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He Guo and Lutz Warnke∗

November 14, 2017

Abstract

In 1995 Kim famously proved the Ramsey bound R(3, t) ≥ ct2/ log t by constructing an n-vertex graph
that is triangle-free and has independence number at most C

√
n log n. We extend this celebrated result,

which is best possible up to the value of the constants, by approximately decomposing the complete
graph Kn into a packing of such nearly optimal Ramsey R(3, t) graphs.

More precisely, for any ǫ > 0 we find an edge-disjoint collection (Gi)i of n-vertex graphs Gi ⊆ Kn such
that (a) each Gi is triangle-free and has independence number at most Cǫ

√
n log n, and (b) the union of

all the Gi contains at least (1− ǫ)
(

n
2

)

edges. Our algorithmic proof proceeds by sequentially choosing the
graphs Gi via a semi-random (i.e., Rödl nibble type) variation of the triangle-free process.

As an application, we prove a conjecture in Ramsey theory by Fox, Grinshpun, Liebenau, Person,
and Szabó (concerning a Ramsey-type parameter introduced by Burr, Erdős, Lovász in 1976). Namely,
denoting by sr(H) the smallest minimum degree of r-Ramsey minimal graphs for H , we close the existing
logarithmic gap for H = K3 and establish that sr(K3) = Θ(r2 log r).

1 Introduction

The 1947 paper of Erdős [10] on the diagonal Ramsey number R(t, t) is often considered the start of the
probabilistic method, where R(s, t) is defined as the smallest integer n ∈ N such that every red-blue colouring
of the edges of the complete n-vertex graph Kn contains either a red Ks or a blue Kt. In general, the
estimation of R(s, t) and other Ramsey-type parameters is known to be notoriously difficult.

One of the celebrated results in Ramsey theory is R(3, t) = Θ(t2/ log t), and this special case has re-
peatedly served as a testbed for the development of new tools and techniques in probabilistic combinatorics.
Indeed, complementing the basic bound R(3, t) = O(t2) of Erdős and Szekeres [14], in 1961 Erdős [11] used
a sophisticated random greedy alteration argument to prove R(3, t) = Ω(t2/(log t)2). This lower bound was
subsequently reproved (or only slightly improved) using the Lovász Local Lemma [31], a basic analysis of
the triangle-free process1 [13], large deviation inequalities [21], and differential equations [32]. Furthermore,
in 1980 Ajtai, Komlós, and Szemerédi [1, 2] invented the influential semi-random method (nowadays also
called Rödl nibble approach) to prove the upper bound R(3, t) = O(t2/ log t). But it was not until 1995,
when Kim [20] famously proved the matching lower bound R(3, t) = Ω(t2/ log t) by analyzing a semi-random
variation of the triangle-free process2 (combining several of the aforementioned ideas with martingales con-
centration); for this major breakthrough he also received the Fulkerson Prize in 1997. But the story does not
end here: advancing the differential equation method, in 2008 Bohman [5] reproved R(3, t) = Ω(t2/ log t) by
analyzing the triangle-free process itself (and his analysis was recently further improved in [7, 15]).

In this paper we refine the powerful techniques developed for R(3, t) = Θ(t2/ log t) to determine the
order of magnitude of another Ramsey-type parameter introduced in 1976 by Burr, Erdős, and Lovász [8],
proving a conjecture of Fox, Grinshpun, Liebenau, Person, and Szabó [16] (in particular, analogous to Kim’s
R(3, t)-result, we again remove the last redundant logarithmic factor from existing bounds).

∗School of Mathematics, Georgia Institute of Technology, Atlanta GA 30332, USA. E-mail: he.guo@gatech.edu,

warnke@math.gatech.edu. Research partially supported by NSF Grant DMS-1703516.
1The triangle-free process (proposed by Bollobás and Erdős) proceeds as follows: starting with an empty n-vertex graph, in

each step a single edge is added, chosen uniformly at random from all non-edges which do not create a triangle.
2Kim’s semi-random variation proceeds similar to the triangle-free process, but intuitively adds a large number of carefully

chosen random-like edges in each step (instead of just a single edge); see Section 2 for more details.
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1.1 Main result: packing of nearly optimal Ramsey R(3, t) graphs

Kim and Bohman both proved the Ramsey bound R(3, t) = Ω(t2/ log t) by showing the existence of a triangle-
free graph G ⊆ Kn on n vertices with independence number α(G) = O(

√
n logn), which is best possible up to

the value of the implicit constants. Our first theorem naturally extends their celebrated results, by approxi-
mately decomposing the complete graph Kn into a packing of such nearly optimal Ramsey R(3, t) graphs.

Theorem 1. For any ǫ > 0 there exist n0, C,D > 0 such that, for all n ≥ n0, there is an edge-disjoint
collection (Gi)i∈I of |I| = ⌈D

√

n/ logn⌉ triangle-free graphs Gi ⊆ Kn on n vertices with maxi∈I α(Gi) ≤
C
√
n logn and

∑

i∈I e(Gi) ≥ (1− ǫ)
(

n
2

)

.

Our algorithmic proof proceeds by sequentially choosing the |I| = Θ(
√

n/ logn) edge-disjoint triangle-free
subgraphs Gi ⊆ Kn \⋃0≤j<i Gj with α(Gi) = O(

√
n logn) via a semi-random variation of the triangle-free

process akin Kim [20] (see Sections 1.3 and 2 for the details). In particular, we do not only show existence
of the (Gi)i∈I , but also obtain a polynomial-time randomized algorithm which constructs these subgraphs.

Theorem 1 improves a construction of Fox et.al. [16, Lemma 4.2], who used the basic Lovász Local Lemma
basedR(3, t)-approach to sequentially choose Θ(

√
n/ logn) edge-disjoint triangle-free subgraphs with α(Gi) =

O(
√
n logn). It is natural to suspect that applying a more sophisticated R(3, t)-approach in each iteration

ought to give an improved packing (with smaller independence number than the LLL approach), and here
the usage of the triangle-free process was proposed by Fox et.al. [16, Section 5] as early as 2013 [22, 26]. One
conceptual difficulty of this approach is to control various error terms over many iterations of the triangle-free
process (so that these always stay small enough to carry out the next iteration), which in turn is the main
technical reason why for Theorem 1 we instead iterate a semi-random variation.

It would be interesting to know if Theorem 1 also holds with ǫ = 0, i.e., if one can completely decom-
pose Kn into nearly optimal R(3, t) graphs. Perhaps rashly, we conjecture that this is indeed possible (it
might be insightful to first prove a variant of Theorem 1 where the constant C does not depend on ǫ).

1.2 Application in Ramsey theory: sr(K3) has order of magnitude r2 log r

Turning to our main application, we say that a graph G is r-Ramsey for H , denoted by G → (H)r, if any
r-colouring of the edges of G contains a monochromatic copy of H . Most fundamental questions and results
in Ramsey theory can be formulated in terms various parameters of the class

Mr(H) :=
{

G : G → (H)r and G′ 9 (H)r for all G′ ( G
}

of graphs which are r-Ramsey minimal for H . For example, Ramsey’s theorem [28] states that |Mr(H)| > 0
for all graphsH , which for cliques was strengthened to |Mr(Kt)| = ∞ by Rödl and Siggers [29]. Furthermore,
the archetypal problem of estimating various Ramsey-type parameters also corresponds to the study of certain
extremal parameters of Mr(H), since, e.g., R(t) = R(t, t) := minG∈M2(Kt) v(G) is the famous diagonal
Ramsey number [14, 10, 9], Rr(t) = R(t, . . . , t) := minG∈Mr(Kt) v(G) is the r-coloured Ramsey number [9],

and R̂r(H) := minG∈Mr(H) e(G) is the widely-studied r-size-Ramsey number of H (see, e.g., [12, 4, 30, 9]).
In 1976 Burr, Erdős, and Lovász [8] initiated the systematic study of other extremal parameters ofMr(H),

including the smallest minimum degree of all r-Ramsey minimal graphs for H , denoted by

sr(H) := min
G∈Mr(H)

δ(G).

As usual, the clique-case H = Kt is of particular interest, where r(t − 2) < sr(Kt) < Rr(t) is easy to
see (cf. [17, 33]). Perhaps surprisingly, for r = 2 colours Burr et.al. [8] were able to prove s2(Kt) = (t− 1)2,
showing that the simple exponential upper bound R2(t) = R(t) = 2Θ(t) is far from the truth. For r ≥ 2 colours
the behaviour of sr(Kt) was recently investigated in detail by Fox et.al. [16]: they proved super-quadratic
bounds of form sr(Kt) = r2 · polylog r for fixed t ≥ 3, and also determined sr(K3) up to a logarithmic factor
(by sharpening their general estimates). In particular, they showed cr2 log r ≤ sr(K3) ≤ Cr2(log r)2, and
conjectured that their lower bound gives the correct order of magnitude, see [16, Conjecture 5.4].

Our second theorem proves the aforementioned conjecture of Fox, Grinshpun, Liebenau, Person, and
Szabó for sr(K3), i.e., we close the logarithmic gap and establish sr(K3) = Θ(r2 log r).
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Theorem 2. There exists C > 0 such that sr(K3) ≤ Cr2 log r for all r ≥ 2.

Corollary 3. We have sr(K3) = Θ(r2 log r) for r ≥ 2.

Using a reformulation of sr(K3) from [16], Theorem 2 follows easily from our main packing result. Indeed,
applying Theorem 1 with ǫ = 1/2, say, it is routine to see that there is a constant A > 0 such that the
following holds for each r ≥ 2: there exists a collection of edge-disjoint triangle-free graphs G1, . . . , Gr ⊆ KNr

on Nr := ⌊Ar2 log r⌋ vertices with independence number α(Gi) < Nr/r (as Nr ≥ n0, D
√

Nr/ logNr ≥ r and
C
√
Nr logNr < Nr/r all hold for A = A(n0, C,D) large enough). By Theorem 1.5 and Lemma 4.1 in [16]

(with n = Nr and k = 2) this immediately implies sr(K3) ≤ Nr, establishing Theorem 2.
Note that the above deduction of Theorem 2 did not use

∑

i∈I e(Gi) ≥ (1 − ǫ)
(

n
2

)

, i.e., that the nearly
optimal R(3, t) graphs (Gi)i∈I approximately decompose the edge-set of Kn. It would be interesting to find
applications (e.g., in Ramsey theory or extremal combinatorics) where this natural packing property is useful.

1.3 Main tool: pseudo-random triangle-free subgraphs

The R(3, t)-proofs of Kim and Bohman both in fact construct a triangle-free graph G ⊆ Kn with pseudo-
random properties (see also [32, 38, 7, 15]). Our third theorem extends their intriguing results to host
graphs H ⊆ Kn which are far from complete, by showing that one can again construct a triangle-free
subgraph G ⊆ H with pseudo-random properties. Here the crux is that Theorem 4 holds under very weak
assumptions,3 and that G resembles a random subgraph of H with edge-probability ρ = Θ(

√

(logn)/n).

