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Inverses of Bipartite Graphs

Yujun Yang* and Dong Yef

Abstract

Let G be a bipartite graph and its adjacency matrix A. If G has a unique perfect matching,
then A has an inverse A~! which is a symmetric integral matrix, and hence the adjacency matrix
of a multigraph. The inverses of bipartite graphs with unique perfect matchings have a strong
connection to Mobius functions of posets. In this note, we characterize all bipartite graphs with a
unique perfect matching whose adjacency matrices have inverses diagonally similar to non-negative
matrices, which settles an open problem of Godsil on inverses of bipartite graphs in [Godsil, Inverses
of Trees, Combinatorica 5 (1985) 33-39].

1 Introduction

Throughout the paper, a graph means a simple graph (no loops and parallel edges). If parallel edges and
loops are allowed, we use multigraph instead. Let G be a bipartite graph with bipartition (R, C). The
adjacency matrix A of G is defined such that the ij-entry (A);; = 1if ij € E(G), and 0 otherwise. The
bipartite adjacency matrix B of G is defined as the ij-entry (B);; = (A);; =1fori € Rand j € C. So B
is an |R| x |C|-matrix and

0 B
BT 0

A perfect matching M of G is a set of disjoint edges covering all vertices of G. If a bipartite graph G
has a perfect matching, then its bipartite adjacency matrix B is a square matrix. Godsil proved that if
a bipartite graph G has a unique perfect matching, then B is similar to a lower triangular matrix with
all diagonal entries equal to 1 by permuting rows and columns ([5], see also [15]). So in the following, we
always assume that the bipartite adjacency matrix of a bipartite graph with a unique perfect matching
is a lower triangular matrix. Clearly, B is invertible and its inverse is an integral matrix (cf. [Bl [I7]).
If B~! is non-negative (i.e. all entries are non-negative), then it is the bipartite adjacency matrix of
another bipartite multigraph: the ij-entry is the number of edges joining the vertices i and j. However,
the adjacency matrix of a graph G has a non-negative inverse if and only if the graph G is the disjoint
union of Ky’s and Ki’s (cf. Lemma 1.1 in [13], and [9]).

The inverse of B is diagonally similar to a non-negative integral matrix BT if there exists a diagonal

matrix I with -1 and 1 on its diagonal such that DB~'D = B*. So BT is a bipartite adjacency matrix
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of a bipartite multigraph that is called the inverse of the bipartite graph G in [5] (a broad definition of
graph inverse is given in the next section). The following is a problem raised by Godsil in [5] which is

still open [6].

Problem 1.1 (Godsil, [5]). Characterize the bipartite graphs with unique perfect matchings such that

B~ is diagonally similar to a non-negative matriz.

Figure [} A bipartite graph with a unique perfect matching (left) and its corresponding digraph (right).

The bipartite graphs with unique perfect matchings are of particular interest because of the combi-
natorial interest of their inverses (cf. [5,[12]). Let G be a bipartite graph with a unique perfect matching
M, and (R,C) be the bipartition of G. Let D be the digraph obtained from G by orienting all edges
from R to C and then contracting all edges in M. Simion and Cao proved that the digraph D is acyclic
([I5]). For example, see Figure [l The acyclic digraph D corresponds to a poset (P, <) such that for
a;,a; € P = V(D), there is a directed path from a; to a; in D if and only if a; < a; in P. The Zeta
matriz Z of P is defined as follows (cf. Chapter 4 in [1)

1 ifa; <aj
(Z)5 = .J
0 otherwise,

The modified Zeta matrix Z(z) of P is obtained by replacing the entry 1 by a variable z for a comparable
pair of P which is not an arc of the digraph D. Then Z(1) = Z the Zeta matrix of P, and Z(0) = B
the bipartite adjacency matrix of G. Note that Z(0) is the adjacency matrix of D and Z(1) is the
adjacency matrix of the transitive closure of D. The Mébius function on the interval of [a;, a;] in P is
wlai,a;) = (Z71);; (see Ex. 22 in Chapter 2 of Lovész on page 216 in [I1]), and Z~! is the Mobius
matrix of (P,<). On the other hand, the Zeta matrix of a poset (P,<) is a lower triangular matrix,
corresponding to a bipartite adjacency matrix of a bipartite graph with a unique perfect matching. This
sets up a connection between inverses of bipartite graphs with unique perfect matchings and Md6bius
functions of posets.

