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Abstract

We prove a Tverberg-type theorem using the probabilistic method.
Given ε > 0, we find the smallest number of partitions of a set X in Rd

into r parts needed in order to induce at least one Tverberg partition
on every subset of X with at least ε|X | elements. This generalizes
known results about Tverberg’s theorem with tolerance.

1 Introduction

Tverberg’s theorem and the weak ε-net theorem for convex sets are cen-
tral results describing the combinatorial properties of convex sets. Their
statements are the following

Theorem 1.1 (Tverberg 1966, [Tve66]). Let r, d be positive integers. Given

a set X of (r − 1)(d + 1) + 1 points in Rd, there is a partition of X into r
sets whose convex hulls intersect.

We call a partition into r sets as above a Tverberg partition. For a set
Y ⊂ Rd, we denote by conv Y its convex hull.

Theorem 1.2 (Weak ε-net; Alon, Bárány, Füredi, Kleitman 1992, [ABFK92]).
Let d be a positive integer and ε > 0. Then, there is an integer n = n(ε, d)
such that the following holds. For any finite set X of points in Rd, there is

a set K ⊂ Rd of n(ε, d) points such that for all Y ⊂ X with |Y | ≥ ε|X|, we
have that conv Y intersects K.

For an overview of both theorems and how they have shaped discrete
geomety, consult [Mat02, BS17b]. One key aspect of the weak ε-net theorem
is that n(ε, d) does not depend on |X|. The two theorems are closely related
to each other. Tverberg’s theorem is an important tool in the proof of the
“first selection lemma” [Bár82], which in turn is used to prove the weak ε-net
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theorem. Finding upper and lower bounds for n(ε, d) is a difficult problem.
As an upper bound, for any fixed d we have n(ε, d) = O(ε−d polylog(ε−1))
[CEG+95, MW04]. There are lower bounds superlinear in 1/ε, for any fixed
d we have n(ε, d) = Ω((1/ε) lnd−1(1/ε)) [BMN11].

The purpose of this paper is to provide a different link between these two
theorems. Just as the weak ε-net gives you a fixed-size set which intersects
the convex hull of each not too small subset of X, now we seek a fixed
number of partitions of X, such that for every not too small subset Y ⊂ X,
at least one of the partitions induces a Tverberg partition on Y . Unlike
the weak ε-net problem, we get an exact value for the number of partitions
needed.

Given a partition P of X and Y ⊂ X, we denote by P(Y ) the restriction
of P on Y ,

P(Y ) = {K ∩ Y : K ∈ P}.
If P is a partition into r sets, then P(Y ) is also a partition into r sets,

though some may be empty. With this notation, we can state the main
result of this paper.

Theorem 1.3. Let 1 ≥ ε > 0 be a real number and r, d be positive integers.

Then, there is an integer m = m(ε, r) such that the following is true. For

every sufficiently large finite set X ⊂ Rd, there are m partitions P1, . . . ,Pm

of X into r parts each such that, for every subset Y ⊂ X with |Y | ≥ ε|X|,
there is a k such that Pk(Y ) is a Tverberg partition. Moreover, we have

m(ε, r) =









ln
(

1
ε

)

ln
(

r
r−1

)







+ 1.

An equivalent statement is that ε > ((r−1)/r)m if and only if m(ε, r) ≤
m. One should notice that 1/ ln(r/(r− 1)) ∼ r, so m(ε, r) ∼ r ln(1/ε). One
surprising aspect of this result is that m does not depend on the dimension.
The effect of the dimension only appears when we look at how large X must
be for the theorem to kick in. The value for |X| where the theorem starts
working is, up to polylogarithmic terms, mdr3(ε− ((r − 1)/r)m)−2.

The proof of Theorem 1.3 follows from a repeated application of the
probabilistic method, contained in section 3. We build up on the techniques
of [Sob18] to prove Tverberg-type results by making random partitions.
The key new observation is that, given m partitions of X, the number of
containment-maximal subsets Y such that Pk(Y ) is not a Tverberg partition
for any k is polynomial in |X|.

This result is also closely related to Tverberg’s theorem with tolerance.
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Theorem 1.4 (Tverberg with tolerance; Garćıa-Coĺın, Raggi, Roldán-Pensado
2017, [GCRRP17]). Let r, t, d be positive integers, were r, d are fixed. There

is an integer N(r, t, d) = rt+ o(t) such that the following holds. For any set

X of N points in Rd, there is a partition of X into r sets X1, . . . ,Xr such

that, for all C ⊂ X of cardinality t, we have

r
⋂

j=1

conv(Xj \ C) 6= ∅.

