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Abstract

Obtaining an efficient bound for the triangle removal lemma is one of the most outstanding

open problems of extremal combinatorics. Perhaps the main bottleneck for achieving this goal

is that triangle-free graphs can be highly unstructured. For example, triangle-free graphs might

have only regular partitions (in the sense of Szemerédi) of tower-type size. And indeed, essentially

all the graph properties P for which removal lemmas with reasonable bounds were obtained, are

such that every graph satisfying P has a small regular partition. So in some sense, a barrier for

obtaining an efficient removal lemma for property P was having an efficient regularity lemma for

graphs satisfying P .

In this paper we consider the property of being induced C4-free, which also suffers from the

fact that a graph might satisfy this property but still have only regular partitions of tower-type

size. By developing a new approach for this problem we manage to overcome this barrier and

thus obtain a merely exponential bound for the induced C4 removal lemma. We thus obtain the

first efficient removal lemma that does not rely on an efficient version of the regularity lemma.

This is the first substantial progress on a problem raised by Alon in 2001, and more recently by

Alon, Conlon and Fox.

1 Introduction

An n-vertex graph is ε-far from satisfying a property P if one should add/delete at least εn2 edges

in order to turn G into a graph satisfying P. The so called induced removal lemma of Alon, Fischer,

Krivelevich and Szegedy [2] states that for every fixed graph H, if an n-vertex graph G is ε-far from

being induced H-free, then G contains at least nh/RemH(ε) induced copies of H, where h = |V (H)|

and RemH(ε) depends only on ε. The proof of this lemma in [2] supplied extremely weak bounds for

RemH(ε), which were later improved by Conlon and Fox [8]. However, even these improved bounds

are of tower-type1.

Alon [1] asked for which graphs H we have RemH(ε) = poly(1/ε), that is, for which graphs H

can we obtain polynomial bounds for the induced removal lemma. This question was addressed by

Alon and the second author [5] who resolved this problem for all graphs H save for P4 (the path
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†School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel. Email: asafico@tau.ac.il. Supported
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1We use tower(x) for a tower of exponents of height x, so tower(3) = 22

2

. The original proof of the induced removal

lemma in [2] gave only wowzer-type bounds, where wowzer is the iterated-tower function.
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on 4 vertices) and C4 (the 4-cycle). The former case was recently solved by Alon and Fox [4], who

proved that RemP4
(ε) = poly(1/ε). They further asked to determine if RemC4

(ε) = poly(1/ε). This

problem was also later raised by Conlon and Fox [9].

Prior to this work the best bound for RemC4
(ε) was the same tower-type bound that holds for all

graphs H. As we explain in the next subsection, the reason is that this problem seemed to lie just

outside the realm of the known techniques for proving efficient bounds for graph removal lemmas.

Our main result in this paper makes the first substantial progress on this problem, by improving the

tower-type bound into an exponential one.

Theorem 1.1. If an n-vertex graph G is ε-far from being induced C4-free, then G contains at least

n4/2(1/ε)
c

induced copies of C4, where c is an absolute constant.

We conjecture that the exponential bound in Theorem 1.1 can be further improved to a polynomial

one.

Given a (possibly infinite) family of graphs F , we say that a graph is induced F-free if it is induced

H-free for every H ∈ F . Observe that for infinite families F it is not a priori clear that a graph

which is ε-far from being induced F-free should contain any constant size (that might depend on ε)

subgraph that is not induced F-free. Such a result was obtained by Alon and the second author [6],

who extended the result of [2] by showing that for every family of graphs F , there is a function

RemF (ε), so that if G is ε-far from being induced F-free, then a random subset of RemF (ε) vertices

from V (G) is not induced F-free with probability at least (say2) 2/3. Needless to say that as in [2],

the bounds for RemF (ε) given by [6] are also (at least) of tower-type.

It is natural to ask if Theorem 1.1 can be extended to properties defined by forbidding a family

of graphs F , one of which is C4. The most notable and natural example is the property of being

chordal, which is the property of not containing an induced cycle of length at least 4. Previously, the

best bound for this problem was the tower-type bound which follows from the general result of [6].

Here we obtain the following improved bound.

Theorem 1.2. If an n-vertex graph G is ε-far from being chordal, then for some 4 ≤ ℓ ≤ O(ε−18),

G contains at least nℓ/2(1/ε)
c
induced copies of Cℓ, where c is an absolute constant.

While Theorem 1.2 asserts that if G is ε-far from being chordal it must contain an induced cycle

of length poly(1/ε), it only implies that a sample of vertices of size 2(1/ε)
c
contains an induced cycle

with probability at least 2/3. We do believe, however, that this exponential bound can be further

improved to a polynomial one.

It is now natural to ask if Theorem 1.2 can be further extended to an arbitrary family of graphs

F , one of which is C4. As our final theorem shows, this is not the case in a very strong sense.

Theorem 1.3. For every (decreasing) function g : (0, 1/2) → N there is a family of graphs F = F(g)

so that C4 ∈ F and yet RemF (ε) ≥ g(ε).

In fact, for every (small enough) ε > 0 and every n ≥ n0(ε), there is an n-vertex graph G which

is ε-far from being induced F-free, and yet does not contain an induced copy of any F ∈ F on fewer

than g(ε) vertices.

2It is easy to see that if F = {H}, this way of defining RemF (ε) is equivalent (up to polynomial factors) to the

induced removal lemma of [2], as we stated it above.
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1.1 Relation to prior works

In this subsection we would like to explain why in Theorem 1.1 we managed to overcome for the

first time a natural barrier, which was the main reason why one could not derive Theorem 1.1 via

techniques that were previously used for proving graph removal lemmas. For simplicity we will start

by discussing the triangle removal lemma, that is, the special case of the induced removal lemma

when H = K3. The original proof of the triangle removal lemma [23] relied on the famous regularity

lemma of Szemerédi [24], which is one of the most powerful tools for tackling problems in extremal

graph theory. It states that for every ε > 0 there is an M = M(ε) so that every graph has an ε-

regular partition of order at most M (see [22] for the precise definitions related to graph regularity).

