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Abstract

We show that all the tangles in a finite graph or matroid can be distin-
guished by a single tree-decomposition that is invariant under the auto-
morphisms of the graph or matroid. This comes as a corollary of a similar
decomposition theorem for more general combinatorial structures, which
has further applications.

These include a new approach to cluster analysis and image segmen-
tation. As another illustration for the abstract theorem, we show that
applying it to edge-tangles yields the Gomory-Hu theorem.

1 Introduction

One of the oldest, and least precise, problems in the connectivity theory of
graphs is how to decompose a (k − 1)-connected graph into something like its
‘k-connected pieces’. The block-cutvertex tree of a graph achieves this for k = 2,
and Tutte [21] showed for k = 3 that every 2-connected finite graph has a
tree-decomposition of adhesion 2 whose torsos are either 3-connected or cycles.
Tutte’s theorem has recently been extended by Grohe [17] to k = 4, and by
Carmesin, Diestel, Hundertmark and Stein [4] to arbitrary k as follows.

A k-block of a graph G, where k is any positive integer, is a maximal set X
of at least k vertices such that no two vertices x, y ∈ X can be separated in G by
fewer than k vertices other than x and y. We refer to k-blocks for unspecified k
simply as blocks.

Tutte’s theorem is essentially the case k = 3 of the following more recent
result. Note however that Theorem 1 does not require the graph to be (k − 1)-
connected.

Theorem 1. [4, Theorem 1] Every finite graph has a canonical tree-decompo-
sition of adhesion < k that efficiently distinguishes all its k-blocks, for every
k ∈ N.
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Here, a tree-decomposition (T,V) of a graph G with V = (Vt)t∈T is canon-
ical if the automorphisms of G act naturally on T : if they map every part Vt
to another part Vt′ in such a way that t 7→ t′ is an automorphism of T . It
distinguishes two sets b, b′ of vertices in G if T has an edge e whose associated
separation of G can be written as {A,B} with b ⊆ A and b′ ⊆ B. (The edge
e = t1t2 ∈ T is associated with the separation {

⋃
t∈T1

Vt ,
⋃
t∈T2

Vt} of G where
Ti is the component of T − e containing ti, and the least order1 of such a sep-
aration is the adhesion of (T,V).) It distinguishes b and b′ efficiently if e can
be chosen so that {A,B} has the least order ` of any separation {C,D} of G
such that b ⊆ C and b′ ⊆ D. It is not hard to show that ` < k if b and b′ are
k-blocks.

More generally, given a k-block b and a (<k)-separation {A,B} of G, there
cannot be vertices x, y in b such that x ∈ ArB and y ∈ BrA, as these vertices
would then be separated by the set A∩B of fewer than k vertices. So b will be
a subset of A or of B, but not both. In this way, b orients {A,B}: as (A,B) if
b ⊆ B, and as (B,A) if b ⊆ A. (We think of an oriented separation (A,B) as
‘pointing towards’ B.)

Every k-block b of G thus induces an orientation of the set Sk of all the
(<k)-separations of G: a set consisting of exactly one of the two orientations of
every separation in Sk. We call this orientation of Sk the k-profile of b.

An analysis of the proof of Theorem 1 shows that all it ever uses about k-
blocks is their k-profiles. And the theorem itself can be expressed more easily
in these terms too. Indeed, it finds a canonical tree-decomposition (T,V) of the
given graph that distinguishes the k-profiles of its k-blocks in the following natu-
ral sense: for every two such profiles P and P ′ there is a separation {A,B} ∈ Sk
associated with an edge of T that has orientations (A,B) ∈ P and (B,A) ∈ P ′.

The k-profiles of the k-blocks of a graph are not unlike its k-tangles: these,
too, are orientations of Sk.2 Indeed, the following generalization of Theorem 1
is a corollary merely of rewriting its proof in terms of profiles:

Theorem 2. [2, Theorem 4.5] Every finite graph has a canonical tree-decompo-
sition of adhesion < k that efficiently distinguishes all its k-blocks and k-tangles,
for every fixed k ∈ N.

Robertson and Seymour [20] proved that every finite graph has a tree-decom-
position that distinguishes all its distinguishable tangles, not just all those of
some fixed order k. One of our main results is that we obtain a canonical such
decomposition. Using profiles as a common generalization of blocks and tangles,
we can even distinguish both at the same time, and from each other, by the same
decomposition:

1The order of a separation {A,B} of a graph is the number |A∩B|. Separations of order k
are k-separations; separations of order < k are (< k)-separations.

2Indeed, in Section 2 we shall introduce more abstract ‘k-profiles’, not necessarily induced
by k-blocks, of which k-tangles – those of order k, in the terminology of [20] – are a prime
example. See [1, 2] for more on the relationship between profiles, blocks and tangles.
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Theorem 3. Every finite graph has a canonical tree-decomposition that effi-
ciently distinguishes all its distinguishable tangles and robust3 blocks.

See Section 4.1 for precise definitions.
Representing the k-blocks of a graph G by their k-profiles represents a shift

of paradigm for our initial question about those ‘k-connected components’: k-
profiles can identify highly connected regions of G without being concrete ob-
jects, such as subgraphs or blocks, simply by pointing to them. In this new
paradigm, we would think of these orientations of Sk as the ‘abstract objects’
we wish to distinguish by some tree-decomposition.

Not all orientations of Sk identify highly connected regions of G, though:
they must be consistent at least in the sense that no two oriented separations
point away from each other. Profiles of blocks are naturally consistent in this
sense, and tangles are too, by definition. Other consistent orientations that
identify highly connected regions in a graph are explored in [8, 10].

Another advantage of this new paradigm is that we can study, and seek
to separate in a tree-like way, highly connected substructures in combinatorial
structures other than graphs: all we need is a sensible notion of separation. Tan-
gles for matroids are an example of this, and we obtain the following analogue
of Theorem 3:

Theorem 4. Every finite matroid has a canonical tree-decomposition which
efficiently distinguishes all its distinguishable tangles.

See Section 4.2 for definitions.
Theorem 4 generalizes the matroid analogue of the theorem of Robertson and

Seymour mentioned earlier: Geelen, Gerards and Whittle [15] proved that all
the distinguishable tangles of a matroid can be distinguished by a single tree-
decomposition. But while their tree-decompositions are again not canonical,
ours are.

One main aspect of this paper is that tangle-like structures are meaningful,
and can be canonically separated in a tree-like way, in a much more general
context even than graphs and matroids combined. Just as, for proving our
theorems, we do not need to know more about k-blocks than how they orient
the separations in Sk, all we need to know about these separations is how they
and their orientations are, or fail to be, nested and consistent with each other.
This information, however, can be captured by a simple poset with an order-
reversing involution defined on the set of these separations: we do not need that
they ‘separate’ anything, such as the ground set of a matroid or the vertex set
of a graph, into two sides.

We shall prove our theorems at this general level of abstract separation sys-
tems [5]: we define profiles as consistent ways of orienting these abstract sepa-
rations, and find in any separation system S a nested subset T of separations
that distinguish all the profiles of S, in that for every pair of distinct profiles

3This is a necessary but unimportant restriction; all interesting blocks are robust (Sec-
tion 3.2).
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there exists a separation in T which they orient differently – just as the profiles
of two blocks would if these lay on either side of a separation which they both
orient.

The fact that we our main theorems can be proved in this abstract setting
makes them applicable beyond graphs and matroids. For example, our canonical
tangle-tree theorem, Theorem 3.6, of which Theorems 3 and 4 will be corollaries,
can also be applied to image segmentation and cluster analysis in big data sets.
In that context, clusters are described as profiles of bespoke separation systems
for the data set in question, which may have nothing to do with graphs or
matroids.

This approach to cluster analysis is new. It takes advantage of the fact that
profiles, like real-world clusters, can be ‘fuzzy’. For example, consider a large
grid in a graph. For every low-order separation, most of the grid will lie on
the same side, so the grid ‘orients’ that separation towards this side. But every
single vertex will lie on the ‘wrong’ side for some low-order separation, the side
not containing most of the grid; for example, it may be separated off by its
four neighbours. The grid, therefore, defines a unique k-profile for some large k,
but the ‘location’ of this profile is not represented correctly by any one of its
vertices – just as for a fuzzy cluster of a data set it may be impossible to say
which data exactly belong to that cluster and which do not.

Profiles of abstract separation systems can capture such clusters, and our
theorems can be applied to describe their relative positions, as soon as the data
set comes with a submodular ‘order’ function on its separations. In practice, it
appears that most natural ways of cutting a data set in two allow for such order
functions, and their choice can be used to specify the exact type of cluster to
be analysed. An example from image segmentation is described in [11].

The application of our main result to cluster analysis in large data sets will
read as follows:

Theorem 5. Every submodular data set has a canonical regular tree set of
separations which efficiently distinguishes all its distinguishable clusters.

Abstract separation systems were first introduced in [5]. In Section 2 we give
a summary of the basic formal setup, and define profiles as their orientations:
a choice of one element from each pair identified by the involution. As our main
results, we then prove in Section 3 two general tangle-tree theorems for these
abstract separation systems: one canonical, the other not but best possible in
other ways. In Section 4 we then apply the first of these to graphs and matroids,
obtaining Theorem 3 and Theorem 4 as corollaries.

In Section 5 we first show how to set up abstract separation systems for
cluster analysis in large data sets, and show how Theorem 5 follows from our
canonical tangle-tree theorem. We then illustrate the non-canonical tangle-tree
theorem by applying it to the ‘edge-tangles’ of a graph. This yields the exis-
tence of Gomory-Hu trees known from optimization, reproving the well known
Gomory-Hu theorem.

There is also a width-duality theorem for profiles in graphs and matroids,
like those for tangles known from [20]: if a given graph, say, has no k-profile for
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some given k, or no k-profile induced by a k-block, it admits a tree-decomposi-
tion witnessing this as an easily checked certificate. This duality theorem will
be proved elsewhere [8] but is indicated briefly in Section 6.

We conclude in Section 7 with an open problem for tangles.
Any graph-theoretic terms not defined here can be found in [7]. For matroid

terminology we refer to [19]. More on general abstract separation systems can be
found in [5], and more on tree sets in [6]. This paper includes and supersedes [18].

2 Abstract separation systems and their profiles

2.1 Separations of sets

Separations in graphs and matroids are certain unordered pairs of subsets of a
set: of the vertex set of the graph or the ground set of the matroid. In the case
of graphs, the two subsets may overlap; in the case of a matroid, they partition
the ground set. But in either case their union is the original set.

Given an arbitrary set V, a separation of V is a set {A,B} of two subsets
A,B such that A ∪ B = V. Its order is the cardinality |A ∩ B|. Every such
separation {A,B} has two orientations: (A,B) and (B,A). Inverting these is
an involution (A,B) 7→ (B,A) on the set of these oriented separations of V.

The oriented separations of a set are partially ordered as

(A,B) ≤ (C,D) :⇔ A ⊆ C and B ⊇ D.

Our earlier involution reverses this ordering:

(A,B) ≤ (C,D)⇔ (B,A) ≥ (D,C).

The oriented separations of a set form a lattice under this partial ordering,
in which (A∩C,B∪D) is the infimum of (A,B) and (C,D), and (A∪C,B∩D)
is their supremum. The infima and suprema of two separations of a graph
or matroid are again separations of that graph or matroid, so these too form
lattices under ≤.

