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Abstract. We study the diameter of LPS Ramanujan graphs Xp,q . We

show that the diameter of the bipartite Ramanujan graphs is greater than
(4/3) logp(n) + O(1) where n is the number of vertices of Xp,q . We also con-

struct an infinite family of (p+ 1)-regular LPS Ramanujan graphs Xp,m such

that the diameter of these graphs is greater than or equal to b(4/3) logp(n)c.
On the other hand, for any k-regular Ramanujan graph we show that the
distance of only a tiny fraction of all pairs of vertices is greater than (1 +

ε) logk−1(n). We also have some numerical experiments for LPS Ramanu-

jan graphs and random Cayley graphs which suggest that the diameters are
asymptotically (4/3) logk−1(n) and logk−1(n), respectively.
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1. Introduction

1.1. Motivation. The diameter of any k-regular graph with n vertices is bounded
from below by logk−1(n) and it could get as large as a scalar multiple of n. It
is known that the diameter of any k-regular Ramanujan graph is bounded from
above by 2(1 + ε) logk−1(n) [LPS88]. Lubotzky, Phillips and Sarnak constructed a
family of (p+1)−regular Ramanujan graphs Xp,q [LPS88], where p and q are prime
numbers and q ≡ 1 mod 4. Xp,q is a p+ 1-regular bipartite or non-bipartite graph
depending on p being a non-quadratic or quadratic residue mod q, respectively.
Their construction can be modified for every integer q; see [DSV03] or [Lub10].
It was expected that the diameter of the LPS Ramanujan graphs to be bounded
from above by (1 + ε) logk−1(n); see [Sar90, Chapter 3]. However, we show that the
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diameter of an infinite family of p + 1-regular LPS Ramanujan graphs is greater
than or equal to

(1.1) b(4/3) logp(n)c.

While there are points x and y whose distance is large in a LPS Ramanujan
graph, we prove that the distance of a tiny fraction of vertices in any k-regular
Ramanujan graph G is less than (1 + ε) logk−1(n). In other words, the essential
diameter is asymptotic to

(1 + ε) logk−1(n),

where the essential diameter of a graph is d if 99% of the distance of pairs of vertices
is less than d. In fact, we prove a stronger result, we show that for every vertex x
in a k-regular Ramanujan graph G the number of points which cannot be visited
by exactly l steps, where l > (1 + ε) logk−1(n), is less than n1−ε. So the number is
exponentially decaying. In particular, it also recovers 2(1+ε) logk−1(n) as an upper
bound on the diameter of k-regular Ramanujan graph. Furthermore, we give some
numerical datas for two families of 6-regular graphs. The first family of graphs are
the 6-regular LPS Ramanujan graphs and we denote them by X5,q. The second
family are the 6-regular random Cayley graphs PSL2(Z/qZ), i.e. the Cayley graphs
that are constructed by 3 random generators of PSL2(Z/qZ) and their inverses
{s±1 , s

±
2 , s
±
3 }. We denote these graphs by Zq. The numerical experiments suggest

that the diameter of the (number theoretic) LPS Ramanujan Graphs is asymptotic
to

(1.2) (4/3) log5(n).

This is consistent with our conjecture on the optimal strong approximation for
quadratic forms in 4 variables [Sar15a]. On the other hand, the numerical data
suggests that the diameter of the random Cayley graph equals that of a random
6-regular graph [BFdlV82], that is

(1.3) log5(n).

The archimedean analog of our question has been discussed in Sarnak’s letter to
Scott Aaronson and Andy Pollington; see [Sar15b]. In that context, the approx-
imation of points on the sphere by words in LPS generators is considered. This
question is related to the theory of quadratic Diophantine equations; see [Sar15a].
Sarnak defines the notion of the covering exponent and the almost all covering
exponent [Sar15b, Page 3] that are the analogue of diameter and the essential di-
ameter in our paper. Sarnak showed that the almost all covering exponent is 1;
see [Sar15b, Page 28]. Our Theorem 1.4 is the p-adic analogue of Sarnak’s theorem.
In a recent paper [LP15], Lubetzky and Peres show the simple random walk ex-
hibits cutoff on Ramanujan Graphs. As a result they give a more detailed version
of our Theorem 1.4. In a similar work, for the family of LPS bipartite Ramanujan
graphs, Biggs and Boshier determined the asymptotic behavior of the girth of these
graphs; see [BB90]. They showed that the girth is asymptotic to