Since Szemerédi’s proof only established that M(ε) ≤ tower(1/ε5), this approach for proving the

triangle removal lemma only gave the very weak bound RemK3
(ε) ≤ tower(poly(1/ε)). Gowers’

celebrated result [16], which states that M(ε) ≥ tower(poly(1/ε)), implies that one cannot get a

better bound for RemK3
(ε) via the regularity lemma. In a major breakthrough, Fox [12] managed to

prove the triangle removal lemma while avoiding Szemerédi’s version of the regularity lemma, thus

showing that RemK3
(ε) ≤ tower(O(log 1/ε)). A different formulation of his proof was later given in

[9] and [19]. The latter proof shows that Fox’s result can be derived from a variant of the regularity

lemma. Unfortunately, it was shown in [19] that this variant of the regularity lemma must also

produce partitions of tower-type size. Hence this approach does not seem to allow one to prove (say)

exponential bounds for the triangle removal lemma.

Although the best known bounds for the triangle removal are of tower-type, there are families of

graphs F for which one can prove much better (non-tower-type) bounds for RemF (ε), that is, for the

removal lemma of induced F-freeness. One example is the result of Alon and Fox [4] mentioned above

regarding induced P4-freeness. The main point we would like to make is that all these improved

bounds (save for one case discussed below) were not obtained by avoiding the regularity lemma.

Instead, they still (implicitly or explicitly) used the regularity lemma, but relied on the fact that

induced F-free graphs have much smaller ε-regular partitions. For example, the result of Alon and

Fox [4] regarding induced P4-freeness can be derived from the fact that every induced P4-free graph

has an ε-regular partition of size poly(1/ε). See [13] for a proof of this and other related results.

It is now natural to ask if one can use the above approach in order to obtain better bounds for the

triangle removal lemma. Unfortunately, there are bipartite versions of Gowers’ [16] lower bound for

the regularity lemma, as well as for the variant of the regularity lemma introduced in [19]. Therefore,

a graph can be triangle-free but still only have regular partitions of tower-type size. This means that

any proof of the triangle removal lemma that relies on (one of the above versions of) the regularity

lemma is bound to produce tower-type bounds.

With regard to induced C4-freeness, it is easy to see that every split graph is induced C4-free,

where a split graph is a graph whose vertex set can be partitioned into two sets, one inducing a

complete graph and the other an independent set. This means that if we take a bipartite version

of Gowers’ lower bound [16] (or of the one from [19]), and put a complete graph on one of the

vertex sets, we get an induced C4-free graph that has only regular partitions of tower-type size. In

particular, arguments similar to those that were previously used in order to devise efficient removal

lemmas cannot give better-than-tower-type bounds for this problem.

Summarizing the above discussion, Theorem 1.1 is the first example showing that one can obtain

an efficient removal lemma for a property P, even though graphs satisfying P might have only regular
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partitions of tower-type size. To do this, our proof is the first removal lemma that avoids using the

regularity lemma or one of its variants (save for the example discussed below). We are hopeful

that bounds similar to those obtained in Theorem 1.1 can be obtained for removal lemmas of other

properties for which the best known bounds are of tower-type, most notably for triangle freeness.

Let us end the discussion by describing the only previous example of a removal lemma that was

obtained while avoiding a regularity lemma, and how it differs from Theorem 1.1. In 1984 Erdős

[11] (implicitly) conjectured that k-colorability has a removal lemma, that is, that if G is ε-far from

being k-colorable then a sample of Ck(ε) vertices from V (G) spans a non-k-colorable subgraph with

probability at least 2/3. This was first verified by Rödl and Duke [21] who used the regularity lemma

in order to obtain a tower-type bound for Ck(ε). This tower-type bound was dramatically improved

by Goldreich, Goldwasser and Ron [15], who obtained a new proof of this result (as well as for

similar partition problems) that avoided the regularity lemma and thus gave a polynomial bound for

Ck(ε). Let us try
3 to explain why k-colorability differs from triangle-freeness or induced C4-freeness.

First, as opposed to these two properties which are local, the partition properties of [15] are global.

Perhaps the best way to see this is from the perspective of graph homomorphisms: triangle-freeness

means that there is no edge-preserving mapping from the vertices of the triangle to the vertices of

G, while 3-colorability means that there is such a mapping from the vertices of G to the vertices

of the triangle4. The second difference, which is more important for our quantitative investigation

here, is that k-colorability is defined using global edge counts (i.e. having no edges inside a vertex

partition into k sets). This can explain (at least in hindsight), why one does not need any structure

theorem in order to handle this property. Instead one can rely on sampling arguments that boil down

to estimating various edge densities (this is not to say that devising such proofs is an easy task!).

It appears that arguments of this sort cannot be used to prove removal lemmas for local properties

such as triangle freeness or induced C4-freeness.

1.2 Paper overview

The main idea of the proof is to show that (very roughly speaking) every induced C4-free graph

is a split graph. To be more precise, every5 induced C4-free graph is close to being a union of

an independent set and few cliques, so that the bipartite graphs between these cliques are highly

structured. Note that we have no guarantee on the structure of the bipartite graph connecting the

independent set and the cliques6. Towards this goal, in Section 2 we describe some preliminary

lemmas, mostly regarding the structure of bipartite graphs that do not contain an induced matching

of size 2. In Section 3 we give the main partial structure theorem, stated as Lemma 3.6. In the

course of the proof we will make a surprising application of the main result of Goldreich, Goldwasser

and Ron [15]. In Section 4 we give the proofs of Theorems 1.1 and 1.2. We will make use of the

structure theorem from Section 3 but will also have to deal with the (unavoidable) unstructured part

of the graph. This will be done in Lemma 4.1. Finally, in Section 5, we give the proof of Theorem

1.3. We will make no effort to optimize the constant c appearing in Theorems 1.1 and 1.2.

3See also Subsection 8.3.2 of Goldreich’s upcoming book [14] for a similar attempt.
4In the language of graph limits, this is the distinction between left and right homomorphisms, see [18].
5It is known [20] that most induced C4-free graphs are split graphs. We stress that in our setting we have to deal

with every induced C4-free graph, not just typical ones!
6This unstructured part is unavoidable due to the example we mentioned earlier of putting Gowers’ construction

between a clique and an independent set.
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2 Forbidding an induced 2-matching