Their induced posets of all the oriented separations of order < k for some
fixed k, however, need not form such a lattice: when (A,B) and (C,D) have
order < k, this need not be the case for (A ∩ C,B ∪D) and (A ∪ C,B ∩D).

2.2 Abstract separation systems

A separation system (~S,≤ ,∗) is a partially ordered set ~S with an order-reversing
involution ∗. An isomorphism between two separation systems is a bijection
between their underlying sets that respects their partial orderings and commutes
with their involutions.

The elements of a separation system ~S are called oriented separations. When
a given element of ~S is denoted as →s , its inverse →s

∗
will be denoted as ←s ,
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and vice versa. The assumption that ∗ be order-reversing means that, for all
→
r , →s ∈ ~S,

→
r ≤ →s ⇔ ←

r ≥ ←s . (1)

For subsets R ⊆ ~S we write R∗ := {←r | →r ∈ R }.
An (unoriented) separation is a set of the form {→s , ←s }, and then denoted

by s.4 We call →s and ←s the orientations of s. The set of all such sets {→s , ←s } ⊆ ~S
will be denoted by S. If →s = ←s , we call both →s and s degenerate.

When a separation is introduced ahead of its elements and denoted by a
single letter s, its elements will then be denoted as →s and ←s .5 Given a set
R ⊆ S of separations, we write ~R :=

⋃
R ⊆ ~S for the set of all the orientations

of its elements. With the ordering and involution induced from ~S, this is again
a separation system.

A separation
→
r ∈ ~S is trivial in ~S, and

←
r is co-trivial , if there exists s ∈ S

such that
→
r < →s as well as

→
r < ←s . We call such an s a witness of

→
r and its

triviality. If neither orientation of r is trivial, we call r nontrivial . Note that if
→
r is trivial in ~S then so is every

→
r′ ≤ →

r .
A separation →s is small if →s ≤ ←s . Trivial separations are small by (1),

but other separations can be small too. But if →s is small and
→
r < →s , then

→
r is clearly trivial. So all but the largest small separations are in fact trivial.
An unoriented separation is proper if it has no small orientation. A separation
system is regular if none of its elements is small [5].

If there are binary operations ∨ and ∧ on a separation system (~U,≤ ,∗) such
that

→
r ∨ →s is the supremum and

→
r ∧ →s the infimum of

→
r and →s in ~U, we call

(~U,≤ ,∗,∨,∧) a universe of (oriented) separations. By (1), it satisfies De Mor-
gan’s law:

(
→
r ∨ →s )∗ =

←
r ∧ ←s . (2)

The universe ~U is submodular if it comes with a submodular order function,
a real function →s 7→ |→s | on ~U that satisfies 0 ≤ |→s | = |←s | and

|→r ∨ →s |+ |→r ∧ →s | ≤ |→r |+ |→s |

for all
→
r , →s ∈ ~U. We call |s| := |→s | the order of s and of →s . For every

integer k > 0, then,
~Sk := { →s ∈ ~U : |→s | < k }

is a separation system. But ~Sk need not itself be a universe, at least not with
respect to the operations ∨ and ∧ induced from ~U, since suprema or infima in ~U
of elements of ~Sk can lie outside ~Sk.

An isomorphism between universes of separations is a bijection between their
ground sets that respects their orderings and commutes with their involutions
and, in the case of submodular universes, their order functions.

4To smooth the flow of the narrative we usually also refer to oriented separations simply
as ‘separations’ if the context or use of the arrow notation →s shows that they are oriented.

5It is meaningless here to ask which is which: neither →s nor ←s is a well-defined object
just given s. But given one of them, both the other and s will be well defined.
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Separations of a set V, and their orientations, are clearly an instance of
this abstract setup if we identify {A,B} with {(A,B), (B,A)}. The small sep-
arations of V are those of the form (A, V ), the trivial ones are those of the
form (U, V ) with U ⊆ A ∩ B for some other separation {A,B} 6= {U, V }, and
the proper separations are those of the form {A,B} with A r B and B r A
both nonempty. The separations of V form a submodular universe for the order
function |(A,B)| := |A,B| := |A ∩B|.

2.3 Tree sets of separations

Given a separation system (~S,≤ ,∗), two separations r, s ∈ S are nested if they
have comparable orientations; otherwise they cross. Two oriented separations
→
r , →s are nested if r and s are nested.6 We say that

→
r points towards s, and

←
r

points away from s, if
→
r ≤ →s or

→
r ≤ ←s . Then two nested oriented separations

are either comparable, or point towards each other, or point away from each
other.

A set of separations is nested if every two of its elements are nested. Two
sets of separations are nested if every element of the first set is nested with every
element of the second. A tree set is a nested separation system without trivial
or degenerate elements. When ~T ⊆ ~S is a tree set, we also call T ⊆ S a tree set
(and regular if ~T is regular).

For example, the set of orientations (u, v) of the edges uv of a tree T form
a regular tree set with respect to the involution (u, v) 7→ (v, u) and the natural
partial ordering on ~E(T ): the ordering in which (x, y) < (u, v) if {x, y} 6= {u, v}
and the unique {x, y}–{u, v} path in T joins y to u. The oriented bipartitions
of V (T ) defined by deleting an edge of T form a tree set isomorphic to this one.

The separations of a graph associated with a tree-decomposition are also
nested. But since they may be small, or even trivial, they need not form a
tree set, not even an irregular one. But conversely, every tree set of separations
of a finite graph G comes from a tree-decomposition of G, which is essentially
unique [6].

Any two elements r, s of a universe ~S of separations have four corner sepa-
rations

{(→r ∨→s ), (
→
r ∨→s )∗}, {(←r∨←s ), (

←
r∨←s )∗}, {(→r ∨←s ), (

→
r ∨←s )∗}, {(←r∨→s ), (

←
r∨→s )∗}

(see Figure 1). By (2), these can also be expressed in terms of ∧.

Lemma 2.1. Let r, s ∈ ~S be two crossing separations. Every separation t that
is nested with both r and s is also nested with all four corner separations of r
and s.

Proof. Since t is nested with r and s, it has an orientation pointing towards r,
and one pointing towards s. If these orientations of t are not the same, then
→
r ≤ →

t ≤ →s for suitable orientations of r, s, t. In particular, r and s are nested,

6Terms introduced for unoriented separations may be used informally for oriented separa-
tions too if the meaning is obvious, and vice versa.
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→
r

→s

→
r ∨ →s←

r ∨←s

t
→

→
r ∨←s

←
r ∨→s

Figure 1: Separations as in Lemma 2.1

contrary to our assumption. Hence t has an orientation
→
t that points towards

both r and s.
Now r and s have orientations

→
t ≤ →

r and
→
t ≤ →s . Since ∧ and ∨ denote

infima and suprema in ~S, we have
→
t ≤ →

r ∧ →s = (
←
r ∨ ←s )∗ by (2), as well as

trivially
→
t ≤ →

r ∨ →s and
→
t ≤ →

r ∨ ←s and
→
t ≤ ←r ∨ →s .

2.4 Profiles of separation systems

Given a separation system (~S,≤ ,∗), a subset O ⊆ ~S is an orientation of S
(and of ~S) if O ∪O∗ = ~S and |O ∩ {→s , ←s }| = 1 for all s ∈ S. Thus, O contains
every degenerate separation from ~S and contains exactly one orientation of every
nondegenerate one. For subsets S′ ⊆ S we say that O induces and extends the
orientation O ∩

→
S′ of S′, and thereby orients S′.

A set O ⊆ ~S is consistent if there are no distinct r, s ∈ S with orientations
→
r < →s such that

←
r , →s ∈ O. Consistent orientations of ~S contain all its trivial

separations: if
→
r is trivial in ~S, witnessed by s say, then s cannot be oriented

consistently with
←
r . Since s must be oriented somehow, this implies that

←
r /∈ O

and hence
→
r ∈ O.

Assume now that (~S,≤ ,∗) lies inside a universe (~U,≤ ,∗,∨,∧). Generalizing
our notion of the profiles of blocks in graphs from the introduction, let us call
an orientation P of S a profile (of S or ~S) if it is consistent and satisfies

For all
→
r , →s ∈ P the separation

←
r ∧ ←s = (

→
r ∨ →s )∗ is not in P . (P)

Thus if P contains
→
r and →s it also contains

→
r ∨ →s , unless

→
r ∨ →s /∈ ~S.

A profile is regular if it contains no separation whose inverse is small. Ex-
amples of irregular profiles are those we call special : profiles P of S for which
there exists a separation →s ∈ P such that ←s is small and

P = { →r ∈ ~S | →r ≤ →s }r {←s }.

In general, S can have irregular profiles that are not special, but this will not
happen in the cases relevant to us.

Applying (P) to any degenerate separation shows that if S has a degenerate
element it has no profile.

Note that every subset Q of a profile of ~S is a profile of ~R = Q ∪ Q∗ ⊆ ~S.
Put another way, if P is a profile of S and R ⊆ S, then P ∩ ~R is a profile of R,
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which we say is induced by P . If P is a set of profiles of S, we write

P �R := {P ∩ ~R | P ∈ P }

for the set of profiles they induce on R, and say that P induces P �R.
For example, the k-profile of a k-block b in a graph G, as defined in the in-

troduction, is the orientation { (A,B) ∈ ~Sk | b ⊆ B } of the set Sk of separations
of G of order < k. This orientation of Sk is consistent and satisfies (P), and is
thus a (regular) profile of Sk. Similarly, every k-tangle of G is a regular profile
of Sk; see Section 4.1.

When ~U is a universe of separations, we call the profiles of the separation
systems ~Sk ⊆ ~U of its separations of order < k the k-profiles in ~U. Even if we
are interested only in the k-profiles for some fixed k, it is usually important to
have ~U, rather than just ~Sk, as a larger universe in which ∨ and ∧ are defined.
Here is an example:

Example 1. Let G be a graph with a tree-decomposition whose tree is a 3-star.
Let the central part in this decomposition be a triangle xyz and the other three
parts pendant edges xx′, yy′ and zz′. Let

→
r , →s ,

→
t be the separations splitting

G at x, y, z respectively, i.e.,
→
r = ({x′, x}, {x, y, z, y′, z′}), and similarly →s for y

and
→
t for z. Then P = {→r , →s , →t }, together with all the small separations of the

form (v, V ), is a 2-profile of G in the universe of all its separations, which points
to its central triangle. Indeed, P satisfies (P) vacuously because, for example,
→
r ∨ →s is a separation of order 2, which does not get oriented by P .

However if the universe in which ∨ and ∧ are defined was just the set
S = {r, s, t} of all the proper 1-separations of G, then

→
r ∨ →s =

←
t would

violate (P). In this sparser universe, the only 2-profiles would be the orienta-
tions of S orienting all its separations towards one of the leaves x′, y′, z′: it
would lack the ‘resolution’ for its profiles to see the central triangle as a highly
connected substructure.

Let us close this general section on profiles by showing that even in contexts
where irregular profiles do occur, they are often just the special ones:

Proposition 2.2. If ~S contains all trivial separations in ~U that have a witness
in S, then every irregular profile P of S is special.

