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Optimal Littlewood-Offord inequalities in groups

T. Juškevičius1, G. Šemetulskis2

Abstract

We prove several Littlewood-Offord type inequalities for arbitrary groups. In

groups having elements of finite order the worst case scenario is provided by the

simple random walk on a cyclic subgroup. The inequalities we obtain are optimal

if the underlying group contains an element of a certain order. It turns out that for

torsion-free groups Erdős’s bound still holds. Our results strengthen and generalize

some very recent results by Tiep and Vu.

1 Introduction

Let Vn = {g1, . . . , gn} be a multiset of non-identify elements of an arbitrary group G.
Consider a collection of independent random variables Xi that are each distributed on a
two point set {g−1

i , gi} and define the quantity

ρ(Vn) = sup
g∈G

P(X1 ∗ · · · ∗Xn = g).

In the case G = R the latter quantity is the maximum probability of the sum X1+. . .+Xn.
Whenever G = R, Zm and gi = 1 we shall adopt the convention to write εi instead of the
random variable Xi.

Investigating random polynomials Littlewood and Offord [9] proved an almost op-
timal bound for the probability that a sum of random signs with non-zero weights hits a
point. To be more precise, using harmonic analysis they proved that in the case G = R

we have

ρ(Vn) = O(n−1/2 log n).

Erdős [5], using Sperner’s theorem from finite set combinatorics, showed that, actually,

ρ(Vn) ≤
(

n
⌊n/2⌋

)

2n
.
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This bound is optimal as can be seen by taking gi = 1 in Vn. In this case we have

ρ(Vn) = P(ε1 + · · ·+ εn ∈ {0, 1}) =
(

n
⌊n/2⌋

)

2n
.

Answering a question of Erdős, Kleitman [7] used an ingenious induction to show that the
latter bound still holds for gi lying in an arbitrary normed space. See also [2] for a very
nice exposition of Kleitman’s beautiful argument. Griggs used a similar approach in [6]
as in Erdős’s seminal paper [5] to obtain the best possible result in Zm.

More recently Tiep and Vu [10] investigated the same question for certain matrix
groups and obtained results that are sharp up to a constant factor. To be more precise,
let m, k, n ≥ 2 be integers and G = GLk(C). Let Vn = {g1, . . . , gn} be a multiset of
elements in G, each of which has order at least m. In this case they have obtained the
bound

ρ(Vn) ≤ 141max{ 1

m
,

1√
n
}. (1)

Furthermore, they have also established the same bound for GLk(p).
Let us explain the meaning of the two terms in the upper bound given in (1). Take

some element g in G of order m and consider the multiset Vn = {g, . . . , g}. Let us for the
simplicity assume that m is odd. In this setup the random variable Sk = X1 ∗ · · · ∗Xk is
just the simple random walk on a subgroup of G that is isomorphic to Zm. It is a well
known fact that the distribution of Sn is asymptotically uniform, which accounts for the
1
m

term in (1). For n < m the point masses of Sn are just the usual binomial probabilities
(

n
⌊n/2⌋

)

/2n. Therefore in this regime P(Sn = g) ≤
(

n
⌊n/2⌋

)

/2n ∼ 1√
n
. This shows that the

inequality (1) cannot be improved apart from the constant factor. It is also very natural
that the term 1

m
is dominant for n ≥ m2, exactly above the mixing time of Sn, that is

known to be of magnitude m2 (see [8], page 96).
In this paper we shall prove an optimal upper bound for ρ(Vn), where the elements of

the multiset Vn lie in an arbitrary group. It turns out that a bound as in (1) holds for
arbitrary groups. Furthermore, for groups with elements having odd or infinite order we
shall establish an optimal inequality for P(X1 ∗ · · · ∗ Xn = x) without the requirement
that the random variables Xi are two-valued.

Let us remind the reader that we denote by ε (usually supplied with a subscript) a
uniform random variable on {−1, 1}. Sometimes it will be important to stress that these
random variables are defined on Zm instead of R and we shall do so on each occasion.
We denote by (a, b]m and [a, b]m the set of integers in the intervals (a, b] and [a, b] modulo
m. Given a natural number m, we shall write m̃ for the smallest even number such that
m̃ ≥ m. That is, we have m̃ = 2⌈m

2
⌉.