Our goal in this section is to introduce several definitions and prove Lemma 2.4 stated below,

regarding graphs not containing induced matchings of size 2 of a specific type, which we now formally

define. Let G be a graph and let X,Y ⊆ V (G) be disjoint sets of vertices. An induced copy of M2 in

(X,Y ) is an (unordered) quadruple x, x′, y, y′ such that x, x′ ∈ X, y, y′ ∈ Y , (x, y), (x′, y′) ∈ E(G)

and (x, y′), (x′, y) /∈ E(G). We say that (X,Y ) is induced M2-free if it does not contain induced

copies of M2 as above. Observe that if X and Y are cliques then G[X ∪ Y ] is induced C4-free if and

only if (X,Y ) is induced M2-free. For x ∈ X, we denote NY (x) = {y ∈ Y : (x, y) ∈ E(G)}.

Claim 2.1. (X,Y ) is induced M2-free if and only if there is an enumeration x1, . . . , xm of the

elements of X such that NY (xi) ⊆ NY (xj) for every 1 ≤ i < j ≤ m.

Proof. Observe that (X,Y ) contains an induced M2 if and only if there are x, x′ ∈ X for which there

exist y ∈ NY (x) \ NY (x
′) and y′ ∈ NY (x

′) \ NY (x). Therefore, (X,Y ) is induced M2-free if and

only if for every x, x′ ∈ X it holds that either NY (x) ⊆ NY (x
′) or NY (x

′) ⊆ NY (x). Consider the

poset on X in which x precedes x′ if and only if NY (x) ⊆ NY (x
′). This poset is a linear ordering.

Enumerate the elements of X from minimal to maximal to get the required enumeration.

We say that (X,Y ) is homogeneous if the bipartite graph between X and Y is either complete or

empty. We say that a partition P = {P1, . . . , Pr} of a set V is an equipartition if ||Pi| − |Pj || ≤ 1 for

every 1 ≤ i, j ≤ r.

Lemma 2.2. If (X,Y ) is induced M2-free then for every integer r ≥ 1 there is an equipartition

X = X1 ∪ · · · ∪Xr and a partition Y = Y1 ∪ · · · ∪ Yr+1 such that (Xi, Yj) is homogeneous for every

1 ≤ i ≤ r and 1 ≤ j ≤ r + 1 satisfying i 6= j.

Proof. Let x1, . . . , xm be the enumeration of the elements of X from Claim 2.1. For 1 ≤ i ≤ r define

Xi = {xj :
(i−1)m

r < j ≤ im
r }. Here we assume, for simplicity of presentation, that |X| is divisible by

r; if that is not the case then we partition X into “consecutive intervals” of sizes
⌊ |X|

r

⌋

and
⌈ |X|

r

⌉

. Let

now y1, ..., yn be an enumeration of the elements of Y with the property that for every x ∈ X, the set

NY (x) is a “prefix” of the enumeration, that is, so that NY (x) = {y1, . . . , yk} for some 0 ≤ k ≤ n.

Define Y1 = NY (xm/r), Yi = NY (xim/r) \NY (x(i−1)m/r) for i = 2, . . . , r and Yr+1 = Y \NY (xm).

It remains to show that (Xi, Yj) is homogeneous for every i 6= j. Assume first that i < j.

Then for every x ∈ Xi we have NY (x) ⊆ NY (xim/r) ⊆ NY (x(j−1)m/r). By the definition of

Yj we have Yj ∩ NY (x(j−1)m/r) = ∅. Thus, Yj ∩ NY (x) = ∅ for every x ∈ Xi, implying that

the bipartite graph (Xi, Yj) is empty. Now assume that i > j. For every x ∈ Xi we have

NY (xjm/r) ⊆ NY (x(i−1)m/r) ⊆ NY (x). By the definition of Yj we have Yj ⊆ NY (xjm/r). Thus,

Yj ⊆ NY (x) for every x ∈ Xi, implying that the bipartite graph (Xi, Yj) is complete.

For two partitions P1,P2 of the same set, we say that P2 is a refinement of P1 if every part of

P2 is contained in one of the parts of P1. A vertex partition P of an n-vertex graph G is called

δ-homogeneous if the sum of |U ||V | over all non-homogeneous unordered distinct pairs U, V ∈ P is

at most δn2. It is easy to see that a refinement of a δ-homogeneous partition is itself δ-homogeneous.
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Lemma 2.3. Let δ > 0, let G be an n-vertex graph and let V (G) = X1∪ · · · ∪Xk be a partition such

that X1, . . . ,Xk are cliques and (Xi,Xj) is induced M2-free for every 1 ≤ i < j ≤ k. Then there is

a δ-homogeneous partition which refines {X1, . . . ,Xk} and has at most k (2/δ)k parts.

Proof. For every 1 ≤ i < j ≤ k, we apply Lemma 2.2 to (Xi,Xj) with parameter r = 1
δ to get

partitions Pi,j of Xi and Pj,i of Xj , Pi,j = {X1
i,j , ...,X

r
i,j}, Pj,i = {X1

j,i, ...,X
r+1
j,i }, such that Pi,j is

an equipartition and (Xp
i,j ,X

q
j,i) is homogeneous for every p 6= q. Note that

r
∑

p=1

|Xp
i,j ||X

p
j,i| =

r
∑

p=1

1

r
|Xi||X

p
j,i| ≤

1

r
|Xi||Xj | = δ|Xi||Xj |. (1)

For every i = 1, ..., k, define Pi to be the common refinement of the partitions (Pi,j)1≤j≤k, j 6=i. We

have |Pi| ≤ (r + 1)k−1 ≤ (2/δ)k. The partition P :=
⋃k

i=1 Pi refines {X1, . . . ,Xk} and has at most

k (2/δ)k parts. For every U, V ∈ P, if (U, V ) is not homogeneous, then there are 1 ≤ i < j ≤ k and

1 ≤ p ≤ r such that U ⊆ Xp
i,j and V ⊆ Xp

j,i. This follows from the fact that X1, . . . ,Xk are cliques

and the property of the partitions (Pi,j)1≤i 6=j≤k. By (1), we have

∑

1≤i<j≤k

r
∑

p=1

|Xp
i,j ||X

p
j,i| ≤ δ

∑

1≤i<j≤k

|Xi||Xj | ≤ δn2,

implying that P is δ-homogeneous, as required.