Proof. Since P is irregular, it contains a separation →s whose inverse ←s is small.
If P is not special, it contains another separation

→
r 6≤ →s . Then also →s 6< →

r ,
since otherwise

←
r < ←s ≤ →s would be trivial and hence in P . Hence

→
r , →s <

→
r ∨ →s . But now (

→
r ∨ →s )∗ < ←s ≤ →s is trivial, hence in S by assumption, and

thus also in P . But this means that P violates (P), a contradiction.

3 Tangle-tree theorems for profiles

As explained in the introduction, the paradigm proposed in this paper is that
certain consistent orientations of a separation system ~S, such as profiles, can
be treated like highly connected substructures of some structure which these
separations separate, even if ~S is given abstractly and no such structure is
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known. We shall therefore be interested in finding small subsets T of S that
‘distinguish’ some given profiles of S, in the following natural sense.

We say that a non-degenerate separation s ∈ S distinguishes two orientations
O,O′ of subsets of S if s has orientations →s ∈ O and ←s ∈ O′. (We then
also say that →s and ←s themselves distinguish O from O′.) The sets O,O′ are
distinguishable if there exists some s ∈ S that distinguishes them. A set T ⊆ S
distinguishes O from O′ if some s ∈ T distinguishes them, and T distinguishes
a set O of orientations of subsets of S if it distinguishes its elements pairwise.

A separation r and its orientations are O-relevant if r distinguishes some
two elements of O. A set of separations is O-relevant if all its elements are.

Later, these sets O will typically be sets P of profiles: either of profiles of
some fixed separation system ~S, or of profiles in some fixed universe ~U of sepa-
rations. (Note that a separation r ∈ U can distinguish an `-profile in ~U from a
k-profile, for ` 6= k, since both are subsets of ~U.)

No trivial separation in ~S can ever distinguish two profiles of S, because
every consistent orientation of S, and in particular every profile, contains it.
Since trivial separations in ~S` are also trivial in any ~Sk ⊇ ~S`, this implies that
trivial separations in ~S` cannot distinguish an `-profile from a k-profile in ~U for
any ` ≤ k.

However, a separation →s distinguishing two profiles can be small; indeed
there can be profiles of the same separation system ~S that differ only in how
they orient such a separation s. For ` < k, however, a small separation →s ∈ ~S`
can be nontrivial in ~S` but trivial in ~Sk. Such a separation s can distinguish an
`-profile (which orients it as ←s ) from a k-profile (which must orient it as →s ) in
a common universe ~U.

3.1 Tree sets distinguishing profiles of a separation system

Let (~S,≤ ,∗) be a separation system insided some universe ~U of separations, and
P a set of profiles of S.

Distinct profiles of S are always distinguished by some s ∈ S, so S distin-
guishes P. Our aim is to find a nested (and, in particular, small) subset T
of S that still distinguishes all of P. Since trivial separations do not help in
distinguishing profiles, ~T will normally be a tree set, though not necessarily a
regular one.

Moreover, we shall often ask that T should be canonical for S: that the map
(~S,P) 7→ ~T should commute with isomorphisms of separation systems. In par-
ticular, ~T will then be invariant (globally) under the automorphisms of ~S if P is.

Let us start with an example showing that our task of finding a canonical
nested subset T ⊆ S that still distinguishes all of P is nontrivial, indeed will
not be achievable without further assumptions on P (such as (3) below):

Example 2. Suppose S consists of two crossing separations r and s, and P
consists of the four profiles {→r , →s }, {→r , ←s }, {←r , →s }, {←r , ←s } of S. Since only
the singleton subsets of S are nested, but each of r and s distinguishes only one
pair of profiles, S has no nested subset T that distinguishes P.

10



The problem with this example is, very loosely, that P is too large and
diverse compared with S. Indeed we can mend it by increasing S, without
materially changing P, as follows.

Example 3. Add to ~S the separations
→
t :=

→
r ∨ →s and

→
t′ :=

→
r ∧ →s together

with their inverses. Now P is no longer formally a set of profiles of this larger
separation system

→
S′, but in substance it is: every P ∈ P extends uniquely

to a profile of
→
S′. (Indeed, by (P) and consistency, {→r , →s } ∈ P extends only

to {→r , →s , →t ,
→
t′} while {←r , ←s } extends only to {←r , ←s , ←t ,

←
t′}; for the other two

elements of P consistency forces us to add
←
t and

→
t′. But these extensions are

indeed profiles of S′.) And now there are two tree sets in S′ that distinguish
these four profiles, {r, t, t′} and {s, t, t′}.

Neither of these tree sets is canonical as yet, since they map to each other
under an automorphism of

→
S′. However if we add the other two corner sepa-

rations too, our separation system will be rich enough: our four profiles still
remain materially unchanged, but the four corner separations form a canonical
tree set that distinguishes them all.

This motivates the following condition, which we shall see will be sufficient
for the existence of a canonical tree set T ⊆ S that still distinguishes P. Let us
say that S scatters P if the following holds:

Whenever
→
r , →s ∈ ~S cross and there are profiles P, P ′ ∈ P with

→
r , →s ∈ P and

←
r , ←s ∈ P ′, there exists a separation

→
t ∈ P such that

→
r ∨ →s ≤ →

t .

(3)

(By symmetry, there is then also be a separation
←
t′ ∈ P ′ such that

←
r ∨ ←s ≤

←
t′.)

Note that the separation t in (3) distinguishes P from P ′, so t is P-relevant.
Indeed while

→
t ∈ P , we have

←
t ≤ ←s ∈ P ′, so

←
t ∈ P ′ by the consistency of P ′

unless s = t. But s = t is impossible, since r crosses s but is nested with t.
We shall also say that a subset R ⊆ S scatters P if R distinguishes P and

scatters the set P �R of profiles of R that P induces. For example, if S scatters
P then so does the set R of all P-relevant separations in S.

Condition (3) will help us find our nested set T ⊆ S that still distinguishes P,
as follows. Suppose we are trying to pick T from S inductively. At some point
we might wish to select for T some separation that distinguishes two profiles
P, P ′ ∈ P, and have two separations

→
r , →s ∈ ~S that both do this. If

→
r and →s

cross, we can put at most one of them in T . Condition (3) will now save us
having to choose: we can pick

→
t instead, as this also distinguishes P from P ′.

Moreover, since t is nested with both r and s, adding it to T will allow us to
keep our options open about r or s: if they are eligible for T now, they will still
be eligible once we have added t, so we can still settle for either one of them (or
neither) later.

An ideal starting point for finding a tree set T ⊆ S of separations that still
distinguishes P would be a separation t that distinguishes some pair of profiles
in P and is nested with all of S: putting such a separation t in T will achieve
something, and will do no harm to the desired nestedness of our eventual T .
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Looking for such a separation t seems like a long shot. And indeed, con-
dition (3) cannot ensure its existence: since (3) speaks only about P-relevant
separations, the separation t it provides need not be nested with all of S. But
since only the P-relevant separations in S matter for us, the following lemma
will suffice:

Lemma 3.1. If S is P-relevant and scatters P, then every maximal →s ∈ ~S is
nested with all the other separations in S.

Proof. Suppose some r ∈ S crosses s. Our aim is to find a pair P, P ′ ∈ P and
an orientation

→
r of r such that

→
r , →s ∈ P and

←
r , ←s ∈ P ′: then →s <

→
t for the

separation
→
t from (3), contradicting the maximality of →s . (The inequality is

strict, because t is nested with r but s is not.)
As s is P-relevant, there are profiles P, P ′ ∈ P such that →s ∈ P and ←s ∈ P ′.

Let
→
r be the orientation of r that lies in P . If

←
r ∈ P ′ we are done, so assume

that also
→
r ∈ P ′. Since r is P-relevant, there exists P ′′ ∈ P such that

←
r ∈ P ′′.

If P ′′ contains ←s , renaming P ′′ as P ′ yields the desired pair. If P ′′ contains →s ,
renaming P ′′ as P and swapping the names of

→
r and

←
r yields the desired

pair P, P ′.

Every →s as in Lemma 3.1 distinguishes a unique profile Ps from the rest of P:

Lemma 3.2. If S scatters P, and →s ∈ ~S is maximal among the P-relevant
separations in ~S, then →s lies in a unique profile P~s ∈ P. Thus, s distinguishes
P~s from every other profile in P.

Proof. As s is P-relevant, there are profiles P, P ′ ∈ P such that →s ∈ P and
←s ∈ P ′.

To show that P~s := P is unique, suppose there is another profile P ′′ ∈ P
that contains →s . As P ′′ 6= P , there exists r ∈ S with orientations

→
r ∈ P and

←
r ∈ P ′′. Since P and P ′′ orient s identically but r differently, we have r 6= s.
Hence if r is nested with s, then

→
r < →s or

←
r < →s by the maximality of →s . This

contradicts the consistency of P ′′ or P , respectively.
So r crosses s. If

←
r ∈ P ′, we apply (3) to find →s <

→
t ∈ P , which contradicts

the maximality of →s . If
→
r ∈ P ′, we apply (3) with P ′′ (as the P in (3))

and P ′, swapping the names of
→
r and

←
r , to obtain →s <

→
t ∈ P ′′ with a similar

contradiction.

Consider an automorphism α : →s 7→ →s α of the separation system (~S,≤ ,∗).
For subsets P of ~S we write Pα := { →s α | →s ∈ P }, and put Pα := {Pα | P ∈ P }
for sets of such subsets. Since α preserves (P) and consistency, Pα is again a
set of profiles of S.

Note that α acts naturally also on the set S of unoriented separations,
mapping s = {→s , ←s } to sα := {→s α, ←s α}. For sets T ⊆ S we write Tα :=
{ sα | s ∈ T }. If R ⊆ S scatters P, then clearly Rα scatters Pα.

We are now ready to prove that separation systems scattering a set of profiles
contain canonical tree sets that still distinguish these profiles. The main trick in
the proof, which builds this tree set T inductively, is to toggle between adding
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separations to T , which decreases the set P of profiles not yet distinguished, and
reducing S to its P-relevant subset, so that we can re-apply Lemmas 3.1 and 3.2.

Theorem 3.3. (Canonical tangle-tree theorem for separation systems)
For every finite separation system (~S,≤ ,∗) inside some universe of separations,
and every set P of profiles of S which S scatters, there is a tree set T ⊆ S of
separations such that

(i) T distinguishes P;

(ii) T is P-relevant;

(iii) T is regular if all P ∈ P are regular, or if every separation in S is P-
relevant and no P ∈ P is special.

These sets T = T (S,P) can be chosen so that T (S,P)α = T (S′,Pα) for every
isomorphism α : (~S,≤ ,∗)→ (

→
S′,≤ ,∗) of separation systems. In particular, T is

invariant under any automorphism of (~S,≤ ,∗) that maps P to itself.

Theorem 3.3 will be the basic building block for a more general canonical
tangle-tree theorem we shall prove in the next section. There, we shall find tree
sets in universes of separations whose profiles they can distinguish even when
these are not profiles of the same separation system.

Proof of Theorem 3.3. We begin by proving the theorem without state-
ment (iii), applying induction on |P| with both S and P variable. For |P| ≤ 1
there is no pair of profiles to distinguish, so T (S,P) := ∅ satisfies (i) and (ii) triv-
ially. For the last statement note that |Pα| = |P|, so T (S,P)α = ∅ = T (S′,Pα).

