subgraph. Note that G\V (P ) is a bipartite graph. Every cycle

of a Sachs subgraph of G\V (P ) is of even size. So G\V (P ) has a perfect matching M ′. Therefore, P is a

path with even number of vertices and has a perfect matching M ′′. Hence M ′∪M ′′ is a perfect matching

of G. Since G has a unique perfect matching, it follows that M = M ′ ∪M ′′. So P is an M -alternating

path. This completes the proof of Claim.

Let P be a path in Pij . Then G\V (P ) has a unique perfect matching M\E(P ), which is also its

unique Sachs subgraph. By Claim and Theorem 2.3, for i 6= j, we have

w(ij) = (−1)|M|
∑

P∈Pij

(−1)|(M\E(P ))∪E(P )| =
∑

P∈Pij

(−1)|E(P )\M|.

If i = j, then G\{i} has no perfect matching and hence no Sachs subgraph. By Theorem 2.1, det(Ai,i) = 0.

By Theorem 2.3, it follows that w(ii) = 0. This completes the proof.

3 Balanced weighted graphs

Let (G,w) be a weighted graph. An edge ij of a weighted graph (G,w) is positive if w(ij) > 0 and

negative if w(ij) < 0. A cycle C of (G,w) is negative if w(C) =
∏

ij∈E(C)

w(ij) < 0. A signed graph

(G, σ) is a special weighted graph with a weight function σ : E(G) → {−1,+1}, where σ is called the

signature of G (see [7]). Signed graphs are well-studied combinatorial structures due to their applications

in combinatorics, geometry and matroid theory (cf. [18, 20]).

A switching function of a weighted graph (G,w) is a function ζ : V (G) → {−1,+1}, and the switched

weight-function of w defined by ζ is wζ(ij) := ζ(i)w(ij)ζ(j). Two weight-functions w1 and w2 of a graph

G are equivalent to each other if there exists a switching function ζ such that w1 = wζ
2 . A weighted graph

(G,w) is balanced if there exists a switching function ζ such that wζ(ij) > 0 for any edge ij ∈ E(G). The

following is a characterization of balanced signed graphs obtained by Harary [7].

Proposition 3.1 ([7]). Let (G, σ) be a signed graph. Then (G, σ) is balanced if and only if V (G) has a

bipartition V1 and V2 such that E(V1, V2) = {e |e ∈ E(G) and σ(e) = −1}.

For a weighted graph (G,w), define a signed graph (G, σ) such that σ(ij)w(ij) > 0 for any edge

ij ∈ E(G). Then (G,w) is balanced if and only if (G, σ) is balanced. Therefore, the above result can be

easily extended to weighted graphs (G,w) as follows.
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Proposition 3.2. Let (G,w) be a weighted graph. Then (G,w) is balanced if and only if V (G) has a

bipartition V1 and V2 such that E(V1, V2) = {e |e ∈ E(G) and w(e) < 0}.

Remark. Let (G,w) be a weighted graph such that G is connected, and let E+ := {e | w(e) > 0}. Let

G/E+ be the graph obtained from G by contracting all edges in E+ and deleting all loops. Then by

Theorem 3.2, (G,w) is balanced if and only if G/E+ is a bipartite multigraph. Therefore, it takes O(m)

steps to determine whether a weighted graph is balanced or not, where m is the total number of edges of

G.

A direct corollary of the above theorem is the following result.

Corollary 3.3. Let (G,w) be a weighted graph. Then (G,w) is balanced if and only if it does not contain

a negative cycle.

Let (G,w) be a weighted graph and Aw be its adjacency matrix. For a switching function ζ : V (G) →

{−1,+1}, define Dζ to be a diagonal matrix with (Dζ)ii = ζ(i). Then (G,w1) is equivalent to (G,w2) if

and only if Aw1
= DζAw2

Dζ for some switching function ζ. So the adjacency matrices of two equivalent

weighted graphs are diagonally similar to each other.

Lemma 3.4. Let G be a bipartite graph with a unique perfect matching M . Then B
−1 is diagonally

similar to a non-negative matrix if and only if the inverse of G is a balanced weighted graph.

Proof. Since G is invertible, let (G−1, w) be the inverse of G by Theorem 2.4. Let A be the adjacency

matrix of G such that

A =

[

0 B

B
⊺ 0

]

,

where B is the bipartite adjacency matrix of G, which we assume without loss of generality to be a lower

triangular matrix with 1 on the diagonal. Then the inverse of A is the adjacency matrix of (G−1, w) as

follows,

A
−1 =

[

0 (B⊺)−1

B
−1 0

]

.