(4/3) logk−1(n).
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1.2. Statement of results. We begin by a brief description of LPS Ramanu-
jan graphs; see [LPS88] for a comprehensive treatment of them. The idea of the
construction is coming form number theory, i.e. generalized Ramanujan conjecture.
More precisely, we consider the symmetric space PGL2(Qp)/PGL2(Zp) which can be
identified with a regular (p+ 1)-infinite tree. We note that PGL2(Z[1/p]) acts from
the left on PGL2(Qp)/PGL2(Zp). The generalized Ramanujan conjecture, which is
a theorem in this case, implies that the quotient of PGL2(Qp)/PGL2(Zp) by any
congruence subgroup of PGL2(Z[1/p]) which is a p+ 1-regular graph is a Ramanu-
jan graph. By considering an appropriate congruence subgroup of PGL2(Z[1/p])
we can identify the quotient of this symmetric space with a Cayley graph. The
Cayley graphs is associated to PSL2(Z/qZ) or PGL2(Z/qZ) depending on p being
a quadratic residue or non-quadratic residue mod q where q is a prime and q ≡ 1
mod 4. These are LPS Ramanujan graphs that are defined in [LPS88].

In the bipartite case where p is non-quadratic residue mod prime number p′ ≡ 1
mod 4, we show that the diameter is greater than

(4/3) logp(|Xp,p′ |) +O(1).

In the non-bipartite case, our theorem is weaker. We take a composite number m
such that p is a quadratic residue mod m. We show that the diameter of the LPS
Ramanujan graphs Xp,m is greater than

(4/3) logp(n)− 4 logp(
m

q
) +O(1),

where n = (m3 −m)/2 is the number of vertices of Xp,m, q|m, q is a prime power
and q 6= m. Note that these graphs are congruence covers of the LPS Ramanujan
graphs Xp,q.

In what follows, we give an explicit description of the LPS Ramanujan graphs in
terms of the Cayley graphs of PSL2(Z/mZ). Assume that q is a prime number and
q|m where m is an integer and −1 is quadratic residue mod m. Let p be a prime
number such that p ≡ 1 mod 4 and p is quadratic residue mod m. We denote the
representatives of square roots of −1 and p mod m by i and

√
p, respectively. We

are looking at the integral solutions α = (x0, x1, x2, x3) of the following diophantine
equation

(1.4) x20 + x21 + x22 + x23 = p,

where x0 > 0 and is odd and x1, x2, x3 are even numbers. There are exactly
p+ 1 integral solutions with such properties . To each such integral solution α, we
associates the following matrix α in PSL2(Z/mZ) :

(1.5) α :=
1
√
p

[
x0 + ix1 x2 + ix3
−x2 + ix3 x0 − ix1

]
.

Note that 1√
p is there to make det(α) = 1. If p is non-quadratic residue mod m

then α :=

[
x0 + ix1 x2 + ix3
−x2 + ix3 x0 − ix1

]
/∈ PSL2(Z/mZ) and that’s why the Cayley graph

in this case is defined over PGL2(Z/mZ) and the associated Cayley graph is a
bipartite graph. This gives us p + 1 matrices in PSL2(Z/mZ). Lubotzky [Lub10,
Theorem 7.4.3] showed that they generate PSL2(Z/mZ) and the associated Cayley
graph is a non-bipartite Ramanujan graph. The construction for the bipartite LPS
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Ramanujan graphs is similar. The only difference is that p is non-quadratic residue
mod q. Furthermore, Lubotzky showed that

• diam Xp,m ≤ 2 logp(n) + 2 logp 2 + 1.

• girth Xp,m ≥ 2
3 logp(n)− 2 logp 2.

Our first theorem shows that the distance between the identity matrix I and W :=[
0 1
−1 0

]
in the bipartite Ramanujan graph Xp,p′ = PGL2(Z/p′Z) where p is a

non-quadratic residue mod p′ is bigger than

(4/3) logp(|Xp,p′ |)− (
2

3
) logp 2.

where |Xp,p′ | is the number of vertices of Xp,p′ . For non-bipartite graphs Xp,m,
our theorem shows that either the distance between the identity matrix I and

I ′ :=

[
1 q
0 1

]
or between I and W :=

[
0 1
−1 0

]
in Xp,m is larger than

(4/3) logp(|Xp,m|)− 4 logp(
m

q
)− (

2

3
) logp 2,

As a result,

(1.6) (4/3) logp(|Xp,m|)− 4 logp(
m

q
)− (

2

3
) logp 2 ≤ diam(Xp,m).