Lemma 2.4. Let δ > 0, let G be an n-vertex graph and let V (G) = X1∪ · · · ∪Xk be a partition such

that X1, . . . ,Xk are cliques and (Xi,Xj) is induced M2-free for every 1 ≤ i < j ≤ k. Then there is a

set Z ⊆ V (G) of size |Z| < δn, a partition V (G)\Z = Q1∪· · ·∪Qq which refines {X1\Z, . . . ,Xk \Z}

and subsets Wi ⊆ Qi such that the following hold.

1. The sum of |Qi||Qj | over all non-homogeneous pairs (Qi, Qj), 1 ≤ i < j ≤ q, is at most δn2.

2. |Wi| ≥ (δ/2k)10k
2

n for every 1 ≤ i ≤ q and (Wi,Wj) is homogeneous for every 1 ≤ i < j ≤ q.

Proof. Apply Lemma 2.3 to G with parameter δ to obtain a δ-homogeneous partition P which refines

{X1, . . . ,Xk}. Define Q = {U ∈ P : |U | ≥ δn
|P|} and write Q = {Q1, . . . , Qq}. Then Item 1 holds since

P is δ-homogeneous. Setting Z =
⋃

U∈P\Q U , notice that Q refines {X1 \ Z, . . . ,Xk \ Z} and that

|Z| < |P| · δn
|P| = δn. Apply Lemma 2.3 to G again (with respect to the same partition {X1, . . . ,Xk}),

now with parameter δ′ := δ2

8|P|4
, to get a δ′-homogeneous partition V with at most k(16|P|4/δ2)k

parts. Let W be the common refinement of P and V and note that W is δ′-homogeneous since it is

a refinement of V. Moreover,

|W| ≤ |P| · |V| ≤ |P| · k(16|P|4/δ2)k. (2)

For each 1 ≤ i ≤ q, define Wi = {W ∈ W : W ⊆ Qi}, choose a vertex wi ∈ Qi uniformly at

random and let Wi ∈ Wi be such that wi ∈ Wi. We will show that with positive probability, the

sets W1, ...,Wq satisfy the statement in Item 2. For 1 ≤ i ≤ q, the probability that |Wi| <
|Qi|
2q|W| is

6



smaller than
|W|·

|Qi|

2q|W|

|Qi|
= 1

2q . By the union bound, with probability larger than 1
2 , every 1 ≤ i ≤ q

satisfies

|Wi| ≥
|Qi|

2q|W|
≥

(

δ2

16|P|4

)k
δn

2k|P|3
≥

δ3kn

k(2|P|)7k
≥

δ3kn

k2k(2/δ)7k2
≥

(

δ

2k

)10k2

n ,

where in the second inequality we used |Qi| ≥
δn
|P| , q ≤ |P| and (2), and in the fourth inequality

we used the bound on |P| given by Lemma 2.3. For 1 ≤ i < j ≤ q, the probability that the pair

(Wi,Wj) is not homogeneous is

∑ |W ||W ′|

|Qi||Qj |
≤

4|P|2

δ2n2

∑

|W ||W ′| ≤
4|P|2

δ2n2
· δ′n2 ≤

1

2|P|2
,

where the sums are taken over all non-homogeneous pairs (W,W ′) ∈ Wi × Wj, the first inequality

uses |Qi|, |Qj | ≥
δn
2|P| and the second the fact that W is δ′-homogeneous. By the union bound, with

probability at least 1−
(q
2

)

1
|P| ≥ 1−

(|P|
2

)

1
|P| >

1
2 , all pairs (Wi,Wj) are homogeneous. We conclude

that Item 2 holds with positive probability.

3 A partial structure theorem for C4-free graphs

Our main goal in this section is to prove Lemma 3.6 stated below, which gives an approximate

partial structure theorem for induced C4-free graphs. The “approximation” will be due to the fact

that the graph will only be close to having a certain nice structure, while the “partial” will be since

there will be a (possibly) big part of the graph about which we will have no control. As we discussed

in Section 1, this partialness is unavoidable as evidenced by split graphs.

In addition to the lemmas from the previous section, we will also need the following theorems

of Goldreich, Goldwasser and Ron [15] and of Gyárfás, Hubenko and Solymosi [17]. In both cases,

ω(G) denotes maximum size of a clique in G.

Theorem 3.1 ([15]). For every ε ∈ (0, 1) there is q3.1(ε) = O(ε−5) with the following property. Let

ρ ∈ (0, 1) be such that ε < ρ2/2 and let G be a graph which is ε-far from satisfying ω(G) ≥ ρn.

Suppose q ≥ q3.1(ε) and let Q ∈
(V (G)

q

)

be a randomly chosen set of q vertices of G. Then with

probability at least 3
4 we have ω(G[Q]) < (ρ− ε

2 )q.

Theorem 3.2 ([17]). Every induced C4-free graph with n vertices and at least αn2 edges satisfies

ω(G) ≥ 0.4α2n.

Let use derive the following important corollary of the the above two theorems. For a non-empty

set X ⊆ V (G), define d(X) = e(X)/
(

|X|
2

)

, where e(X) is the number of edges of G with both

endpoints in X.

Lemma 3.3. Let α ∈ [0, 12) and let G be a graph on n vertices with at least αn2 edges. Then for

every β ∈ (0, 1), either G contains Ω(α80β20n4) induced copies of C4 or there is a set X ⊆ V (G)

with |X| ≥ 0.1α2n and d(X) ≥ 1− β.

In the proof of Lemma 3.3 we need the following simple fact.
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Claim 3.4. Let α ∈ (0, 1) and let G be a graph with n vertices and at least αn2 edges. Then for

every r ≥ 100
α2 , a sample of r vertices from G spans at least α

2 r
2 edges with probability at least 2

3 .