Assume now that |P| ≥ 2. Let R ⊆ S be the set of P-relevant separations
in S. As |P| ≥ 2 we have R 6= ∅. As remarked after (3), R still scatters P.
By Lemma 3.1 applied to P �R, the set R+ of maximal elements of ~R is nested
with all of R, and hence so is the set T+ of all (unoriented) separations in R
that have an orientation in R+. In particular, T+ itself is nested.

By Lemma 3.2, each →s ∈ R+ distinguishes a unique profile P~s ∈ P �R from
the rest of P �R. Let

P− := P �Rr {P~s | →s ∈ R+}.

As |P−| < |P|, our induction hypothesis provides a nested set T− ⊆ R that
satisfies (i) and (ii) for P−. Let

T := T+ ∪ T−.

Clearly, T is nested. It is P-relevant since T ⊆ R. Thus, T is a tree set
satisfying (ii). By (i) for P− and the choice of T+, it distinguishes P �R and
hence also P, so T also satisfies (i).

The last statement of the theorem is straightforward to check. It follows
from the fact that if a separation r ∈ S is P-relevant then rα is Pα-relevant,
and that α maps the maximal elements of ~R to those of ~Rα. This completes
our proof of the theorem without statement (iii).
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For a proof of (iii), suppose T is irregular. Then some s ∈ T has a small orien-
tation, ←s say. By (ii) we have s ∈ R, so there exists P ∈ P with →s ∈ P . This P is
irregular. To complete the proof of (iii), we show that if S = R then P is special.

Note that →s is maximal in ~R : for any
→
r > →s in ~S its inverse

←
r < ←s ≤ →s

is trivial, so r /∈ R, because only nontrivial separations can distinguish profiles.
By our assumption that S = R and Lemma 3.1, the separation s is nested with
every other separation in S. By its maximality, →s points to no other separation
in S, so every r ∈ S r {s} has an orientation

→
r < →s ∈ P . By its consistency,

P contains
→
r rather than

←
r . Thus, P = { →r | →r ≤ →s } r {←s }, i.e., P is

special.

Let us add a few remarks. It may seem that assertion (ii) would come for
free once we have a set T satisfying the other assertions, simply by chosing it
inclusion-minimal subject to (i). This, however, will lose us the last statement,
canonicity. Indeed it can happen that T cannot be chosen minimal:

Example 4. Let G be a graph obtained by extending a complete graph on
k vertices to three otherwise disjoint complete subgraphs B1, B2, B3 of n > k
vertices each. Each of these Bi is an n-block that induces an n-profile on the set
S of the three k-separations {Ai, Bi} of G consisting of (Ai, Bi) and (Bj , Aj)
for j 6= i. For the set P of these profiles, Theorem 3.3 finds T = S. This set
is not minimal with assertion (i), since any two of the three separations in T
suffice to separate all three profiles. But only if T contains all three of them
will it be closed under the automorphisms of ~S, which all map P to itself.

Note also that without any assumptions about P, such as the premise in (iii),
there need not be a regular tree set T as in Theorem 3.3. Here is a typical
example:

Example 5. Let ~S itself be a tree set, inside some universe ~U of separations,
such that

→
r ∨ →s ∈ ~Ur ~S for all incomparable

→
r , →s ∈ ~S. Let →s be maximal in ~S.

Then every r ∈ S has an orientation
→
r ≤ →s , so P = { →r | →r ≤ →s } is a profile

of S. By replacing →s with ←s in P we obtain another profile P ′ of S: note that
P ′ is again consistent, since by the maximality of →s in ~S its new separation
←s cannot be part of an inconsistent pair of separations. Then s distinguishes
P from P ′, it is the only separation that does, and hence it will lie in the tree
set T satifying Theorem 3.3.

However, it is easy to construct instances of this where ←s is small, making
P special. For example, S might be the set of separations induced by a tree-
decomposition of a graph G = (V,E), with →s = (V,A) corresponding to an
edge uv at a leaf v of the decomposition tree. In this case T will not be regular,
because it contains the improper separation s.

3.2 Tree sets distinguishing profiles in separation universes

Let ~U = (~U,≤ ,∗,∨,∧, | |) be a submodular universe of separations. Our aim is
to show that ~U contains a canonical tree set T that distinguishes all its profiles.

Theorem 3.3 provides a start for fixed k:
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Corollary 3.4. If ~U contains no separation of order less than k− 1, then there
is a tree set T ⊆ Sk that distinguishes all the k-profiles in ~U and is invariant
under its automorphisms.

Proof. This follows from Theorem 3.3 once we have checked that Sk scatters
all its profiles, the k-profiles in ~U. Note first the separations in Sk have order
exactly k−1, by assumption. Given

→
r , →s ∈ P as in (3), we have |→r ∧ →s | ≥ k−1

by assumption, and hence |→r ∨ →s | ≤ k− 1 by submodularity, since r and s have
order exactly k − 1. Hence

→
t :=

→
r ∨ →s ∈ ~Sk, and therefore

→
t ∈ P by (P) and

→
r , →s ∈ P .

In general we do not have the helpful assumption that |s| ≥ k − 1 for all
s ∈ U . But our plan is to mimic it, by considering for k = 1, 2, . . . in turn those
profiles that can be distinguished by a separation of order < k. At each step,
we may then assume inductively that all the profiles we still need to distinguish
cannot be distinguished by a separation of smaller order, just as in the premise
of Corollary 3.4.

The challenge with this approach is that, while each application of Theo-
rem 3.3 provides a tree set of separations, we also have to ensure that these tree
sets are nested with each other. We shall achieve this in the end, but it will
need some care.

Let us say that two profiles in ~U are k-distinguishable if some separation of
order at most k distinguishes them. The smallest k for which distinguishable
profiles P, P ′ in ~U are k-distinguishable is denoted by κ(P, P ′). If s ∈ U dis-
tinguishes P from P ′ and has order |s| = κ(P, P ′), we say that s, →s and ←s
distinguish P from P ′ efficiently . A set T ⊆ U distinguishes a set P of profiles
in ~U efficiently if every two profiles in P are distinguished efficiently by some
separation in T .

Consider a pair of crossing separations
→
r , →s ∈ ~U and their corner separations

→
r 1 :=

←
r ∧ →s and

→
r 2 :=

←
r ∧ ←s . Then

→
r 1,

→
r 2 ≤ ←

r . If
←
r is the supremum

in ~U of
→
r 1 and

→
r 2, i.e., if

←
r =

→
r 1 ∨ →r 2,7 then

→
r 1,

→
r 2 and

→
r cannot lie in a

common profile, because this would violate (P). But in general
→
r 1,

→
r 2 and

→
r

might lie in a common profile, say in the k-profile P . This can only happen if
|s| ≥ k, since otherwise P would contain ←s or →s , but both {←s , →r , →r 1} ⊆ P
and {→s , →r , →r 2} ⊆ P would violate (P). If it does happen then, intuitively, the
separation s ∈ U r Sk looks a bit as though it splits P in half. This can cause
problems, so let us give a name to certain profiles that are not split in this way.

Let us say that a profile P in ~U is robust if it is n-robust for every n, and
n-robust if for every

→
r ∈ P and every s ∈ Sn the following holds:

If
←
r ∧ →s and

←
r ∧ ←s both have order < |r|, they do not both lie in P . (R)

Every n-profile is n-robust, because it has to contain ←s or →s and so, by (P),
cannot also contain both

→
r and

←
r ∧ →s or both

→
r and

←
r ∧ ←s . Clearly, n-robust

7If U is the set of all bipartitions of a set, then this is always the case. Profiles in matroids,
therefore, or clusters in data sets, will always be robust in the sense defined below.

15



k-profiles induce n-robust `-profiles for all ` < k, and every n-robust profile is
also m-robust for every m < n.

Lemma 3.5. Let n be a positive integer. Let r ∈ U be a separation that effi-
ciently distinguishes two n-robust profiles P, P ′ in ~U, and let s ∈ U be a separa-
tion that efficiently distinguishes two profiles P̂ , P̂ ′ in ~U. If |r| < |s| < n, then r
has an orientation

→
r such that either

→
r ∧ →s or

→
r ∧ ←s efficiently distinguishes

P̂ from P̂ ′.

Proof. As |r| < |s| and s distinguishes P̂ from P̂ ′, efficiently, P̂ and P̂ ′ also
orient r, and they do so identically, say as

←
r . Let →s be the orientation of s

in P̂ ; then ←s ∈ P̂ ′. If |→r ∧ →s | ≤ |s| then
→
r ∧ →s distinguishes P̂ from P̂ ′ (and

efficiently): it lies in P̂ by
→
r ∧ →s ≤ →s ∈ P̂ and the consistency of P̂ , but not

in P̂ ′ by
←
r , ←s ∈ P̂ ′ and (P). Similarly, if |→r ∧ ←s | ≤ |s| then

→
r ∧ ←s efficiently

distinghuishes P̂ from P̂ ′. So let us assume that |→r ∧ →s |, |→r ∧ ←s | > |s|, and
derive a contradiction.

By submodularity,
→
r 1 =

←
r ∧ →s and

→
r 2 =

←
r ∧ ←s have order < |r|. As r

distinguishes P from P ′, it has orientations
→
r ∈ P and

←
r ∈ P ′. As it does so

efficiently, P and P ′ orient r1 and r2 identically. As P ′ contains
→
r 1,

→
r 2 ≤ ←

r
by consistency, we thus have

→
r 1,

→
r 2 ∈ P too, as well as

→
r ∈ P by assumption.

This contradicts the n-robustness of P , since s ∈ Sn.

The reader will have noticed that, in the proof of Lemma 3.5, we did not
in fact use that P and P ′ themselves are n-robust: we only used the implied
n-robustness of the k-profiles they induce for k = |r| + 1. Let us say that two
profiles P, P ′ in ~U are n-robustly distinguishable if they are distinguishable and
the distinct k-profiles they induce for k = κ(P, P ′) + 1 are both n-robust.

A set P of profiles in ~U is n-robust if any distinct P, P ′ ∈ P are n-robustly
distinguishable and satisfy κ(P, P ′) < n. If a set P of distinguishable profiles is
n-robust for

n = max{κ(P, P ′) | P, P ′ ∈ P }+ 1,

we call it robust . This will be the case if every P ∈ P is robust and the profiles
in P are pairwise distinguishable. But there can be robust sets of profiles that
are not individually robust, as their individual robustness may fail just for n
much larger than the order of separations needed to distinguish P.

Theorem 3.6. (Canonical tangle-tree theorem for separation universes)
Let ~U = (~U,≤ ,∗,∨,∧, | |) be a submodular universe of separations. Then for
every robust set P of profiles in ~U there is a nested set T = T (P) ⊆ U of
separations such that:

(i) every two profiles in P are efficiently distinguished by some separation in T ;

(ii) every separation in T efficiently distinguishes a pair of profiles in P;

(iii) for every automorphism α of ~U we have T (Pα) = T (P)α;

(iv) if all the profiles in P are regular, then T is a regular tree set.
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Proof. For every P and k > 0 let Pk denote the set of all n-robust k-profiles
induced by profiles in P, where n = max{κ(P, P ′) | P, P ′ ∈ P } + 1. As P is
robust, distinct P, P ′ ∈ P induce distinct elements of Pk for k = κ(P, P ′) + 1.
Hence any set T ⊆ U distinguishing every Pk will also distinguish P.