Note that B−1 is diagonally similar to a non-negative matrix if and only if A−1 is diagonally similar to a

non-negative matrix. In other words, if and only if there exists a diagonal matrix D with (D)ii ∈ {−1,+1}

such that DA−1
D is non-negative. Define a switching function ζ : V → {−1,+1} such that ζ(i) = (Dii).

Note that

wζ(ij) = ζ(i)w(ij)ζ(j) = ζ(i)(A−1)ijζ(j) = (DA−1
D)ij .

Hence A
−1 is diagonally similar to a non-negative matrix if and only if there exists a switching function

ζ such that wζ : E(G−1) → R
+. Let V1 = {v ∈ V |ζ(v) = 1} and V2 = {v ∈ V |ζ(v) = −1}. So

the existence of the switching function ζ is equivalent to the existence of a bipartition V1 and V2 of V

such that E(V1, V2) = {e |w(e) < 0}. By Proposition 3.2, it follows that B
−1 is diagonally similar to a

non-negative matrix if and only if (G−1, w) is balanced.

By Lemma 3.4, Godsil’s problem is equivalent to ask which bipartite graphs with unique perfect

matchings have a balanced weighted graph as its inverse.
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4 Proof of Theorem 1.3

Now, we are ready to prove our main result.

Theorem 1.3. Let G be a bipartite graph with a unique perfect matching M . Then B
−1 is diagonally

similar to a non-negative matrix if and only if G does not contain an odd flower as a subgraph.

Proof. Let G be a bipartite graph with a unique perfect matching M and B the bipartite adjacency

matrix of G. For any two vertices i and j of G, let

Pij = {P |P is an M -alternating path joining i and j}.

⇒: Assume that B−1 is diagonally similar to a non-negative matrix. We need to show that G does not

contain an odd flower. Suppose on the contrary that G does contain a vertex subset S = {x1, ..., xk} such

that SpanM (S) is an odd flower. Then all paths in Pxixi+1
belong to SpanM (S). By Theorem 2.4, G has

an inverse (G−1, w) where,

w(xixi+1) =
∑

P∈Pxixi+1

(−1)|E(P )\M|.

So w(xixi+1) ∈ Z\{0} and w(xixi+1) < 0 if and only if τo(xi, xi+1) > τe(xi, xi+1). Note that SpanM (S)

is an odd flower. So C = x1 · · ·xkx1 is a negative cycle in (G−1, w). By Corollary 3.3, (G−1, w) is not

balanced. Hence B
−1 is not diagonally similar to a non-negative matrix by Lemma 3.4, a contradiction.

⇐: Assume that G does not contain an odd flower as a subgraph. We need to show that B−1 is diagonally

similar to a non-negative matrix. Suppose on the contrary that B−1 is not diagonally similar to a non-

negative matrix. Then by Lemma 3.4, its inverse (G−1, w) is not balanced, and hence contains a negative

cycle by Corollary 3.3. Choose a shortest negative cycle C := xkx1 · · ·xk (i.e., k is as small as possible).

Then w(xixi+1) 6= 0 as xixi+1 is an edge of G−1 (subscripts modulo k). Hence τo(xi, xi+1) 6= τe(xi, xi+1)

(subscripts modulo k). Let S = {x1, ..., xk}. In the following, we are going to prove SpanM (S) is an odd

flower.

Since C is a smallest negative cycle of (G−1, w), it follows that C has no chord, which implies that

τo(xi, xj) = τe(xi, xj) if xi and xj are not consecutive on C. In other words, τo(xi, xj) 6= τe(xi, xj) if and

only if |i − j| ≡ 1 (mod k). Note that C is a negative cycle. So C contains an odd number of negative

edges. Hence, there is an odd number of vertex pairs {xi, xi+1} such that τo(xi, xj) > τe(xi, xj). Hence

SpanM (S) is an odd flower, a contradiction. This completes the proof.

Remark. For a matrix B, its inverse can be found in O(n3) steps. Note that it takes O(n2) steps to

determine whether the inverse (G−1, w) of G is balanced or not. Hence, it can be determined in O(n3)

whether G has a balanced weighted graph as inverse or not.
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