The proof of Claim 3.4 is a standard application of the second moment method (see e.g. [7]), and

is thus omitted.

Proof of Lemma 3.3. Set ρ = 0.1α2, ε = ρ2β
4 = α4β

400 and r = max{q3.1(ε),
100
α2 }. By Theorem 3.1 we

have r = O(α−20β−5). We assume that there is no X ⊆ V (G) with |X| ≥ 0.1α2n and d(X) ≥ 1− β,

and prove that G contains Ω(α80β20n4) induced copies of C4. Let X ⊆ V (G) be such that |X| ≥ ρn.

Since d(X) ≤ 1−β, we have
(|X|

2

)

−e(G) ≥ β
(|X|

2

)

≥ β |X|2

4 ≥ ρ2β
4 n2 = εn2. This shows that G is ε-far

from containing a clique of size ρn or larger. By our choice of r via Theorem 3.1, a random sample

R of r vertices of G satisfies ω(G[R]) < (ρ− ε
2 )r < 0.1α2r with probability at least 2

3 . By Claim 3.4,

we also have e(R) > α
2 r

2 with probability at least 2
3 . So with probability at least 1

3 we have both

ω(G[R]) < 0.1α2r and e(R) > α
2 r

2. If both events happen, then G[R] must contain an induced copy

of C4, by Theorem 3.2. We conclude that G contains at least 1
3

(n
r

)

/
(n−4
r−4

)

= 1
3

(n
4

)

/
(r
4

)

= Ω(α80β20n4)

induced copies of C4.

The last ingredient we need is the following result of Alon, Fischer and Newman [3]. For a pair

of disjoint vertex sets X,Y , we say that (X,Y ) is ε-far from being induced M2-free if one has to

add/delete at least ε|X||Y | of the edges between X and Y to make (X,Y ) induced M2-free.

Lemma 3.5 ([3]). There is an absolute constant d > 0 such that the following holds. If (X,Y ) is

ε-far from being induced M2-free then (X,Y ) contains at least εd|X|2|Y |2 induced copies of M2.

The following is the key lemma of this section. Note that it gives us a lot of information about

G[Y ] and G[X1 ∪ · · · ∪Xk] but no information about the bipartite graph connecting X1 ∪ · · · ∪Xk

and Y .

Lemma 3.6. There is an absolute constant c > 0, such that for every α, γ ∈ (0, 1), every n-

vertex graph G either contains Ω(αcγcn4) induced copies of C4, or admits a vertex partition V (G) =

X1 ∪ · · · ∪Xk ∪ Y with the following properties.

1. e(Y ) < αn2.

2. |Xi| ≥ 0.1α3n and d(Xi) ≥ 1− γ for every 1 ≤ i ≤ k.

3. For every 1 ≤ i < j ≤ k, the pair (Xi,Xj) is γ-close to being induced M2-free.

Proof. We prove the lemma with c = max(84, 20d), where d is the constant from Lemma 3.5. We

inductively define two sequences of sets, (Vi)i≥0 and (Xi)i≥1. Set V0 = V (G). At the i’th step

(starting from i = 0), if e(Vi) < αn2 then we stop. Note that if we did not stop then |Vi| ≥ αn.

If e(Vi) ≥ αn2 then by Lemma 3.3, applied to G[Vi] with parameters α and β = 0.25γd, either

G[Vi] contains Ω(α80γ20d|Vi|
4) ≥ Ω(α84γ20dn4) induced copies of C4 or there is Xi+1 ⊆ Vi with

|Xi+1| ≥ 0.1α2|Vi| ≥ 0.1α3n and d(Xi) ≥ 1−0.25γd. If the former case happens then the assertion of

the lemma holds, so we may assume that the latter case happens, in which case we set Vi+1 = Vi\Xi+1

and continue. Suppose that this process stops at the k’th step for some k ≥ 0. Set Y = Vk. We

clearly have V (G) = X1 ∪ · · · ∪ Xk ∪ Y . For every 1 ≤ i ≤ k we have |Xi| ≥ 0.1α3n and d(Xi) ≥

1− 0.25γd ≥ 1− γ. Since the process stopped at the k’th step, we must have e(Y ) = e(Vk) < αn2.
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To finish the proof, we show that if Item 3 in the lemma does not hold then G contains at least

0.5·10−4α12γdn4 induced copies of C4. Assume that for some 1 ≤ i < j ≤ k, the pair (Xi,Xj) is γ-far

from being induced M2-free. By Lemma 3.5, (Xi,Xj) contains at least γ
d|Xi|

2|Xj |
2 induced copies of

M2. Let (xi, x
′
i, xj, x

′
j) be such a copy, where xi, x

′
i ∈ Xi and xj, x

′
j ∈ Xj . If (xi, x

′
i), (xj , x

′
j) ∈ E(G)

then xi, x
′
i, xj , x

′
j span an induced copy of C4. Since d(Xi), d(Xj) ≥ 1 − 0.25γd, There are at most

0.5γd|Xi|
2|Xj |

2 quadruples of distinct vertices (xi, x
′
i, xj , x

′
j) ∈ Xi ×Xi ×Xj ×Xj for which either

(xi, x
′
i) /∈ E(G) or (xj , x

′
j) /∈ E(G). Thus, G contains at least 0.5γd|Xi|

2|Xj |
2 ≥ 0.5 · 10−4α12γdn4

induced copies of C4.

We finish this section with the following corollary of the above structure theorem, which will be

more convenient to use when proving Theorems 1.1 and 1.2 in the next section.

Lemma 3.7. There is an absolute constant c > 0 such that for every α, γ ∈ (0, 1), every n-vertex

graph G either contains Ω(αcγcn4) induced copies of C4 or there is a graph G′ on V (G), a partition

V (G) = X1 ∪ · · · ∪ Xk ∪ Y , where k ≤ 10α−3, a subset Z ⊆ X := X1 ∪ · · · ∪ Xk, a partition

X \ Z = Q1 ∪ · · · ∪Qq which refines {X1 \ Z, . . . ,Xk \ Z}, and subsets Wi ⊆ Qi with the following

properties.