Theorem 4. There exist β0, D0 > 0 such that, for all γ, δ ∈ (0, 1], β ∈ (0, β0) and C ≥ D0/(δ
2
√
βγ), the

following holds for all n ≥ n0(γ, δ, β, C), with ρ :=
√

β(log n)/n. For any n-vertex graph H, there exists a
triangle-free subgraph G ⊆ H on the same vertex-set such that

eG(A,B) = (1± δ)ρeH(A,B) (1)

for all disjoint vertex-sets A,B ⊆ V (H) with |A| = |B| = ⌈C√
n logn⌉ and eH(A,B) ≥ γ|A||B|.

Our proof uses a semi-random variant of the triangle-free process to construct G ⊆ H , extending and
simplifying Kim’s approach for the complete caseH = Kn (see Sections 2–3 and Theorem 9 for the details). In
particular, besides handling the difficulties arising due to incomplete host graphs H ⊆ Kn (by, e.g., exploiting
a ‘stabilization mechanism’ to keep various parameters under control), the major technical difference lies in
the way we analyze the properties of all large vertex-sets (by, e.g., focusing on bipartite subgraphs, applying
a concentration inequality of Warnke [37], and showing concentration in (1) instead of just eG(A,B) ≥ 1).
Together with some streamlining of Kim’s arguments (by, e.g., using fewer variables, applying convenient
bounded differences inequalities, and some changes to the semi-random construction), this leads to a shorter
and hopefully more accessible proof even in the complete case H = Kn. As a by-product, we also obtain a
randomized polynomial-time algorithm which constructs G ⊆ H efficiently (see Remark 10).

Theorem 4 will be the main tool for establishing our main packing result Theorem 1. Let us briefly
sketch the argument (deferring the details to Section 1.5). The idea is to sequentially choose the triangle-free
subgraphs Gi ⊆ Hi := Kn \ ⋃0≤j<i Gj via Theorem 4 with δ ∈ (0, 1), using the pseudo-random edge-
estimate (1) to inductively control the number of remaining edges (between large sets) in Hi as

eHi
(A,B) = (1− (1± δ)ρ)i · |A||B| for all disjoint A,B ⊆ V (H) of size s := ⌈C

√

n logn⌉, (2)

stopping when the right hand side of (2) drops below ǫ|A||B| after I = Θ(log(1/ǫ)/ρ) = Θ(
√

n/ logn) steps.
A double counting argument will then show that the leftover graph HI contains at most ǫ

(

n
2

)

edges, so

that
∑

0≤i<I e(Gi) = e(Kn \ HI) ≥ (1 − ǫ)
(

n
2

)

. Furthermore, eGi
(A,B) = (1 ± δ)ρeHi

(A,B) > 0 implies

α(Gi) < 2s = O(
√
n logn), completing this rough proof sketch of Theorem 1 (assuming Theorem 4).

We believe that variants of Theorems 1 and 4 also hold for many other forbidden graphs (using semi-
random variants of the H-free process [25, 6, 34, 35, 27]); we hope to return to this topic in a future work.

3Note that Theorem 4 does not require the host graph H to be approximately degree or codegree regular. Furthermore,
even if G ⊆ H was a random subgraph with edge-probability ρ, then by standard calculations we would only expect the edge-
estimate (1) to hold for vertex-sets A,B ⊆ V (H) where the number of edges eH(A,B) is reasonably large (see Remark 11 and
Footnote 9 on page 9, which also indicate that the constant C in Theorem 4 has the correct dependence on γ, δ, β).
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1.4 Organization of the paper

The remainder of this paper is organized as follows. In Section 1.5 we use Theorem 4 to state and prove
some extensions of our main packing result Theorem 1. In Section 2 we introduce a semi-random variation
of the triangle-free process and state our main result for this Rödl nibble type construction (that implies our
main tool Theorem 4, see Section 2.4), which is then subsequently proved in Section 3.

1.5 Further results

Our methods allow us to extend Theorem 1 to R(3, t)-packings of graphs which are far from complete. Our
fourth theorem shows that ifH ⊆ Kn only satisfies certain uniformity conditions on its edge distribution (that
resemble a weak form of pseudo-randomness, see (3) below), then we can still approximately decompose H
into a packing of nearly optimal Ramsey R(3, t) graphs (again by an efficient randomized algorithm).

Theorem 5. For all ǫ, ξ, C0 > 0 there exist n0, C1, D > 0 such the following holds for all n ≥ n0. If H is
an n-vertex graph satisfying

min
disjoint A,B ⊆ V (H):
|A|=|B|=⌈C0

√
n logn⌉

eH(A,B)

|A||B| ≥ ξ, (3)

then there is an edge-disjoint collection (Gi)i∈I of |I| = ⌈D
√

n/ logn⌉ triangle-free subgraphs Gi ⊆ H
with V (Gi) = V (H), maxi∈I α(Gi) ≤ C1

√
n logn and

∑

i∈I e(Gi) ≥ (1 − ǫ)e(H).

Note that the case H = Kn and ξ = C0 = 1 implies Theorem 1. Furthermore, the case H = Gn,p, ξ = p/2
and C0 = 1 routinely implies the following sparse analogue of Theorem 1 for binomial random graphs Gn,p.

Corollary 6. For any p ∈ (0, 1] and ǫ > 0 there exist C,D > 0 such that, with probability at least 1− o(1),
the following event holds: there exists an edge-disjoint collection (Gi)i∈I of |I| = ⌈D

√

n/ logn⌉ triangle-free
graphs Gi ⊆ Gn,p on n vertices with maxi∈I α(Gi) ≤ C

√
n logn and

∑

i∈I e(Gi) = (1± ǫ)p
(

n
2

)

.

We conjecture that Corollary 6 (with |I| = ⌈Dp
√

n/ logn⌉ and constants C,D > 0 depending only on ǫ)
holds for much sparser random graphs Gn,p with edge-probabilities of form p = p(n) ≥ n−1/2+o(1), say.4

We conclude the introduction with the short proof of Theorem 5, which proceeds by sequentially choosing
the graphs Gi ⊆ H \ ⋃0≤j<i Gj via Theorem 4 (generalizing the argument sketched in Section 1.3). The
reader mainly interested in the proof of Theorem 4 may perhaps wish to skip straight to Section 2.

Proof of Theorem 5 (assuming Theorem 4). We may assume ǫ < 1 (as decreasing ǫ gives a stronger conclu-
sion). For concreteness, set δ := 1/4, γ := ǫ2ξ, β := β0/2 and C := max{C0, D0/(δ

2
√
βγ)}, where β0, D0 are

defined as in Theorem 4. Let C1 := 3C, s := ⌈C√
n logn⌉, ρ :=

√

β(log n)/n, and I := ⌈log(1/ǫ)/(ρ(1− δ))⌉.
Define H0 := H . Let S denote the set of all pairs (A,B) of disjoint vertex-sets A,B ⊆ V (H) with

|A| = |B| = s. Combining a ‘handshaking lemma’ like double counting argument with the assumed lower
bound (3), writing t := ⌈C0

√
n logn⌉ it follows that

eH0
(A,B)

|A||B| =

∑

Ã⊆A,B̃⊆B: |Ã|=|B̃|=t eH(Ã, B̃)

s2 ·
(

s−1
t−1

)(

s−1
t−1

) ≥
(

s
t

)(

s
t

)

· ξt2
s2
(

s−1
t−1

)(

s−1
t−1

) = ξ for all (A,B) ∈ S. (4)

The plan is to sequentially choose the graphs (Gi)0≤i<I with Gi ⊆ Hi such that, setting Hi+1 := Hi \Gi

(which ensures that all the Gi are edge-disjoint), for all 0 ≤ i ≤ I we inductively have

eHi
(A,B)

eH0
(A,B)

∈
[

(

1− (1 + δ)ρ
)i
,
(

1− (1 − δ)ρ
)i
]

for all (A,B) ∈ S. (5)

Turning to the details, note that inequality (5) holds trivially for i = 0. Given Hi with 0 ≤ i ≤ I − 1
satisfying (5), by combining the definition of I with (1 + 2δ)/(1 − δ) = 2 and (4) it follows for n ≥ n0(β)
that, say,

eHi
(A,B)

|A||B| ≥ e−(1+2δ)ρ(I−1) · eH0
(A,B)

|A||B| ≥ ǫ2 · ξ = γ for all (A,B) ∈ S. (6)

4The range of p = p(n) in this conjecture is essentially best possible, since it is well-known that typically α(Gn,p) ≫
√
n logn

for p ≪
√

(log n)/n. Furthermore, although we have not checked all details, it seems that our proofs can be modified to verify

the conjecture for p ≥ n−δ, where δ > 0 is some small constant; so the main question is whether p ≥ n−1/2+o(1) suffices.
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Using Theorem 4, for n ≥ n0(ǫ, ξ, δ, β, C) we can thus find a triangle-free subgraph Gi ⊆ Hi with eGi
(A,B) =

(1 ± δ)ρeHi
(A,B) > 0 for all (A,B) ∈ S. Hence α(Gi) < 2s ≤ 3C

√
n logn, say. Furthermore, noting

eHi+1
(A,B) = eHi

(A,B)− eGi
(A,B), it is immediate that Hi+1 = Hi \Gi maintains (5).

Finally, for the number of edges of
⋃

0≤i<I Gi = H0 \HI , by (5) and definition of I it follows that

eH0\HI
(A,B) ≥

(

1− e−(1−δ)ρI
)

· eH0
(A,B) ≥ (1− ǫ)eH0

(A,B) for all (A,B) ∈ S. (7)

Using a double counting argument similar to (4), in view of (7) and H0 = H we infer

e(H0 \HI) =

∑

(A,B)∈S
eH0\HI

(A,B)

2
(

n−2
s−1

)(

n−2−(s−1)
s−1

)
≥ (1 − ǫ) ·

∑

(A,B)∈S
eH(A,B)

2
(

n−2
s−1

)(

n−2−(s−1)
s−1

)
= (1− ǫ)e(H),

completing the proof of
∑

0≤i<I e(Gi) = e(H0 \HI) ≥ (1− ǫ)e(H).

