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COLORFUL COVERINGS OF POLYTOPES AND PIERCING NUMBERS

OF COLORFUL d-INTERVALS

FLORIAN FRICK AND SHIRA ZERBIB

Abstract. We prove a common strengthening of Bárány’s colorful Carathéodory the-

orem and the KKMS theorem. In fact, our main result is a colorful polytopal KKMS

theorem, which extends a colorful KKMS theorem due to Shih and Lee [Math. Ann.

296 (1993), no. 1, 35–61] as well as a polytopal KKMS theorem due to Komiya [Econ.

Theory 4 (1994), no. 3, 463–466]. The (seemingly unrelated) colorful Carathéodory

theorem is a special case as well. We apply our theorem to establish an upper bound

on the piercing number of colorful d-interval hypergraphs, extending earlier results

of Tardos [Combinatorica 15 (1995), no. 1, 123–134] and Kaiser [Discrete Comput.

Geom. 18 (1997), no. 2, 195–203].

MSC codes: 55M20, 52B11, 05B40, 52A35

1. Introduction

The KKM theorem of Knaster, Kuratowski, and Mazurkiewicz [11] is a set covering variant

of Brouwer’s fixed point theorem. It states that for any covering of the k-simplex ∆k on

vertex set [k+1] with closed sets A1, . . . , Ak+1 such that the face spanned by vertices in S is

contained in
⋃

i∈S Ai for every S ⊂ [k + 1], the intersection
⋂

i∈[k+1]Ai is nonempty.

The KKM theorem has inspired many extensions and variants, some of which we will

briefly survey in Section 2. Important strengthenings include a colorful extension of the KKM

theorem due to Gale [9] that deals with k+1 possibly distinct coverings of the k-simplex and

the KKMS theorem of Shapley [16], where the sets in the covering are associated to faces

of the k-simplex instead of its vertices. Further generalizations of the KKMS theorem are a

polytopal version due to Komiya [12] and the colorful KKMS theorem of Shih and Lee [17].

In this note we prove a colorful polytopal KKMS theorem, extending all results above.

This result is finally sufficiently general to also specialize to Bárány’s celebrated colorful

Carathéodory theorem [5] from 1982, which asserts that if X1, . . . , Xk+1 are subsets of Rk with

0 ∈ convXi for every i ∈ [k+1], then there exists a choice of points x1 ∈ X1, . . . , xk+1 ∈ Xk+1

such that 0 ∈ conv{x1, . . . , xk+1}. Carathéodory’s classical result is the case X1 = X2 = · · · =

Xk+1. We deduce the colorful Carathéodory theorem from our main result in Section 3.

For a set σ ⊂ R
k we denote by Cσ the cone of σ, that is, the union of all rays emanating

from the origin that intersect σ. Our main result is the following:

1

http://arxiv.org/abs/1710.07722v2


2 FLORIAN FRICK AND SHIRA ZERBIB

Theorem 1.1. Let P be a k-dimensional polytope with 0 ∈ P . Suppose for every nonempty,

proper face σ of P we are given k + 1 points y
(1)
σ , . . . , y

(k+1)
σ ∈ Cσ and k + 1 closed sets

A
(1)
σ , . . . , A

(k+1)
σ ⊂ P . If σ ⊂

⋃
τ⊂σ A

(j)
τ for every face σ of P and every j ∈ [k + 1], then there

exist faces σ1, . . . , σk+1 of P such that 0 ∈ conv{y
(1)
σ1 , . . . , y

(k+1)
σk+1

} and
⋂k+1

i=1 A
(i)
σi 6= ∅.

Our proof of this result relies on a topological mapping degree argument. As such, it

is entirely different from Bárány’s proof of the colorful Carathéodory theorem, and thus

provides a new topological route to prove this theorem. Our argument is also less involved

than the topological proof given recently by Meunier, Mulzer, Sarrabezolles, and Stein [14]

to show that algorithmically finding the configuration whose existence is guaranteed by the

colorful Carathéodory theorem is in PPAD (that is, informally speaking, it can be found

by a path-following algorithm). Our method, however, involves a limiting argument and

thus does not have immediate algorithmic consequences. Finally, our proof of Theorem

1.1 exhibits a surprisingly simple way to prove KKMS-type results and their polytopal and

colorful extensions.

