Optimal Littlewood-Offord inequalities in groups

T. Juškevičius ${ }^{1}$, G. Šemetulskis ${ }^{2}$

Abstract

We prove several Littlewood-Offord type inequalities for arbitrary groups. In groups having elements of finite order the worst case scenario is provided by the simple random walk on a cyclic subgroup. The inequalities we obtain are optimal if the underlying group contains an element of a certain order. It turns out that for torsion-free groups Erdős's bound still holds. Our results strengthen and generalize some very recent results by Tiep and Vu.

1 Introduction

Let $V_{n}=\left\{g_{1}, \ldots, g_{n}\right\}$ be a multiset of non-identify elements of an arbitrary group G. Consider a collection of independent random variables X_{i} that are each distributed on a two point set $\left\{g_{i}^{-1}, g_{i}\right\}$ and define the quantity

$$
\rho\left(V_{n}\right)=\sup _{g \in G} \mathbb{P}\left(X_{1} * \cdots * X_{n}=g\right) .
$$

In the case $G=\mathbb{R}$ the latter quantity is the maximum probability of the sum $X_{1}+\ldots+X_{n}$. Whenever $G=\mathbb{R}, \mathbb{Z}_{m}$ and $g_{i}=1$ we shall adopt the convention to write ε_{i} instead of the random variable X_{i}.

Investigating random polynomials Littlewood and Offord 9] proved an almost optimal bound for the probability that a sum of random signs with non-zero weights hits a point. To be more precise, using harmonic analysis they proved that in the case $G=\mathbb{R}$ we have

$$
\rho\left(V_{n}\right)=O\left(n^{-1 / 2} \log n\right) .
$$

Erdős [5], using Sperner's theorem from finite set combinatorics, showed that, actually,

$$
\rho\left(V_{n}\right) \leq \frac{\binom{n}{\lfloor n / 2\rfloor}}{2^{n}} .
$$

[^0]This bound is optimal as can be seen by taking $g_{i}=1$ in V_{n}. In this case we have

$$
\rho\left(V_{n}\right)=\mathbb{P}\left(\varepsilon_{1}+\cdots+\varepsilon_{n} \in\{0,1\}\right)=\frac{\binom{n}{n / 2\rfloor}}{2^{n}} .
$$

Answering a question of Erdős, Kleitman [7] used an ingenious induction to show that the latter bound still holds for g_{i} lying in an arbitrary normed space. See also [2] for a very nice exposition of Kleitman's beautiful argument. Griggs used a similar approach in [6] as in Erdős's seminal paper [5] to obtain the best possible result in \mathbb{Z}_{m}.

More recently Tiep and Vu [10] investigated the same question for certain matrix groups and obtained results that are sharp up to a constant factor. To be more precise, let $m, k, n \geq 2$ be integers and $G=G L_{k}(\mathbb{C})$. Let $V_{n}=\left\{g_{1}, \ldots, g_{n}\right\}$ be a multiset of elements in G, each of which has order at least m. In this case they have obtained the bound

$$
\begin{equation*}
\rho\left(V_{n}\right) \leq 141 \max \left\{\frac{1}{m}, \frac{1}{\sqrt{n}}\right\} . \tag{1}
\end{equation*}
$$

Furthermore, they have also established the same bound for $G L_{k}(p)$.
Let us explain the meaning of the two terms in the upper bound given in (1). Take some element g in G of order m and consider the multiset $V_{n}=\{g, \ldots, g\}$. Let us for the simplicity assume that m is odd. In this setup the random variable $S_{k}=X_{1} * \cdots * X_{k}$ is just the simple random walk on a subgroup of G that is isomorphic to \mathbb{Z}_{m}. It is a well known fact that the distribution of S_{n} is asymptotically uniform, which accounts for the $\frac{1}{m}$ term in (11). For $n<m$ the point masses of S_{n} are just the usual binomial probabilities $\binom{n}{\lfloor n / 2\rfloor} / 2^{n}$. Therefore in this regime $\mathbb{P}\left(S_{n}=g\right) \leq\binom{ n}{\lfloor n / 2\rfloor} / 2^{n} \sim \frac{1}{\sqrt{n}}$. This shows that the inequality (11) cannot be improved apart from the constant factor. It is also very natural that the term $\frac{1}{m}$ is dominant for $n \geq m^{2}$, exactly above the mixing time of S_{n}, that is known to be of magnitude m^{2} (see [8], page 96).