2 The nibble: semi-random triangle-free process

The remainder of this paper is devoted to the proof of our main tool Theorem 4. Given an n-vertex graph H
with vertex-set V = V (H) and edge-set E(H), inspired by Kim [20] our strategy is to incrementally construct
the triangle-free edge-set of G ⊆ H using a semi-random variation of the triangle-free process (adding large
chunks of random-like edges in each step; see also Footnotes 1–2 on page 1). One key difference to [20, 5] is
that our approach only uses edges from the host graph H (and not the complete graph Kn). In particular,
deferring the details to Section 2.1, the rough plan of our Rödl nibble type construction is to step-by-step
build up a ‘random’ set of edges Ei ⊆ E(H) and a triangle-free subset Ti ⊆ Ei; we also keep track of a set

Oi ⊆ {e ∈ E(H) \ Ei : e does not form a triangle with any two edges of Ei} (8)

of ‘open’ edges that can still be added. The idea of each step is to choose a small number of random
edges Γi+1 ⊆ Oi so that only a few new triangles are created in Ei+1 = Ei ∪ Γi+1. This allows us to find an
edge-subset Γ′

i+1 ⊆ Γi+1, with |Γ′
i+1| ≈ |Γi+1|, such that Ti+1 = Ti ∪ Γ′

i+1 remains triangle-free.5 After

I :=
⌈

nβ
⌉

(9)

such alteration-method based steps, we eventually obtain a triangle-free graph G = (V, TI) ⊆ H , which
intuitively ought to be ‘random enough’ to resemble (many features of) a random subgraph of H .

2.1 Details of the nibble construction

Turning to the details of the nibble construction, consistent with (8) we start with

O0 := E(H) and E0 := T0 := Γ0 := ∅. (10)

In step i+ 1 ≥ 1 we then set

Ei+1 := Ei ∪ Γi+1, (11)

where each edge e ∈ Oi is included in Γi+1, independently, with probability

p := σ/
√
n. (12)

(The definition of the deterministic parameter σ ≪ 1 is deferred to (34) in Section 2.3.) Note that Ti ∪ Γi+1

is not necessarily triangle-free, since two or three edges of a triangle could enter via Γi+1 ⊆ Oi (one edge is
not enough by (8) and Ti ⊆ Ei), i.e., via the following set of ‘bad’ pairs and triples of Γi+1–edges:

Bi+1 :=
{

{wu,wv} ⊆ Γi+1 : uv ∈ Ti, |{u, v, w}| = 3
}

∪
{

{uv, vw,wu} ⊆ Γi+1 : |{u, v, w}| = 3
}

, (13)

5For the construction of Ti+1 it might seem overly complicated to define Oi with respect to Ei (and not Ti). However,
this slightly wasteful definition actually simplifies the analysis: e.g., for the purpose of tracking various auxiliary variables, it
intuitively is easier to understand the effect of adding the random edges Γi+1 (rather than some subset Γ′

i+1 ⊆ Γi+1). Using
an inclusion in (8) might also seem overly complicated, but it again simplifies the analysis: by removing some extra edges it
actually becomes easier to prove concentration (see the ‘stabilization mechanism’ discussion around (21) and Lemma 19).
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where we write xy = {x, y} for brevity. To avoid triangles in Ti+1 by alteration, we thus take Di+1 to be
a maximal collection of pairwise edge-disjoint elements of Bi+1 (say the first one in lexicographic order to
resolve ties; any other deterministic choice also works, see Remark 7 and Section 3.5), and then set6

Ti+1 := Ti ∪
(

Γi+1 \E(Di+1)
)

, (14)

where we write E(Di+1) :=
⋃

α∈Di+1
α for the set of edges in the pairs and triples of Di+1. Note that Ti+1

is indeed triangle-free by maximality of Di+1 ⊆ Bi+1. Turning to the open edge-set Oi+1 ⊆ Oi \ Γi+1, by (8)
the set C1

i+1 ∪C2
i+1 of newly ‘closed’ edges (that form a triangle with some two edges of Ei+1) is given by

C1
i+1 := {f ∈ Oi : Yf (i) ∩ Γi+1 6= ∅}, (15)

Yuv(i) := {uw ∈ Oi : vw ∈ Ei} ∪ {vw ∈ Oi : uw ∈ Ei}, (16)

C2
i+1 := {uv ∈ Oi : there is w s.t. uw ∈ Γi+1, vw ∈ Γi+1}. (17)

Mimicking a technical idea of Alon, Kim and Spencer [3], we intuitively increase the set of closed edges (via
the random set Si+1 below) in order to add a ‘stabilization mechanism’ to our construction,7 and define

Ci+1 := C1
i+1 ∪ Si+1, (18)

Oi+1 := Oi \
(

Γi+1 ∪Ci+1 ∪ C2
i+1

)

, (19)

where each edge e ∈ Oi is included in Si+1, independently, with ‘stabilization’ probability

p̂e,i := 1− (1− p)max{2qi(πi+
√
σ)

√
n−|Ye(i)|, 0}. (20)

(The definition of the deterministic parameters qi, πi is deferred to (35)–(36) in Section 2.3.) Roughly put,
the main point of the technical definitions of Si+1 and p̂e,i will be that all the conditional probabilities

P(e 6∈ Ci+1 | Oi, Ei) = P(e 6∈ C1
i+1 | Oi, Ei) · (1− p̂e,i) = (1 − p)max{2qi(πi+

√
σ)

√
n, |Ye(i)|} (21)

can inductively be made equal and thus independent of the history (by only maintaining a weak upper bound
on maxe |Ye(i)|; see (44), (61) and Lemma 19), which in turn helps to keep various error terms under control.

Remark 7. Note that each step of our nibble construction requires only randomized polynomial time (since
we can easily find a maximal edge-disjoint collection Di+1 ⊆ Bi+1 by a deterministic greedy algorithm).

2.2 Pseudo-random intuition: trajectory equations

In this informal section we give a heuristic explanation of the differential equation that predicts the behaviour
of (Oi, Ei) for 0 ≤ i ≤ I ≈ nβ . Inspired by [32, 20], our main non-rigorous ansatz is that the edge-sets (Oi, Ei)
should resemble properties of a random subgraph of H with two types of edges, where

P(e ∈ Oi) ≈ qi and P(e ∈ Ei) ≈ πi/
√
n (22)

are approximately independent. We now derive properties of qi, πi that are consistent with this ansatz. For
example, combining Ei+1 = Ei ∪ Γi+1 with the random construction of Γi+1 ⊆ Oi, we expect to have

P(e ∈ Ei+1)− P(e ∈ Ei) = P(e ∈ Γi+1 | e ∈ Oi)P(e ∈ Oi) ≈ p · qi = σqi/
√
n, (23)

which together with (22) and E0 = ∅ suggests that

πi+1 − πi ≈ σqi and π0 ≈ 0. (24)

6The standard alteration approach of removing one edge from each element of Bi+1 seems harder to analyze: e.g., removing
the edges of a maximal edge-disjoint collection Di+1 ⊆ Bi+1 greatly facilitates the technical calculations in Section 3.5.

7Kim uses a different stabilization mechanism in [20, Section 5.1]: instead of introducing the random sets Sj , he determinis-
tically modifies the underlying graphs in each step (by temporarily adding some extra edges and vertices), mimicking an earlier
‘regularization’ idea from [19]. We find our randomized approach more elegant, and easier to implement algorithmically.
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Furthermore, with lots of hand-waving, by (19) we intuitively have Oi \ Oi+1 = Γi+1 ∪ Ci+1 ∪ C2
i+1 ≈ Ci+1

(since each closed edge in C2
i+1 requires the presence of at least two random edges from Γi+1 ⊆ Oi). As (22)

suggests E |Ye(i)| . 2qiπi
√
n, by the stabilization mechanism (21) and p = σ/

√
n we thus loosely expect that

P(e ∈ Oi+1 | Oi, Ei) ≈ P(e 6∈ Ci+1 | Oi, Ei) = (1− p)2qi(πi+
√
σ)

√
n ≈ 1− 2σqiπi for e ∈ Oi,

where we bluntly ignored the
√
σ in the exponent. Similar to (23), using (22) we thus ought to have

qi+1 − qi ≈ P(e ∈ Oi+1)− P(e ∈ Oi) ≈ −2σqiπi · P(e ∈ Oi) ≈ −2σq2i πi. (25)

To extract the behaviour of πI from (24) and (25), we further assume that πi ≈ Ψ(iσ) holds for some smooth
function Ψ(x), where σ ≪ 1 is tiny. Using Taylor series, in view of (24) and O0 = E(H) this suggests that

qi ≈ Ψ′(iσ) and q0 ≈ 1. (26)

Together with (25) and the initial values from (24) and (26), this leads to the second order differential
equation Ψ′′(x) = −2Ψ′(x)2Ψ(x) with Ψ′(0) = 1 and Ψ(0) = 0, which in turn reduces to the simple ODE

Ψ′(x) = e−Ψ2(x) and Ψ(0) = 0. (27)

Noting the implicit solution x =
∫ Ψ(x)

0 et
2

dt, it now is easy to derive that Ψ(x) ≈ √
log x as x → ∞ (see,

e.g., the proof of (56) in Appendix A). Since I ≈ nβ is sufficiency large compared to σ (which will be of
form σ = (logn)−Θ(1), see (34) in Section 2.3), this makes it plausible that

πI ≈ Ψ(Iσ) ≈
√

log(Iσ) ≈
√

β logn. (28)

Finally, since by construction we expect |Ei+1 \Ei| ≈ |Ti+1 \Ti| to hold for all 0 ≤ i < I, the edge-sets EI

and TI ought to share many properties. Together with (22) and (28) this intuitively suggests

P(e ∈ TI) ≈ P(e ∈ EI) ≈
√

β(log n)/n, (29)

making the pseudo-random edge-estimate (1) plausible for G = (V, TI) with TI ⊆ EI ⊆ E(H).

2.3 Definitions and parameters

In this section we formally define several variables and parameters used in our analysis of the nibble con-
struction. We start with two standard notions from graph theory: for any edge-subset S ⊆

(

V
2

)

we write

S(A,B) := {ab ∈ S : a ∈ A, b ∈ B}, (30)

NS(v) := {w ∈ V : vw ∈ S}, (31)

where A,B ⊆ V are vertex-disjoint. For all pairs of distinct vertices u, v ∈ V we then define

Xuv(i) := NOi
(u) ∩NOi

(v), (32)

Zuv(i) := NEi
(u) ∩NEi

(v), (33)

where |Xuv(i)| and |Zuv(i)| intuitively correspond to an ‘open codegree’ and the usual codegree, respectively
(note that |Yuv(i)| corresponds to a ‘mixed codegree’, see (16)).