This is a result that is motivated by earlier work of Larman [Lar72], who
studied the case t = 1, r = 2. Theorem 1.4 determines the correct leading
term as t becomes large. This result been improved to N = rt + Õ(

√
t),

where the Õ term hides polylogarithmic factors, and is polynomial in r, d
[Sob18]. In the notation of Theorem 1.3, Theorem 1.4 says that if ε > 1−1/r,
then m(ε, r) = 1. Improved bounds for small values of t can be found in
[SS12, MS14].

As the driving engine in the proof of Theorem 1.3 is Sarkaria’s tensoring
technique, described in section 2, it can be easily modified to get similar
versions of a multitude of variations of Tverberg’s theorem. This includes
Tverberg “plus minus” [BS17a], colorful Tverberg with equal coefficients
[Sob15] and asymptotic variations of Reay’s conjecture [Sob18]. We do not
include those variations explicitly. We do include an ε-version for the colorful
Tverberg theorem in section 4, as it is closely related to a conjecture in
[Sob18].

A natural question that follows the results of this paper is to determine
whether a topological version of Theorem 1.3 also holds.

2 Preliminaries

2.1 Sarkaria’s technique.

We start discussing the preliminaries for the the proof of Theorem 1.3. At
the core of the proof is Sarkaria’s technique to prove Tverberg’s theorem via
tensor products [Sar92, BO97].

The goal is to reduce Tverberg’s theorem to the colorful Carathéodory
theorem.

Theorem 2.1 (Colorful Carathéodory; Bárány 1982 [Bár82]). Let F1, . . . , Fn+1

be sets of points in Rn. If 0 ∈ conv(Fi) for all i = 1, . . . , n+1, then we can

choose points x1 ∈ F1, . . . , xn+1 ∈ Fn+1 so that 0 ∈ conv{x1, . . . , xn+1}.
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The set {x1, . . . , xn+1} is called a transversal of F = {F1, . . . , Fn+1}.
Each set Fi is called a color class. For the sake of brevity we do not reproduce
Sarkaria’s proof, but point out the main ingredients. We distinguish between
Tverberg-type results and colorful Carathéodory-type results by denoting
the dimension of their ambient spaces by d and n, respectively.

Let X = {x1, . . . , xN} be a set of points in Rd and r a positive integer.
We define n = (d + 1)(r − 1). Let v1, . . . , vr be the vertices of a regular
simplex in Rr−1 centered at the origin. We construct the points

x̄i,j = (xi, 1) ⊗ vj ∈ R(d+1)(r−1) = Rn,

where ⊗ denotes the standard tensor product. Given two vectors v1 ∈
R

d1 , v2 ∈ Rd2 , their tensor product v1⊗v2 is simply the d1×d2 matrix v1v
T
2

interpreted as a d1d2-dimensional vector. These tensor products carry all
the information about Tverberg partitions into r parts.

Lemma 2.2. Let X = {x1, . . . , xN} be a finite set of points in Rd, r be a

positive integer. Then, a partition X1, . . . ,Xr of X is a Tverberg partition

if and only if

0 ∈ conv{x̄i,j : i, j are such that xi ∈ Xj}

A lucid explanation of the lemma above can be found in [Bár15]. Lemma
2.2 implies that, given X, if we consider the sets

Fi = {x̄i,j : j = 1, . . . , r} i = 1, . . . , N,

then finding a Tverberg partition of X into r parts corresponds to finding
a transversal of F = {F1, . . . , FN} whose convex hull contains the origin in
R

n. Since 0 ∈ convFi for each i, Theorem 2.1 or a variation can be applied.
Then, by Lemma 2.2, we obtain a Tverberg partition.

For transversals, there is also a natural notion of restriction. Given a
family F of sets in Rn, G ⊂ F , and P a transversal of F , we define

P (G) = {x ∈ P : x came from a set in G}.

Alternatively, P (G) = P ∩ (∪G). In order to prove Theorem 1.3, it is
sufficient to prove the following.

Theorem 2.3. Let r, n be positive integers and 1 ≥ ε > 0 a real number.

Then, there is an integer m = m(ε, r) such that the following is true. For

every sufficiently large N , if we are given a family F of N sets in Rn, such
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that 0 ∈ convF and |F | = r for all F ∈ F , then there are m transversals

P1, . . . , Pm of F with the following property. For every G ⊂ F with |G| ≥
ε|F| there is a k with 0 ∈ convPk(G).

Moreover, we have

m(ε, r) =









ln
(

1
ε

)

ln
(

r
r−1

)







+ 1.