Theorem 1. Let g1, . . . , gn be elements of some group G such that |gi| ≥ m ≥ 2. Let

X1, . . . , Xn be independent random variables so that each Xi has the uniform distribution

on the two point set {g−1
i , gi}. Then for any A ⊂ G with |A| = k we have
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P (X1 ∗ · · · ∗Xn ∈ A) ≤ P (ε1 + · · ·+ εn ∈ (−k, k]m̃) , (2)

where εi are independent uniform random variables on the set {−1, 1} ⊂ Zm̃.

Note that Theorem 1 is optimal in the sense that if G contains an element of order
m̃, the bound in (2) can be attained. For instance, in the case G = GLk(C) the upper
bound in (2) is achieved by taking two point distributions concentrated on the diagonal

matrix e
2πi

m̃ Ik and its inverse. Theorem 1 implies an inequality of the same type as the
one by Tiep and Vu, but with a much better constant.

Corollary 1. Let Vn = {g1, . . . , gn} be elements in some group G satisfying |gi| ≥ m ≥ 2.
Then

ρ(Vn) ≤
2

m̃
+

√

2

π

1√
n
≤ 3max{ 1

m
,

1√
n
}. (3)

The sequence of sums appearing on the right hand side of (2) is a periodic Markov
chain and so does not converge to a limit as n → ∞. Nonetheless, it is well known that
it does converge to a limit if we restrict the parity of n. Let us now express the quantity
in the right hand side of (2) in the case |A| = 1 in asymptotic terms.

Proposition 2. Let m ∈ N and assume that n → ∞. Then for any l ∈ Zm̃ of the same

parity as n we have

P (ε1 + · · ·+ εn = l) =
2

m̃
+ o(1).

The o(1) term is actually exponentially small in terms of n. For such sharp quantitative
estimates see [3] pages 124-125. Note that Proposition 2 implies that in (3) the constant
after the last inequality cannot be smaller than 2. Let us also note that both constants

in the expression 2
m̃
+
√

2
π

1√
n
are sharp. The term 2

m̃
is dominant in the case m,n → ∞

and n ≫ m2 and so Proposition 2 shows that the constant 2 cannot be reduced. In the

case m,n → ∞ and n < m the therm
√

2
π

1√
n
is dominating. For Vn = {g, . . . , g} for some

element g of order m̃ we have

ρ(Vn) = P (ε1 + · · ·+ εn ∈ (−1, 1]m̃) =

(

n
⌊n/2⌋

)

2n
= (1 + o(1))

√

2

π

1√
n
.

The simple random walk on Zm for m odd converges to the uniform distribution on
Zm and so all probabilities converge to 1

m
. It should now be unsurprising that the simple

random walk on Zm+1 is a much better ”candidate” for a maximizer of the left hand side
in (2), as by Proposition 2 we gain an extra factor of 2 asymptotically.

From this point our prime focus will be on the particular case G = Zl
m for m odd.

In this case Theorem 1 does not provide the optimal bound. The approach we have for
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this case also works for certain groups other than Zl
m and therefore we will state it in a

general form. For k ≥ 1 we define

Imn,k =

[

⌈n− k + 1

2

⌉

, . . . ,
⌈n + k − 1

2

⌉

]

m

.

The latter set is an interval of k points in Zm. We shall use the convention that Imn,0 = ∅.

Theorem 3. Let X1, . . . , Xn be independent discrete random variables taking values in

some group G such that for each i we have

sup
g∈G

P (Xi = g) ≤ 1

2
. (4)

Furthermore, assume that all non-identity elements in G have odd or infinite order

and that the minimal such order is at least some odd number m ≥ 3. Then for any set

A ⊂ G of cardinality k we have

P (X1 ∗ · · · ∗Xn ∈ A) ≤ P
(

τ1 + · · ·+ τn ∈ Imn,k
)

,

where τi are independent uniform random variables on the set {0, 1} ⊂ Zm.