In this paper we shall prove an optimal upper bound for $\rho\left(V_{n}\right)$, where the elements of the multiset V_{n} lie in an arbitrary group. It turns out that a bound as in (1) holds for arbitrary groups. Furthermore, for groups with elements having odd or infinite order we shall establish an optimal inequality for $\mathbb{P}\left(X_{1} * \cdots * X_{n}=x\right)$ without the requirement that the random variables X_{i} are two-valued.

Let us remind the reader that we denote by ε (usually supplied with a subscript) a uniform random variable on $\{-1,1\}$. Sometimes it will be important to stress that these random variables are defined on \mathbb{Z}_{m} instead of \mathbb{R} and we shall do so on each occasion. We denote by $(a, b]_{m}$ and $[a, b]_{m}$ the set of integers in the intervals $(a, b]$ and $[a, b]$ modulo m. Given a natural number m, we shall write \tilde{m} for the smallest even number such that $\tilde{m} \geq m$. That is, we have $\tilde{m}=2\left\lceil\frac{m}{2}\right\rceil$.
Theorem 1. Let g_{1}, \ldots, g_{n} be elements of some group G such that $\left|g_{i}\right| \geq m \geq 2$. Let X_{1}, \ldots, X_{n} be independent random variables so that each X_{i} has the uniform distribution on the two point set $\left\{g_{i}^{-1}, g_{i}\right\}$. Then for any $A \subset G$ with $|A|=k$ we have

$$
\begin{equation*}
\mathbb{P}\left(X_{1} * \cdots * X_{n} \in A\right) \leq \mathbb{P}\left(\varepsilon_{1}+\cdots+\varepsilon_{n} \in(-k, k]_{\tilde{m}}\right) \tag{2}
\end{equation*}
$$

where ε_{i} are independent uniform random variables on the set $\{-1,1\} \subset \mathbb{Z}_{\tilde{m}}$.

Note that Theorem $\mathbb{1}$ is optimal in the sense that if G contains an element of order \tilde{m}, the bound in (2) can be attained. For instance, in the case $G=G L_{k}(\mathbb{C})$ the upper bound in (2) is achieved by taking two point distributions concentrated on the diagonal matrix $\mathrm{e}^{\frac{2 \pi i}{m}} \mathbb{I}_{k}$ and its inverse. Theorem $\mathbb{1}$ implies an inequality of the same type as the one by Tiep and Vu, but with a much better constant.

Corollary 1. Let $V_{n}=\left\{g_{1}, \ldots, g_{n}\right\}$ be elements in some group G satisfying $\left|g_{i}\right| \geq m \geq 2$. Then

$$
\begin{equation*}
\rho\left(V_{n}\right) \leq \frac{2}{\tilde{m}}+\sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{n}} \leq 3 \max \left\{\frac{1}{m}, \frac{1}{\sqrt{n}}\right\} . \tag{3}
\end{equation*}
$$

The sequence of sums appearing on the right hand side of (2) is a periodic Markov chain and so does not converge to a limit as $n \rightarrow \infty$. Nonetheless, it is well known that it does converge to a limit if we restrict the parity of n. Let us now express the quantity in the right hand side of (2) in the case $|A|=1$ in asymptotic terms.

Proposition 2. Let $m \in \mathbb{N}$ and assume that $n \rightarrow \infty$. Then for any $l \in \mathbb{Z}_{\tilde{m}}$ of the same parity as n we have

$$
\mathbb{P}\left(\varepsilon_{1}+\cdots+\varepsilon_{n}=l\right)=\frac{2}{\tilde{m}}+o(1)
$$

The $o(1)$ term is actually exponentially small in terms of n. For such sharp quantitative estimates see [3] pages 124-125. Note that Proposition 2 implies that in (3) the constant after the last inequality cannot be smaller than 2 . Let us also note that both constants in the expression $\frac{2}{\tilde{m}}+\sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{n}}$ are sharp. The term $\frac{2}{\tilde{m}}$ is dominant in the case $m, n \rightarrow \infty$ and $n \gg m^{2}$ and so Proposition 2 shows that the constant 2 cannot be reduced. In the case $m, n \rightarrow \infty$ and $n<m$ the therm $\sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{n}}$ is dominating. For $V_{n}=\{g, \ldots, g\}$ for some element g of order \tilde{m} we have

$$
\rho\left(V_{n}\right)=\mathbb{P}\left(\varepsilon_{1}+\cdots+\varepsilon_{n} \in(-1,1]_{\tilde{m}}\right)=\frac{\binom{n}{\lfloor n / 2\rfloor}}{2^{n}}=(1+o(1)) \sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{n}} .
$$