Theorem 1.1. Let p, p′, q be primes and m an integers defined as above. Let
Xp,p′ and Xp,m be the associated bipartite and non-bipartite Ramanujan graphs.
Then the diameter of the bipartite LPS Ramanujan graph Xp,p′ is larger than

(4/3) logp(|Xp,p′ |)− (
2

3
) logp 2.

In the non-bipartite case, the diameter of the LPS graph Xp,m is larger than

(1.7) (4/3) logp(|Xp,m|)− 4 logp(
m

q
)− (

2

3
) logp 2 ≤ diam(Xp,m).

Corollary 1.2. Let p and q be prime numbers that are congruent to 1 mod 4 and

p > 1250. Then the diameter of the LPS Ramanujan graph Xp,5qk for any integer
k is greater than or equal to

(1.8) b(4/3) logp |Xp,5qk |c.

Remark 1.3. We conjecture that the diameter of LPS Ramanujan graph Xp,q

where q is a prime number is asymptotic to (4/3) logp |Xp,q|. I expect that a variate
of our argument gives a sharp lower bound for the diameter of Xp,q by choosing
vertices with large distance from the identity (e.g. W and I ′ in our argument).
We give our numerical results for the distance of W from the identity vertex in
Table 3. Our data comes from our algorithm that we developed and implemented
for navigation on LPS Ramanujan graphs [TS17]. We refer the reader to [TS17,
Remark 1.10] for further discussion of the distribution of the distance of diagonal
elements from the identity where the possible vertices with large distances from the
identity matrix are listed.
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On the other hand, we use the Ramanujan bound on the nontrivial eigenvalues
of the adjacency matrix to prove the distance of almost all pairs of vertices is less
than (1 + ε) logk(n). The archimedean version of this problem has been discussed
in Sarnak’s letter to Scott Aaronson and Andy Pollington [Sar15b, Page 28]. More
precisely, we prove the following stronger result in Section 3:

Theorem 1.4. Let G be a k-regular Ramanujan graph and fix a vertex x ∈ V (G).
Let R be an integer such that R > (1 + ε) logk−1(n). Define M(x,R) to be the set
of all vertices y ∈ G such that there is no path from x to y with length R (we allow
to pass from an edge multiple times but not immediately after). Then,

(1.9) |M(x,R)| ≤ n1−ε(1 +R)2.

1.3. Outline of the paper. In Section 2, we prove Theorem 1.1. The proof uses
some elementary facts in Number Theory. In Section 3, we prove Theorem 1.4. As
a corollary, we prove that the distance of almost all pairs of vertices is less than

(1 + ε) logk−1(n).

We use the Chebyshev’s inequality by giving an upper bound for the variance of
the distance. We use the Ramanujan bound on the eigenvalues of the adjacency
matrix of the graph to give an upper bound on the variance of the distance. Finally
in Section 4, we compute the diameter of two families of 6-regular graphs. From
our numerical experiments, we expect that the diameter of the LPS Ramanujan
graphs [LPS88] is asymptotic to

(1.10) (4/3) logp(n).

We define a random 6 regular Cayley graph Zq , by considering the Cayley graph
of PSL2(Z/qZ) relative to the generating set S = {s±1 , s

±
2 , s
±
3 }, where s1, s2, s3 are

random elements of PSL2(Z/qZ). From the numerical experiments , we show that
in fact the random Cayley graph has a shorter diameter and break the 4/3 log5 n
lower bound for the LPS Ramanujan graphs. For example, We obtained a sample
from the random Cayley graph of PSL2(Z/229Z), such that

(1.11) diam (Z229) < 1.23 log5 n.

We expect that the diameter of the random Cayley graph would be as small as
possible. More precisely, for ε > 0

(1.12) diam(Zq) ≤ (1 + ε) log5(n) + cε, almost surely as q →∞.