Guided by Section 2.2, we define Ψ(x) as the unique solution to the differential equation Ψ′(x) =
exp(−Ψ2(x)) and Ψ(0) = 0 from (27). With the heuristics (22) in mind, we introduce the parameters

σ := (log n)−2, (34)

qi := Ψ′(iσ) = e−Ψ2(iσ), (35)

πi := σ +

i−1
∑

j=0

σqj = πi−1 + σqi−11{i≥1}, (36)
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making (24) and (26) rigorous (starting with π0 = σ > 0 leads to cleaner formulae later on). With foresight,
for i ≤ I we also introduce the ‘relative error’ parameter

τi := 1− δπi

2πI
= τi−1 −

δσqi−1

2πI
1{i≥1}, (37)

which slowly degrades from τ0 = 1− o(δ) to τI = 1− δ/2.
With an eye on Theorem 4, for concreteness we introduce the absolute constants8

D0 := 108 and β0 := 1/14, (38)

as well as the set-sizes (with s0 ≪ s) and idealized edge-probability

s :=
⌈

C
√

n logn
⌉

, s0 :=
⌊

σ4q2Is
⌋

, and ρ :=
√

β(log n)/n, (39)

and, recalling O0 = E(H), the collection of ‘relevant’ pairs of large vertex-sets

Ss := {(A,B) : disjoint A,B ⊆ V with |A| = |B| = s and |O0(A,B)| ≥ γ|A||B|}. (40)

2.4 Main nibble result: pseudo-random properties

In this section we state our main nibble result Theorem 9, which implies our main tool Theorem 4 and
establishes various pseudo-random properties of (Oi, Ei, Ti,Γi)0≤i≤I . The following event is of core interest:

TI :=
{

|TI(A,B)| = (1± δ)ρ|O0(A,B)| for all (A,B) ∈ Ss

}

. (41)

Indeed, it implies the conclusion of Theorem 4 with G = (V, TI) since the edge-set TI ⊆ EI ⊆ E(H) = O0

is triangle-free. To get a handle on TI , in view of Section 2.1 it is natural that we also require some control
over the other edge-sets (Ei, Oi,Γi)0≤i≤I . To this end we introduce the ‘good’ events

Xi := Ni ∩ Pi ∩ Q+
i ∩ Qi and X≤i :=

⋂

0≤j≤i

Xj , (42)

where the following auxiliary events encapsulate various pseudo-random properties:

Ni :=
{

|NOi
(v)| ≤ qin and |NΓi

(v)| ≤ 2σqi−1

√
n for all v ∈ V

}

, (43)

Pi :=
{

|Xuv(i)| ≤ q2i n, |Yuv(i)| ≤ 2qiπi

√
n, and |Zuv(i)| ≤ i(logn)9 for all u, v ∈ V with u 6= v

}

, (44)

Q+
i :=

{

|Oi(A,B)| ≤ qi|A||B| for all disjoint A,B ⊆ V with |A|, |B| ≥ s0
}

, (45)

Qi :=
{

τiqi|O0(A,B)| ≤ |Oi(A,B)| ≤ qi|O0(A,B)| for all (A,B) ∈ Ss

}

. (46)

In words, the above events give bounds for degree-like variables (Ni), codegree-like variables (Pi), and the
number of open edges (Q+

i and Qi). A subtle but important point is that Ni, Pi and Q+
i only guarantee

one-sided concentration, i.e., ensure upper bounds but no matching lower bounds (which can fail badly, for
example, |Yuv(i)| = 0 holds when uv ∈ Ei). Merely Qi guarantees two-sided concentration, which is harder
to prove, but crucial for establishing the edge-estimate from TI (see the heuristic below Theorem 9).

With τi ≈ 1 and O0 = E(H) ⊆ E(Kn) in mind, most of the bounds in (41) and (43)–(46) can easily be
guessed by the pseudo-random heuristics (22) and (29) from Section 2.2 (the |NΓi

(v)|-bound is one exception:
based on E |NΓi

(v)| = p · E |NOi−1
(v)|, it contains an extra factor of 2 to avoid additive error terms; another

exception is the |Zuv(i)|-bound: it relaxes the prediction E |Zuv(i)| ≤ π2
i = O(log n) for technical reasons).

Inspecting (43)–(46) in the special case i = 0, it is not difficult to see that the good event X0 = X≤0

always holds (by combining q0 = 1 ≥ τ0 and σ, q−1, π0 ≥ 0 with E0 = T0 = Γ0 = ∅).

Remark 8. The event X0 holds deterministically for any n-vertex host graph H.

Our main nibble result (which is at the heart of this paper) states that, under fairly natural constraints,
the pseudo-random events TI and X≤I both hold with very high probability. Recall that I ≈ nβ .

8To make this paper easier to read, we have made no attempt to optimize the constants D0, β0 in (38).
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Theorem 9 (Main nibble result). For all γ, δ ∈ (0, 1], β ∈ (0, β0) and C ≥ D0/(δ
2
√
βγ), the following holds

for n ≥ n0(γ, δ, β, C): we have P(TI ∩ X≤I) ≥ 1− n−ω(1) for any n-vertex host graph H.

Proof of Theorem 4. If the event TI holds, then the triangle-free graphG := (V, TI) has the claimed properties
by (41), V = V (H) and TI ⊆ EI ⊆ E(H) = O0, so Theorem 9 completes the proof.

Remark 10. In view of I = O(nβ0) and Remark 7, the nibble thus yields a randomized polynomial time
algorithm (with error probability ≤ n−ω(1)) for constructing the triangle-free G ⊆ H from Theorem 4.

Remark 11. The heuristic edge-estimate (29) suggests that the constraint C = Ω(1/(δ2
√
βγ)) from Theo-

rem 9 is best possible: it would also arise if G = (V, TI) ⊆ H was a random subgraph with edge-probability ρ.9

We defer the proof of Theorem 9 to Section 3, and now just outline a brief heuristic argument that
illustrates how the event X≤I ⊆ ⋂0≤i≤I Qi is instrumental for establishing the edge-estimate from TI (which
seems informative). Similar to (29), in view of Section 2.1 we expect that in each step only few edges are
removed due to the creation of triangles, which intuitively suggests

|Ti+1(A,B) \ Ti| ≈ |Ei+1(A,B) \ Ei|.

Combining the construction of Ei+1 \ Ei = Γi+1 ⊆ Oi with the event Qi and τi ≈ 1, we also expect that

|Ei+1(A,B) \ Ei| = |Γi+1(A,B)| ≈ p · |Oi(A,B)| ≈ p · qi|O0(A,B)|.

Recalling p = σ/
√
n and ρ =

√

β(logn)/n, using the definition (36) of πI and the approximation πI ≈√
β logn from (28) it now becomes plausible that

|TI(A,B)| =
∑

0≤i<I

|Ti+1(A,B) \ Ti| ≈
∑

0≤i<I σqi√
n

· |O0(A,B)| ≈ πI√
n
· |O0(A,B)| ≈ ρ|O0(A,B)|,

as suggested by TI (Section 3.5 contains a rigorous version of this heuristic argument).

2.5 Tools and auxiliary estimates

In this preparatory section we gather, for later reference, some results that will be used throughout the proof
of Theorem 9 (mostly probabilistic and combinatorial tools, and ending with some auxiliary estimates). On
a first reading the reader may perhaps wish to skip straight to Section 3.

We start with a convenient version of the bounded differences inequality [23, 24, 36] for Bernoulli variables.
Note that the upper tail estimate (47) for decreasing functions does not have an extra Ct term in the exponent
like (48). Remarks 13–14 are well-known, see, e.g., [24, Theorem 2.3, 3.8, and 3.9] or [36, Corollary 1.4].
Inequality (47) can be deduced from the arguments in [23, Lemma 7.14], but this monotone version does not
seem to be widely known; in Appendix A we thus include a simple proof for completeness.

Theorem 12. Let (ξα)α∈I be a finite family of independent random variables with ξα ∈ {0, 1}. Let f :
{0, 1}|I| → R be a function, and assume that there exist numbers (cα)α∈I such that the following holds for
all z = (zα)α∈I ∈ {0, 1}|I| and z′ = (z′α)α∈I ∈ {0, 1}|I|: |f(z)− f(z′)| ≤ cβ if zα = z′α for all α 6= β. Define
X := f

(

(ξα)α∈I
)

and λ :=
∑

α∈I c
2
α P(ξα = 1). Then, for all t ≥ 0,

P(X ≥ EX + t) ≤ exp

(

− t2

2λ

)

(47)

if the function f is decreasing (i.e., that f(z) ≤ f(z′) whenever zα ≥ z′α for all α ∈ I).
Remark 13. Define C := maxα∈I cα. If we drop the assumption that f is decreasing, then

P(X ≤ EX − t) ≤ exp

(

− t2

2(λ+ Ct)

)

. (48)

9For all (A,B) ∈ Ss the expected number of edges between A and B would then be at least λA,B := E |TI(A,B)| =
ρ|O0(A,B)| ≥ ρ · γs2 ≥

√
βγC · s logn. Using a union bound and standard Chernoff bounds, the probability that TI from (41)

fails would thus be at most
∑

(A,B)∈Ss
e−Θ(δ2λA,B) ≤ n2s−Ω(δ2

√
βγCs) = o(1) for C = Ω(1/(δ2

√
βγ)) large enough.
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Remark 14. In the special case X =
∑

α∈I ξα we have C = cα = 1 and λ = EX. Standard Chernoff
bounds (or applying (47)-(48) to the decreasing function −X) then show that in this case P(X ≤ EX − t)
and P(X ≥ EX + t) are at most the right hand side of (47) and (48), respectively.

For random variables with a special combinatorial form (based on the occurrence of events with ‘limited
overlaps’) we shall use the following Chernoff-type upper tail inequality, which is a convenient corollary of a
more general result by Warnke [37, Theorem 9]. Note that the exponent of (49) scales with 1/C.

Theorem 15. Let (ξi)i∈S be a finite family of independent random variables with ξi ∈ {0, 1}. Let (Yα)α∈I
be a finite family of variables Yα := 1{ξi=1 for all i∈α} with

∑

α∈I EYα ≤ µ. Define ZC := max
∑

α∈J Yα,
where the maximum is taken over all J ⊆ I with maxβ∈J |{α ∈ J : α∩β 6= ∅}| ≤ C. Then, for all C, t > 0,

P(ZC ≥ µ+ t) ≤ e−µ/C ·
(

eµ

µ+ t

)(µ+t)/C

≤ exp

(

− t2

2C(µ+ t)

)

. (49)

The following simple combinatorial lemma formalizes the intuition that we expect
∑

i |Ui| = O(|U |)
whenever the subsets Ui ⊆ U are nearly disjoint (i.e., have small pairwise intersections).

Lemma 16. Suppose that (Ui)i∈I is a family of subsets Ui ⊆ U with |Ui| ≥ z > 0 and |Ui ∩ Uj | ≤ y for

all i 6= j. Then z ≥
√

4|U |y implies |I| ≤ 2|U |/z and
∑

i∈I |Ui| ≤ 2|U |.