The distribution of τ1 + · · · + τn is asymptotically uniform in Zm and thus we have
P (X1 ∗ · · · ∗Xn = g) ≤ 1

m
+ o(1).

Remark 1. Note that

P
(

τ1 + · · ·+ τn ∈ Imn,k
)

= P
(

ε1 + · · ·+ εn ∈ 2Imn,k − n
)

.

We formulated the result in terms of {0, 1} random variables τi for the sake of convenience
only - in this formulation the set of maximum probability is an interval. As one notices,
it is not so in formulating it in terms of {−1, 1} distributions εi.

Remark 2. The reason we restrict the elements to have odd order in Theorem 3 is
as follows. If there is an element of even order in the underlying group, then the group
contains an element of order 2, say h. Then by taking independent uniform random vari-
ables Xi on the set {1, h} we obtain supg∈G P (X1 ∗ · · · ∗Xn = g) = 1

2
.

In the case when G is torsion-free we can actually prove that Erdős’s bound still holds
even in this general setting.

Proposition 4. Under the notation of Theorem 3 and assuming that G is torsion-free

for any set A ⊂ G of cardinality k we have

P (X1 ∗ · · · ∗Xn ∈ A) ≤ P (ε1 + · · ·+ εn ∈ (−k, k]) ,
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where εi are independent. In particular, for any g ∈ G we have

P (X1 ∗ · · · ∗Xn = g) ≤
(

n
⌊n/2⌋

)

2n
.

The latter proposition immediately follows by taking m large enough in Theorem 3
so that τ1 + · · ·+ τn is concentrated in a proper subset of Zm. For instance, assume that
m = n+2. In this case the latter sum is strictly contained in Zm and its probabilities are
exactly the largest k probabilities of ε1 + · · ·+ εn and we are done.

Our proofs are similar in spirit to Kleitman’s approach in his solution of the Littlewood-
Offord problem in all dimensions. Actually, it is closer to a simplification of Kleitman’s
proof in dimension 1 obtained in [4]. The proofs thus proceed by induction on dimension,
taking into account a certain recurrence relation satisfied by the worst-case random walk.

2 An open problem

Theorem 1 gives an optimal inequality if an element with a given order exists. To be
more precise, if an element of order m̃ exists. For groups in which all elements have odd
or infinite order, Theorem 3 gives the best possible result. It is thus natural to ask what
happens if we have full knowledge of the orders of the elements of the underlying group
G and we are not in the aforementioned cases. The asymptotics of the cases when we do
know the exact answer suggest the following guess.

Conjecture. Let G be any group and fix an odd integer m ≥ 3. Suppose that all
possible even orders of elements in G greater than m are given by the sequence S =
{m1, m2, . . .} in increasing order. Consider a collection of independent random variables
X1, . . . , Xn in G such that each Xi is concentrated on a two point set {gi, g−1

i } and
|gi| ≥ m. Then if m1 < 2m for any A ⊂ G with |A| = k we have

P (X1 ∗ · · · ∗Xn ∈ A) ≤ P (ε1 + · · ·+ εn ∈ (−k, k]m1
) ,

where εi are independent uniform random variables on the set {−1, 1} ⊂ Zm1
.

On the other hand, if m1 ≥ 2m we have

P (X1 ∗ · · · ∗Xn ∈ A) ≤ P
(

τ1 + · · ·+ τn ∈ Imn,k
)

,

where τi are independent uniform random variables on the set {0, 1} ⊂ Zm.

If true, the latter conjecture would settle the remaining cases.

3 Proofs

In order to prove Theorems 1-3, we shall require a simple group theoretic statement
contained in the following lemma.
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Lemma 1. Let G be a group and g ∈ G be an element of order greater then or equal to

m ≥ 2. Then for any finite set A ⊂ G and a positive integer s such that s < m
|A| we have

A 6= Ags.

Proof of Lemma 1. Suppose there is a nonempty set A ⊂ G and a positive integer
s such that |A| = k < m

s
and A = Ags. Take some a ∈ A and consider elements

agsi, i = 0 . . . k. All these k + 1 elements are in the set A hence at least two of them
must be equal. Let us say agsi = agsj for some integers 0 ≤ i < j ≤ k. But this
immediately gives a contradiction since then gs(j−i) is equal to the group identity element
and m ≤ s(j − i) ≤ sk.