The simple random walk on \mathbb{Z}_{m} for m odd converges to the uniform distribution on \mathbb{Z}_{m} and so all probabilities converge to $\frac{1}{m}$. It should now be unsurprising that the simple random walk on \mathbb{Z}_{m+1} is a much better "candidate" for a maximizer of the left hand side in (2), as by Proposition 2 we gain an extra factor of 2 asymptotically.

From this point our prime focus will be on the particular case $G=\mathbb{Z}_{m}^{l}$ for m odd. In this case Theorem \square does not provide the optimal bound. The approach we have for
this case also works for certain groups other than \mathbb{Z}_{m}^{l} and therefore we will state it in a general form. For $k \geq 1$ we define

$$
I_{n, k}^{m}=\left[\left\lceil\frac{n-k+1}{2}\right\rceil, \ldots,\left\lceil\frac{n+k-1}{2}\right\rceil\right]_{m} .
$$

The latter set is an interval of k points in \mathbb{Z}_{m}. We shall use the convention that $I_{n, 0}^{m}=\emptyset$.
Theorem 3. Let X_{1}, \ldots, X_{n} be independent discrete random variables taking values in some group G such that for each i we have

$$
\begin{equation*}
\sup _{g \in G} \mathbb{P}\left(X_{i}=g\right) \leq \frac{1}{2} . \tag{4}
\end{equation*}
$$

Furthermore, assume that all non-identity elements in G have odd or infinite order and that the minimal such order is at least some odd number $m \geq 3$. Then for any set $A \subset G$ of cardinality k we have

$$
\mathbb{P}\left(X_{1} * \cdots * X_{n} \in A\right) \leq \mathbb{P}\left(\tau_{1}+\cdots+\tau_{n} \in I_{n, k}^{m}\right)
$$

where τ_{i} are independent uniform random variables on the set $\{0,1\} \subset \mathbb{Z}_{m}$.
The distribution of $\tau_{1}+\cdots+\tau_{n}$ is asymptotically uniform in \mathbb{Z}_{m} and thus we have $\mathbb{P}\left(X_{1} * \cdots * X_{n}=g\right) \leq \frac{1}{m}+o(1)$.

Remark 1. Note that

$$
\mathbb{P}\left(\tau_{1}+\cdots+\tau_{n} \in I_{n, k}^{m}\right)=\mathbb{P}\left(\varepsilon_{1}+\cdots+\varepsilon_{n} \in 2 I_{n, k}^{m}-n\right) .
$$

We formulated the result in terms of $\{0,1\}$ random variables τ_{i} for the sake of convenience only - in this formulation the set of maximum probability is an interval. As one notices, it is not so in formulating it in terms of $\{-1,1\}$ distributions ε_{i}.

Remark 2. The reason we restrict the elements to have odd order in Theorem 3 is as follows. If there is an element of even order in the underlying group, then the group contains an element of order 2 , say h. Then by taking independent uniform random variables X_{i} on the set $\{1, h\}$ we obtain $\sup _{g \in G} \mathbb{P}\left(X_{1} * \cdots * X_{n}=g\right)=\frac{1}{2}$.

In the case when G is torsion-free we can actually prove that Erdős's bound still holds even in this general setting.

Proposition 4. Under the notation of Theorem 3 and assuming that G is torsion-free for any set $A \subset G$ of cardinality k we have

$$
\mathbb{P}\left(X_{1} * \cdots * X_{n} \in A\right) \leq \mathbb{P}\left(\varepsilon_{1}+\cdots+\varepsilon_{n} \in(-k, k]\right)
$$

where ε_{i} are independent. In particular, for any $g \in G$ we have

$$
\mathbb{P}\left(X_{1} * \cdots * X_{n}=g\right) \leq \frac{\binom{n}{\lfloor n / 2\rfloor}}{2^{n}} .
$$

The latter proposition immediately follows by taking m large enough in Theorem 3 so that $\tau_{1}+\cdots+\tau_{n}$ is concentrated in a proper subset of \mathbb{Z}_{m}. For instance, assume that $m=n+2$. In this case the latter sum is strictly contained in \mathbb{Z}_{m} and its probabilities are exactly the largest k probabilities of $\varepsilon_{1}+\cdots+\varepsilon_{n}$ and we are done.