Indeed, let us sketch how Theorem 2.3 implies Theorem 1.3.

Proof. Assume r, d, ε,m are given, satisfying the last equality of Theorem
2.3. Let n = (d + 1)(r − 1) + 1. Assume that we are given a set X of N
points in Rd, X = {x1, . . . , xN}, where N is a large positive integer. For
v1, . . . , vr ∈ Rr−1 as before, we construct the sets

Fi = {(xi, 1)⊗ vj : j = 1, . . . , r} ⊂ Rn.

Then, we apply Theorem 2.3 to the family F = {F1, . . . , FN} and find m
transversals P1, . . . , Pm. Given a set of indices I ⊂ [N ] such that |I| ≥ εN ,
consider GI = {Fi : i ∈ I}. Then, there must be a transversal Pi0 such
that 0 ∈ conv Pi0(GI). By Lemma 2.2, this means that the partition Pi0 of
X induced by Pi0 is a Tverberg partition even when restricted to the set
XI = {xi : i ∈ X}. In other words, the partitions induced by P1, . . . , Pm

satisfy the conclusion of Theorem 1.3.

We also need the following lemma. It bounds the complexity of verifying
if 0 ∈ conv Y if Y ⊂ X and X is given in advance. For our purposes, we
need a slightly weaker version than the one presented in [Sob18] (see also
[CEM+96]).

Lemma 2.4. Let X ⊂ R
n be a finite set. Then, there is a family H of

|X|n half-spaces in Rn, each containing 0, such that the following holds.

For every subset Y ⊂ X, we have 0 ∈ conv Y if and only if Y ∩H 6= ∅ for

all H ∈ H.

Sketch of proof. 0 belongs to conv Y if and only if there is no hyperplane
separating 0 from Y . There are infinitely many candidate hyperplanes, but
they can be grouped into equivalence classes according to which subset of
X they separate from 0. We just need one representative from each class.
The number of such possible subsets is equal, under duality, to the number
of cells into which |X| hyperplanes partition Rn.
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2.2 Hoeffding’s inequality

Our main probabilistic tool will be Hoeffding’s inequality.

Theorem 2.5 (Hoeffding 1963, [Hoe63]). Given n independent random vari-

ables x1, . . . , xN such that 0 ≤ xi ≤ 1, let y = x1 + . . .+ xN . For all λ ≥ 0,
we have

P [y < E(y)− λ] < e−2λ2/N .

The expert reader may know that Hoeffding proved a slightly different
inequality: P [y > E(y) + λ] < e−2λ2/N . It suffices to apply the inequality to
the variables zi = 1 − xi to obtain the other bound. This is a special case
of Azuma’s inequality (with a slightly different constant in the exponent,
which would not change the main result significantly) [Azu67]. These in-
equalities carry at their heart the central limit theorem, which is why such
an exponential decay is expected in the tails of the distribution. See [AS16]
for references on the subject.

3 Proof of Theorem 2.3

Proof. We first prove that ε > ((r − 1)/r)m is necessary for Theorem 1.3,
which also implies the lower bound for Theorem 2.3. Given N points in
R

d and m partitions P1, . . . , Pm, of them, let us find a subset of size greater
than or equal to N((r−1)/r)m in which no Pk induces a Tverberg partition.
First, notice that one of the parts of P1 must have at most N/r points. If
we remove them, then there are at least N(1 − 1/r) points left. We can
repeat the same argument, and, among the points we have left, one of the
parts induced by P2 must have at most a (1/r)-fraction of them. Removing
those leaves us with at least N(1 − 1/r)2 points. We proceed this way and
end up with a set Y of at least N(1− 1/r)m points, such that Pk(Y ) has at
least one empty component for each k = 1, . . . ,m. Therefore, none of these
is a Tverberg partition.

Assume now that ε > ((r − 1)/r)m. We want to prove that there are
m transversals as the theorem required. We choose (with foresight) A =
(Nr)n, and λ >

√
mN lnA. Define a sequence N0, N1, . . . by N0 = N and

Nk = Nk−1(1−1/r)+λ for k ≥ 1. If we apply Lemma 2.4 to ∪F , we obtain
a family H of A halfspaces, all containing 0, which are enough to check if
the convex hulls of the transversals we construct contain 0.

We consider each F ∈ F as a color class. For k = 1, . . . ,m, we will
construct Pk and a family kג of sets of color classes such that the following
properties hold:
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• given G ⊂ F such that 0 6∈ conv(Pk′(G)) for all k′ = 1, . . . , k, there
must be a V ∈ kג such that G ⊂ V,

• if V ∈ ,kג then |V| ≤ Nk, and

• |kג| ≤ Ak.