Proof of Theorem 1. If n = 1 the inequality (2) is trivial. For k ≥ m
2
and all n the

right hand side of (2) becomes 1 since in this case (−k, k]m̃ covers the support of the sum
ε1+ · · ·+ εn and so there is nothing to prove. We shall henceforth assume that n > 1 and
k < m

2
.

By Lemma 1 we have that Agn 6= Ag−1
n . Take some h ∈ Agn\Ag−1

n and define B = Agn\{h}
and C = Ag−1

n ∪ {h}. We then have

2P(X1 ∗ · · · ∗Xn ∈ A) = P(X1 ∗ · · · ∗Xn−1 ∈ Agn) + P(X1 ∗ · · · ∗Xn−1 ∈ Ag−1
n )

= P(X1 ∗ · · · ∗Xn−1 ∈ B) + P(X1 ∗ · · · ∗Xn−1 ∈ C) (5)

≤ P(ε1 + · · ·+ εn−1 ∈ (−k − 1, k + 1]m̃) + P(ε1 + · · ·+ εn−1 ∈ (−k + 1, k − 1]m̃) (6)

= P(ε1 + · · ·+ εn−1 ∈ (−k − 1, k − 1]m̃) + P(ε1 + · · ·+ εn−1 ∈ (−k + 1, k + 1]m̃) (7)

= 2P (ε1 + · · ·+ εn ∈ (−k, k]m̃) .

This completes the proof.
Remark 3. Note that in (6)-(7) we used the fact that for k < m

2
the sets (−k+1, k−1]m̃

and (k − 1, k + 1]m̃ are disjoint in Zm̃.
In the proof of Theorem 3 we shall make use of the following simple lemma which

will allow us to switch from general distributions satisfying the condition (4) to two-point
distributions.

Lemma 2. Let X be a random variable on some group G that takes only finitely many

values, say x1, . . . , xn. Suppose that pi = P(X = xi) are rational numbers and that pi ≤ 1
2
.

Then we can express the distribution of X as a convex combination of distributions that

are uniform on some two point set.

Proof of Lemma 2. Denote by µ the distribution ofX . Since the pi’s are all rational,
we have pi =

ki
Ki

for some ki, Ki ∈ Z. We shall now view µ as a distribution on a multiset
M made from the elements xi in the following way - take xi exactly 2ki

∏

j 6=iKi times into
M . This way µ has the uniform distribution on M . We thus have that M = {y1, . . . , y2N}
for the appropriate N . Construct a graph on the elements on M by joining two of them
by an edge if and only if they are distinct. Since we had pi ≤ 1

2
, each vertex of this graph
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has degree at least N . Thus by Dirac’s Theorem, our graph contains a Hamiltonian cycle,
and, consequently - a perfect matching. Let µi be the uniform distribution on two vertices
of the latter matching (i = 1, 2, . . . , N). We have

µ =
1

N

N
∑

i=1

µi.

Proof of Theorem 3. We shall argue by induction. First notice that the claim of
the Theorem is true for n = 1. Furthermore, it is also true for k ≥ m since in that case
the bound for the probability in question becomes 1. We therefore shall from now on
assume that n > 1 and 1 ≤ k ≤ m − 1. Denote by µi the distribution of the random
variable Xi. We can without loss of generality assume that each Xi is concentrated on
finitely many points and that for each g ∈ G we have P(Xi = g) ∈ Q. By Lemma 2,
each µi can be written as a convex combination of distributions that are uniform on some
two-point set. Define the random variable fi(Xi) = Ei1{X1 ∗ · · · ∗ Xn ∈ A}, where Ei

stands for integration with respect to all underlying random variables except Xi. Then
for each i we have

P (X1 ∗ · · · ∗Xn ∈ A) = Efi(Xi). (8)

The latter expectation is linear with respect to the distribution of Xi. Therefore we can
assume that it will be maximized by some choice of two-point distributions coming from
the decomposition of µi. We shall therefore from this point assume that Xn takes only
two values, say h1 and h2, with equal probabilities.