As an application of Theorem 1.1 we prove a bound on the piercing numbers of colorful

d-interval hypergraphs. A d-interval is a union of at most d disjoint closed intervals on R. A

d-interval h is separated if it consists of d disjoint interval components h = h1 ∪ · · · ∪ hd with

hi+1 ⊂ (i, i+1) for i ∈ {0, . . . , d−1}. A hypergraph of (separated) d-intervals is a hypergraph

H whose vertex set is R and whose edge set is a finite family of (separated) d-intervals.

A matching in a hypergraph H = (V,E) with vertex set V and edge set E is a set of

disjoint edges. A cover is a subset of V intersecting all edges. The matching number ν(H)

is the maximal size of a matching, and the covering number (or piercing number) τ(H) is

the minimal size of a cover. Tardos [19] and Kaiser [10] proved the following bound on the

covering number in hypergraphs of d-intervals:

Theorem 1.2 (Tardos [19], Kaiser [10]). In every hypergraph H of d-intervals we have

τ(H) ≤ (d2 − d + 1)ν(H). Moreover, if H is a hypergraph of separated d-intervals then

τ(H) ≤ (d2 − d)ν(H).

Matoušek [13] showed that this bound is not far from the truth: There are examples

of hypergraphs of d-intervals in which τ = Ω( d2

log d
ν). Aharoni, Kaiser and Zerbib [1] gave

a proof of Theorem 1.2 that used the KKMS theorem and Komiya’s polytopal extension,

Theorem 2.1. Using Theorem 1.1 we prove here a colorful generalization of Theorem 1.2:

Theorem 1.3. 1. Let Fi, i ∈ [k+1], be k+1 hypergraphs of d-intervals and let F =
⋃k+1

i=1 Fi.

If τ(Fi) > k for all i ∈ [k + 1], then there exists a collection M of pairwise disjoint d-

intervals in F of size |M| ≥ k+1
d2−d+1

, with |M ∩ Fi| ≤ 1.

2. Let Fi, i ∈ [kd + 1], be kd + 1 hypergraphs of separated d-intervals and let F =
⋃k+1

i=1 Fi.

If τ(Fi) > kd for all i ∈ [k + 1], then there exists a collection M of pairwise disjoint

separated d-intervals in F of size |M| ≥ k+1
d−1

, with |M ∩ Fi| ≤ 1.
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Note that Theorem 1.2 is the case where all the hypergraphs Fi are the same. In Section 2

we introduce some notation and, as an introduction to our methods, provide a new simple

proof of Komiya’s theorem. Then, in Section 3, we prove Theorem 1.1 and use it to derive

Bárány’s colorful Carathéodory theorem. Section 4 is devoted to the proof of Theorem 1.3.

2. Coverings of polytopes and Komiya’s theorem

Let ∆k be the k-dimensional simplex with vertex set [k+1] realized in R
k+1 as {x ∈ R

k+1
≥0 :

∑k+1
i=1 xi = 0}. For every S ⊂ [k + 1] let ∆S be the face of ∆k spanned by the vertices in S.

Recall that the KKM theorem asserts that if A1, . . . , Ak+1 are closed sets covering ∆k so that

∆S ⊂
⋃

i∈S Ai for every S ⊂ [k+1], then the intersection of all the sets Ai is non-empty. We

will refer to covers A1, . . . , Ak+1 as above as KKM cover.

A generalization of this result, known as the KKMS theorem, was proven by Shapley [16]

in 1973. Now we have a cover of ∆k by closed sets AT , T ⊂ [k + 1], so that ∆S ⊂
⋃

T⊂S AT

for every S ⊂ [k + 1]. Such a collection of sets AT is called KKMS cover. The conclusion

of the KKMS theorem is that there exists a balanced collection of T1, . . . , Tm of subsets of

[k+1] for which
⋂m

i=1ATi
6= ∅. Here T1, . . . , Tm form a balanced collection if the barycenters

of the corresponding faces ∆T1
, . . . ,∆Tm

contain the barycenter of ∆k in their convex hull.