Proof. Aiming at a contradiction, suppose that |I| > 2|U |/z. Then there is J ⊆ I with |J | = ⌊2|U |/z⌋+ 1.
Observe that, for any i ∈ J ,

∑

j∈J :i6=j

|Uj ∩ Ui| ≤ (|J | − 1)y ≤ 2|U |y/z ≤ z/2 ≤ |Ui|/2. (50)

So we obtain a contradiction by noting that

|U | ≥
∣

∣

⋃

i∈J
Ui

∣

∣ ≥
∑

i∈J

(

|Ui| −
∑

j∈J :i6=j

|Uj ∩ Ui|
)

≥
∑

i∈J
|Ui|/2 ≥ |J |z/2 > |U |. (51)

With |I| ≤ 2|U |/z in hand, after replacing J with I, note that (50) and the first three inequalities of (51)
remain valid, completing the proof of

∑

i∈I |Ui| ≤ 2|U |.

Our final auxiliary result contains a number of convenient estimates involving the parameters qi, πi, σ, I
defined in Section 2.3. Roughly put, (54)–(56) state that qi ≈ qi+1, 1− 2σqiπi ≈ qi+1/qi and πI ≈

√

log(Iσ),
as predicted by (25) and (28). The technical estimates (52)–(53) can safely be ignored on a first reading. The
proof of Lemma 17 is based on elementary calculus and thus deferred to Appendix A (it also establishes qi ≥
qI = n−β+o(1), which together with I ≈ nβ and (53) motivates our choice of β0 = 1/14).

Lemma 17. If β ∈ (0, β0), then there exists τ, n0 > 0 such that, for all n ≥ n0 and 0 ≤ i ≤ I,

max
{

max
j∈{0,1,2}

{

qiπ
j
i

}

,
√
σπi

}

≤ 1, (52)

min
{

min
j∈[4]

{

qji
√
n
}

, q2i
√
n/I, q3i

4
√
n/

√
I
}

≥ nτ , (53)

0 ≤ qi − qi+1 ≤ 4σ ·min{qi, qi+1, qiπi}, (54)
∣

∣(1 − 2σqiπi)− qi+1/qi
∣

∣ ≤ 8σ2qi, (55)
∣

∣πI −
√

log(Iσ)
∣

∣ ≤ 2. (56)

As a simple application, for 0 ≤ i ≤ I we now bound the stabilization probability p̂e,i defined in (20).
Since (53) implies qi

√
σ
√
n ≫ 1, by applying (1 − p)r ≥ 1− pr = 1− σr/

√
n (valid for r ≥ 1) we infer

p̂e,i ≤ 1− (1− p)2qi(πi+
√
σ)

√
n ≤ 2σqi(πi +

√
σ) ≤ qi, (57)

where we used
√
σπi ≤ 1 and σ ≪ 1 (see (52) and (34)) for the last inequality.
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3 Analyzing the nibble

In this section we prove our main nibble result Theorem 9 (which in turn implies our main tool Theorem 4,
see Section 2.4) as a corollary of the following auxiliary lemma.

Lemma 18. Under the assumptions of Theorem 9, for n ≥ n0(γ, δ, β, C) we have

P(¬Xi+1 | X≤i) ≤ n−ω(1) for all 0 ≤ i ≤ I − 1, (58)

P(¬TI ∩X≤I) ≤ n−ω(1). (59)

Proof of Theorem 9. Recalling I ≤ ⌈nβ0⌉ = nO(1) and X≤i =
⋂

0≤j≤i Xj , note that P(¬X0) = 0 (see Re-

mark 8) and (58) readily imply P(¬X≤I) ≤ n−ω(1), which together with (59) completes the proof.

The remainder of this section is devoted to the proof of Lemma 18: the proof of (58) with ¬Xi+1 =
¬Ni+1∪¬Pi+1∪¬Q+

i+1∪¬Qi+1 is spread across Sections 3.2–3.4, and the proof of (59) is given in Section 3.5.

3.1 Preliminaries: setup and conventions

To avoid clutter, up to (and including) Section 3.4 we shall suppress the conditioning in the notation:
we will write P(·) and E(·) as shorthand for P(· | Fi) and E(· | Fi), where (Fi)0≤i≤I denotes the natural
filtration associated with (Oi, Ei, Ti,Γi, Si)0≤i≤I , as usual. We will also tacitly assume that the Fi-measurable
event X≤i holds. Conditional on Fi, note that by construction of the random edge-sets Γi+1 and Si+1,
the (conditional) probability space formally consists of the 2|Oi| independent Bernoulli random variables
(1{e∈Γi+1},1{e∈Si+1})e∈Oi

, with P(e ∈ Γi+1) = p = σ/
√
n and P(e ∈ Si+1) = p̂e,i ≤ qi, see (57).

Using the above setup and conventions, we shall repeatedly consider random variables of form

X = f
(

(

1{e∈Γi+1},1{e∈Si+1}
)

e∈Oi

)

. (60)

To get a handle on the (conditional) expectation EX we will often use Oi+1 ⊆ Oi \ Ci+1 together with the
following key lemma, which hinges on the stabilization mechanism to equalize all (conditional) probabili-
ties P(e 6∈ Ci+1), see (61) below. (The extra

√
σ term in (20) ensures that P(e 6∈ Ci+1) < qi+1/qi holds with

plenty of elbow room, which is convenient for avoiding ugly error terms in the upper bounds of (43)–(46).)

Lemma 19. We have P(e 6∈ Ci+1)− qi+1/qi ∈ [−3σ3/2qi, −σ3/2qi] for all e ∈ Oi.

Proof. For any e ∈ Oi, since |Ye(i)| ≤ 2qiπi
√
n by X≤i ⊆ Pi, by definition of Ci+1 = C1

i+1 ∪ Si+1 we have

P(e 6∈ Ci+1) = P(e 6∈ C1
i+1) · P(e 6∈ Si+1) = (1 − p)|Ye(i)| · (1− p̂e,i) = (1− p)2qi(πi+

√
σ)

√
n. (61)

It is well-known (and easy to check) that 1 − rx ≤ (1 − x)r ≤ 1 − rx +
(

r
2

)

x2 for all x ∈ [0, 1] and r ≥ 2.
Using

√
np = σ ≪ 1 and max{qi, qiπi, qiπ

2
i } ≤ 1 (see (52)), it follows that

∣

∣

∣
P(e 6∈ Ci+1)−

[

1− 2σqi(πi +
√
σ)
]

∣

∣

∣
≤ 2σ2q2i (πi +

√
σ)2 = O(σ2qi) = o(σ3/2qi).

This completes the proof since 1− 2σqiπi = qi+1/qi + o(σ3/2qi) by (55).

To deduce concentration properties of such random variables X we shall frequently rely on the bounded
differences inequality (Theorem 12). In those cases we will bound the associated parameter λ via

λ =
∑

e∈Oi

c2e P(e ∈ Γi+1) +
∑

e∈Oi

ĉ2e P(e ∈ Si+1) ≤ p
∑

e∈Oi

c2e + qi
∑

e∈Oi

ĉ2e, (62)

where the edge-effect ce is an upper bound on how much X can change if we modify the indicator 1{e∈Γi+1}
(alter whether e is in Γi+1 or not), and the stabilization-effect ĉe is an upper bound on how much X can
change if we modify the indicator 1{e∈Si+1} (alter whether e is in Si+1 or not). Moreover, the following
simple observation will later allow us to control the above sum (62) of these effects.
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Lemma 20. If X≤i holds, then
∑

e∈Oi
|Ye(i) ∩ J | ≤ 2qiπi

√
n · |J | for any edge-subset J ⊆

(

V
2

)

.

Proof. For any e ∈ Oi, note that f ∈ Ye(i) implies e ∈ Yf (i). As Yf (i) ⊆ Oi, we infer

∑

e∈Oi

|Ye(i) ∩ J | =
∑

f∈J

∑

e∈Oi

1{f∈Ye(i)} ≤
∑

f∈J

∑

e∈Oi

1{e∈Yf (i)} =
∑

f∈J

|Yf (i)|.

This completes the proof since X≤i ⊆ Pi implies |Yf (i)| ≤ 2qiπi
√
n.

3.2 Event Ni+1: degree-like variables |NOi+1
(v)| and |NΓi+1

(v)|
Lemma 21. We have P(¬Ni+1) ≤ n−ω(1).

Proof. We start with |NOi+1
(v)|. Note that Oi+1 ⊆ Oi \ Ci+1 implies

|NOi+1
(v)| ≤

∑

w∈NOi
(v)

1{vw 6∈Ci+1} =: X. (63)

Since X≤i ⊆ Ni implies |NOi
(v)| ≤ qin, using Lemma 19 we obtain

EX =
∑

w∈NOi
(v)

P(vw 6∈ Ci+1) ≤ |NOi
(v)| · (qi+1/qi − σ3/2qi) ≤ qi+1n− σ3/2q2i n. (64)

Gearing up to apply Theorem 12 to X , we now bound the associated parameter λ ≤ p
∑

e∈Oi
c2e+qi

∑

e∈Oi
ĉ2e

from (62). Set Xv := {v}×NOi
(v) ⊆ Oi, and recall that Ci+1 = C1

i+1∪Si+1, where C
1
i+1 depends only on Γi+1

and thus is independent of Si+1. The edge-effect ce (an upper bound on how much X changes if we alter
whether e ∈ Γi+1 or e 6∈ Γi+1) is thus at most the number of changes to C1

i+1∩Xv = {vw ∈ Xv : Yvw(i)∩Γi+1 6=
∅}. Since e ∈ Yvw(i) implies vw ∈ Ye(i) when vw ∈ Xv, we infer ce ≤ |Ye(i) ∩ Xv| ≤ |Ye(i)| ≤ 2qiπi

√
n

by X≤i ⊆ Pi. Using Lemma 20, |Xv| = |NOi
(v)| ≤ qin, and qiπ

2
i ≤ 1 (see (52)), it follows that

p
∑

e∈Oi

c2e ≤ p · 2qiπi

√
n ·
∑

e∈Oi

|Ye(i) ∩ Xv| ≤ σ/
√
n · (2qiπi

√
n)2 · |Xv| ≤ 4σq3i π

2
i n

3/2 ≤ 4σq2i n
3/2. (65)

By our above discussion, the stabilization-effect ĉe (an upper bound on how much X changes if we alter
whether e ∈ Si+1 or e 6∈ Si+1) is at most the number of changes to Si+1 ∩ Xv. Hence ĉe ≤ 1{e∈Xv}, so that

qi
∑

e∈Oi

ĉ2e ≤ qi · |Xv| ≤ q2i n ≪ σq2i n
3/2.

Noting that X is a decreasing function of the edge-indicators (1{e∈Γi+1},1{e∈Si+1})e∈Oi
, using Theorem 12

together with the λ–bound (62) and q2i n
1/2 ≥ nτ (see (53)) it follows that

P(|NOi+1
(v)| ≥ qi+1n) ≤ P(X ≥ EX + σ3/2q2i n) ≤ exp

(

− σ3q4i n
2

2 · 5σq2i n3/2

)

≤ n−ω(1).

Taking a union bound over all vertices v completes the proof for the |NOi+1
(v)| variables.