Our proofs are similar in spirit to Kleitman's approach in his solution of the LittlewoodOfford problem in all dimensions. Actually, it is closer to a simplification of Kleitman's proof in dimension 1 obtained in 4. The proofs thus proceed by induction on dimension, taking into account a certain recurrence relation satisfied by the worst-case random walk.

2 An open problem

Theorem 1 gives an optimal inequality if an element with a given order exists. To be more precise, if an element of order \tilde{m} exists. For groups in which all elements have odd or infinite order, Theorem 3 gives the best possible result. It is thus natural to ask what happens if we have full knowledge of the orders of the elements of the underlying group G and we are not in the aforementioned cases. The asymptotics of the cases when we do know the exact answer suggest the following guess.

Conjecture. Let G be any group and fix an odd integer $m \geq 3$. Suppose that all possible even orders of elements in G greater than m are given by the sequence $S=$ $\left\{m_{1}, m_{2}, \ldots\right\}$ in increasing order. Consider a collection of independent random variables X_{1}, \ldots, X_{n} in G such that each X_{i} is concentrated on a two point set $\left\{g_{i}, g_{i}^{-1}\right\}$ and $\left|g_{i}\right| \geq m$. Then if $m_{1}<2 m$ for any $A \subset G$ with $|A|=k$ we have

$$
\mathbb{P}\left(X_{1} * \cdots * X_{n} \in A\right) \leq \mathbb{P}\left(\varepsilon_{1}+\cdots+\varepsilon_{n} \in(-k, k]_{m_{1}}\right)
$$

where ε_{i} are independent uniform random variables on the set $\{-1,1\} \subset \mathbb{Z}_{m_{1}}$. On the other hand, if $m_{1} \geq 2 m$ we have

$$
\mathbb{P}\left(X_{1} * \cdots * X_{n} \in A\right) \leq \mathbb{P}\left(\tau_{1}+\cdots+\tau_{n} \in I_{n, k}^{m}\right)
$$

where τ_{i} are independent uniform random variables on the set $\{0,1\} \subset \mathbb{Z}_{m}$.
If true, the latter conjecture would settle the remaining cases.

3 Proofs

In order to prove Theorems 173, we shall require a simple group theoretic statement contained in the following lemma.

Lemma 1. Let G be a group and $g \in G$ be an element of order greater then or equal to $m \geq 2$. Then for any finite set $A \subset G$ and a positive integer such that $s<\frac{m}{|A|}$ we have $A \neq A g^{s}$.

Proof of Lemma 1. Suppose there is a nonempty set $A \subset G$ and a positive integer s such that $|A|=k<\frac{m}{s}$ and $A=A g^{s}$. Take some $a \in A$ and consider elements $a g^{s i}, i=0 \ldots k$. All these $k+1$ elements are in the set A hence at least two of them must be equal. Let us say $a g^{s i}=a g^{s j}$ for some integers $0 \leq i<j \leq k$. But this immediately gives a contradiction since then $g^{s(j-i)}$ is equal to the group identity element and $m \leq s(j-i) \leq s k$.

Proof of Theorem 11. If $n=1$ the inequality (21) is trivial. For $k \geq \frac{m}{2}$ and all n the right hand side of (22) becomes 1 since in this case $(-k, k]_{\tilde{m}}$ covers the support of the sum $\varepsilon_{1}+\cdots+\varepsilon_{n}$ and so there is nothing to prove. We shall henceforth assume that $n>1$ and $k<\frac{m}{2}$.
By Lemma \rceil we have that $A g_{n} \neq A g_{n}^{-1}$. Take some $h \in A g_{n} \backslash A g_{n}^{-1}$ and define $B=A g_{n} \backslash\{h\}$ and $C=A g_{n}^{-1} \cup\{h\}$. We then have