1.4. Acknowledgments. I would like to thank my Ph.D. advisor, Peter Sarnak
for suggesting this project to me and also his comments on the earlier versions of
this work. I am also very grateful for several insightful and inspiring conversations
with him during the course of this work. In addition, I would like to thank Ori
Parzanchevski for sharing his code on computing the largest nontrivial eigenvalue
of a Cayley graph with me and also for finding a non-Ramanujan double cover of
LPS Ramanujan graphs. Finally, I would like to thank the careful reading and
comments of the anonymous referees.
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2. Lower bound for the diameter of the Ramanujan graphs

In the rest of this section, we give a proof of Theorem 1.1.

Proof. We begin by proving the first part of the theorem. We show that the distance

between the identity matrix I and W :=

[
0 1
−1 0

]
in the bipartite Ramanujan graph

Xp,p′ = PGL2(Z/p′Z) where p is a non-quadratic residue mod p′ is bigger than

(4/3) logp(|Xp,p′ |)− (
2

3
) logp 2.

By using |Xp,p′ | = (p′3 − p′)/2 the above expression simplifies to 4/3 log(p
′3−p′
4 )

that is smaller than

logp
p′4

4
.

We proceed by assuming the contradiction that dist(I, I ′) < logp
p′4

4 . There is a
correspondence between non-backtracking path of length k from the identity vertex
to another vertex vk of LPS Ramanujan graph Xp,p′ and the primitive elements of
integral quaternion Hamiltonian (the gcd of the coordinates is one) of square norm

pk up to units of H(Z); see [LPS88, Section 3]. As a result, dist(I, I ′) < logp
p′

4

4
gives us a solution to the following diophantine equation

(2.1) a2 + b2 + c2 + d2 = pk,

where k = dist(I, I ′), b ≡ c ≡ d ≡ 0 mod 2p′ and a ≡ 1 mod 2. At least one of
b, c, d is nonzero. From this we deduce that

(2.2) a2 ≡ pk mod p′2 and 4p′2 ≤ pk.
Since p is non-quadratic residue mod p′ the above congruence identity holds only
for even k. If k is even and k = 2t. From 2.11 we deduce that

(2.3) a ≡ ±pt mod p′2.

If pt ≥ p′2

2 ,

(2.4) dist(I, I ′) = 2t ≥ logp
p′4

4
,

a contradiction. Consequently, pt < p′2

2 . Since a 6= ±pt, we deduce that

(2.5) a = ±pt + lp′2 for l 6= 0.

Therefore

(2.6) |a| ≥ 1

2
p′2.

Hence,

p2t ≥ p′4

4
, and so

dist (I, I ′) = 2t ≥ logp
p′4

4
.

(2.7)

a contradiction. Hence, we conclude the first part of our theorem. Next we give

the proof of the second part of our theorem. Recall that W :=

[
0 1
−1 0

]
and
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I ′ :=

[
1 q
0 1

]
. By using |Xp,m| = (m−1)m(m+1)

2 the expression (4/3) logp(n) −

4 logp(
m
q )− ( 2

3 ) logp 2 simplifies and it is smaller than

logp
q4

4
.

We show that

(2.8) max( dist (I, I ′), dist (I,W )) ≥ q4

4
.

Assume the contrary that

(2.9) max( dist (I, I ′), dist (I,W )) <
q4

4
.

Similarly by using the correspondence between non-backtracking path of length k
and the solutions to the associated diophantine equation for sums of four squares,

dist(I, I ′) < logp
q4

4 gives us a solution to the following diophantine equation

(2.10) a2 + b2 + c2 + d2 = pk,

where k = dist(I, I ′), b ≡ c ≡ d ≡ 0 mod 2q and a ≡ 1 mod 2. At least one of
b, c, d is nonzero. From this we deduce that

(2.11) a2 ≡ pk mod q2 and 4q2 ≤ pk.

We consider two cases: k even and k odd.
If k is even and k = 2t. From 2.11 we deduce that

(2.12) a ≡ ±pt mod q2.

If pt ≥ q2

2 ,

(2.13) dist(I, I ′) = 2t ≥ logp
q4

4
,

a contradiction. Consequently, pt < q2

2 . Since a 6= ±pt, we deduce that

(2.14) a = ±pt + lq2 for l 6= 0.

Therefore

(2.15) |a| ≥ 1

2
q2.