We can consider 0ג = {F}. We construct Pk inductively, assuming k−1ג and
Pk′ have been constructed for k′ < k. We start by choosing Pk randomly.
For each F ∈ F , we pick ykF ∈ F uniformly and independently. Then, we
denote Pk = {ykF : F ∈ F}.

Given a half-space H ∈ H, consider the random variable

xkF (H) =

{

1 if ykF ∈ H

0 otherwise

Since 0 ∈ conv(F ), we know that E(xkF (H)) ≥ 1/r. By linearity of
expectation, for each V ∈ k−1ג we have

E

[

∑

F∈V

xkF (H)

]

≥ 1

r
|V|.

Since all variables xkF (H), xkF ′(H) are independent for F 6= F ′, Hoeffding’s
inequality gives

P

[

∑

F∈V

xkF (H) <
|V|
r

− λ

]

< e−2λ2/|V| ≤ e−2λ2/N

Therefore the union bound gives

P

[

∃H ∈ H ∃V ∈ k−1ג such that
∑

F∈V

xkF (H) <
|V|
r

− λ

]

≤ A · |k−1ג| · e−2λ2/N

≤ Ake−2λ2/N < 1

by the choice of λ.
Therefore, there is a choice of Pk such that for all V ∈ k−1ג and all

half-spaces H ∈ H, we have

∑

F∈V

xkF (H) ≥ |V|
r

− λ.

7



We fix Pk to be this choice. We are ready to construct .kג For each V ∈ k−1ג

and each half-space H ∈ H, we construct the set V ′ = {F ∈ V : xkF (H) = 0}.
We call kג to the family of all sets that can be formed this way. Let us prove
that kג satisfies all the desired properties.

Claim 3.1. Given G ⊂ F such that 0 6∈ conv(Pk′(G)) for all k′ = 1, . . . , k,
there must be a V ′ ∈ kג such that G ⊂ V ′.

Proof. If 0 6∈ conv(Pk′(G)) for all k′ = 1, . . . , k, we already know that there
must be a V ∈ k−1ג such that G ⊂ V. Since 0 6∈ conv(Pk(G)), there must
be a half-space H ∈ H containing 0 such that xkF (H) = 0 for all F ∈ G.
Therefore, there is a V ′ ∈ kג with G ⊂ V ′.

Claim 3.2. If V ′ ∈ ,kג then |V ′| ≤ Nk.

Proof. Let V ∈ ,k−1ג H ∈ H be the family and half-space that defined V ′,
respectively. Then,

|V ′| =
∑

F∈V

(1− xkF (H)) ≤ |V|
(

1− 1

r

)

+ λ ≤ Nk−1

(

1− 1

r

)

+ λ = Nk.

Claim 3.3. We have |kג| ≤ Ak.

Proof. By construction, |kג| ≤ |k−1ג| ·A ≤ Ak.

This concludes the construction of P1, . . . , Pm.
If G ⊂ F is such that 0 6∈ convPk(G) for k = 1, . . . ,m, then there must

be a V ∈ mג such that G ⊂ V.
Recall that m was chosen so that ((r − 1)/r)m < ε. Therefore

|G| ≤ |V| ≤ Nm ≤ N

(

r − 1

r

)m

+ rλ < εN,

where the last inequality holds if N is large enough, as λ = O(
√
N lnN).
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4 A Colorful version

Another important variation of Tverberg’s theorem is the following conjec-
ture by Bárány and Larman.

Conjecture 4.1 (Colorful Tverberg; Bárány, Larman 1992 [BL92]). For

any given d+1 sets F1, . . . , Fd+1 of r points each in Rd, there is a Tverberg

partition X1, . . . ,Xr of their union such that for all i, j we have |Fi∩Xj| = 1.

A partition X1, . . . ,Xr with |Fi ∩Xj | = 1 for all i, j is called a colorful

partition. Consult [BFZ14, BMZ11, BMZ15] and the references therein the
current solved cases and techniques. We present an ε-version of the conjec-
ture above in the following theorem. Let pr ∼ 1 − 1/e be the probability
that a random permutation of a set with r elements has fixed points.

Theorem 4.2. Let r, d be positive integers and ε > 0 be a real number.