$$
\begin{align*}
& 2 \mathbb{P}\left(X_{1} * \cdots * X_{n} \in A\right)=\mathbb{P}\left(X_{1} * \cdots * X_{n-1} \in A g_{n}\right)+\mathbb{P}\left(X_{1} * \cdots * X_{n-1} \in A g_{n}^{-1}\right) \\
= & \mathbb{P}\left(X_{1} * \cdots * X_{n-1} \in B\right)+\mathbb{P}\left(X_{1} * \cdots * X_{n-1} \in C\right) \tag{5}\\
\leq & \mathbb{P}\left(\varepsilon_{1}+\cdots+\varepsilon_{n-1} \in(-k-1, k+1]_{\tilde{m}}\right)+\mathbb{P}\left(\varepsilon_{1}+\cdots+\varepsilon_{n-1} \in(-k+1, k-1]_{\tilde{m}}\right) \tag{6}\\
= & \mathbb{P}\left(\varepsilon_{1}+\cdots+\varepsilon_{n-1} \in(-k-1, k-1]_{\tilde{m}}\right)+\mathbb{P}\left(\varepsilon_{1}+\cdots+\varepsilon_{n-1} \in(-k+1, k+1]_{\tilde{m}}\right) \tag{7}\\
= & 2 \mathbb{P}\left(\varepsilon_{1}+\cdots+\varepsilon_{n} \in(-k, k]_{\tilde{m}}\right) .
\end{align*}
$$

This completes the proof.
Remark 3. Note that in (6)-(7) we used the fact that for $k<\frac{m}{2}$ the sets $(-k+1, k-1]_{\tilde{m}}$ and $(k-1, k+1]_{\tilde{m}}$ are disjoint in $\mathbb{Z}_{\tilde{m}}$.

In the proof of Theorem 3 we shall make use of the following simple lemma which will allow us to switch from general distributions satisfying the condition (4) to two-point distributions.

Lemma 2. Let X be a random variable on some group G that takes only finitely many values, say x_{1}, \ldots, x_{n}. Suppose that $p_{i}=\mathbb{P}\left(X=x_{i}\right)$ are rational numbers and that $p_{i} \leq \frac{1}{2}$. Then we can express the distribution of X as a convex combination of distributions that are uniform on some two point set.

Proof of Lemma 2. Denote by μ the distribution of X. Since the p_{i} 's are all rational, we have $p_{i}=\frac{k_{i}}{K_{i}}$ for some $k_{i}, K_{i} \in \mathbb{Z}$. We shall now view μ as a distribution on a multiset M made from the elements x_{i} in the following way - take x_{i} exactly $2 k_{i} \prod_{j \neq i} K_{i}$ times into M. This way μ has the uniform distribution on M. We thus have that $M=\left\{y_{1}, \ldots, y_{2 N}\right\}$ for the appropriate N. Construct a graph on the elements on M by joining two of them by an edge if and only if they are distinct. Since we had $p_{i} \leq \frac{1}{2}$, each vertex of this graph
has degree at least N. Thus by Dirac's Theorem, our graph contains a Hamiltonian cycle, and, consequently - a perfect matching. Let μ_{i} be the uniform distribution on two vertices of the latter matching $(i=1,2, \ldots, N)$. We have

$$
\mu=\frac{1}{N} \sum_{i=1}^{N} \mu_{i}
$$

Proof of Theorem 3. We shall argue by induction. First notice that the claim of the Theorem is true for $n=1$. Furthermore, it is also true for $k \geq m$ since in that case the bound for the probability in question becomes 1 . We therefore shall from now on assume that $n>1$ and $1 \leq k \leq m-1$. Denote by μ_{i} the distribution of the random variable X_{i}. We can without loss of generality assume that each X_{i} is concentrated on finitely many points and that for each $g \in G$ we have $\mathbb{P}\left(X_{i}=g\right) \in \mathbb{Q}$. By Lemma 2, each μ_{i} can be written as a convex combination of distributions that are uniform on some two-point set. Define the random variable $f_{i}\left(X_{i}\right)=\mathbb{E}_{i} 1\left\{X_{1} * \cdots * X_{n} \in A\right\}$, where \mathbb{E}_{i} stands for integration with respect to all underlying random variables except X_{i}. Then for each i we have

$$
\begin{equation*}
\mathbb{P}\left(X_{1} * \cdots * X_{n} \in A\right)=\mathbb{E} f_{i}\left(X_{i}\right) \tag{8}
\end{equation*}
$$

The latter expectation is linear with respect to the distribution of X_{i}. Therefore we can assume that it will be maximized by some choice of two-point distributions coming from the decomposition of μ_{i}. We shall therefore from this point assume that X_{n} takes only two values, say h_{1} and h_{2}, with equal probabilities.