Note that the intervals Imn,k have recursive structure. Namely, if 1 ≤ k ≤ m − 1 and
we regard them as multisets, we have the relation Imn,k ∪ (Imn,k − 1) = Imn−1,k−1 ∪ Imn−1,k+1.
The pairs on intervals appearing on both sides of the latter equality heavily overlap. This
means that we can take one endpoint of Imn−1,k+1 that does not belong to Imn−1,k−1 and
move it to this shorter interval. The resulting intervals are both of length k and are
exactly the intervals Imn,k and Imn,k − 1. We shall use this after the inductive step.

Take a finite set A ⊂ G with k elements. Note that the element h−1
2 h1 6= 1G and so

it has order at least m. By Lemma 1 we have that Ah−1
1 6= Ah−1

2 as A 6= Ah−1
2 h1. Take

some h ∈ Ah−1
1 \Ah−1

2 and define B = Ah−1
1 \{h} and C = Ah−1

2 ∪ {h}. We have

2P(X1 ∗ · · · ∗Xn ∈ A) = P(X1 ∗ · · · ∗Xn−1 ∈ Ah−1
1 ) + P(X1 ∗ · · · ∗Xn−1 ∈ Ah−1

2 )

= P(X1 ∗ · · · ∗Xn−1 ∈ B) + P(X1 ∗ · · · ∗Xn−1 ∈ C)

≤ P(τ1 + · · ·+ τn−1 ∈ Imn−1,k−1) + P(τ1 + · · ·+ τn−1 ∈ Imn−1,k+1)

= P(τ1 + · · ·+ τn−1 ∈ Imn,k − 1) + P(τ1 + · · ·+ τn−1 ∈ Imn,k)

= 2P(τ1 + · · ·+ τn ∈ Imn,k).

This completes the proof.
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Proof of Corollary 1. We shall use an identity on evenly spaced binomial coeffi-
cients proved in [1]:

(

n

t

)

+

(

n

t+ s

)

+

(

n

t+ 2s

)

+ · · · = 1

s

s−1
∑

j=0

(

2 cos
iπ

s

)n

cos
π(n− 2t)j

s
. (9)

By Theorem 1 we have

ρ(Vn) ≤ P (ε1 + · · ·+ εn ∈ (−1, 1]m̃) . (10)

The right hand of the equation (10) is the sum of binomial probabilities
(

n
i

)

/2n,
where i is such that 2i − n is congruent to 1{n∈2Z+1} modulo m̃. Let t be the residue
of (n− 1{n∈2Z+1})/2 modulo m̃

2
.

Using the identity (9) and the elementary inequalities cosx ≤ exp(−x2/2) for x ∈ [0, π
2
]

and
∫∞
0

e
−x

2

2σ2 dx ≤ σ
√
2π
2

we obtain

P (ε1 + · · ·+ εn ∈ (−1, 1]m̃) =

(

n
t

)

+
(

n
t+m̃/2

)

+
(

n
t+2m̃/2

)

+ . . .

2n

=
2

m̃

m̃

2
−1

∑

j=0

(

2 cos
2iπ

m̃

)n

cos
2π(n− 2t)j

m̃

≤ 2

m̃
+

2

m̃

m̃

2
−1

∑

j=1

∣

∣

∣
cos

2jπ

m̃

∣

∣

∣

n

(11)

≤ 2

m̃
+

4

m̃

⌊ m̃

4
⌋

∑

j=1

∣

∣

∣
cos

2jπ

m̃

∣

∣

∣

n

≤ 2

m̃
+

4

m̃

⌊ m̃

4
⌋

∑

j=1

e−2π2j2n/m̃2

<
2

m̃
+

4

m̃

∫ ∞

0

e−2π2x2n/m̃2

dx

≤ 2

m̃
+

√

2

π

1√
n
≤ 2

m
+

√

2

π

1√
n
.

Note that in (11) we replaced | cos 2πj
m̃
| by | cos π(m̃−2j)

m̃
| when j > m̃

4
. This completes

the proof.
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