We shall construct, simultaneously for all P, nested sets T0 ⊆ T1 ⊆ . . . of
separations Tk = Tk(P) such that, for all k ≥ 1:

(I) Tk efficiently distinguishes Pk ;

(II) every s ∈ Tk r Tk−1 efficiently distinguishes some pair of profiles in Pk;

(III) for every automorphism α of ~U we have Tk(Pα) = Tk(P)α.

Then, clearly, T :=
⋃
k=1,2,... Tk will satisfy (i)–(iii) and be nested, as desired.

Statement (iv) will be an immediate consequence of (ii), because small separa-
tions cannot distinguish regular profiles.

We start our construction with T0 = ∅. Now consider k > 0, and assume
that for all 0 < ` < k and all P we have constructed T` = T`(P) so as to satisfy
(I)–(III).

If k = 1, put Q := ∅ and PQ := P1, and let SQ be the set of all P1-relevant
separations in S1. Clearly, SQ distinguishes PQ efficiently.

If k > 1, suppose some distinct P, P ′ ∈ Pk are not yet distinguished by
Tk−1. The (k − 1)-profiles that P and P ′ induce are again n-robust, so they lie
in Pk−1, and hence by (I) cannot be distinct. We denote the set of all profiles
in Pk that induce the same profile Q ∈ Pk−1 by PQ. As Pk is the union of all
such PQ, it will suffice to find for every Q ∈ Pk−1 a nested set TQ ⊆ U that
efficiently distinguishes PQ, and make sure that these TQ are are also nested
with Tk−1 and with each other.

If k > 1, consider any fixed Q ∈ Pk−1. Let SQ be the set of all those sepa-
rations s ∈ Sk which distinguish some P̂ , P̂ ′ ∈ PQ that are not distinguished by
any separation in Sk that crosses fewer separations in Tk−1 than s does. Clearly,
every separation in SQ is PQ-relevant, and SQ distinguishes PQ efficiently.

Let us show that SQ is nested with Tk−1. Suppose there is a separation
s ∈ SQ that crosses a separation r ∈ Tk−1. Then k > 1, as T0 = ∅. By the
definition of SQ, there exist P̂ , P̂ ′ ∈ PQ that are distinguished by s but by
no separation in Sk that crosses fewer separations in Tk−1 than s does. By
Lemma 3.5, r and s have orientations

→
r and →s such that

→
r ∧ →s or

→
r ∧ ←s

efficiently distinguishes P̂ from P̂ ′. These corner separations of r and s are not
only, unlike s, nested with r but also, by Lemma 2.1, with every separation
t ∈ Tk−1 that is nested with s, because t is also nested with r since both lie
in Tk−1. This contradiction to the choice of P̂ and P̂ ′ completes our proof that
SQ is nested with Tk−1.

Our next aim is to find a nested subset TQ of SQ that still distinguishes all
of PQ. As SQ distinguishes PQ, it suffices to find such a set TQ that distinguishes
PQ �SQ. This will exist by Theorem 3.3 if SQ scatters PQ �SQ.

To prove this, consider two profiles P, P ′ ∈ PQ �SQ and two crossing sepa-
rations r, s ∈ SQ with orientations

→
r , →s ∈ P and

←
r , ←s ∈ P ′. Let us show that

both
→
r ∧ →s and

→
r ∨ →s , like r and s, have order k − 1. Neither of them can
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have smaller order than k − 1: if one of them did then it would, by (P) and
consistency, distinguish the profiles in PQ that induce P on SQ from those that
induce P ′, so two such profiles in PQ would induce distinct profiles in Pk−1,
whereas in fact they all induce Q. Thus, |→r ∧ →s |, |→r ∨ →s | ≥ k − 1. Since
|→r ∧ →s |+ |→r ∨ →s | ≤ |r|+ |s| by submodularity, and |r| = |s| = k−1 as r, s ∈ SQ,
we thus have |→r ∧ →s | = |→r ∨ →s | = k − 1 as claimed.

Thus,
→
r ∨ →s lies in ~Sk, and it distinguishes P from P ′. By Lemma 2.1 it is

nested with every t ∈ Tk−1, because r, s ∈ SQ are nested with Tk−1 (as shown
earlier). By definition of SQ, this means that

→
r ∨ →s lies in ~SQ. But then it also

lies in P , by
→
r , →s ∈ P and (P). This completes our proof that SQ scatters PQ.

Applying Theorem 3.3 to PQ �SQ in (~SQ,≤ ,∗) for each Q ∈ Pk−1 (respec-
tively, for Q = ∅ if k = 1), we obtain a family of sets TQ ⊆ SQ of separations
distinguishing PQ. Each of these TQ is nested, and nested with Tk−1. In or-
der to show that they are also nested with each other, consider any s ∈ TQ
and s′ ∈ TQ′ for distinct Q,Q′ ∈ Pk−1. By (I) for k − 1 there is a separation
r ∈ Tk−1 with orientations

→
r ∈ Q and

←
r ∈ Q′. Since TQ is nested with Tk−1,

the separations r and s have comparable orientations. So either
→
r or

←
r points

towards s; let us show that
→
r does.

Since s ∈ SQ it is PQ-relevant, so it has orientations →s ∈ P1 and ←s ∈ P2 for
some P1, P2 ∈ PQ. As P1 and P2 induce Q, they both contain

→
r . Hence if

←
r

points towards s, then either
←
r < →s or

←
r < ←s , contradicting the consistency of

P1 or P2, respectively. So
→
r points towards s, as claimed.

Similarly,
←
r points towards s′. We thus have

→
s′ <

→
r < →s for suitable

orientations of s and s′. In particular, s and s′ are nested.
We have shown that the TQ are nested sets of separations that are also nested

with each other and with Tk−1. Hence, Tk := TQ for k = 1, and otherwise

Tk := Tk−1 ∪
⋃

Q∈Pk−1

TQ

is nested too, and by construction it satisfies (I) and (II).
In order to verify (III), let α be an arbitrary automorphism of (~U,≤ ,∗,∨,∧, | |).

If k = 1, then (III) holds by definition of T1, which we obtained from Theo-
rem 3.3 as a canonical tree set T ⊆ S1 distinguishing P1. Now consider k > 1.
Note that Pα` = (P`)α for all `, by definition of P`. Hence SQα = (SQ)α for
every Q ∈ Pk−1, by definition of SQ for P and SQα for Pα, and (III) for k − 1.
Therefore PαQα �SQα = (PQ �SQ)α, so Theorem 3.3 implies that T (PαQα �SQα) =
T (PQ �SQ)α, for all Q ∈ Pk−1. Hence, again using (III) for k − 1,

Tk(Pα) = Tk−1(Pα) ∪
⋃

Qα∈Pαk−1

T (PαQα �SQα)

= Tk−1(P)α ∪
⋃

Q∈Pk−1

T (PQ �SQ)α

= Tk(P)α,

completing the proof of (I)–(III) for k.
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Let us add a few remarks. First, we stated (iii) for automorphisms rather
than arbitrary isomorphism of universes just to keep things simple; it clearly
generalizes as in Theorem 3.3 (whose more general form we needed in the proof
of Theorem 3.6).

Since trivial separations cannot distinguish profiles, one might expect that,
by (ii), T will always be a tree set. However this is not the case. For example,
~T might contain a small separation

→
r that distinguishes two k-profiles in P.

This
→
r will not be trivial in Sk. But it may be trivial in some Sn with n > k.

Then no n-profile in ~U will contain
←
r , but r may still be needed for Tk. Under

mild additional assumptions,8 however, one can replace the premise in (iv) with
the weaker premise that no P ∈ P is special.

In applications, the robustness of P will often be a consequence of the fact
that the profiles it contains are themselves robust, and often they will also be
regular. Here is a leaner version of Theorem 3.6 for robust regular profiles:

Corollary 3.7. Let ~U = (~U,≤ ,∗,∨,∧, | |) be a submodular universe of separa-
tions. For every set P of pairwise distinguishable robust regular profiles in ~U
there is a regular tree set T = T (P) ⊆ ~U of separations such that:

(i) every two profiles in P are efficiently distinguished by some separation in T ;

(ii) every separation in T efficiently distinguishes a pair of profiles in P;

(iii) for every automorphism α of ~U we have T (Pα) = T (P)α.

But note that we cannot simply omit all robustness requirements in Theorem 3.6
and Corollary 3.7; see [4] for a counterexample.

As a common basis for the proof of our Theorems 3 and 4, let us note
a further simplification of Theorem 3.6. Rather than starting with any fixed
set P of distinguishable profiles, we find a tree set that distinguishes them all:

Corollary 3.8. Let ~U = (~U,≤ ,∗,∨,∧, | |) be a submodular universe of separa-
tions. There is a canonical regular tree set T ⊆ ~U that efficiently distinguishes
all the distinguishable robust and regular profiles in ~U.

Proof. Let P ′ be the set of robust and regular profiles in ~U, and let P be the
set of its inclusion-maximal elements. Note that the profiles in P are pairwise
distinguishable. By Corollary 3.7, there is a canonical tree set T ⊆ ~U that
efficiently distinguishes P. We have to show that it efficiently distinguishes
every pair P1, P2 of distinguishable profiles in P ′.

Each Pi is a ki-profile for some ki. By definition of P it extends to some P ′i ∈ P,
which is a k′i-profiles for some k′i ≥ ki. (Recall that all the profiles we are consid-
ering are profiles ‘in’ ~U, and hence k-profiles for some k.) Since T distinguishes
the P ′i efficiently, and any separation distinguishing the Pi will also distinguish
their extensions P ′i , our assumption that the Pi are distinguishable means that
T distinguishes the P ′i by a separation of order at most κ(P1, P2). This separa-
tion, therefore, has orientations in both P1 and P2, and thus distinguishes these
efficiently too.

8For example, it suffices to assume that, when →s is small, →r ≤ →s implies |r| ≤ |s|. This
holds for separations of graphs and matroids.
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3.3 Minimal distinguishing tree sets, non-canonical

As shown by Example 4 we cannot, without losing canonicity, strengthen (ii) in
Theorem 3.6 to saying that T is minimal given (i). But if we are prepared to
make do without canonicity, we can strengthen (ii) even more: we can ensure
that T is minimal not only with (i) but more generally with the property that
it distinguishes P, efficiently or not. (In fact, we shall prove that every T that
is minimal with (i) is minimal even as a P-distinguishing set of separations; see
Lemma 3.10 below.)

Robertson and Seymour [20] proved that every graph has a (non-canonical)
tree-decomposition that distinguishes any given set Θ of distinguishable tangles,
in the sense that any distinct θ, θ′ ∈ Θ disagree on some separation associated
with the tree-decomposition. Moreover, this decomposition has only |Θ| parts.
It follows that every tangle θ ∈ Θ ‘lives in’ one of these parts – the unique part
towards which θ orients all the separations associated with the tree-decomposi-
tion that it orients – and every part is home to a tangle from Θ.

Although in our abstract separation system we have no vertices, and our
tree set T has no ‘parts’, we can generalize this to a non-canonical version of
our theorem by representing those parts as consistent orientations of T . For
every P ∈ P, the subset P ∩ ~T of ~T is consistent, and hence extends to a
consistent orientation of all of T .9 This extension is not in general unique, but
for our minimal T it will be. Moreover, every consistent orientation of T can
be obtained from some P ∈ P in this way. In this sense, every profile in P will
‘live in’ a unique consistent orientation of T , and every consistent orientation
of T will be home to some P ∈ P.