Finally, note that |NΓi+1
(v)| is a sum of independent Bernoulli random variables with

E |NΓi+1
(v)| = |NOi

(v)| · p ≤ qin · σ/√n = σqi
√
n =: µ,

where we used X≤i ⊆ Ni to bound |NOi
(v)| ≤ qin. Applying standard Chernoff bounds (see, e.g., Remark 14),

using qi
√
n ≥ nτ (see (53)) it is routine to deduce that µ ≫ logn and

P(|NΓi+1
(v)| ≥ 2σqi

√
n) = P(|NΓi+1

(v)| ≥ 2µ) ≤ exp

(

− µ2

2 · 2µ

)

= exp
(

−µ

4

)

≤ n−ω(1).

Taking a union bound over all vertices v completes the proof for the |NΓi+1
(v)| variables.
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3.3 Event Pi+1: codegree-like variables |Xuv(i+ 1)|, |Yuv(i+ 1)| and |Zuv(i+ 1)|
Lemma 22. We have P(¬Pi+1) ≤ n−ω(1).

Proof. We start with |Xuv(i + 1)|. Recalling Oi+1 ⊆ Oi \ Ci+1, note that by construction

|Xuv(i+ 1)| ≤
∑

w∈Xuv(i)

1{uw 6∈Ci+1 and vw 6∈Ci+1} =: X. (66)

To estimate EX , note that the event f 6∈ C1
i+1 = {f ∈ Oi : Yf (i) ∩ Γi+1 6= ∅} is determined by the

values of the independent indicator variables (1{e∈Γi+1})e∈Yf (i). In view of the reasoning (61) for the value
of P(e 6∈ Ci+1), it follows by construction of Ci+1 = C1

i+1 ∪ Si+1 that

P(uw 6∈ Ci+1 and vw 6∈ Ci+1) = P(uw 6∈ Ci+1)P(vw 6∈ Ci+1) · (1− p)−|Yuw(i)∩Yvw(i)|. (67)

Since X≤i ⊆ Pi implies |Yuw(i) ∩ Yvw(i)| ≤ |Zuv(i)| ≤ I(logn)9 and |Xuv(i)| ≤ q2i n, by combining (67) with
Lemma 19 it follows that

EX ≤ |Xuv(i)| · (qi+1/qi − σ3/2qi)
2 · (1− p)−I(logn)9 ≤ q2i+1n− σ3/2q3i n, (68)

where for the last inequality we used pI(logn)9 ≪ σ3/2q3i ≪ 1 (since q3i
√
n/I ≥ nτ by (53)) and σ3q4i ≪

σ3/2q3i ∼ σ3/2qi+1q
2
i (see (52)–(54)). With an eye on Theorem 12, we now bound the parameter λ ≤

p
∑

e∈Oi
c2e + qi

∑

e∈Oi
ĉ2e from (62). Set Xuv := {u, v} ×Xuv(i) ⊆ Oi. Analogous to the proof of Lemma 21

for |NOi+1
(v)|, here we have edge-effect ce ≤ |Ye(i) ∩ Xuv| ≤ |Ye(i)| ≤ 2qiπi

√
n and stabilization-effect

ĉe ≤ 1{e∈Xuv}. Similar to (65), using Lemma 20, |Xuv| = 2 · |Xuv(i)| ≤ 2q2i n and qiπ
2
i ≤ 1 it follows that

p
∑

e∈Oi

c2e ≤ σ/
√
n · (2qiπi

√
n)2 · |Xuv| ≤ 8σq4i π

2
i n

3/2 ≤ 8σq3i n
3/2. (69)

Furthermore, qi
∑

ĉ2e ≤ qi|Xuv| ≤ 2q3i n ≪ σq3i n
3/2. Noting that X is a decreasing function of the edge-

indicators (1{e∈Γi+1},1{e∈Si+1})e∈Oi
, using Theorem 12 and q3i n

1/2 ≥ nτ (see (53)) it follows that

P(|Xuv(i+ 1)| ≥ q2i+1n) ≤ P(X ≥ EX + σ3/2q3i n) ≤ exp

(

− σ3q6i n
2

2 · 9σq3i n3/2

)

≤ n−ω(1).

Taking a union bound over all pairs of vertices u, v completes the proof for the |Xuv(i+ 1)| variables.
Turning to the more involved |Yuv(i+ 1)| variables, note that by construction

|Yuv(i + 1)| ≤
∑

w∈Xuv(i)

1{uw∈Γi+1 or vw∈Γi+1} +
∑

f∈Yuv(i)

1{f 6∈Ci+1} =: Y +
uv + Y ∗

uv. (70)

(To clarify: Y +
uv and Y ∗

uv are defined by the first and second sum in (70), respectively.) Using Lemma 19
together with σq2i = σqiqi+1 + o(σ3/2q2i πi) (see (54)) and πiqi+1 = qi+1πi+1 − σqiqi+1 (as πi+1 = πi + σqi
by (36)), it follows that

E(Y +
uv + Y ∗

uv) ≤ |Xuv(i)| · 2p + |Yuv(i)| · (qi+1/qi − σ3/2qi)

≤ 2σq2i
√
n+ 2πi

√
n(qi+1 − σ3/2q2i ) ≤ 2qi+1πi+1

√
n− σ3/2q2i πi

√
n.

(71)

We now estimate Y +
uv and Y ∗

uv separately. Noting EY +
uv ≤ 2σq2i

√
n and σ2q2i πi

√
n = o(σq2i

√
n) (see (52)),

using standard Chernoff bounds together with π2
i ≥ π2

0 = σ2 and q2i
√
n ≥ nτ (see (53)) it follows that

P(Y +
uv ≥ EY +

uv + σ2q2i πi

√
n) ≤ exp

(

−
(

σ2q2i πi
√
n
)2

4 · 2σq2i
√
n

)

≤ exp

(

−σ5q2i
√
n

8

)

≤ n−ω(1). (72)

For Y ∗
uv we shall apply Theorem 12, and we thus now bound λ ≤ p

∑

e∈Oi
c2e + qi

∑

e∈Oi
ĉ2e from (62). As

usual, we have edge-effect ce ≤ |Ye(i) ∩ Yuv(i)| ≤ |Ye(i)| ≤ 2qiπi
√
n and stabilization-effect ĉe ≤ 1{e∈Yuv(i)}.
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Here we can significantly improve the simple worst case estimate ce ≤ |Ye(i)| when e 6= uv. Indeed, if
e = w1w2 does not intersect uv, then ce ≤ 4 since Ye(i) ∩ Yuv(i) ⊆ {u, v} × {w1, w2}, say. Furthermore, if
e = w1w2 intersects uv in one vertex, say u = w1, then ce ≤ maxf |Zf (i)| ≤ I(logn)9 since Ye(i) ∩ Yuv(i) ⊆
{u}× [NEi

(w2)∩NEi
(v)]. To sum up, for e 6= uv we have ce ≤ max{4, I(logn)9} ≤ σ−5I, say. Similar to (65)

and (69), using Lemma 20 and |Yuv(i)| ≤ 2qiπi
√
n it follows that

p
∑

e∈Oi

c2e ≤ σ/
√
n ·
(

(2qiπi

√
n)2 + σ−5I · 2qiπi

√
n · |Yuv(i)|

)

≤ 8σ−4q2i π
2
i I
√
n.

Furthermore, using πi ≥ σ and I ≥ 1 we obtain qi
∑

e∈Oi
ĉ2e ≤ qi|Yuv(i)| ≤ 2q2i πi

√
n ≪ σ−4q2i π

2
i I
√
n. Noting

that Y ∗
uv is decreasing, using Theorem 12 and q2i

√
n/I ≥ nτ (see (53)) it follows that

P(Y ∗
uv ≥ EY ∗

uv + σ2q2i πi

√
n) ≤ exp

(

− σ4q4i π
2
i n

2 · 9σ−4q2i π
2
i I

√
n

)

≤ n−ω(1). (73)

Combining the probability estimates (72) and (73) with inequalities (70)–(71) and σ2 ≪ σ3/2, now a union
bound argument (to account for all pairs of vertices u, v) completes the proof for the |Yuv(i + 1)| variables.

Finally, for |Zuv(i + 1)| note that the one-step difference

∆Z := |Zuv(i+ 1)| − |Zuv(i)| =
∑

w∈Xuv(i)

1{uw∈Γi+1 and vw∈Γi+1} +
∑

f∈Yuv(i)

1{f∈Γi+1} (74)

is a sum of independent Bernoulli random variables with

E(∆Z) = |Xuv(i)| · p2 + |Yuv(i)| · p ≤ σ2q2i + 2σqiπi ≤ 3σ ≪ 1, (75)

where we used |Xuv(i)| ≤ q2i n and |Yuv(i)| ≤ 2qiπi
√
n for the first inequality, and max{q2i , qiπi} ≤ 1 (see (52))

and σ ≪ 1 for the last two inequalities. Inspecting (74), note that X≤i ⊆ Pi implies |Zuv(i + 1)| ≤
∆Z + i(logn)9. Applying standard Chernoff bounds, using E(∆Z) ≪ 1 it readily follows that, say,

P
(

|Zuv(i+ 1)| ≥ (i + 1)(logn)9
)

≤ P
(

∆Z ≥ (log n)9
)

≤ n−ω(1).

Taking a union bound over all pairs of vertices u, v completes the proof for the |Zuv(i+ 1)| variables.

Remark 23. If desired, it would not be difficult to establish the better upper bound |Zuv(i)| ≤ (logn)2, say
(using the stochastic domination arguments leading to (94) in Section 3.5; in view (74)–(75) the main point
is that, for 0 ≤ i ≤ I, the event X≤i implies

∑

0≤j≤i(|Xuv(j)|p2 + |Yuv(j)|p) = O(log n)). This in turn could,

e.g., be used to increase the constant β0 slightly (as we could then remove I = ⌈nβ⌉ from constraint (53)).

3.4 Event Q+
i+1 ∩Qi+1: number |Oi+1(A,B)| of open edges between large sets

Turning to |Oi+1(A,B)|, note that one edge e ∈ Γi+1 can add up to |Ye(i) ∩ Oi(A,B)| ≤ ∑

w∈e |NEi
(w) ∩

(A∪B)| edges to C1
i+1(A,B) ⊆ Oi(A,B)\Oi+1(A,B), which can potentially lead to large edge-effects ce. To

sidestep such technical difficulties, we now introduce the following auxiliary variables for vertex-sets A,B ⊆ V
with |A| = |B| (to avoid clutter we suppress the dependence on A,B, i in parts of our notation):

z := σ4q2i |A|,
W1 := {w ∈ V : |NEi

(w) ∩ (A ∪B)| ≥ z},
W2 := {w ∈ V : |NΓi+1

(w) ∩ (A ∪B)| ≥ z},
Ĉ1

i+1 := {uv ∈ Oi : there is w 6∈ W1 s.t. |{uw, vw} ∩ Γi+1| = |{uw, vw} ∩Ei| = 1},
Ĉ2

i+1 := {uv ∈ Oi : there is w 6∈ W2 s.t. uw ∈ Γi+1, vw ∈ Γi+1},
Ĉi+1 := Ĉ1

i+1 ∪ Si+1.