As observed in [5], if (P, <) is a geometric lattice (a finite matroid lattice [I6]) or the face-lattice of
a convex polytope [2]), then the Mébius matrix of P is diagonally similar to a non-negative matrix (cf.
Corollary 4.34 in [1]). Godsil [5] proved that if G is a tree with a perfect matching, then the inverse of
its adjacency matrix is diagonally similar to a non-negative matrix. Further, it has been observed that if
G and H are two bipartite graphs with the property stated in Problem [[L1] then the Kronecker product
G ® H is again a bipartite graph with the property [5]. The following is a partial solution to Problem [Tl

Theorem 1.2 (Godsil, [5]). Let G be a bipartite graph with a unique perfect matching M such that G/M

is bipartite. Then B~ is diagonally similar to a non-negative matriz.



Godsil’s result was generalized to weighted bipartite graphs with unique perfect matchings by Panda

and Pati in [I4]. In this paper, we provide a solution to Problem [[T] as follows.

Theorem 1.3. Let G be a bipartite graph with a unique perfect matching M. Then B™' is diagonally

similar to a non-negative matrix if and only if G does not contain an odd flower as a subgraph.

To define odd flower, we need more notation. Let G be a bipartite multigraph with a perfect matching
M. A path P of G is M-alternating if E(P)NM is a perfect matching of P. For two vertices ¢ and j of G,
let 7(4, ) be the number of M-alternating paths of G joining ¢ and j. Further, let 7,(4,j) be the number
of M-alternating paths P of G joining i and j such that |E(P)\M| is odd, and 7.(i, j) be the number
of M-alternating paths P joining ¢ and j such that ’E(P)\M‘ is even. For a subset S = {z1, z2,...2%}
of V(G), the M -span of S is defined as a subgraph of G consisting of all M-alternating paths joining x;
and z; for any z;,z; € S, denoted by Span,,(S). An M-span is called a flower if the vertices of S can be
ordered such that 7,(z;, ;) # 7e(x;, ;) if and only if |i — j| =1 (mod k). A flower is odd if there is an
odd number of vertex pairs {z;, z;} with 7,(x;,2;) > 7(x;, ;). For example, see Figure[2l In Section 4,
it will be shown that the existence of an odd flower means simply that the vertices in S induce a cycle

with an odd number of negative edges in the inverse of G.

Figure[2 An odd flower: thick edges form a perfect matching M.

2 Inverses of weighted graphs

A weighted multigraph (G, w) is a multigraph with a weight-function w : E(G) — F\{0} where F is a
field. We always assume that a weighted multigraph has no parallel edges since all parallel edges eq, ..., e
joining a pair of vertices i and j can be replaced by one edge ij with weight w(ij) = > w(e;). The
adjacency matrix of a weighted multigraph (G, w), denoted by A,,, is defined as

(Ay)ij = { w(ig) ifij € BE(G);

0 otherwise

where loops, with w(ii) # 0, are allowed. A weighted multigraph (G, w) is invertible over F if its adjacency
matrix A,, is invertible over F. Note that A, is a symmetric matrix. Its inverse A ! is also symmetric
and therefore is the adjacency matrix of some weighted graph, which is called the inverse of (G, w). The
inverse of (G,w) is defined as a weighted graph (G~!,w™!) whose vertex set is V(G™!) = V(G) and
whose edge set is E(G™!) = {ij | (A, ')i; # 0}, and whose weight function is w=1(ij) = (A,');;. Note
that this definition of graph inverse is different from the definitions given in [5] and [12].



Let G be a graph. A Sachs subgraph of G is a spanning subgraph with only copies of K and cycles
(including loops) as components. For example, a perfect matching M of G is a Sachs subgraph. For
convenience, a Sachs subgraph is denoted by S = C U M where C consists of the cycles of S (including
loops), and M consists of all components of S isomorphic to K5. The following result shows how to

compute the determinant of the adjacency matrix of a graph.

Theorem 2.1 (Harary, [8]). Let G be a graph and A be the adjacency matriz of G. Then

det(A) =)~ 2€l(—1)lCIHIES)I
S

where S = CU M is a Sachs subgraph.

If G is a bipartite graph with a Sachs subgraph S = C U M, then every cycle C in C is of even size
and hence its edge set can be decomposed into two disjoint perfect matchings of C'. Therefore, G has at
least 2[€I perfect matchings. So if G is a bipartite graph with a unique perfect matching M, then M is
the unique Sachs subgraph of G. Hence we have the following corollary of the above result, which can

also be derived easily from a result of Godsil (Lemma 2.1 in [5]).

Corollary 2.2. Let G be a bipartite graph with a unique perfect matching M. Then
det(A) = (-=1)!M1,
where A is the adjacency matriz of G.