Hence,

p2t ≥ q4

4
, and so

dist (I, I ′) = 2t ≥ logp
q4

4
.

(2.16)

a contradiction. Hence k is odd and k = 2t+ 1.
We want to use a similar argument to show that dist (I,W ) = 2t0 + 1 is an odd

number. dist (I,W ) < 4/3 logp(n) gives us a solution to the following diophantine
equation

(2.17) a2 + b2 + c2 + d2 = pk.
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Where b ≡ a ≡ d ≡ 0 mod q and c ≡ 0 mod 2. Since a is odd, then q ≤ |a|. We
deduce that

(2.18) c2 ≡ pk mod q2 and q2 ≤ pk.

We consider two cases: k even and k odd.
If k is even and k = 2t, from 2.18 we deduce that

(2.19) c ≡ ±pt mod q2.

If pt ≥ q2

2 ,

(2.20) dist(I,W ) = 2t ≥ logp
q4

4
,

a contradiction. Consequently, pt < q2

2 . Since c is even, then c 6= ±pt. We deduce
that

(2.21) c = ±pt + lq2 for l 6= 0.

Therefore,

(2.22) c ≥ 1

2
q2.

Hence,

p2t ≥ 1

4
q4,

dist(I,W ) = 2t ≥ logp
q4

4
.

(2.23)

This is a contradiction. Therefore k = 2t0 + 1 for some t0.
We now investigate the case where

dist (I, I ′) = 2t+ 1 < logp
q4

4

and

dist (I,W ) = 2t0 + 1 < logp
q4

4
.

dist (I, I ′) = 2t+ 1 gives us a solution to the following diophantine equation

(2.24) a2 + b2 + c2 + d2 = p2t+1 <
q4

4
.

Where b ≡ c ≡ d ≡ 0 mod 2q and a ≡ 1 mod 2. At least one of b, c, d is nonzero.
Hence

(2.25) 4q2 < p2t+1 < q4.

dist (I,W ) = 2t0 + 1 < logp
q4

4 , gives us a solution to the following diophantine
equation

(2.26) a20 + b20 + c20 + d20 = p2t0+1 < q4/4.

Where b0 ≡ a0 ≡ d0 ≡ 0 mod q and a0 ≡ 1 mod 2. From 2.24 and 2.26 we deduce
that

a2 ≡ p2t+1 mod q2 and a is odd a < pt+1/2 < q2/2,

c2 ≡ p2t0+1 mod q2 and c is even c < pt0+1/2 < q2/2.
(2.27)
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Without loss of generality we assume that t0 > t, from 2.27 we deduce that

(2.28) ± apt0−t = c.

However, this is incompatible with the parities of a and c. Hence, we conclude
Theorem 1.1. �

3. Visiting almost all points after (1 + ε) logk−1(n) steps

In this section, we show that if we pick two random points from a k-regular
Ramanujan graph G, almost surely they have a distance less than

(3.1) (1 + ε) logk−1(n).

The idea is to use the spectral gap of the adjacency matrix of the Ramanujan graphs
to prove an upper bound on the variance. A similar strategy has been implemented
by Sarnak ; see [Sar15b, Page 28].

Proof. Let A(x, y) be the adjacency matrix of the Ramanujan graph G, i.e.

(3.2) A(x, y) :=

{
1 if x ∼ y
0 otherwise

.

Since A(x, y) is a symmetric matrix, it is diagonalizable. We can write the
spectral expansion of this matrix by the set of its eigenfunctions. Namely,

(3.3) A(x, y) =
k

‖G‖
+
∑
j

λjφj(x)φj(y),

where
{
φj
}

is the orthonormal basis of the nontrivial eigenfunctions with eigenval-

ues
{
λj
}

for the adjacency matrix A(x, y). Since we assumed thatG is a Ramanujan

graph, then |λj | ≤ 2
√
k − 1. We change the variables and write

(3.4) λj = 2
√
k − 1 cos θj .

We define S(R) := (k− 1)
R
2 UR( A

2
√
k−1 ), where UR(x) is the Chebyshev polynomial

of the second kind, i.e.

(3.5) UR(x) :=
sin((R+ 1) arccosx)

sin(arccosx)
.