Note that Ĉj
i+1 ⊆ Cj

i+1 for j ∈ {1, 2}, and that Ĉi+1 ⊆ Ci+1. Furthermore, recalling qi ≥ qI (see (54)), using
inequality (53) it is routine to check that s0 ≫ 1 holds, that |A| ≥ s0 implies z ≫ 1, and moreover that

min
|A|≥s0

z/
√

|A|I ≥ σ4q2i
√
s0/

√
I ≫ σ6q3I

4
√
n/

√
I ≫ nτ/2. (76)
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Lemma 24. We have P(¬Q+
i+1) ≤ n−ω(1).

Proof. Mimicking the double counting argument from (4), it follows that the special case |A| = |B| of Q+
i+1

implies the event Q+
i+1 in full. Hence ¬Q+

i+1 implies that |Oi+1(A,B)| ≤ qi+1|A||B| fails for some disjoint
vertex-sets A,B ⊆ V with |A| = |B| ≥ s0, and we shall below estimate the probability of this special case.

Recalling Ĉi+1 ⊆ Ci+1, noting Oi+1 ⊆ Oi \ Ci+1 ⊆ Oi \ Ĉi+1 we obtain

|Oi+1(A,B)| ≤ |Oi(A,B) \ Ĉi+1| =
∑

f∈Oi(A,B)

1{f 6∈Ĉi+1} =: X. (77)

To estimate EX , recall that C1
i+1 = {f ∈ Oi : Yf (i) ∩ Γi+1 6= ∅}. Note that if the event Qf := {(f ×W1) ∩

Γi+1 = ∅} holds, then f /∈ Ĉ1
i+1 implies f /∈ C1

i+1, so that f /∈ Ĉi+1 implies f /∈ Ci+1 = C1
i+1∪Si+1. Since f /∈

C1
i+1 and Qf are both monotone decreasing functions of the edge-indicators (1{e∈Γi+1},1{e∈Si+1})e∈Oi

, using

Harris’s inequality [18] and P(Qf ) ≥ (1− p)2|W1| it follows that

P(f /∈ Ci+1) ≥ P(f /∈ Ĉi+1 and Qf) ≥ P(f /∈ Ĉi+1)P(Qf ) ≥ P(f /∈ Ĉi+1) · (1− p)2|W1|.

Note that X≤i and i < I imply |NEi
(u) ∩ NEi

(v)| = |Zuv(i)| ≤ I(logn)9 =: y when u 6= v, and that (76)

implies z ≫
√

|A ∪B|y. Using the definition of W1 and Lemma 16 (with I = W1, U = A ∪ B and
Uw = NEi

(w) ∩ U), we infer |W1| ≤ 2|A ∪ B|/z = 4/(σ4q2i ) ≤ qiσ
√
n by (53), say. Similar to (68), using

Lemma 19, |Oi(A,B)| ≤ qi|A||B|, p|W1| ≤ qiσ
2 ≪ 1 and qiqi+1 ∼ q2i (see (54)) it is routine to deduce that

EX ≤ |Oi(A,B)| · (qi+1/qi − σ3/2qi) · (1− p)−2|W1| ≤ |A||B| · (qi+1 − σ3/2q2i /2). (78)

Gearing up to apply Theorem 12, we now bound λ ≤ p
∑

e∈Oi
c2e+qi

∑

e∈Oi
ĉ2e. Noting Ĉi+1 ⊆ Ci+1, as usual

we have edge-effect ce ≤ |Ye(i) ∩ Oi(A,B)| and stabilization-effect ĉe ≤ 1{e∈Oi(A,B)}. Here the definition

of Ĉi+1 allows us to improve the simple worst case estimate ce ≤ |Ye(i)|. Indeed, inspecting the corresponding
argument for |NOi+1

(v)| from Lemma 21, we see that the edge-effect ce (an upper bound on how much X
changes if we alter whether e ∈ Γi+1 or e 6∈ Γi+1) is at most the number of changes to

Ĉ1
i+1 ∩Oi(A,B) =

{

uv ∈ Oi(A,B) : there is w 6∈ W1 s.t. either uw ∈ Γi+1, vw ∈ Ei

or vw ∈ Γi+1, uw ∈ Ei

}

.
(79)

Since any w 6∈ W1 has at most z neighbours in A ∪B via Ei–edges, we infer that ce ≤ 2z (the factor of two
takes into account that each vertex of e could potentially play the role of w in (79) above). Similar to (65)
and (69), using Lemma 20, σπi ≤

√
σ ≪ 1 (see (52)), and |Oi(A,B)| ≤ qi|A||B| it follows that

p
∑

e∈Oi

c2e ≤ σ/
√
n · 2z · 2qiπi

√
n · |Oi(A,B)| ≪ zqi|Oi(A,B)| ≤ zq2i |A||B|.

Furthermore, using z ≥ 1 we obtain qi
∑

ĉ2e ≤ qi|Oi(A,B)| ≤ zqi|Oi(A,B)| ≤ zq2i |A||B|. Noting that X is
decreasing, using Theorem 12 and the λ–bound (62) it follows that

P(|Oi+1(A,B)| ≥ qi+1|A||B|) ≤ P(X ≥ EX + σ3/2q2i |A||B|/2)

≤ exp

(

−
(

σ3/2q2i |A||B|/2
)2

2 · 2zq2i |A||B|

)

= exp

(

−σ3q2i |A||B|
16z

)

≤ n−ω(|B|),
(80)

where for the last inequality we used z = σ4q2i |A| and σ−1 ≫ logn. Finally, taking a union bound over all
disjoint vertex-sets A,B ⊆ V with |A| = |B| ≥ s0 completes the proof (as discussed).

For the ‘relative error’ τi used in the event Qi, see (37), we now record the following convenient bounds:

1 ≥ τi ≥ τI = 1− δ/2 ≥ 1/2 for all 0 ≤ i ≤ I. (81)

Lemma 25. We have P(¬Qi+1 ∩Ni+1 ∩ Pi+1) ≤ n−ω(1).
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The proof strategy is to estimate the different contributions to Oi+1 = Oi \(Γi+1∪Ci+1∪C2
i+1) separately

(here Q+
i will be crucial for bounding some of the large edge-effects ignored in Lemma 24).

Claim 26. Let QA,B be the event that the following bounds hold:

X1 :=
∣

∣Oi(A,B) \ Ĉi+1

∣

∣ ∈
[

|Oi(A,B)| · (qi+1/qi − 4σ3/2qi), |Oi(A,B)| · qi+1/qi
]

,

X2 :=
∣

∣Oi(A,B) ∩ Ĉ2
i+1

∣

∣ ≤ |Oi(A,B)| · 2σ2qi,

X3 := |Oi(A,B) ∩ Γi+1| ≤ |Oi(A,B)| · 2σ2qi,

X4 :=
∣

∣Oi(A,B) ∩ (Ci+1 ∪ C2
i+1) \ (Ĉi+1 ∪ Ĉ2

i+1)
∣

∣ ≤ 36σq2i
√
n|A|.

Then P(¬QA,B ∩ Ni+1 ∩ Pi+1) ≤ n−ω(s) for all vertex-sets (A,B) ∈ Ss.

Before giving the proof, we first show that Claim 26 implies Lemma 25. Using a union bound argument
(to account for the |Ss| ≤ n2s vertex-sets (A,B) ∈ Ss), it is enough to show that QA,B ∩ X≤i implies
τi+1qi+1|O0(A,B)| ≤ |Oi+1(A,B)| ≤ qi+1|O0(A,B)|. By definition of Oi+1(A,B) we have

X1 −X2 −X3 −X4 ≤ |Oi+1(A,B)| ≤ X1.

Combining QA,B with the fact that |Oi(A,B)| ≤ qi|O0(A,B)| by X≤i ⊆ Qi, we readily infer the upper bound
|Oi+1(A,B)| ≤ qi+1|O0(A,B)|. Turning to the lower bound, using QA,B it follows that

X1 −X2 −X3 −X4 ≥ |Oi(A,B)| ·
(

qi+1/qi − 8σ3/2qi
)

− 36σq2i
√
n|A|

≥
(

τiqi
(

qi+1/qi − 8σ3/2qi
)

− 36σq2i
γC

√
logn

)

· |O0(A,B)|

≥
(

τi −
45σqi

γC
√
logn

)

· qi+1|O0(A,B)| ≥ τi+1 · qi+1|O0(A,B)|,

where for the second inequality we used |Oi(A,B)| ≥ τiqi|O0(A,B)| (by X≤i ⊆ Qi) and |O0(A,B)| ≥
γ|A||B| ≥ γC

√
logn · √n|A|, for the third inequality we used τi ≤ 1 (see (81)), σ1/2 ≪ 1/

√
logn, and

qi ∼ qi+1 (see (54)), and for the last inequality we used
√
logn ∼

√

log(Iσ)/β ∼ πI/
√
β (see (56)), γC/

√
β ≥

D0/δ
2 ≥ 91/δ (by assumption and (38)) and τi − δσqi/πI = τi+1 (see (37)). This completes the proof of

Lemma 25 (assuming Claim 26).

Proof of Claim 26. We start with X1 = |Oi(A,B) \ Ĉi+1|. Since s ≥ s0, the upper tail argument for X =
X1 defined in (77) carries over from Lemma 24, with EX1 ≤ |Oi(A,B)|(qi+1/qi − σ3/2qi/2) and λ ≤
2zqi|Oi(A,B)|, say. In particular, noting that here |Oi(A,B)| ≥ τiqi|O0(A,B)| ≥ γτiqi|A||B|, an appli-
cation of Theorem 12 along the lines of (80) gives

P(X1 ≥ |Oi(A,B)|qi+1/qi) ≤ exp

(

−
(

σ3/2qi|Oi(A,B)|/2
)2

2 · 2zqi|Oi(A,B)|

)

≤ exp

(

−γτiσ
3q2i |A||B|
16z

)

≤ n−ω(s), (82)

where for the last inequality we used z = σ4q2i |A|, τi ≥ 1/2 (see (81)), γσ−1 ≫ logn and |B| = s. For the

lower tail of X1 we proceed similarly. Since Ĉi+1 ⊆ Ci+1, using Lemma 19 we obtain

EX1 =
∑

e∈Oi(A,B)

P(e 6∈ Ĉi+1) ≥
∑

e∈Oi(A,B)

P(e 6∈ Ci+1) ≥ |Oi(A,B)| · (qi+1/qi − 3σ3/2qi).