A different generalization of the KKM theorem is a colorful version due to Gale [9]. It

states that given k+1 KKM covers A
(i)
1 , . . . , A

(i)
k+1, i ∈ [k+1], of the k-simplex ∆k, there is a

permutation π of [k+1] such that
⋂

i∈[k+1]A
(i)
π(i) is nonempty. This theorem is colorful in the

sense that we think of each KKM cover as having a different color; the theorem then asserts

that there is an intersection of k + 1 sets of pairwise distinct colors associated to pairwise

distinct vertices. Asada et al. [2] showed that one can additionally prescribe π(1).

In 1993 Shih and Lee [17] proved a common generalization of the KKMS theorem and

Gale’s colorful KKM theorem: Given k + 1 such KKMS covers Ai
T , T ⊂ [k + 1], i ∈ [k + 1],

of ∆k, there exists a balanced collection of T1, . . . , Tk+1 of subsets of [k+1] for which we have
⋂m

i=1A
i
Ti
6= ∅.

Another far reaching extension of the KKMS theorem to general polytopes is due to

Komiya [12] from 1994. Komiya proved that the simplex ∆k in the KKMS theorem can

be replaced by any k-dimensional polytope P , and that the barycenters of the faces can be

replaced by any points yσ in the face σ:

Theorem 2.1 (Komiya’s theorem [12]). Let P be a polytope, and for every nonempty face σ

of P choose a point yσ ∈ σ and a closed set Aσ ⊂ P . If σ ⊂
⋃

τ⊂σ Aτ for every face σ of P ,

then there are faces σ1, . . . , σm of P such that yP ∈ conv{yσ1
, . . . , yσm

} and
⋂m

i=1Aσi
6= ∅.

This specializes to the KKMS theorem if P is the simplex and each point yσ is the barycen-

ter of the face σ. Moreover, there are quantitative versions of the KKM theorem due to De

Loera, Peterson, and Su [6] as well as Asada et al. [2] and KKM theorems for general pairs

of spaces due to Musin [15].
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To set the stage we will first present a simple proof of Komiya’s theorem. Recall that

the KKM theorem can be easily deduced from Sperner’s lemma on vertex labelings of

triangulations of a simplex. Our proof of Komiya’s theorem – just as Shapley’s origi-

nal proof of the KKMS theorem – first establishes an equivalent Sperner-type version. A

Sperner–Shapley labeling of a triangulation T of a polytope P is a map f : V (T ) −→ {σ :

σ a nonempty face of P} from the vertex set V (T ) of T to the set of nonempty faces of P

such that f(v) ⊂ supp(v), where supp(v) is the minimal face of P containing v. We prove

the following polytopal Sperner–Shapley theorem that will imply Theorem 2.1 by a limiting

and compactness argument:

Theorem 2.2. Let T be a triangulation of the polytope P ⊂ R
k, and let f : V (T ) −→ {σ :

σ a nonempty face of P} be a Sperner–Shapley labeling of T . For every nonempty face σ of P

choose a point yσ ∈ σ. Then there is a face τ of T such that yP ∈ conv{yf(v) : v vertex of τ}.

Proof. The Sperner–Shapley labeling f maps vertices of the triangulation T of P to faces

of P ; thus mapping vertex v to the chosen point yf(v) in the face f(v) and extending linearly

onto faces of T defines a continuous map F : P −→ P . By the Sperner–Shapley condition for

every face σ of P we have that F (σ) ⊂ σ. This implies that F is homotopic to the identity

on ∂P , and thus F |∂P has degree one. Then F is surjective and we can find a point x ∈ P

such that F (x) = yP . Let τ be the smallest face of T containing x. By definition of F the

image F (τ) is equal to the convex hull conv{yf(v) : v vertex of τ}. �

Proof of Theorem 2.1. Let ε > 0, and let T be a triangulation of P such that every face of

T has diameter at most ε. Given a cover {Aσ : σ a nonempty face of P} that satisfies the

covering condition of the theorem we define a Sperner–Shapley labeling in the following way:

For a vertex v of T , label v by a face σ ⊂ supp(v) such that v ∈ Aσ. Such a face σ exists

since v ∈ supp(v) ⊂
⋃

σ⊂supp(v) Aσ. Thus by Theorem 2.2 there is a face τ of T whose vertices

are labeled by faces σ1, . . . , σm of P such that yP ∈ conv{yσ1
, . . . , yσm

}. In particular, the

ε-neighborhoods of the sets Aσi
, i ∈ [m], intersect. Now let ε tend to zero. As there are only

finitely many collections of faces of P , one collection σ1, . . . , σm must appear infinitely many

times. By compactness of P the sets Aσi
, i ∈ [m], then all intersect since they are closed. �

Note that Theorem 2.1 is true also if all the sets Aσ are open in P . Indeed, given an open

cover {Aσ : σ a nonempty face of P} of P as in Theorem 2.1, we can find closed sets Bσ ⊂ Aσ

that have the same nerve as Aσ (namely, any collection of sets {Bσi
: i ∈ I} intersects if and

only if the corresponding collection {Aσi
: i ∈ I} intersects) and still satisfy σ ⊂

⋃
τ⊂σ Bτ

for every face σ of P .

3. A colorful Komiya theorem

Recall that the colorful KKMS theorem of Shih and Lee [17] states the following: If for every

i ∈ [k + 1] the collection {Ai
σ : σ a nonempty face of ∆k} forms a KKMS cover of ∆k, then
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there exists a balanced collection of faces σ1, . . . , σk+1 so that
⋂k+1

i=1 Ai
σi

6= ∅. Theorem 1.1,

proved in this section, is a colorful extension of Theorem 2.1, and thus generalizes the colorful

KKMS theorem to any polytope.

Let P be a k-dimensional polytope. Suppose that for every nonempty face σ of P we

choose k + 1 points y
(1)
σ , . . . , y

(k+1)
σ ∈ σ and k + 1 closed sets A

(1)
σ , . . . , A

(k+1)
σ ⊂ P , so

that σ ⊂
⋃

τ⊂σ A
(j)
τ for every face σ of P and every j ∈ [k + 1]. Theorem 2.1 now guar-

antees that for every fixed j ∈ [k + 1] there are faces σ
(j)
1 , . . . , σ

(j)
mj of P such that y

(j)
P ∈

conv{y
(j)
σ1 , . . . , y

(j)
σmj

} and
⋂mj

i=1A
(j)
σi is nonempty. Now let us choose y

(1)
P = y

(2)
P = · · · = y

(k+1)
P

and denote this point by yP . The colorful Carathéodory theorem implies the existence of

points zj ∈ {y
(j)
σ1 , . . . , y

(j)
σmj

}, j ∈ [k + 1], such that yP ∈ conv{z1, . . . , zk+1}. Theorem

1.1 shows that this implication can be realized simultaneously with the existence of sets

Bj ∈ {A
(j)
σ1 , . . . , A

(j)
σmj

}, j ∈ [k + 1], such that
⋂k+1

j=1 Bj is nonempty. We prove Theorem 1.1

by applying the Sperner–Shapley version of Komiya’s theorem – Theorem 2.2 – to a labeling

of the barycentric subdivision of a triangulation of P . The same idea was used by Su [18]

to prove a colorful Sperner’s lemma. For related Sperner-type results for multiple Sperner

labelings see Babson [3], Bapat [4], and Frick, Houston-Edwards, and Meunier [7].

Proof of Theorem 1.1. Let ε > 0, and let T be a triangulation of P such that every face

of T has diameter at most ε. We will also assume that the chosen points y
(1)
σ , . . . , y

(k+1)
σ

are contained in σ. This assumption does not restrict the generality of our proof since 0 ∈

conv{x1, . . . , xk+1} for vectors x1, . . . , xk+1 ∈ R
k if and only if 0 ∈ conv{α1x1, . . . , αk+1xk+1}

with arbitrary coefficients αi > 0. Denote by T ′ the barycentric subdivision of T . We now

define a Sperner–Shapley labeling of the vertices of T ′: For v ∈ V (T ′) let σv be the face of

T so that v lies at the barycenter of σv, let ℓ = dim σv, and let σ be the minimal supporting

face of P containing σv. By the conditions of the theorem, v is contained in a set A
(ℓ+1)
τ

where τ ⊂ σ. We label v by τ . Thus by Theorem 2.2 there exists a face τ of T ′ (without

loss of generality τ is a facet) whose vertices are labeled by faces σ1, . . . , σk+1 of P such that

0 ∈ conv{y
(1)
σ1 , . . . , y

(k+1)
σk+1

}. In particular, the ε-neighborhoods of the sets A
(i)
σi , i ∈ [k + 1],

intersect. Now use a limiting argument as before. �

Note that by the same argument as before, Theorem 1.1 is true also if all the sets A
(i)
σ are

open.