1. G′[Xi \ Z] is a clique for every 1 ≤ i ≤ k, and G′[Y ] is an independent set.

2. |Z| < αn and every z ∈ Z is an isolated vertex in G′.

3. In G′, the sum of |Qi||Qj| over all non-homogeneous pairs (Qi, Qj), 1 ≤ i < j ≤ q, is at most

αn2.

4. (Wi,Wj) is homogeneous in G′ for every 1 ≤ i < j ≤ q and |Wi| ≥ (α/20)4000α
−6

|X| for every

1 ≤ i ≤ q.

5. |E(G′)△E(G)| < (2α + γ)n2 and |E(G′[X \ Z])△E(G[X \ Z])| < γn2.

Proof. The constant c in this lemma is the same as in Lemma 3.6. Apply Lemma 3.6 to G with the

given α and γ. If G contains Ω
(

αcγcn4
)

induced copies of C4 then the assertion of the lemma holds,

and otherwise let X1, . . . ,Xk, Y be as in the statement of Lemma 3.6. Note that k ≤ 10α−3 since

|Xi| ≥ 0.1α3 for every 1 ≤ i ≤ k. Let G′′ be the graph obtained from G by making Y an independent

set, making X1, . . . ,Xk cliques and making (Xi,Xj) induced M2-free for every 1 ≤ i < j ≤ k.

By Lemma 3.6 we have |E(G′′[Y ])△E(G[Y ])| < αn2 and |E(G′′[X])△E(G[X])| < γ
∑k

i=1

(|Xi|
2

)

+

γ
∑

i<j |Xi||Xj | < γn2. We now apply Lemma 2.4 to G′′[X] with parameter δ = α (and with

respect to the partition {X1, . . . ,Xk}) and obtain a subset Z ⊆ X of size |Z| < α|X| ≤ αn, a

partition X \ Z = Qq ∪ · · · ∪Qq which refines {X1 \ Z, . . . ,Xk \ Z}, and subsets Wi ⊆ Qi such that

|Wi| ≥ (α/2k)10k
2

|X| ≥ (α4/20)1000α
−6

|X| ≥ (α/20)4000α
−6

|X| for every 1 ≤ i ≤ q.

Let G′ be the graph obtained from G′′ by making every z ∈ Z an isolated vertex. Then Item 2 is

satisfied. The second part of Item 5 holds because G′[X\Z] = G′′[X\Z] and |E(G′′[X])△E(G[X])| <

γn2. For the first part of Item 5, note that |E(G′)△E(G′′)| < |Z|n < αn2, which implies that

|E(G′)△E(G)| ≤ |E(G′)△E(G′′)|+ |E(G′′)△E(G)| < (2α+ γ)n2. Since G′[X \Z] = G′′[X \Z] and

G′[Y ] = G′′[Y ], it is enough to establish that Items 1, 3 and 4 hold if G′ is replaced by G′′. For

Item 1, this is immediate from the definition of G′′; for items 3-4, this follows from our choice of

Q = {Q1, . . . , Qq} and W1, . . . ,Wq via Lemma 2.4 (with parameter δ = α).
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4 Proofs of main results

In this section we prove Theorems 1.1 and 1.2. The last ingredient we need is the following key

lemma.

Lemma 4.1. Let F be a (finite or infinite) family of graphs such that

1. C4 ∈ F .

2. For every F ∈ F and v ∈ V (F ), the neighbourhood of v in F is not a clique.

Suppose G is a graph with vertex partition V (G) = X ∪ Y such that Y is an independent set and

G[X] is induced F-free. Then, if one must add/delete at least ε|X||Y | of the edges between X and

Y to make G induced F-free, then G contains at least ε4

28 |X|2|Y |2 induced copies of C4.

Proof. Let us pick for every y ∈ Y a maximal anti-matching M(y) in G[NX(y)], that is, a max-

imal collection of pairwise-disjoint non-edges contained in NX(y). For every pair of non edges

(u, v), (u′, v′) ∈ M(y), there must be at least one non-edge between {u, v} and {u′, v′}, as otherwise

u, v, u′, v′ would span an induced C4 in X, in contradiction to the assumptions that G[X] is induced

F-free and C4 ∈ F . Therefore, for every y there are at least
(

|M(y)|
2

)

+ |M(y)| ≥ |M(y)|2/2 non-edges

inside the set NX(y). For every y ∈ Y let d2(y) denote the number of pairs of distinct vertices in

NX(y) that are non-adjacent. Then the above discussion implies that every y ∈ Y satisfies

d2(y) ≥
|M(y)|2

2
. (3)

Let G′ be the graph obtained from G by deleting, for every y ∈ Y , all edges going between y and

the vertices of M(y). Since M(y) is spanned by 2|M(y)| vertices, we have

|E(G′)△E(G)| = 2
∑

y∈Y

|M(y)| . (4)

We now claim that G′ is induced F-free. Indeed, suppose U ⊆ V (G) spans an induced copy of some

F ∈ F . Since by assumption G[X] is induced F-free and since G′[X] = G[X], there must be some

y ∈ U ∩ Y . Since the neighbourhood of y in F is not a clique and since G′[Y ] = G[Y ] is an empty

graph, there must be u, v ∈ U ∩X for which u, v ∈ NX(y) and (u, v) /∈ E(G′). Now, the fact that u, v

are connected to y in G′ means that neither of them participated in one of the non-edges of M(y).

But then the fact that (u, v) /∈ E(G′) implies that also (u, v) /∈ E(G) (because we did not change

G[X]) which in turn implies that (u, v) could have been added to M(y) contradicting its maximality.

By the assumption of the lemma we thus have |E(G′)△E(G)| ≥ ε|X||Y |. Combining this with

(3), (4) and Jensen’s inequality thus gives

∑

y∈Y

d2(y) ≥
1

2

∑

y∈Y

|M(y)|2 ≥
1

2
|Y | ·

(

∑

y∈Y |M(y)|

|Y |

)2

=
1

2
|Y | ·

(

|E(G′)△E(G)|

2|Y |

)2

≥
ε2

8
|X|2|Y |.