By Corollary[2:2] the determinant of the adjacency matrix of a bipartite graph G with a unique perfect
matching is either 1 or —1. So a bipartite graph with a unique perfect matching is always invertible.
The inverse of a graph can be characterized in terms of its Sachs subgraphs as shown in the following
theorem, which was originally proved in [I7]. However, to make the paper self-contained, we include the

proof here as well.

Theorem 2.3 ([I7]). Let G be a graph with adjacency matriz A, and
P;j = {P|P is a path joining i and j # i such that G\V(P) has a Sachs subgraph S}.

If G has an inverse (G=1, w), then

1 e
o) Z ZQ\CI(_UICHIE(S)UE(P)I if i # j;
w(lj) — PE'P»;]' S
1 .
det(A) det(A; ;) otherwise

where S = CUM is a Sachs subgraph of G\V (P) and A;; is the matriz obtained by deleting i-th row and

i-th column from A.

Proof. Let G be an invertible graph and (G~!,w) be its inverse. Assume G has n vertices and V(G) =
{1,2,...,n}. By the definition of the inverse of a graph, w(ij) = (A71);;.
Note that A is symmetric and hence A~! is also symmetric. By Cramer’s rule,

(A_l)ij = (A_l)ji = ﬁ({A)



where ¢;; = (—1)""7 det(A; ;) where A, ; is the matrix obtained from A by deleting i-th row and j-th
column. Let M; ; be the matrix obtained from A by replacing the (i, j)-entry by 1 and all other entries
in the i-th row and j-th column by 0. Then by the Laplace expansion, ¢;; = det(M; ;)

i det (M 4 det (A ;
If i = j, then det(M;;) = det(A;;). So w(ii) = (A1) = — etMii) _ det(Ass)

det(A) ~ det(A)  det(ay < oo the

theorem holds for ¢ = j. In the following, assume that i # j.
Let my; be the (k,1)-entry of M; ;. Recall that the Leibniz formula for the determinant of M ; is

det(M; ;) = Z sgn(m Hmlm
TESn

where the sum is computed over all permutations 7 of the set V(G) := {1,2,...,n}. Since all (4, [)-entries
(I #7) of M; ; are equal to 0 but the (i, j)-entry is 1, only permutations = such that 7(:) = j contribute
to the the determinant of M; ;. Let II,_,; be the family of all permutations on V(G) = {1, 2, ...,n} such
that m(¢) = j. Denote the cycle of m permuting i to j by m;;. For convenience, m;; is also used to denote
the set of vertices which corresponds to the elements in the permutation cycle m;;, for example, V(G)\m;;
denotes the set of vertices in V(G) but not in m;;. Denote the permutation of 7 restricted on V(G)\m;;
by 7\m;;. Then

detMi;) = Y sen(m) [[  mueei)

mwell; keV (G)\{i}
= Z (sgn(m;) H My (k) (sgn(m\mij) H Mk (k))-
nEll;,; kemi;\{i} keV(G)\ij;

By the definition of M ;, if k # 4 or [ # j, then my = (A)g, the (k,{)-entry of A.

If the permutation cycle m;; does not correspond to a cycle of G, then for some k € m;;, km(k) is
not an edge of G and hence my. ) = 0. So sgn(m;;) ermj\{i} Mpxk) = 0. If the permutation cycle
m;; does correspond to a cycle in the graph G, let P be the path from j to ¢ following the permutation
order in m;;. Then sgn(m;;) HkEm-j\{i} M (k) = (=1)IEMP) Note that sgn(m\m;;) [kevepe Munr) s
the determinant of the adjacency matrix of the graph G\V(P). By Theorem 2] it follows that

sgn(m\ ;) H mkﬂ.(k):ZQ|C\(_1)\C|+\E(S)\,

kEV (G)\ S
where S = C U M is a Sachs subgraph of G\V(P). For the case that G\V(P) has no Sachs subgraphs,
then (sgn(m—j) erﬂj\{i} mkm(k)) (sgn(w\m—j) erV(G)\mj mkm(k)) = 0. Hence,

det(M ;) = Z 1)/B(P)I Zzlc\ 1)lCI+IE(S Z Zzw\ 1)ICIHIBSVEP)]

PcP;; PeP;;
where S = C U M is a Sachs subgraph of G\V(P). The theorem follows immediately from w(ij) =
det(M; ;
%Aj)' This completes the proof. O

1

For a bipartite graph G with a unique perfect matching, the weight function of its inverse (G~*, w)

can be simplified as shown below.