For a point x 6= 0 in R
k let H(x) = {y ∈ R

k : 〈x, y〉 = 0} be the hyperplane perpendicular

to x and let H+(x) = {y ∈ R
k : 〈x, y〉 ≥ 0} be the closed halfspace with boundary H(x)

containing x. Let us now show that Bárány’s colorful Carathéodory theorem is a special case

of Theorem 1.1.

Theorem 3.1 (Colorful Carathéodory theorem, Bárány [5]). Let X1, . . . , Xk+1 be finite sub-

sets of Rk with 0 ∈ convXi for every i ∈ [k + 1]. Then there are x1 ∈ X1, . . . , xk+1 ∈ Xk+1

such that 0 ∈ conv{x1, . . . , xk+1}.
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Proof. We will assume that 0 is not contained in any of the sets X1, ..., Xk+1, for otherwise

we are done. Let P ⊂ R
k be a polytope containing 0 in its interior, such that if points x and

y belong to the same face of P then 〈x, y〉 ≥ 0. For example, a sufficiently fine subdivision

of any polytope that contains 0 in its interior (slightly perturbed to be a strictly convex

polytope) satisfies this condition. We can assume that any ray emanating from the origin

intersects each Xi in at most one point by arbitrarily deleting any additional points from Xi.

This will not affect the property that 0 ∈ convXi. Furthermore, we can choose P in such a

way that for each face σ and i ∈ [k + 1] the intersection Cσ ∩Xi contains at most one point.

For every i ∈ [k + 1] let y
(i)
P = 0 and A

(i)
P = ∅. Now for each nonempty, proper face σ of

P choose points y
(i)
σ and sets A

(i)
σ in the following way: If there exists x ∈ Cσ ∩ Xi then let

y
(i)
σ = x and A

(i)
σ = {y ∈ P : 〈y, x〉 ≥ 0} = P ∩H+(x); otherwise let y

(i)
σ be some point in σ

and let A
(i)
σ = σ.

Suppose the statement of the theorem was incorrect; then in particular, we can slightly

perturb the vertices of P and those points y
(i)
σ that were chosen arbitrarily in σ, to make sure

that for any collection of points y
(1)
σ1 , . . . , y

(k+1)
σk+1

and any subset S of this collection of size at

most k, 0 /∈ conv S.

Let us now check that with these definitions the conditions of Theorem 1.1 hold. Clearly,

all the sets A
(i)
σ are closed. The fact that P is covered by the sets A

(i)
σ for every fixed i follows

from the condition 0 ∈ convXi. Indeed, this condition implies that for every p ∈ P there

exists a point x ∈ Xi with 〈p, x〉 ≥ 0, and therefore, for the face σ of P for which x ∈ Cσ we

have p ∈ A
(i)
σ .

Now fix a proper face σ of P . We claim that σ ⊂ A
(i)
σ for every i. Indeed, either Xi∩Cσ = ∅

in which case A
(i)
σ = σ, or otherwise, pick x ∈ Xi ∩ Cσ and let λ > 0 such that λx ∈ σ;

then for every p ∈ σ we have 〈p, λx〉 ≥ 0 by our assumption on P , and thus 〈p, x〉 ≥ 0, or

equivalently p ∈ A
(i)
σ .