Note that the intervals $I_{n, k}^{m}$ have recursive structure. Namely, if $1 \leq k \leq m-1$ and we regard them as multisets, we have the relation $I_{n, k}^{m} \cup\left(I_{n, k}^{m}-1\right)=I_{n-1, k-1}^{m} \cup I_{n-1, k+1}^{m}$. The pairs on intervals appearing on both sides of the latter equality heavily overlap. This means that we can take one endpoint of $I_{n-1, k+1}^{m}$ that does not belong to $I_{n-1, k-1}^{m}$ and move it to this shorter interval. The resulting intervals are both of length k and are exactly the intervals $I_{n, k}^{m}$ and $I_{n, k}^{m}-1$. We shall use this after the inductive step.

Take a finite set $A \subset G$ with k elements. Note that the element $h_{2}^{-1} h_{1} \neq 1_{G}$ and so it has order at least m. By Lemma 1 we have that $A h_{1}^{-1} \neq A h_{2}^{-1}$ as $A \neq A h_{2}^{-1} h_{1}$. Take some $h \in A h_{1}^{-1} \backslash A h_{2}^{-1}$ and define $B=A h_{1}^{-1} \backslash\{h\}$ and $C=A h_{2}^{-1} \cup\{h\}$. We have

$$
\begin{aligned}
2 \mathbb{P}\left(X_{1} * \cdots * X_{n} \in A\right) & =\mathbb{P}\left(X_{1} * \cdots * X_{n-1} \in A h_{1}^{-1}\right)+\mathbb{P}\left(X_{1} * \cdots * X_{n-1} \in A h_{2}^{-1}\right) \\
& =\mathbb{P}\left(X_{1} * \cdots * X_{n-1} \in B\right)+\mathbb{P}\left(X_{1} * \cdots * X_{n-1} \in C\right) \\
& \leq \mathbb{P}\left(\tau_{1}+\cdots+\tau_{n-1} \in I_{n-1, k-1}^{m}\right)+\mathbb{P}\left(\tau_{1}+\cdots+\tau_{n-1} \in I_{n-1, k+1}^{m}\right) \\
& =\mathbb{P}\left(\tau_{1}+\cdots+\tau_{n-1} \in I_{n, k}^{m}-1\right)+\mathbb{P}\left(\tau_{1}+\cdots+\tau_{n-1} \in I_{n, k}^{m}\right) \\
& =2 \mathbb{P}\left(\tau_{1}+\cdots+\tau_{n} \in I_{n, k}^{m}\right) .
\end{aligned}
$$

This completes the proof.

Proof of Corollary 1. We shall use an identity on evenly spaced binomial coefficients proved in [1]:

$$
\begin{equation*}
\binom{n}{t}+\binom{n}{t+s}+\binom{n}{t+2 s}+\cdots=\frac{1}{s} \sum_{j=0}^{s-1}\left(2 \cos \frac{i \pi}{s}\right)^{n} \cos \frac{\pi(n-2 t) j}{s} . \tag{9}
\end{equation*}
$$

By Theorem 1 we have

$$
\begin{equation*}
\rho\left(V_{n}\right) \leq \mathbb{P}\left(\varepsilon_{1}+\cdots+\varepsilon_{n} \in(-1,1]_{\tilde{m}}\right) . \tag{10}
\end{equation*}
$$

The right hand of the equation (10) is the sum of binomial probabilities $\binom{n}{i} / 2^{n}$, where i is such that $2 i-n$ is congruent to $1_{\{n \in 2 \mathbb{Z}+1\}}$ modulo \tilde{m}. Let t be the residue of $\left(n-1_{\{n \in 2 \mathbb{Z}+1\}}\right) / 2$ modulo $\frac{\tilde{m}}{2}$.