Theorem 3.9. (Non-canonical tangle-tree theorem for separation universes)
Let ~U= (~U,≤ ,∗,∨,∧, | |) be a submodular universe of separations. For every ro-
bust set P of regular profiles in ~U there is a regular tree set T ′ ⊆ ~U of separations
such that:

(i) every two profiles in P are efficiently distinguished by some separation in T ′;

(ii) no proper subset of T ′ distinguishes P;

(iii) for every P ∈ P the set P ∩
→
T ′ extends to a unique consistent orientation

PT ′ of T ′. This map P 7→ PT ′ from P to the set O of consistent orienta-
tions of T ′ is bijective.

Note that, by (i), assertion (ii) implies that every separation in T ′ distinguishes
two profiles in P efficiently, as earlier in Theorem 3.6.

Also, the implicit assumption in the theorem that the profiles in P must
be pairwise distinguishable (because we require P to be robust) is not a real
restriction. Indeed, the tree set T ′ returned by Theorem 3.9 will distinguish all
the distinguishable robust and regular profiles in ~U: just take as P the set of all
the maximal such profiles, and argue as in the proof of Corollary 3.8.

9We need here that no element of P ∩ ~T is co-trivial in T , which we shall ensure by requiring
P to be regular. See [5, Lemma 4.1] for a formal proof that such extensions exist.
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For the proof of Theorem 3.9 we need a fun little lemma about separating
edge sets in trees, which may also be of interest in its own right. The intended
application is that choosing T ′ in Theorem 3.6 minimal with respect to (i),
ignoring canonicity, will automatically make it satisfy (ii) of Theorem 3.9. Recall
that a U-path in a graph G with U ⊆ V (G) is a path that meets U in exactly
its distinct ends.

Lemma 3.10. Let G be a tree with an edge labelling ` : E(G) → N. Let U ⊆
V (G) and F ⊆ E(G) be such that every U-path P ⊆ G contains an edge e ∈ F
such that `(e) = min{ `(e′) | e′ ∈ P } and F is minimal with this property,
given U . Then for every e ∈ F there is a U-path in G whose only edge in F is e.

Proof. Let us call an edge e ∈ G essential on a path P ⊆ G if e is the unique
edge of P in F with `(e) = min{ `(e′) | e′ ∈ P }. The minimality of F assumed
in the lemma means that every edge in F is essential on some U-path. If the
lemma fails, there is an edge e ∈ F that is not the only F -edge on any U-path.
Let such an edge e be chosen with `(e) maximum, and let P = uGv be a U-path
on which e is essential.

v
u

x

y

ff

y

x

QP
Q

e

Figure 2: Paths in the proof of Lemma 3.10

By definition, e is not the only edge of P in F ; choose another, f say, as close
to e as possible. Assume that f lies on the segment ePv of P strictly between
e and v. Then `(f) > `(e) since e is essential on P , so by the choice of e there
exists a U-path Q = xGy whose only edge in F is f . Let x be the end of Q for
which f /∈ eGx. By the choice of f , this path eGx ⊆ P ∪Q has no edge in F .

If uPe has no edge in F , then e is the unique F -edge on the U-path uGx,
contradicting the choice of e. So uPe contains an edge f ′ ∈ F . Choose f ′ as
close to e as possible, and repeat the earlier argument with f ′ in the place of f
to find a U-path Q′ = x′Gy′ whose only edge in F is f ′, with f ′ /∈ eGx′ say. By
the choice of f ′, this path eGx′ ⊆ P ∪Q′ has no edge in F . Hence e is the only
F -edge on the U-path xGx′, contradicting the choice of e.

Proof of Theorem 3.9. Let T be the regular tree set provided for P by
Theorem 3.6. Then T ′ = T satisfies (i) of our theorem. Now choose T ′ ⊆ T
minimal with this property.

For every P ∈ P, the set P ∩
→
T ′ extends uniquely to a consistent

orientation PT ′ of T ′.
(4)
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To prove this, note first that P ∩
→
T ′ is consistent, because P is. By [5,

Lemma 4.1] and our assumption that all P ∈ P are regular, P ∩
→
T ′ extends to

a consistent orientation PT ′ of all of T ′.
For a proof that PT ′ is unique, let ` := max{ |r| :

→
r ∈ P ∩

→
T ′}. Since P is

an m-profile, for some m > `, it orients all the separations of order ≤ ` in T .
If P ∩

→
T ′ extends to distinct consistent orientations of T ′ there is some s ∈ T ′

which P does not orient, which thus has order k := |s| > `. In fact, s is not
oriented by the down-closure dP ∩

→
T ′e of P ∩

→
T ′ in

→
T ′, because this is contained

in all consistent orientations of T ′ extending P ∩
→
T ′, by definition of consistency.

When s was added to T in its construction, the reason was that s distin-
guishes some profiles P ′, P ′′ ∈ P inducing the same profile Q of Sk, with →s ∈ P ′
and ←s ∈ P ′′ say. Notice that every

→
r ∈ P ∩

→
T ′ points to s: as T ′ is nested,

→
r

is either smaller or greater than some orientation of s, but s has no orientation
in dP ∩

→
T ′e ⊇ d→r e.

Hence for every
→
r ∈ P ∩

→
T ′, which lies in ~Tk by definition of ` and k, we

have either
→
r < →s and thus

→
r ∈ P ′ ∩ ~Tk ∩

→
T ′ = Q∩

→
T ′ by the consistency of P ′

and →s ∈ P ′, or else
→
r < ←s and

→
r ∈ P ′′ ∩ ~Tk ∩

→
T ′ = Q ∩

→
T ′ by the consistency

of P ′′ and ←s ∈ P ′′. So on the separations in T ′ that it orients, P agrees with Q,
and hence with both P ′ and P ′′. Thus, T ′ does not distinguish P from either
P ′ or P ′′. But T ′ does distinguish all distinct profiles in P. So P is not distinct
from either P ′ or P ′′, i.e., P ′ = P = P ′′ contradicting the choice of P ′ and P ′′.

This completes our proof of (4). Thus, P 7→ PT ′ is a well-defined map from
P to the set O of consistent orientations of T ′. Let us use this to prove assertion
(ii) of our theorem.

As shown in [6], there is a tree G with edge set T ′ whose natural ordering
on ~T ′, as defined in Section 2.3, coincides with our given ordering on

→
T ′. As with

every finite tree, the consistent orientations of its edge set with respect to this
natural ordering correspond to its nodes: an orientation of E(G) is consistent
if and only if it orients all of E(G) towards some fixed node of G [3, 6]. Since
the consistent orientations of E(G) are those of T ′, we may thus think of O as
the node set of G.

Let us apply Lemma 3.10 toG = (O, T ′) with F = T ′ and U = {PT ′ | P ∈ P}
and `(s) := |s| for all s ∈ T ′. Note that a separation s ∈ T ′ distinguishes two
profiles P, P ′ ∈ P if and only if s lies on the unique PT ′–P

′
T ′ path in G: it is

then, and only then, that orienting it towards the node PT ′ differs from orienting
it towards the node P ′T ′ , and as mentioned earlier, an edge →s ∈

→
T ′ is oriented

towards a node PT ′ of G if and only if →s lies in PT ′ .
Let us show that F = T ′ satisfies the premise of the lemma. By definition

of T ′, every two profiles P, P ′ ∈ P are distinguished by some s ∈ T ′ with
`(s) = κ(P, P ′), but as soon as we delete an element s of T ′ it loses this property.
Then there are P, P ′ ∈ P such that s lies on the PT ′–P

′
T ′ path in G but every

other edge r on that path has a label `(r) = |r| > κ(P, P ′) = |s| = `(s). After
deleting s from F no edge of mimimum label on that path will lie in F . Hence,
F is as required in the lemma.

The lemma asserts that, therefore, each s ∈ T ′ is the only edge in T ′ that
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distinguishes some two profiles in P depending on s. This is statement (ii) of
our theorem. Moreover, it implies that U = V (G): if s is the only edge in
F = T ′ = E(G) on some U -path, then this path has length 1, and hence the
ends of s lie in U . Thus, our map P → PT ′ from P to O is surjective. Since it
is also injective, by (i), our proof is complete.

3.4 Symmetric profiles

This section is for those readers that have become interested in abstract profiles
and wonder whether the concept might still be improved. Readers primarily
interested in their applications – to graphs, matroids and elsewhere – may skip
ahead to Section 4 without loss.

Our motivation for introducing the notion of a profile was to find a concept,
as general as possible, that captures the idea of identifying highly connected
parts in a discrete structure by orienting its low-order separations consistently
towards it. While initially these orientations might have been induced by some
concrete highly connected structure such as a k-block, and receive their consis-
tency from there, the idea was that they might ultimately be thought of as a
highly connected substructure in their own right, thus allowing us to treat these
in more general contexts such as abstract separation systems.

The key to this, then, lies in finding an abstract notion of consistency to
make this work. Our formal definition of consistency, that two separations
should not point away from each other, is just a minimum requirement one
would naturally make. Conditions (P) and (R) go a little further but are still
fairly general; recall that tangles satisfy both. As shown in [4], there is little
hope of weakening (R) and retaining a tangle-tree theorem. But maybe we can
weaken (P) a little, while still keeping it narrow enough that the ‘weak profiles’
it then defines can still be distinguished in a tree-like way?

There is also the question of just how natural is the notion of a profile.
Condition (P) seems very natural as a requirement of consistency: if

→
r and →s

both point to some substructure X then so should
→
t :=

→
r ∨ →s if t is oriented

at all, provided the universe in which
→
r ∨ →s is taken is dense enough that there

is ‘no room for X’ between
→
r and →s on the one hand and

←
r ∧ ←s =

←
t on the

other (cf. Example 1). And surely, then, every
→
t ≤ →

r ∨ →s should also lie in
such a profile P , as soon as t – rather than

→
r ∨ →s – is oriented at all, even if

→
r ∨ →s is not. Our current definition ensures this (by consistency) only if

→
r ∨ →s

itself is oriented too, and hence lies in P .
Let us call a consistent orientation P of a separation system (~S,≤ ,∗) in some

universe ~U= (~U,≤ ,∗,∨,∧) a strong profile if it satisfies this strengthening of (P):

For all
→
r , →s ∈ P and

→
t ≤ →

r ∨ →s the separation
←
t is not in P . (P+)

Surprisingly, perhaps, if ~U is a distributive as a lattice and ~S is submodular
in the sense that, whenever

→
r , →s ∈ ~S, either

→
r ∨ →s ∈ ~S or

→
r ∧ →s ∈ ~S [5], then

all its profiles are strong:
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Theorem 3.11. [12, Theorem 1] If ~U is distributive and ~S is submodular, then
an orientation of S satisfies (P+) if and only if it is consistent and satisfies (P).

We shall apply Theorem 3.11 in Section 4.2 to show that, with one simple
exception, all profiles in a matroid are in fact tangles.

So strengthening profiles in this way yields little new – and anyway, our aim
was to weaken (P), not strengthen it. But we can use the same idea to do that
too, and in a way that also will make the notion of a profile more symmetric.