For a pair of distinct vertices u, v ∈ X set t(u, v) = 0 if (u, v) ∈ E(G) and otherwise set t(u, v) to

be the number of vertices y ∈ Y connected to both u and v. Recalling that Y is an independent set
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in G, we see that u, v belong to at least
(

t(u,v)
2

)

induced copies of C4. Hence, G contains at least

∑

u,v∈X

(

t(u, v)

2

)

≥

(

|X|

2

)

·

(∑

u,v∈X t(u, v)/
(

|X|
2

)

2

)

=

(

|X|

2

)

·

(∑

y∈Y d2(y)/
(|X|

2

)

2

)

≥
|X|2

4
·
(ε2|Y |/4)2

4
=

ε4

28
|X|2|Y |2,

induced copies of C4, where the first inequality is Jensen’s, the following equality is double-counting,

and the last inequality uses our above lower bound for
∑

y∈Y d2(y).

We are now ready to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Set

α =
ε6

211
, γ =

1

2
(α/20)16000α

−6

(ε/2)4.

and notice that γ ≥ 2−(1/ε)c
′

for some absolute constant c′. We apply Lemma 3.7 to G with the α and

γ defined above. If G contains Ω
(

αcγcn4
)

induced copies of C4 then we are done. Otherwise, let G′,

X = X1 ∪ · · · ∪Xk, Y , Z, Q = {Q1, . . . , Qq} and Wi ⊆ Qi be as in Lemma 3.7. Let G′′ be the graph

obtained from G′ by doing the following: for every 1 ≤ i < j ≤ q, if (Wi,Wj) is a complete (resp.

empty) bipartite graph then we turn (Qi, Qj) into a complete (resp. empty) bipartite graph. By Item

4 in Lemma 3.7, one of these options holds. By Item 3 in Lemma 3.7, the number of changes made is

at most αn2. By Item 5 in Lemma 3.7 we have |E(G′′)△E(G)| ≤ |E(G′′)△E(G′)|+ |E(G′)△E(G)| <

(3α+ γ)n2 < ε
2n

2, implying that G′′ is ε
2 -far from being induced C4-free. Note that |X \Z| ≥ ε

2n, as

otherwise deleting all edges incident to the vertices of X \ Z would make G′′ an empty graph (and

hence induced C4-free) by deleting |X \ Z| · n ≤ ε
2n

2 edges.

Let us assume first that G′′[X \Z] contains an induced copy of C4, say on the vertices v1, v2, v3, v4.

For 1 ≤ s ≤ 4, let is be such that vs ∈ Qis . It is easy to see that by the definition of G′′, every

quadruple (w1, . . . , w4) ∈ Wi1 ×Wi2 ×Wi3 ×Wi4 spans an induced copy of C4 in the graph G′. By

Item 4 in Lemma 3.7, G′ contains

|Wi1 | · |Wi2 | · |Wi3 | · |Wi4 | ≥ (α/20)16000α
−6

|X|4 ≥ (α/20)16000α
−6

(ε/2)4n4 = 2γn4

induced copies of C4. By Item 5 in Lemma 3.7, G[X \Z] and G′[X \Z] differ on less than γn2 edges,

each of which can participate in at most n2 induced copies of C4. Thus, G contains at least γn4

induced copies of C4, as required.

From now on we assume that G′′[X \ Z] is induced C4-free, implying that G′′[X] is induced C4-

free (as every z ∈ Z is isolated in G′′). Since G′′ is ε
2 -far from being induced C4-free, one cannot

make G′′ induced C4-free by adding/deleting less than ε
2n

2 ≥ ε|X||Y | edges between X and Y . In

particular, we have |X||Y | ≥ εn2. Notice that the conditions of Lemma 4.1 hold (with respect to the

family F = {C4}) since G′′[Y ] = G′[Y ] is an independent set (by Item 1 in Lemma 3.7) and G′′[X]

is induced C4-free by assumption. By Lemma 4.1, G′′ contains at least ε4

28
|X|2|Y |2 ≥ ε6

28
n4 = 8αn4

induced copies of C4. Since |E(G′′)△E(G)| < (3α + γ)n2 < 4αn2, at least 4αn4 = ε6

29
n4 of these

copies are also present in G. This completes the proof of the theorem.
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Proof of Theorem 1.2. Set

α =
ε6

211
, γ =

1

2
(α/20)10

5α−9

(ε/2)20α
−3

.

and notice that γ ≥ 2−(1/ε)c
′

for some absolute constant c′. As in the proof of Theorem 1.1, we apply

Lemma 3.7 to G with the α and γ defined above. If G contains Ω
(

αcδcn4
)

induced copies of C4 then

we are done. Otherwise, let G′, X = X1 ∪ · · · ∪Xk, Y , Z, Q = {Q1, . . . , Qq} and Wi ⊆ Qi be as in

Lemma 3.7.

Let G′′ be the graph obtained from G′ by doing the following: for every 1 ≤ i < j ≤ q, if (Wi,Wj)

is a complete (resp. empty) bipartite graph then we make (Qi, Qj) a complete (resp. empty) bipartite

graph. As in the proof of Theorem 1.1, G′′ is ε
2 -far from being chordal, and we have |X \ Z| ≥ ε

2n.

Assume first that G′′[X \Z] is not chordal, namely that it contains an induced cycle C = v1 . . . vℓ
of length ℓ ≥ 4. By Item 1 in Lemma 3.7, G′′[Xi \ Z] = G′[Xi \ Z] is a clique for every 1 ≤ i ≤ k.

Since the cycle C does not contain a triangle, it can contain at most 2 vertices from each of these

cliques, implying that ℓ = |C| ≤ 2k ≤ 20α−3 = O(ε−18). The bound on k comes from Lemma 3.7.