There is an mcol = mcol(ε, r) such that the following holds. For a sufficiently

large N , if we are given N sets F1, . . . , FN of r points in Rd each, then there

are mcol colorful partitions of F = {F1, . . . , FN} such that for any G ⊂ F
with |G| ≥ ε|F|, at least one of the partitions induces a colorful Tverberg

partition on |G|. Moreover, we have

mcol ≤
⌊

ln (ε)

ln(1− pr)

⌋

+ 1

We should note that the theorem above gives m ∼ 1+ln(1/ε) if r is large
enough. This is related to the colorful version from [Sob18], which seeks the
smallest ε for which mcol(ε, r) = 1. Using our notation, the main conjecture
in that paper states the following.

Conjecture 4.3. For all ε > 0 and any positive integer r, we have

mcol(ε, r) = 1.

To prove Theorem 4.2, we also use Sarkaria’s transformation. In order
to translate the conditions on the colors through the tensor products, we
need the following definition.

A set B is an r-block if it is an r × r array of points in Rn such that
the convex hull of each column contains the origin. A colorful transversal

of an r-block B is a subset of r points of B that has exactly one point
of each column and exactly one point of each row. Given a family B of
r-blocks, a colorful transversal for B is the result of putting together a
colorful transversal for each block. If we apply Sarkaria’s technique, colorful
partitions in Rd become colorful transversals of r-blocks in Rn. Theorem
4.2 is then implied by the following.
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Theorem 4.4. Let n, r be positive integers and ε > 0 be a real number.

mcol = mcol(ε, r) such that the following holds. For a sufficiently large

N , if we are given N r-blocks B1, . . . , BN in Rn, there are mcol colorful

transversals P1, . . . , Pm of B = {B1, . . . , BN} such that for any G ⊂ B with

|G| > ε|B| for at least one k we have 0 ∈ conv(Pk(G)). Moreover, we have

mcol ≤
⌊

ln (ε)

ln(1− pr)

⌋

+ 1.

We also need the observation from [Sob18] that, for any r-block and any
half-space H that contains the origin, the probability that a random colorful
transversal has points in H is greater than or equal to pr.

Proof. We proceed in a similar fashion to the proof of Theorem 2.3.
Assume that ε > (1−pr)

m. We want to prove that there are m transver-
sals as the theorem requires. We choose (with foresight) A = (Nr2)n, and
λ >

√
mN lnA. Define a sequence recursively by N0 = N and Nk =

Nk−1(1 − pr) + λ. If we apply Lemma 2.4 to ∪B, we obtain a family H
of A half-spaces, all containing 0, which are enough to check if the convex
hulls of the colorful transversals we construct contain 0.

For k = 1, . . . ,m, we will construct Pk and a family kג of sets of r-blocks
with the following properties.

• Given G ⊂ B such that 0 6∈ conv(Pk′(G)) for all k′ = 1, . . . , k, there
must be a V ∈ kג such that G ⊂ V,

• if V ∈ ,kג then |V| ≤ Nk, and

• |kג| ≤ Ak.

We can consider 0ג = {B} to start the induction. We construct Pk induc-
tively, assuming k−1ג and Pk′ have been constructed for k′ < k. We first
choose Pk randomly. For each B ∈ B, we pick a colorful transversal ykB
randomly and independently. Then, we denote Pk = {ykB : B ∈ B}.

Given a half-space H ∈ H, consider the random variable

xkB(H) =

{

1 if ykB ∩H 6= ∅
0 otherwise.

Since E[xkB(H)] ≥ pr for each B ∈ B,H ∈ H, we have that for any
V ∈ k−1ג

E

[

∑

B∈V

xkB(H)

]

≥ |V|pr
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Since all variables xkB(H), xkB′(H) are independent for B 6= B′, Hoef-
fidng’s inequality gives

P

[

∑

B∈V

xkB(H) < |V|pr − λ

]

< e−2λ2/|V| ≤ e−2λ2/N .

Therefore

P

[

∃H ∈ H∃V ∈ k−1ג

∑

B∈V

xkB(H) < |V|pr − λ

]

< A · k−1|e−2λ2/Nג|

≤ Ake−2λ2/N < 1

by the choice of λ.
Therefore, there must be a choice of Pk such that for all H ∈ H and all

V ∈ k−1ג we have
∑

B∈V

xkB(H) ≥ |V|pr − λ.

We fix Pk to be this choice. In order to form ,kג for each V ∈ k−1ג and
H ∈ H, we include the set {B ∈ V : xkB(H) = 0}. Proving that kג satisfies
the desired properties and that this implies the conclusion of Theorem 4.4
follows from arguments analogous to those at the end of section 3.
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[BL92] Imre Bárány and David G. Larman, A Colored Version of Tver-

berg’s Theorem, J. London Math. Soc. s2-45 (1992), no. 2,
314–320.
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