Condition (P+) says that P contains no triple (
→
r1,

→
r2,

→
r3) such that

←
r3 ≤

→
r1 ∨ →r2. To arrive at a weaker notion, let us ban a triple (

→
r1,

→
r2,

→
r3) only if it

satisfies this for every permutation. More precicely, let us say that
→
r1,

→
r2,

→
r3 ∈ ~U

form a bad triple if

←
rk ≤ →

ri ∨ →rj whenever {i, j, k} = {1, 2, 3}

(Figure 3), and call a consistent orientation of S ⊆ U a weak S-profile if it
contains no bad triple.10

Figure 3: A bad triple of separations

However, Eberenz [12] showed that weak profiles can no longer be separated
in a tree-like way, as is our aim in this paper. Indeed, we have the following
example:

Example 6. Let S consists of two crossing separations r, s and their four corner
separations. Let all these six separations have the same order. Let O ⊆ ~S be
the set the four corner separations oriented ‘towards the centre’, that is, the set
of separations of the form

→
r ∧ →s , one for every choice of orientations

→
r of r and

→s of s. Each of the four possible orientations
→
r and →s of r and s extends O to

an orientation P = P→r,→s of S. If ~S, together with a greatest element 1 and a
least element 0, is the entire universe in which ∨ and ∧ are defined, then each
of these P will contain a bad triple of the form (

→
r , →s ,

←
r ∧ ←s ), so none of them

is a weak profile.

10One can, of course, construct separation systems with profiles that are not weak profiles
in this sense. However, there are no natural ones: by Theorem 3.11, profiles of submodular
separation systems in distributive universes – which covers all natural examples – are also
weak profiles.
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However, let us choose a graph G so that S becomes its set of proper 3-
separations, and let ∨ and ∧ be defined as usual in the universe of all separa-
tions of G. Then the four orientations P of S defined above are weak 3-profiles.
To see this, notice that if ~x is a corner separation and ~y is any of the other
separations in P , then

→
x ∨ →y has order at least 4 unless ~x ≤ ~y, and r has no

orientation
→
r ≤ →

x ∨ →y (and likewise for s). Here,
→
x ∨ →y /∈ ~S, but allowing this,

while still banning
←
r ∈ ~S from P if

→
r ≤ →

x ∨ →y and
→
x ,
→
y ∈ P , was the whole

point of introducing bad triples and weak profiles.
Now we cannot distinguish these four weak profiles by a nested set of sep-

arations. Indeed, r and s are the only separations that can distinguish any of
them, we cannot have both r and s in a nested set, but one of them will not
distinguish the four weak profiles pairwise.

4 Applications to graphs and matroids

In this section we apply the results of Section 3 to graphs and matroids, con-
cluding with the proofs of the theorems stated in the introduction. We use the
terms ‘block’, ‘profile’ and ‘tangle’ for k-blocks, k-profiles and k-tangles with
any k. By a profile in a graph or matroid we mean a profile in the universe of
all its separations.

4.1 Canonical tangle-tree theorems in graphs

Let G = (V,E) be a finite graph, and let ~U = (~U,≤ ,∗,∨,∧, | |) be the universe
of all its oriented separations (A,B) with the usual submodular order function
of |(A,B)| := |A,B| := |A∩B|. We think of {A,B} as the corresponding unori-
ented separation, which officially in our terminology is the set {(A,B), (B,A)}.

Given a k-block b in G, let us write

Pk(b) := { (A,B) ∈ ~Sk | b ⊆ B }

for the orientation of Sk it induces. In the introduction, we called this the
‘profile of b’. Our later definition of abstract profiles bears this out:

Lemma 4.1. Pk(b) is a regular k-profile.

We shall call the profiles of the form Pk(b) the (k-)block profiles in G.
Notice that a separation (A,B) ∈ Sk distinguishes two k-blocks, in the origi-

nal sense that one lies in A and the other in B, if and only if (A,B) distinguishes
the k-profiles they induce. From now on, we shall use the term ‘distinguish’ for-
mally only for profiles, and say that a separation distinguishes two blocks, say, if
it distinguishes their profiles. In this way, we can now also speak of separations
distinguishing blocks from other profiles such as tangles.

Similarly, we shall call a block b robust if the profiles11 it induces are robust,
and similarly for sets of blocks.

11Note that b can be a k-block for several k. If the corresponding sets Sk are distinct, then
so are the k-profiles Pk(b) that b induces, though clearly P`(b) ⊆ Pk(b) for ` < k.
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A tangle of order k in G, or k-tangle, is an orientation θ of Sk such that

G[A1] ∪G[A2] ∪G[A3] 6= G (T)

for all triples (A1, B1), (A2, B2), (A3, B3) ∈ θ. These (Ai, Bi) need not be dis-
tinct, so tangles are consistent. In fact, the following is immediate from the
definitions:

Lemma 4.2. Every tangle in G is a robust regular profile.

In order to apply Theorem 3.6 to prove Theorem 3, we need to show that
every tree set of separations in a graph G is induced by a suitable tree-decompo-
sition of G. The following lemma, which was proved for regular tree sets in [4]
and for arbitrary tree sets in [6],12 achieves this:

Lemma 4.3. Let T be a tree set of separations of G. Then G has a tree-decom-
position (T ,V) such that:

(i) T is precisely the set of separations of G associated with the edges of T;

(ii) if T is invariant under the automorphisms of G, then (T ,V) is canonical.13

Note that we have an immediate proof of Theorem 2 now. Indeed, since
k-profiles are n-robust for all n ≤ k, the set P of all k-block profiles and k-
tangles in a graph G, for k fixed, is always robust. Theorem 3.6 therefore yields
a regular and invariant tree set T distinguishing all its k-blocks and k-tangles,
which by Lemma 4.3 yields the desired tree-decomposition of G.

Theorem 3 follows in a similar way from Corollary 3.8. This takes care of
the fact that, when k is variable, profiles can induce each other:

Theorem 3. Every finite graph G has a canonical tree-decomposition that effi-
ciently distinguishes all its distinguishable tangles and robust blocks.

Proof. By Lemmas 4.1 and 4.2, all the profiles in G that are tangles or induced
by a robust block are robust and regular profiles. By Corollary 3.8 there is
a canonical regular tree set T that efficiently distinguishes every two of them.
Lemma 4.3 turns T into a tree-decomposition of G.

Let us conclude this section with two observations about profiles in graphs.
The first is a kind of ‘inverse consistency’ phenomenon. If P is a k-profile in a
graph, (A,B) ∈ P , and {A′, B′} ∈ Sk is such that A′ ⊆ A and B′ ⊇ B, then
also (A′, B′) ∈ P , by the consistency of P and (A′, B′) ≤ (A,B).

But now suppose that, instead, A′ ⊇ A and B′ ⊆ B. Then (A,B) ≤ (A′, B′),
but still we get (A′, B′) ∈ P if P is regular14 and {A′, B′} does not differ from
{A,B} too much:

12Part (ii) of Lemma 4.3 was not stated in the sources cited, but the proofs given establish it.
13Canonical tree-decompositions of graphs are defined in the Introduction.
14Regularity is not a severe restriction. We shall see in a moment that k-profiles in graphs

are all regular for k ≥ 3, and for k = 1, 2 the few irregular k-profiles are exactly understood.
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Proposition 4.4. Let P be a regular k-profile in a graph G, and let (A,B) ∈ P .
Let A′ ⊇ A and B′ ⊆ B be such that both {A,B′} and {A′, B′} lie in Sk. Then
(A′, B′) ∈ P .

Proof. Let us first prove the assertion for A′ = A, i.e., show that (A,B′) ∈ P .
We show that if this fails then {(A,B), (B′, A), (B∩A,A∪B′)} ⊆ P , in violation
of (P).

We have {A,B′} ∈ Sk by assumption, so if (A,B′) does not lie in P as
claimed, then (B′, A) does. And since A∪B′ = V , we have {B∩A,A∪B′} ∈ Sk.
Since P is regular, it must contain the small separation (B ∩A,A ∪B′).

The case of A′ ) A can now be derived from this as follows. If (A′, B′) /∈ P
then (B′, A′) ∈ P , since {A′, B′} ∈ Sk. Then (B′, A) ∈ P by the above case ap-
plied to (B′, A′), since A ⊆ A′. But this contradicts the fact that, as established
above, (A,B′) ∈ P .

Our second observation is that graphs can have profiles that are neither
block profiles nor tangles:

Example 7. (Carmesin, personal communication 2014) The graph in Figure 4
has a 5-profile that orients both its 4-separations towards the middle. This
profile is neither a 5-tangle nor induced by a 5-block.

K6 K6

Figure 4: A 5-profile that is neither a 5-tangle nor induced by a 5-block.

Example 7 makes it desirable to have a tangle-tree theorem for all the profiles
in a graph, not just those that are tangles or block profiles. Corollary 3.8 yields
this too, even without a need to require regularity.

To see this, we need some observations from [8]. First, that all k-profiles in
a graph G = (V,E) are regular as soon as k > 2. For k = 1 there can be exactly
one irregular 1-profile, the set {(V, ∅)}, and only if G is connected. For k = 2
there can be irregular profiles, but these can be described precisely: they are
precisely the 2-profiles the form

Pv = { (A,B) ∈ ~S2 | v ∈ B and (A,B) 6= ({v}, V ) }

where v ∈ V is not a cutvertex of G. Let us call such profiles in graphs principal .
Thus, all profiles in graphs other than those 2-profiles Pv are non-principal.
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Theorem 4.5. Every finite graph has a canonical tree-decomposition that dis-
tinguishes all its distinguishable robust non-principal profiles.

Proof. By Corollary 3.8 there is a canonical regular tree set T that distinguishes
all the distinguishable, robust, non-principal k-profiles in G for k > 1 as well as
for k = 1 if they are regular, since all these profiles for k > 1 are regular [8].
Lemma 4.3 turns T into a tree-decomposition (T ,V) that distinguishes all these
profiles, with V = (Vt)t∈T say. If G is disconnected, then these are all its robust
non-principal profiles, and the proof is complete.

If G is connected, it als has the irregular non-principal 1-profile {(V, ∅)}. To
accommodate this, we add a new empty part Vt to our decomposition, joining
t to some node z of T by an edge associated with the separation {∅, V }. This
separation will distinguish {(V, ∅)} from all the other profiles in G, since these
contain (∅, V ) by consistency.

The only problem is how to choose z so that the tree-decomposition remains
canonical. If T has a central node, we choose this as z. If not, it has a central
edge xy. Subdivide xy by a new node z, with Vz := Vx ∩ Vy. Then every auto-
morphism of T is, or extends to, an automorphism of this (possibly modified)
tree T ′ that fixes z. In particular, the automorphisms of G, which act on T by
Lemma 4.3, still act on T ′. Now join t to z. Since all automorphisms of G fix
Vt = ∅, the extended tree-decomposition will again be canonical.

4.2 The canonical tangle-tree theorem for matroids

Let M be a finite matroid with ground set E. Let ~U= (~U,≤ ,∗,∨,∧, | |) be the
universe of the oriented bipartitions of E, where ∨ and ∧ are defined as for set
separations in Section 2.2, and | | is the usual submodular order function given
by

|{A,B}| = |(A,B)| = r(A) + r(B)− r(E) + 1,

where r is the rank function of M . As before, we write ~Sk for the separation
system of all the separations in ~U of order less than k.