Thus by Theorem 1.1 there exist faces σ1, . . . , σk+1 of P such that
⋂k+1

i=1 A
(i)
σi 6= ∅ and

0 ∈ conv{y
(1)
σ1 , . . . , y

(k+1)
σk+1

}. We claim that
⋂k+1

i=1 A
(i)
σi can contain only the origin. Indeed,

suppose that 0 6= x0 ∈
⋂k+1

i=1 A
(i)
σi . Fix i ∈ [k + 1]. If y

(i)
σi ∈ Cσi

∩ Xi, then since x0 ∈ A
(i)
σi

we have y
(i)
σi ∈ H+(x0) by definition. Otherwise x0 ∈ A

(i)
σi = σi and y

(i)
σi ∈ σi, so by our

choice of P we obtain again that y
(i)
σi ∈ H+(x0). Thus all the points y

(1)
σ1 , . . . , y

(k+1)
σk+1

are in

H+(x0). But since 0 ∈ conv{y
(1)
σ1 , . . . , y

(k+1)
σk+1

} this implies that the convex hull of the points in

{y
(1)
σ1 , . . . , y

(k+1)
σk+1

}∩H(x0) contains the origin. Now, the dimension of H(x0) is k−1, and thus

by Carathéodory’s theorem there exists a set S of at most k of the points in y
(1)
σ1 , . . . , y

(k+1)
σk+1

with 0 ∈ conv S, in contradiction to our general position assumption.

We have shown that
⋂k+1

i=1 A
(i)
σi = {0}, and thus in particular, A

(i)
σi 6= σi for all i. By our

definitions, this implies y
(i)
σi ∈ Xi for all i, concluding the proof of the theorem. �

Remark 3.2. Note that we could have avoided the usage of Carathéodory’s theorem in the

proof of Theorem 3.1 by taking a more restrictive assumption on the polytope P , namely,
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that 〈x, y〉 > 0 whenever the points x and y belong to the same face of P . Therefore, in

particular, Theorem 3.1 specializes to Carathéodory’s theorem in the case where all the sets

Xi are the same.

4. A colorful d-interval theorem

Recall that a fractional matching in a hypergraph H = (V,E) is a function f : E −→ R≥0

satisfying
∑

e: e∋v f(e) ≤ 1 for all v ∈ V . A fractional cover is a function g : V −→ R≥0 satis-

fying
∑

v: v∈e g(v) ≥ 1 for all e ∈ E. The fractional matching number ν∗(H) is the maximum

of
∑

e∈E f(e) over all fractional matchings f of H , and the fractional covering number τ ∗(H)

is the minimum of
∑

v∈V g(v) over all fractional covers g. By linear programming duality,

ν ≤ ν∗ = τ ∗ ≤ τ . A perfect fractional matching in H is a fractional matching f in which
∑

e:v∈e f(e) = 1 for every v ∈ V . It is a simple observation that a collection of sets I ⊂ 2[k+1]

is balanced if and only if the hypergraph H = ([k + 1], I) has a perfect fractional matching

(see e.g., [1]). The rank of a hypergraph H = (V,E) is the maximal size of an edge in H . H

is d-partite if there exists a partition V1, . . . , Vd of V such that |e ∩ Vi| = 1 for every e ∈ E

and i ∈ [d].

For the proof of Theorem 1.3 we will use the following theorem by Füredi.

Theorem 4.1 (Füredi [8]). If H is a hypergraph of rank d ≥ 2, then ν(H) ≥ ν∗(H)

d−1+ 1

d

. If, in

addition, H is d-partite, then ν(H) ≥ ν∗(H)
d−1

.

We will also need the following simple counting argument.

Lemma 4.2. If a hypergraph H = (V,E) of rank d has a perfect fractional matching, then

ν∗(H) ≥ |V |
d

.

Proof. Let f : E −→ R≥0 be a perfect fractional matching of H . Then
∑

v∈V

∑
e:v∈e f(e) =∑

v∈V 1 = |V |. Since f(e) was counted |e| ≤ d times in this equation for every edge e ∈ E,

we have that ν∗(H) ≥
∑

e∈E f(e) ≥ |V |
d
. �

We are now ready to prove Theorem 1.3. The proof is an adaption of the methods in [1].

For the first part we need the simplex version of Theorem 1.1, which was already proven by

Shih and Lee [17], while the second part requires our more general polytopal extension.

Proof of Theorem 1.3. For a point ~x = (x1, . . . , xk+1) ∈ ∆k let p~x(j) =
∑j

t=1 xt ∈ [0, 1]. Since

F is finite, by rescaling R we may assume that F ⊂ (0, 1). For every T ⊂ [k + 1] let Ai
T be

the set consisting of all ~x ∈ ∆k for which there exists a d-interval f ∈ Fi satisfying:

(a) f ⊂
⋃

j∈T (p~x(j − 1), p~x(j)), and

(b) f ∩ (p~x(j − 1), p~x(j)) 6= ∅ for each j ∈ T .