The following is the spectral expansion of S(R):

(3.6) S(R)(x, y) :=
(k − 1)

R
2 UR( k

2
√
k−1 )

‖G‖
+
∑
j

(k − 1)
R
2 UR(

λj

2
√
k − 1

)φj(x)φj(y),

Remark 3.1. Note that if we lift the linear operator S(R) to the universal covering
space of the k-regular graph G, (which is an infinite k-regular tree), then S(R) is
the linear operator, which takes the average of a function on a sphere with radius
R. Namely,

(3.7) S(R)f(x) :=
∑

y,dist(x,y)=R

f(y).

See [LPS88, Remark 2] for more discussion of this operator.
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From the formula for the kernel of S(R) given in 3.6, we obtain

S(R)(x, y) =
k(k − 1)R−1

‖G‖
+
∑
j

(k − 1)
R
2

sin((R+ 1)θj)

sin θj
φj(x)φj(y).(3.8)

We calculate the variance over y. For i 6= j, we have
∑
y∈G φi(y)φj(y) = 0 and∑

y∈G φi(y)2 = 1, So only the diagonal terms remain in the following summation:

Var (x) :=
∑
y∈G
‖S(R)(x, y)− k(k − 1)R−1

‖G‖
‖2

=
∑
j

(k − 1)R
(sin(R+ 1)θj)

2

(sin θj)2
φj(x)2.

(3.9)

Since
{
φj
}

is an orthonormal basis, we have

(3.10) 1 =
∑
y∈G

δ(x, y)dy =
1

‖G‖
+
∑
j

φj(x)2.

We also have the following trivial trigonometric inequality, which is derived from
the geometric series summation formula :

(3.11) | sin(R+ 1)θ

sin θ
| = |

R∑
j=0

eiθ| ≤ R+ 1.

From 3.10 and 3.11, we obtain

(3.12) Var ≤ (R+ 1)2(k − 1)R.

We define

(3.13) M := {y : S(R)(x, y) = 0} .

Note that M is the set of all vertices y ∈ G , such that there is no path from x
to y with length R. Therefore, this is exactly the set M(x,R) as defined in the
Theorem 1.4. By the definition of the Var given in 3.9,

(3.14) ‖M‖|k(k − 1)R−1

‖G‖
|2 ≤ Var.

From 3.14 and 3.12, we have

(3.15) ‖M‖‖(k − 1)R‖ < ‖G‖2(R+ 1)2.

If we choose R > (1 + ε) logk−1(n), then

(3.16) ‖M‖ ≤ n1−ε(1 +R)2.

Therefore, we conclude the Theorem 1.4.
�
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4. Numerical Results

In this section, we present our numerical experiments for the diameter of the
family of 6-regular LPS Ramanujan graphs X5,q and compare it with the diameter
of a family of 6-regular random Cayley graphs Zq. Our numerical experiments
show that the ratio of the diameter by the logarithm of the number of vertices

diam
log5 |X5,q| converges to 4/3 as q → ∞ for the LPS Ramanujan graphs X5,q . On

the other hand diam
log5 |Zq| converges to 1 as q →∞ for the random Cayley graphs Zq .

We give the detailed construction of the LPS Ramanujan graphs X5,29 in what
follows. The construction of LPS Ramanujan graphs X5,q requires that 5 and −1 to
be quadratic residues mod q. From the reciprocity law we deduce that all the prime
factors of q are congruent to 1 or 9 mod 20. The least q with such properties is
29. We take the integral solutions α = (x0, x1, x2, x3) of the following diophantine
equation

(4.1) x20 + x21 + x22 + x23 = 5,

where x0 > 0 is odd and x1, x2, x3 are even numbers. There are exactly 6 integral
solutions with such properties which are listed below:{

(1,±2, 0, 0), (1, 0,±2, 0), (1, 0, 0,±2)
}
.

To each such integral solution α = (x0, x1, x2, x3), we associates the following ma-
trix in PSL2( Z

29Z ) :

(4.2)
1√
5

[
x0 + ix1 x2 + ix3
−x2 + ix3 x0 − ix1

]
,

where
√

5 and i are the square root of 5 and −1 mod 29 respectively. We obtain
the following 6 matrices in PSL2( Z

29Z )

S :=
{[

10 0
0 3

]
,

[
3 0
0 10

]
,

[
8 16
13 8

]
,

[
21 16
13 21

]
,

[
21 11
11 21

]
,

[
8 11
11 8

]}
,

which generate PSL2( Z
29Z ). The LPS Ramanujan graph X5,29 is the Cayley graph

of PSL2( Z
29Z ) with the generator set S. The Ramanujan graph X5,29 has 12180

vertices with diameter 8. We note that

d4/3 log5(12180)e = 8.