Theorem 2.4. Let G be a bipartite graph with a unique perfect matching M, and let

Pi; = {P|P is an M-alternating path joining i and j}.



Then G has an inverse (G~ w) such that

D (NN if i £
0 otherwise.
Proof. Let G be a bipartite graph with a unique perfect matching M. By Corollary[2.2] G has an inverse
which is a weighted graph (G—1, w).

For any two vertices ¢ and 7, let P be a path joining ¢ and j.
Claim: G\V(P) has a Sachs subgraph if and only if P is an M-alternating path.

Proof of Claim: If P is an M-alternating path, then G\V (P) has a perfect matching. So G\V (P) has
a Sachs subgraph.

Now assume that G\V(P) has a Sachs subgraph. Note that G\V(P) is a bipartite graph. Every cycle
of a Sachs subgraph of G\V(P) is of even size. So G\V(P) has a perfect matching M’. Therefore, P is a
path with even number of vertices and has a perfect matching M". Hence M’'UM" is a perfect matching
of G. Since G has a unique perfect matching, it follows that M = M’ U M". So P is an M-alternating
path. This completes the proof of Claim.

Let P be a path in P;;. Then G\V(P) has a unique perfect matching M\E(P), which is also its
unique Sachs subgraph. By Claim and Theorem 2.3] for i # j, we have

w(ij) = (_1)\M| Z (_1)\(M\E(P))UE(P)\ _ Z (_1)|E(P)\MI_

PeP;; PePi;
If i = j, then G\{i} has no perfect matching and hence no Sachs subgraph. By Theorem[21] det(4A; ;) = 0.
By Theorem 23] it follows that w(ii) = 0. This completes the proof.

3 Balanced weighted graphs

Let (G,w) be a weighted graph. An edge ij of a weighted graph (G,w) is positive if w(ij) > 0 and

negative if w(ij) < 0. A cycle C of (G,w) is negative if w(C) = [ w(ij) < 0. A signed graph
ijEE(C)
(G, 0) is a special weighted graph with a weight function o : E(G) — {—1,+1}, where o is called the

signature of G (see [7]). Signed graphs are well-studied combinatorial structures due to their applications
in combinatorics, geometry and matroid theory (cf. [18] [20]).

A switching function of a weighted graph (G, w) is a function ¢ : V(G) — {—1, +1}, and the switched
weight-function of w defined by ¢ is w¢ (i) := ((i)w(ij)¢(j). Two weight-functions w; and ws of a graph
G are equivalent to each other if there exists a switching function ¢ such that w; = wg . A weighted graph
(G, w) is balanced if there exists a switching function ¢ such that w¢(ij) > 0 for any edge ij € E(G). The

following is a characterization of balanced signed graphs obtained by Harary [7].

Proposition 3.1 ([7]). Let (G,0) be a signed graph. Then (G, o) is balanced if and only if V(G) has a
bipartition Vi and Va such that E(V1,V2) = {e |e € E(G) and o(e) = —1}.

For a weighted graph (G,w), define a signed graph (G, o) such that o(ij)w(ij) > 0 for any edge
ij € E(G). Then (G, w) is balanced if and only if (G, o) is balanced. Therefore, the above result can be
easily extended to weighted graphs (G, w) as follows.



Proposition 3.2. Let (G,w) be a weighted graph. Then (G,w) is balanced if and only if V(G) has a
bipartition Vi and Va such that E(V1,V2) = {e |e € E(G) and w(e) < 0}.

Remark. Let (G, w) be a weighted graph such that G is connected, and let ET := {e | w(e) > 0}. Let
G/E™ be the graph obtained from G by contracting all edges in ET and deleting all loops. Then by
Theorem [3.2] (G, w) is balanced if and only if G/E™ is a bipartite multigraph. Therefore, it takes O(m)
steps to determine whether a weighted graph is balanced or not, where m is the total number of edges of

G.

A direct corollary of the above theorem is the following result.

Corollary 3.3. Let (G,w) be a weighted graph. Then (G, w) is balanced if and only if it does not contain

a negative cycle.

Let (G, w) be a weighted graph and A, be its adjacency matrix. For a switching function ¢ : V(G) —
{—1,+41}, define D¢ to be a diagonal matrix with (D¢);; = ¢(¢). Then (G, w-) is equivalent to (G, ws) if
and only if A,,, = D¢A,,D¢ for some switching function ¢. So the adjacency matrices of two equivalent

weighted graphs are diagonally similar to each other.