Using the identity (19) and the elementary inequalities $\cos x \leq \exp \left(-x^{2} / 2\right)$ for $x \in\left[0, \frac{\pi}{2}\right]$ and $\int_{0}^{\infty} \mathrm{e}^{\frac{-x^{2}}{2 \sigma^{2}}} d x \leq \frac{\sigma \sqrt{2 \pi}}{2}$ we obtain

$$
\begin{align*}
\mathbb{P}\left(\varepsilon_{1}+\cdots+\varepsilon_{n} \in(-1,1]_{\tilde{m}}\right) & =\frac{\binom{n}{t}+\binom{n}{t+\tilde{m} / 2}+\binom{n}{t+2 \tilde{m} / 2}+\ldots}{2^{n}} \\
& =\frac{2}{\tilde{m}} \sum_{j=0}^{\frac{\tilde{m}}{2}-1}\left(2 \cos \frac{2 i \pi}{\tilde{m}}\right)^{n} \cos \frac{2 \pi(n-2 t) j}{\tilde{m}} \\
& \leq \frac{2}{\tilde{m}}+\frac{2}{\tilde{m}} \sum_{j=1}^{\frac{\tilde{m}}{2}-1}\left|\cos \frac{2 j \pi}{\tilde{m}}\right|^{n} \tag{11}\\
& \leq \frac{2}{\tilde{m}}+\frac{4}{\tilde{m}} \sum_{j=1}^{\left\lfloor\frac{\tilde{m}}{4}\right\rfloor}\left|\cos \frac{2 j \pi}{\tilde{m}}\right|^{n} \\
& \leq \frac{2}{\tilde{m}}+\frac{4}{\tilde{m}} \sum_{j=1}^{\left\lfloor\frac{\tilde{m}}{4}\right\rfloor} \mathrm{e}^{-2 \pi^{2} j^{2} n / \tilde{m}^{2}} \\
& <\frac{2}{\tilde{m}}+\frac{4}{\tilde{m}} \int_{0}^{\infty} \mathrm{e}^{-2 \pi^{2} x^{2} n / \tilde{m}^{2}} d x \\
& \leq \frac{2}{\tilde{m}}+\sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{n}} \leq \frac{2}{m}+\sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{n}} .
\end{align*}
$$

Note that in (11) we replaced $\left|\cos \frac{2 \pi j}{\tilde{m}}\right|$ by $\left|\cos \frac{\pi(\tilde{m}-2 j)}{\tilde{m}}\right|$ when $j>\frac{\tilde{m}}{4}$. This completes the proof.

References

[1] A. Benjamin, B. Chen, and K. Kindred, Sums of Evenly Spaced Binomial Coefficients, Mathematics Magazine 83 (2010), 370-373.
[2] B. Bollobás, Combinatorics, Cambridge University Press, Cambridge, 1986, Set systems, hypergraphs, families of vectors and combinatorial probability.
[3] P. Diaconis, Random walks on groups: characters and geometry, London Mathematical Society Lecture Note Series, vol. 1, pp. 120-142, Cambridge University Press, 2003.
[4] D. Dzindzalieta, T. Juškevičius, and M. Sileikis, Optimal probability inequalities for random walks related to problems in extremal combinatorics, SIAM J. Discrete Math. 26 (2012), no. 2, 828-837.
[5] P. Erdős, On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc. 51 (1945), 898-902.
[6] J. R. Griggs, On the distribution of sums of residues, Bull. Amer. Math. Soc. (N.S.) 28 (1993), no. 2, 329-333.
[7] D. J. Kleitman, On a lemma of Littlewood and Offord on the distributions of linear combinations of vectors, Advances in Math. 5 (1970), 155-157.
[8] D. A. Levin, Y. Peres, and E. L. Wilmer, Markov chains and mixing times, American Mathematical Society, 2006.
[9] J. E. Littlewood and A. C. Offord, On the number of real roots of a random algebraic equation. III, Rec. Math. [Mat. Sbornik] N.S. 12 (1943), no. 53, 277-286.
[10] P. H. Tiep and V. H. Vu, Non-abelian Littlewood-Offord inequalities, Advances in Mathematics 302 (2016), 1233-1250.

[^0]: ${ }^{1}$ Vilnius University, Institute of Mathematics and Informatics, Vilnius, Lithuania, email tomas.juskevicius@gmail.com.
 ${ }^{2}$ University of Vilnius, Vilnius, Lithuania, email - grazvydas.semetulskis@gmail.com.