We show the level structure of X5,29 with root

[
1 0
0 1

]
in table 1. We note that the

girth of this graph is 9

girth(X5,29) = 9.

and this means a ball of radius 4 in the graph X5,29 is a tree as illustrated in
Figure 1. For the family of LPS bipartite Ramanujan graphs, Biggs and Boshier
determined the asymptotic behavior of the girth of these graphs; see [BB90]. They
showed that the girth is asymptotic to

(4/3) logk−1(n).
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r N(r) (Number of vertices of X5,29 with distance r from

[
1 0
0 1

]
)

0 1
1 6
2 30
3 150
4 750
5 3026
6 5970
7 2195
8 52

Table 1. Level structure of the LPS Ramanujan graphs X5,29

Figure 1. A ball of radius 4 in the LPS Ramanujan graphs X5,29.

We give our numerical results for the diameter of the LPS Ramanujan graphs
X5,q for 1 ≤ q ≤ 229 in Table 2. We note that diam

log5 n
are close to 4/3. The range

for our numerical experiment with the diameter of X5,q is small since the algorithm
terminates in O(q3) operations. In our very recent work [TS17], we developed and
implemented a polynomial time algorithm in log(q) that finds the shortest possible
path between diagonal vertices of Ramanujan graphs Xp,q under a polynomial time
algorithm for factoring and a Cramer type conjecture. An important feature of
our algorithm is that it has been implemented and it runs and terminates quickly;
see [TS17, Section 6]. We give strong numerical evidence that the distance of W
from I is asymptotic to 4/3 log5(|X5,q|) in Table 3. These numerical experiments
are consistent with our conjectures on optimal strong approximation for quadratic
forms in 4 variables [Sar15a]. The conjecture implies that for the LPS Ramanujan

graphs Xp,q where p is a fixed prime number, the ratio
diam(Xp,q)
logp−1 |Xp,q| converges to

4/3 as q → ∞. Finally, we give our numerical experiments for the diameter of
the 6-regular random Cayley graphs PSL2(Z/qZ). To compare the diameter of the
random Cayley graphs with that of the LPS Ramanujan graphs given above, we
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choose the same set of integers q. We generate 8 random samples for each q, and
we give the averaged ratio diam

log5 n
in the last column of Table 4.

q number of vertices of X5,q Diameter diam
log5 n

29 12180 8 1.36
41 34440 9 1.38
61 113460 9 1.24
89 352440 11 1.38
101 515100 11 1.34
109 647460 11 1.32
149 1653900 12 1.34
181 3375540 14 1.51
229 6004380 13 1.34

Table 2. LPS Ramanujan graphs X5,q

q d:= Distance between W and I d
log5 n

86028121 43 1.28
104395301 46 1.35
256203161 47 1.32
275604541 45 1.26
472882049 50 1.36
533000401 50 1.35
613651349 50 1.34
674506081 50 1.33
961748941 52 1.36
32416189381 57 1.28
32416189721 60 1.34
32416189909 60 1.34

Table 3. LPS Ramanujan graphs X5,q

q number of vertices of Zq Diameter diam
log5 n

29 12180 8×69×2 1.50
41 34440 9×48×4 1.30
61 113460 9×510×3 1.29
89 352440 10×511×3 1.30
101 515100 10×511×3 1.26
109 647460 10×411×4 1.26
149 1653900 11×612×2 1.25
181 3375540 11×312×5 1.24
229 6004380 12×8 1.23

Table 4. Random Cayley graphs PSL2( Z
qZ ) with 6 generators
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(8×69×2 means that 6 of our random samples are 8 and 2 of them are 9). We

note that the empirical mean of the ratio
diam(Zq)
log5 |Zq| is decreasing in q and one can

easily show that
diam(Zq)

log5 |Zq|
≥ 1.

Based on our numerical experiments, we expect that
diam(Zq)
log5 |Zq| converges to 1 in

probability as q →∞ for random Cayley graphs Zq .
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