Note that Ai
T = ∅ whenever |T | > d.

Clearly, the sets Ai
T are open. The assumption τ(Fi) > k implies that for every ~x =

(x1, . . . , xk+1) ∈ ∆k, the set P (~x) = {p~x(j) : j ∈ [k]} is not a cover of Fi, meaning that
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there exists f ∈ Fi not containing any p~x(j). This, in turn, means that ~x ∈ Ai
T for some

T ⊆ [k + 1], and thus the sets Ai
T form a cover of ∆k for every i ∈ [k + 1].

To show that this is a KKMS cover, let ∆S be a face of ∆k for some S ⊂ [k + 1].

If ~x ∈ ∆S then (p~x(j − 1), p~x(j)) = ∅ for j /∈ S, and hence it is impossible to have

f ∩ (p~x(j − 1), p~x(j)) 6= ∅. Thus ~x ∈ Ai
T for some T ⊆ S. This proves that ∆S ⊆

⋃
T⊆S A

i
T

for all i ∈ [k + 1].

By Theorem 1.1 there exists a balanced collection of sets T = {T1, . . . , Tk+1} of subsets of

[k + 1], satisfying
⋂k+1

i=1 Ai
Ti

6= ∅. In particular, |Ti| ≤ d for all i. (Recall that we think of a

collection of sets I ⊂ 2[k+1] as faces of the k-dimensional simplex to apply the earlier geometric

definition of balancedness.) Then by the observation mentioned above, the hypergraph H =

([k + 1], T ) of rank d has a perfect fractional matching, and thus by Lemma 4.2 we have

ν∗(H) ≥ k+1
d

. Therefore, by Theorem 4.1, ν(H) ≥ ν∗(H)

d−1+ 1

d

≥ k+1
d2−d+1

.

Let M be a matching in H of size m ≥ k+1
d2−d+1

. Let ~x ∈
⋂k+1

i=1 Ai
Ti

. For every i ∈ [k+ 1] let

f(Ti) be the d-interval of Fi witnessing the fact that ~x ∈ Ai
Ti

. Then the set M = {f(Ti) |

Ti ∈ M} is a matching of size m in F with |M ∩ Fi| ≤ 1. This proves the first assertion of

the theorem.

Now suppose that Fi is a hypergraph of separated d-intervals for all i ∈ [kd + 1]. For

f ∈ F let f t ⊂ (t − 1, t) be the t-th interval component of f . We can assume without loss

of generality that f t is nonempty. Let P = (∆k)
d. For a d-tuple T = (ji, . . . , jd) ⊂ [k + 1]d

let Ai
T consist of all ~X = ~x1 × · · · × ~xd ∈ P for which there exists f ∈ Fi satisfying

f t ⊂ (t− 1 + p~xt(jt − 1), t− 1 + p~xt(jt)) for all t ∈ [d].

Since τ(Fi) > kd, the points t − 1 + p~xt(j), t ∈ [d], j ∈ [k], do not form a cover of Fi.

Therefore, by the same argument as before, the sets Ai
T are open and satisfy the covering

condition of Theorem 1.1. Thus, by Theorem 1.1, there exists a set T = {T1, . . . , Tkd+1} of

d-tuples in [k+1]d containing the point ( 1
k+1

, . . . , 1
k+1

)×· · ·×( 1
k+1

, . . . , 1
k+1

) ∈ P in its convex

hull and satisfying
⋂

i∈[kd+1]A
i
Ti
6= ∅. Then the d-partite hypergraph H = (

⋃d

i=1 Vi, T ), where

Vi = [k + 1] for all i, has a perfect fractional matching, and hence by Lemma 4.2 we have

ν∗(H) ≥ k + 1. By Theorem 4.1, this implies ν(H) ≥ ν∗(H)
d−1

≥ k+1
d−1

. Now, by the same

argument as before, by taking ~X ∈
⋂

i∈[kd+1]A
i
Ti

we obtain a matching in F of the same size

as a maximal matching in H , concluding the proof of the theorem. �
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