Lemma 3.4. Let G be a bipartite graph with a unique perfect matching M. Then B~ is diagonally

similar to a non-negative matriz if and only if the inverse of G is a balanced weighted graph.

Proof. Since G is invertible, let (G~!,w) be the inverse of G by Theorem 24l Let A be the adjacency

matrix of G such that
0 B

BT 0

)

where B is the bipartite adjacency matrix of G, which we assume without loss of generality to be a lower
triangular matrix with 1 on the diagonal. Then the inverse of A is the adjacency matrix of (G~ w) as
follows,

Afl _ 0 (]BT)_l
Bt 0

Note that B~! is diagonally similar to a non-negative matrix if and only if A~! is diagonally similar to a
non-negative matrix. In other words, if and only if there exists a diagonal matrix D with (D);; € {—1,+1}
such that DA~D is non-negative. Define a switching function ¢ : V' — {—1,+1} such that ((i) = (D).
Note that

wé (i5) = C(1)w(if)(j) = C(DH(A™)i¢ () = (DAT'D);;.
Hence A~! is diagonally similar to a non-negative matrix if and only if there exists a switching function
¢ such that w® : E(G™') = R*. Let V4 = {v € V |[¢(v) = 1} and Vo = {v € V |¢(v) = —1}. So
the existence of the switching function ( is equivalent to the existence of a bipartition Vi and V; of V'
such that E(V1,V2) = {e |w(e) < 0}. By Proposition B2 it follows that B~! is diagonally similar to a

non-negative matrix if and only if (G—1,w) is balanced. O

By Lemma [34] Godsil’s problem is equivalent to ask which bipartite graphs with unique perfect

matchings have a balanced weighted graph as its inverse.



4 Proof of Theorem 1.3

Now, we are ready to prove our main result.

Theorem 1.3. Let G be a bipartite graph with a unique perfect matching M. Then B! is diagonally

similar to a non-negative matrix if and only if G does not contain an odd flower as a subgraph.

Proof. Let G be a bipartite graph with a unique perfect matching M and B the bipartite adjacency

matrix of G. For any two vertices i and j of G, let
Pij = {P |P is an M-alternating path joining 7 and j}.

=: Assume that B~! is diagonally similar to a non-negative matrix. We need to show that G does not
contain an odd flower. Suppose on the contrary that G does contain a vertex subset S = {1, ..., 23 } such
that Span,;(S) is an odd flower. Then all paths in P,,,,,, belong to Span,,(S). By Theorem 2.4, G has

an inverse (G~1, w) where,

w(TiTip1) = Z (‘U‘E(P)\M‘-
PEPurayy
So w(z;zi41) € Z\{0} and w(z;z41) < 0 if and only if 7,(z;, Ti+1) > Te(zi, xit1). Note that Span,, (S)
is an odd flower. So C' = z7 ---zx2; is a negative cycle in (G~%,w). By Corollary B3 (G, w) is not

balanced. Hence B! is not diagonally similar to a non-negative matrix by Lemma 34 a contradiction.

<«: Assume that G does not contain an odd flower as a subgraph. We need to show that B~! is diagonally
similar to a non-negative matrix. Suppose on the contrary that B~! is not diagonally similar to a non-
negative matrix. Then by Lemmal[34] its inverse (G~1,w) is not balanced, and hence contains a negative
cycle by Corollary B33l Choose a shortest negative cycle C := xpxq - - -z (i-e., k is as small as possible).
Then w(z;x;11) # 0 as x;w;11 is an edge of G~ (subscripts modulo k). Hence 7, (s, Ziy1) # Te(Ti, Tiv1)
(subscripts modulo k). Let S = {x1, ..., }. In the following, we are going to prove Span,,(S) is an odd
flower.

Since C' is a smallest negative cycle of (G~!,w), it follows that C' has no chord, which implies that
To(Z4, ) = Te(2s, x;) if 2; and x; are not consecutive on C. In other words, 7o(z;, x;) # Te(z4, z;) if and
only if | — j| = 1 (mod k). Note that C is a negative cycle. So C contains an odd number of negative
edges. Hence, there is an odd number of vertex pairs {z;, x;+1} such that 7,(x;, z;) > 7e(z;, ;). Hence

Span,;(S) is an odd flower, a contradiction. This completes the proof. O

Remark. For a matrix B, its inverse can be found in O(n?) steps. Note that it takes O(n?) steps to
determine whether the inverse (G~!,w) of G is balanced or not. Hence, it can be determined in O(n?)

whether G has a balanced weighted graph as inverse or not.
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