For 1 ≤ s ≤ ℓ, let is be such that vs ∈ Qis . It is easy to see that by the definition of G′′, ℓ-tuple

(w1, . . . , wℓ) ∈ Wi1 × · · · ×Wiℓ spans an induced ℓ-cycle in the graph G′. By Item 4 in Lemma 3.7,

G′ contains
ℓ
∏

j=1

|Wij | ≥ (α/20)4000α
−6ℓ|X|ℓ ≥ (α/20)10

5α−9

(ε/2)20α
−3

nℓ = 2γnℓ

induced copies of Cℓ. By Item 5 in Lemma 3.7, G[X] and G′[X] differ on less than γn2 edges, each

of which can participate in at most nℓ−2 induced copies of Cℓ. Thus, G contains at least γnℓ induced

copies of Cℓ, as required.

We now assume that G′′[X] is chordal. Since G′′ is ε
2 -far from being chordal, one must add/delete

at least ε
2n

2 ≥ ε|X||Y | of the edges between X and Y to make G′′ chordal. In particular, we have

|X||Y | ≥ εn2. Note that the family F = {Cℓ : ℓ ≥ 4}, i.e. the family of forbidden induced subgraphs

for chordality, satisfies Conditions 1-2 of Lemma 4.1. Observe that Lemma 4.1 is applicable to G′′

(with respect to the family F = {Cℓ : ℓ ≥ 4}), as G′′[Y ] = G′[Y ] is an independent set (by Item 1 in

Lemma 3.7), and G′′[X] is induced F-free (i.e. chordal) by assumption. By Lemma 4.1, G′′ contains

at least ε4

28
|X|2|Y |2 ≥ ε6

28
n4 = 8αn4 induced copies of C4. Since |E(G′′)△E(G)| < 4αn2, at least

4αn4 = ε6

29
n4 of these copies are also present in G.

5 An impossibility result

In this section we prove Theorem 1.3. It will in fact be more convenient to prove the following

equivalent statement.

Theorem 5.1. For every function g : (0, 12) → N there is a graph family F which contains C4 and

there is a sequence {εk}
∞
k=1 with εk > 0 and εk → 0, such the following holds. For every k ≥ 1 and

n ≥ n0(k) there is an n-vertex graph G which is εk-far from being induced F-free, but still every

induced subgraph of G on g(εk) vertices is induced F-free.

We will need the following theorem due to Erdős [10].
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Theorem 5.2. For every integer f there is n5.2 = n5.2(k, f) such that every k-uniform hypegraph

with n ≥ n5.2 vertices and nk−f1−k

edges contains a complete k-partite k-uniform hypergraph with f

vertices in each part.

For integers k, f ≥ 1, let Bk,f be the graph obtained by replacing each vertex of the cycle Ck by

a clique of size f , and replacing each edge by a complete bipartite graph.

Lemma 5.3. For every pair of integers k ≥ 3 and f ≥ 1 there is n5.3 = n5.3(k, f) such that for

every n ≥ n5.3, the graph Bk,n/k is 1
2k2

-far from being induced {C4, Bk,f}-free.

Proof. Let V1, . . . , Vk be the sides of G := Bk,n/k (each a clique of size n/k). Let G′ be a graph

obtained from G by adding/deleting at most v(G)2

2k2
= n2

2k2
edges. Our goal is to show that G′ is not

induced {C4, Bk,f}-free. Let H be the k-partite k-uniform hypergraph with parts V1, . . . , Vk whose

edges are all k-tuples (v1, . . . , vk) ∈ V1 × · · · × Vk such that v1v2 . . . vkv1 is an induced cycle in G′.

Note that in G, every such k-tuple spans an induced cycle, and that adding/deleting an edge can

destroy at most
(

n
k

)k−2
such cycles. Thus, G′ contains at least

(

n
k

)k
− n2

2k2

(

n
k

)k−2
= 1

2

(

n
k

)k
of these

induced cycles, implying that e(H) ≥ 1
2

(

n
k

)k
. For a large enough n we have 1

2

(

n
k

)k
≥ nk−f1−k

and

n ≥ n5.2(k, f). Thus, by Theorem 5.2, H contains a complete k-partite k-uniform hypergraph with

parts Ui ⊆ Vi, each of size f . This means that in the graph G′, (Ui, Uj) is a complete bipartite

graph if j − i ≡ ±1 (mod k) and an empty bipartite graph otherwise. If G′[Ui] is a clique for every

1 ≤ i ≤ k then U1 ∪ · · · ∪ Uk spans an induced copy of Bk,f in G′. Suppose then that Ui is not a

clique for some 1 ≤ i ≤ k, say i = 1, and let x, y ∈ U1 be such that (x, y) /∈ E(G′). Then for every

z ∈ U2 and w ∈ Uk, {x, y, z, w} spans an induced copy of C4 in G′. Thus, in any case G′ is not

induced {C4, Bk,f}-free.

Proof of Theorem 5.1. For k ≥ 5 put εk = 1
2k2

and fk = g(εk). We will show that the family

F = {C4} ∪ {Bk,fk : k ≥ 5} satisfies the requirement. Let k ≥ 5, let n ≥ n5.3(k, fk) and set

G = Bk,n/k. By Lemma 5.3, G is εk-far from being induced {C4, Bk,fk}-free. Since C4, Bk,fk ∈ F ,

we get that G is εk-far from being induced F-free.

We claim that for every 4 ≤ ℓ < k, G is induced Cℓ-free. Suppose, for the sake of contradic-

tion, that x1, . . . , xℓ, x1 is an induced ℓ-cycle in G. Let V1, . . . , Vk be the sides of G = Bk,n/k. If

|{x1, . . . , xℓ} ∩ Vi| ≤ 1 for every 1 ≤ i ≤ k then x1, . . . , xℓ are contained in an induced path, which

is impossible. So there is some 1 ≤ i ≤ k for which |{x1, . . . , xℓ} ∩ Vi| ≥ 2. Suppose without loss

of generality that x1, x2 ∈ V1 (recall that V1, . . . , Vk are cliques). Then x3 ∈ V2 or x3 ∈ Vk, and in

either case x1, x2, x3 span a triangle, a contradiction.

We conclude that the smallest F ∈ F which is an induced subgraph of G, is F = Bk,fk . Thus,

every induced subgraph of G on less than v(Bk,fk) = k · g(εk) vertices is induced F-free, completing

the proof.
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