Tangles in matroids were introduced implicitly by Robertson and Seymour [20],
and explicitly by Geelen, Gerards, Robertson and Whittle [14]. A k-tangle in M
is an orientation of Sk that has no element of the form (Er{e}, e) and no subset
of the form

{(A1, B1), (A2, B2), (A3, B3)} with A1 ∪A2 ∪A3 = E. (TM)

As with graphs, the separations (A1, B1), (A2, B2), (A3, B3) above need not be
distinct. In particular, tangles are consistent. Since they obviously also sat-
isfy (P), they are in fact profiles, indeed robust and regular profiles.

Unlike for graphs, however, the tangles in a matroid are essentially all its
profiles. Let us call a profile P in M principal if there exists an e ∈ E such that
(A,B) ∈ P if and only if e ∈ B, for all bipartitions {A,B} oriented by P .

Lemma 4.6. For every integer k ≥ 1, the k-tangles in a matroid are precisely
its non-principal k-profiles.
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Proof. We have seen that matroid tangles are profiles, and they are non-principal
by definition. Conversely note that, by consistency, a profile is principal as
soon as it contains a separation of the form (E r {e}, {e}). Hence a non-
principal profile contains no such separation, and thus satisfies the tangle ax-
iom requiring this. And by Theorem 3.11 it satisfies (P+), which immediately
implies (TM).

A tree-decomposition of M is a pair (T,V) where T is a tree and V = (Vt | t ∈
V (T ) ) is a partition of E. As in graphs, we say (T ,V) (efficiently) distinguishes
two tangles in M if the set of separations of M that are associated with the edges
of T – defined as for graphs – distinguishes these tangles (efficiently). Lemmas
4.2 and 4.3 hold for tree-decompositions of matroids too, with the same easy
proofs.

Theorem 4 follows from Corollary 3.8 much as Theorem 3 did:

Theorem 4. Every finite matroid has a canonical tree-decomposition which
efficiently distinguishes all its distinguishable tangles.

Proof. By Lemma 4.2, the tangles in M are robust and regular profiles. By
Corollary 3.8 there is a canonical regular tree set T that efficiently distinguishes
every two of them. Lemma 4.3 turns T into a tree-decomposition of M .

5 Applications in data analysis and optimization

5.1 Applying profiles to cluster analysis

Both the canonical and the non-canonical tangle-tree theorem lend themselves
to the analysis of big data sets when clusters in these are interpreted as profiles.
This approach to clusters has an important advantage over more traditional
ways of identifying clusters: real-world clusters tend to be fuzzy, and profiles can
capture them despite their fuzziness; cf. the grid example from the introduction.

Let D be a (large data) set with at least two elements, and let U be a set
of separations {A,B} of D whose orientations (A,B) form a universe ~U of set
separations as defined in Section 2.1.15 Let us call D submodular if it comes
with a fixed submodular such universe ~U, one with a submodular order function
{A,B} 7→ |A,B| on U .

How exactly this order function should be defined will depend both on the
type of data that D represents and on the envisaged type of clustering. See [11]
for examples of how this might be done when D is the set of pixels of an image,
U consists of just the bipartitions of D, and the clusters to be captured are the
natural regions of this image such as a nose, or a cheek, in a portrait.

If U consists of just the bipartitions of D, then all profiles in ~U are regular,
because the only small such separation of D is (∅, D), which is in fact trivial
since |D| ≥ 2. And they are all robust; see Footnote 7. Since every d ∈ D
induces a profile Pd := { (A,B) | d ∈ B } of U (just choose k large enough), any

15We allow A and B to be empty, since {∅, D} ∈ U is needed for ~U to be a universe.
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tree set of separations that distinguishes all the profiles in ~U will contain, for
every pair of distinct data a, b ∈ D, a bipartition {A,B} of D such that a ∈ A
and b ∈ B.

Let us call the robust and regular profiles in U the clusters of D. Theorem 5
then becomes a consequence of Theorem 3.6, via Corollary 3.8:

Theorem 5. Every submodular data set has a canonical regular tree set of
separations which efficiently distinguishes all its distinguishable clusters.

5.2 Edge-tangles and Gomory-Hu trees

In this section we illustrate Theorem 3.9 by applying it to some specific profiles,
sometimes called ‘edge-tangles’. We reobtain a classical theorem of Gomory and
Hu [16], which asserts the existence of certain trees displaying optimal cuts in
a graph. Our point is not that obtaining these trees via Theorem 3.9 is simpler
than their elementary existence proof, although that is not exactly short either.
But seeing what Theorem 3.9 does in this special case can illustrate its power:
it shows, in a familiar setting, what it can do more generally with profiles that
arise in other contexts, such as [8].

Consider a finite graph G = (V,E) with a positive real-valued weight func-
tion g on the edges. A tree T on V, not necessarily a subgraph of G, is a
Gomory-Hu tree for G and g if for all distinct u, v ∈ V there is an edge on the
u–v path in T whose fundamental cut in G has minimum g-weight among all
u–v cuts of G. (For details, see Frank [13, Ch. 7.2.2].)

Theorem 5.1. (Gomory & Hu, 1961)
Every finite graph with positive real edge weights has a Gomory-Hu tree.

Proof. To deduce this theorem from Theorem 3.9, consider the universe ~U of all
set separations of V that are bipartitions of V with the order function |A,B| :=∑
{ g(ab) | a ∈ A, b ∈ B, ab ∈ E(G) }, which is clearly submodular. Every

vertex v ∈ V induces a robust regular profile Pv := { (A,B) | v ∈ B } of U , and
v 7→ Pv is a bijection from V to the set P of all these profiles of U .

Let T ′ ⊆ U be the tree set which Theorem 3.9 finds for P. For every v ∈ V,
the profile Pv of U induces a profile tv of T ′ ⊆ U , and v 7→ Pv 7→ tv is a bijection
from V to the set O of all the profiles of T ′. (Since T ′ is a tree set, its profiles
are just its consistent orientations.)

Every s ∈ T ′ induces a bipartition of O into the set O→s of profiles that orient
s as →s and the set O←s of profiles that orient s as ←s . And s is itself a bipartition
of V, say →s = (U,W ). These bipartitions correspond via our bijection v 7→ tv:

U = { v ∈ V | ←s ∈ tv } = { v ∈ V | tv ∈ O←s }

W = { v ∈ V | →s ∈ tv } = { v ∈ V | tv ∈ O→s }.

In other words, our bijection v 7→ tv maps →s = (U,W ) to (O←s ,O→s ).
It is not hard to show [6] that for every s ∈ T ′ there exist unique tu, tv ∈ O

that differ only on s. Then T ′ becomes the edge set of a graph T on O if we
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let s join tu to tv, for every s ∈ T ′. This graph T is in fact a tree [6]. For every
edge s of T , the vertex sets O→s ,O←s induce the two components of the forest
T − s, because profiles adjacent as vertices of T − s agree on s.

Let T be the tree on V that is the image of T under our bijection tv 7→ v from
O to V. Every edge e of T then arises from an edge s of T , and the bipartition
{U,W} of V defined by the components of T − e corresponds via v 7→ tv to
the bipartition {O←s ,O→s } of O defined by the components of T − s. As shown
earlier, this means that s = {U,W}.

Let us show that T is a Gomory-Hu tree for G and g. For all distinct u, v ∈ T
the separations in T ′ that distinguish tu from tv (equivalently: Pu from Pv) are
precisely the edges on the tu–tv path in T . One of these, s say, distinguishes
Pu from Pv efficiently, by the choice of T ′. By definition of T , the edge e ∈ T
corresponding to s lies on the u–v path in T . The bipartition of V defined by the
two components of T −e is precisely s. The fact that s distinguishes Pu from Pv
efficiently means that the cut of G it defines has minimum weight among all the
u–v cuts of G, as desired.

6 Width duality for profiles in graphs

All our theorems deal with distinguishing existing profiles in a given universe
of separations, but say nothing if such profiles do not exist. For fixed k, for
example, we can ask what we can say about the structure of a graph that has
no k-profile. Such graphs do exist:

Example 8. Let G be a graph with a tree-decomposition of width < k − 1,
one whose parts have order < k. Any k-profile P in G will orient all the
separations associated with an edge of the decomposition tree T , and will thus
induce a consistent orientation of E(T ). This orientation will points towards
some node t of T .

Now consider a separation of G associated with an edge t′t at t, say (A,B),
with B containing the part Vt corresponding to t. Let A′ := A∪Vt. Then (A′, B)
is still in ~Sk, since |A′ ∩B| = |Vt| < k, and (A′, B) ∈ P by Proposition 4.4.

If T has another edge at t, say t′′t, do the same to obtain (A′′, C) ∈ P .
Then, by (P), also (A′∪A′′, B∩C) ∈ P ; note that this separation too has order
|Vt| < k.

Repeating this step for all the edges of T at t, we eventually arrive at (V, Vt) ∈
P . If |Vt| ≤ k − 2, which we can easily ensure, this contradicts the consistency
of P , since (V, Vt) will then be co-trivial: just add a vertex to its Vt-side to
obtain a larger separation than (Vt, V ) that is still small.

For tangles, Robertson and Seymour [20] address the problem of character-
izing the structure of graphs without a tangle of given order: they show that a
graph either has a k-tangle or a tree-decomposition16 that is clearly incompati-
ble with the existence of a k-tangle, and which thus witnesses its non-existence.

16The ‘branch-decompositions’ used in [20] are easily translated into tree-decomposi-
tions [10].

31



Similar duality theorems of this type were obtained in [10] for other tangle-like
structures, consistent orientations of separation systems avoiding some given
set F of ‘forbidden subsets’. (For classical tangles, F would consist of the
triples {(A1, B1), (A2, B2), (A3, B3)} satisfying (T).) All these are applications
of a fundamental such duality theorem for abstract separation systems [9].

The sets F for which such duality theorems are proved in [9] have to consist of
‘stars’: sets of separations all pointing towards each other. For classical tangles
this does not matter: one easily shows that a consistent orientation of Sk, say,
avoids all the triples as in (T) as soon as it avoids the stars satisfying (T). For
profiles, however, this is not the case – which is why [10] has no duality theorem
for profiles.

However, it was shown in [8] that profiles can be characterized by a forbidden
set F of stars of separations after all, and thus have a duality theorem. Indeed,
for each k there is a set TP(k) of tree-decompositions which graphs with a k-
profile cannot have, and which graphs without a k-profile must have:

Theorem 6.1. [8] For every finite graph G and every integer k > 0 exactly one
of the following statements holds:

• G has a k-profile;

• G has a tree-decomposition in TP(k).

A similar duality theorem holds more generally for regular profiles of abstract
separation systems [8, Theorem 12].

7 An open problem for tangles

Unlike blocks and tangles, profiles can exist in abstract separation systems that
need not even consist of separations of sets. This motivates the notion of a
profile independently of their examples in graphs or matroids.

But for profiles in graphs, it is meaningful to ask just how different arbitrary
profiles can be from block profiles: are they always induced by some fixed set
of vertices in the same way as a block profile Pk(b) is induced by b?

This problem appears to be open even for tangles:

Problem. Given a k-tangle θ in a graph G, is there always a set X of vertices
such that a separation (A,B) of order < k lies in θ if and only |A∩X| < |B∩X|?
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