Furthermore, the edge-effect and stabilization-effect estimates from the proof of Lemma 24 again carry over,
giving λ ≤ 2zqi|Oi(A,B)| and maxe∈Oi

max{ce, ĉe} ≤ 2z, say. Applying inequality (48) of Remark 13
(with C = 2z), it follows similarly to (82) that

P
(

X1 ≤ |Oi(A,B)|(qi+1/qi − 4σ3/2qi)
)

≤ P
(

X1 ≤ EX1 − σ3/2qi|Oi(A,B)|
)

≤ exp

(

−
(

σ3/2qi|Oi(A,B)|
)2

2
(

2zqi|Oi(A,B)| + 2z · σ3/2qi|Oi(A,B)|
)

)

≤ exp

(

−γτiσ
3q2i |A||B|
8z

)

≤ n−ω(s).

(83)
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Turning to X2 = |Oi(A,B) ∩ Ĉ2
i+1|, note that by construction of Ĉ2

i+1 we have

X2 =
∑

e∈Oi(A,B)

1{e∈Ĉ2
i+1

} ≤
∑

ab∈Oi(A,B)

∑

w∈V \W2

1{{wa,wb}⊆Γi+1} =: X+
2 . (84)

Gearing up to apply Theorem 15 to X+
2 , in view of Γi+1 ⊆ Oi we define

I :=
{

{wa,wb} ⊆ Oi : ab ∈ Oi(A,B), w ∈ V, |{a, b, w}| = 3
}

,

K := {{wa,wb} ∈ I : w 6∈ W2, {wa,wb} ⊆ Γi+1}.

Since p2 · |Xab(i)| ≤ σ2q2i ≤ σ2qi by X≤i ⊆ Pi and qi ≤ 1 (see (52)), we obtain

∑

α∈I
E1{α⊆Γi+1} = p2

∑

ab∈Oi(A,B)

∑

v∈V

1{{va,vb}⊆Oi} = p2
∑

ab∈Oi(A,B)

|Xab(i)| ≤ σ2qi · |Oi(A,B)| =: µ.

Furthermore, since K only contains edge-pairs {wa,wb} with {a, b} ⊆ NΓi+1
(w) ∩ (A∪B) where the ‘central

vertex’ w satisfies w 6∈ W2 and thus |NΓi+1
(w) ∩ (A ∪B)| ≤ z, for all β ∈ K we see that

|{α ∈ K : α ∩ β 6= ∅}| ≤
∑

f∈β

|{α ∈ K : f ∈ α}| ≤
∑

f∈β

∑

v∈f\W2

|NΓi+1
(v) ∩ (A ∪B)| ≤ 2 · 2 · z.

It follows that X+
2 =

∑

α∈K 1{α⊆Γi+1} ≤ Z4z, where Z4z is defined as in Theorem 15. Applying first (84)
and then inequality (49) with C = 4z, using |Oi(A,B)| ≥ γτiqi|A||B| it follows similarly to (82) that

P(X2 ≥ 2σ2qi|Oi(A,B)|) ≤ P(Z4z ≥ 2µ) ≤ exp
(

− µ2

2 · 4z · 2µ
)

≤ exp
(

−γτiσ
2q2i |A||B|
16z

)

≤ n−ω(s). (85)

We next turn to X3 = |Oi(A,B) ∩ Γi+1|, which is a sum of independent Bernoulli random variables with
EX3 = |Oi(A,B)| · p ≪ σ2qi|Oi(A,B)| =: t, as qi

√
n ≥ nτ by (53). Applying standard Chernoff bounds,

using |Oi(A,B)| ≥ γτiqi|A||B| and z ≥ 1 it follows by comparison with the last inequality of (85) that

P(X3 ≥ 2σ2qi|Oi(A,B)|) ≤ P(X3 ≥ EX3 + t) ≤ exp
(

− t2

2 · 2t
)

≤ exp
(

−γτiσ
2q2i |A||B|
4

)

≤ n−ω(s). (86)

Finally, X4 is a more difficult variable: assuming that Ni+1 ∩ Pi+1 ∩ X≤i holds, we shall bound X4

by deterministic counting arguments (here the edge-effects can potentially be fairly large, so concentration
inequalities seem less effective). Noting Ci+1 \ Ĉi+1 = C1

i+1 \ Ĉ1
i+1, similarly to (84) we obtain

X4 ≤
∑

e∈Oi(A,B)

1{e∈C1
i+1

\Ĉ1
i+1

} +
∑

e∈Oi(A,B)

1{e∈C2
i+1

\Ĉ2
i+1

}

≤
∑

w∈W1

(

|Oi(NΓi+1
(w) ∩ A, NEi

(w) ∩B)|+ |Oi(NΓi+1
(w) ∩B, NEi

(w) ∩A)|
)

+
∑

w∈W2

|Oi(NΓi+1
(w) ∩ A, NΓi+1

(w) ∩B)|.

(87)

Using the upper bound estimate from X≤i ⊆ Q+
i when min{|NΓi+1

(v) ∩ A|, |NEi
(v) ∩ B|} ≥ z holds (note

that z = σ4q2i s ≥ s0), and a trivial estimate otherwise, it follows that

|Oi(NΓi+1
(w) ∩ A, NEi

(w) ∩B)|
≤ qi|NΓi+1

(w) ∩ A||NEi
(w) ∩B|+ zmax{|NΓi+1

(w) ∩ A|, |NEi
(w) ∩B|}

≤
(

qi|NΓi+1
(w)| + z

)

· |NEi∪Γi+1
(w) ∩ (A ∪B)|.

(88)

With an eye on (87), we note that an analogous estimate also holds when we reverse the role of A and B
in (88). Furthermore, qi|NΓi+1

(w)| ≤ 2σq2i
√
n by Ni+1, and z = σ4q2i s = O(σ3q2i

√
n) ≪ σq2i

√
n. Recalling

Ei ∪ Γi+1 = Ei+1, observe that Pi+1 and i + 1 ≤ I imply |NEi∪Γi+1
(u) ∩ NEi∪Γi+1

(v)| = |Zuv(i + 1)| ≤

17



I(logn)9 =: y when u 6= v, and that (76) implies z ≫
√

|A ∪B|y (as |A| = s ≥ s0). Using the definition
of W1 and Lemma 16 (with I = W1, U = A ∪B and Uw = NEi∪Γi+1

(w) ∩ U), it follows that

∑

w∈W1

(

|Oi(NΓi+1
(w) ∩ A, NEi

(w) ∩B)|+ |Oi(NΓi+1
(w) ∩B, NEi

(w) ∩ A)|
)

≤ 2 · 3σq2i
√
n ·

∑

w∈W1

|NEi∪Γi+1
(w) ∩ (A ∪B)| ≤ 2 · 3σq2i

√
n · 2|A ∪B| ≤ 24σq2i

√
n|A|.

(89)

Proceeding analogously to (88)–(89), using the definition of W2 and Lemma 16 we similarly obtain

∑

w∈W2

|Oi(NΓi+1
(w) ∩ A, NΓi+1

(w) ∩B)|

≤ 3σq2i
√
n ·

∑

w∈W2

|NΓi+1
(w) ∩ (A ∪B)| ≤ 3σq2i

√
n · 2|A ∪B| ≤ 12σq2i

√
n|A|.

(90)

To sum up, inserting the bounds (89)–(90) into (87), we showed that Ri+1 ∩ Pi+1 ∩ X≤i implies X4 ≤
36σq2i

√
n|A|. This completes the proof together with the probability estimates (82), (83), (85), and (86).

Remark 27. If desired, it would not be difficult to extend the event Qi to larger vertex-sets (A,B) ∈ S≥s :=
⋃

s≤r≤nSr (the above arguments all carry over, except for the modified bound X4 ≤ 3 ·maxw(qi|NΓi+1
(w)|+

z) · 2|A ∪ B| ≤ 36σq2i max{√n, σ3|B|}|A|, which is still strong enough to deduce Lemma 25). This in turn
could, e.g., be used to also extend the event TI to (A,B) ∈ S≥s (the proofs in Section 3.5 then carry over).

Remark 28. Under a mild extra assumption such as |O0| ≥ σn, say, it would not be difficult to add two-
sided bounds for the total number of open edges |Oi| and edges |TI | to the events Qi and TI . For example,
much simpler variants of the above arguments then imply τiqi|O0| ≤ |Oi| ≤ qi|O0| (by directly estimating
|Oi \ Ci+1| − |Γi+1| − |C2

i+1| ≤ |Oi+1| ≤ |Oi \ Ci+1|, without using Ĉi+1 or Ĉ2
i+1, nor a union bound over all

vertex-sets), which in turn gives |TI | = (1± δ)ρ|O0| by straightforward variants of the proofs in Section 3.5.

3.5 Event TI : number |TI(A,B)| of edges between large sets

For |TI(A,B)| it is convenient to think of the entire nibble construction as one evolving random process.
Thus, in contrast to previous sections, in Lemma 29 and Claim 30 below we shall not tacitly condition on Fi.

Lemma 29. We have P(¬TI ∩X≤I) ≤ n−ω(1).

Since TI =
⋃

0≤i<I(Ti+1 \Ti) forms a partition, the proof strategy is to estimate the two contributions to
Ti+1 \ Ti = Γi+1 \ E(Di+1) separately (here the deleted edges E(Di+1) will have negligible impact).

Claim 30. Let TA,B be the event that the following bounds hold:

X :=
∑

0≤i<I

|Oi(A,B) ∩ Γi+1| ∈
[

(1− δ/2)µ−, (1 + δ/2)µ+
]

,

Y :=
∑

0≤i<I

∣

∣Oi(A,B) ∩ E(Di+1)| ≤ δ2µ−/9,

where µ+ :=
∑

0≤i<I⌊qi|O0(A,B)|⌋p and µ− :=
∑

0≤i<I⌈τiqi|O0(A,B)|⌉p. Then P(¬TA,B ∩ X≤I) ≤ 3n−3s

for all vertex-sets (A,B) ∈ Ss.

Before giving the proof, we first show that Claim 30 implies Lemma 29. Using a union bound argument
(to account for the |Ss| ≤ n2s vertex-sets (A,B) ∈ Ss), it is enough to show that TA,B implies |TI(A,B)| =
(1± δ)ρ|O0(A,B)|. Since all the (Γi+1)0≤i<I are edge-disjoint, by the recursive definition (14) of TI we have

X − Y ≤ |TI(A,B)| ≤ X. (91)

Noting µ− ≥ τIµ
+ = (1− δ/2)µ+ (see (81)), it follows that TA,B implies X ≤ (1 + δ/2)µ+ and

X − Y ≥
(

1− δ/2− δ2/9
)

· µ− ≥ (1− δ + δ2/8)µ+.
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It thus suffices to show that µ+ ∼ ρ|O0(A,B)|, where ρ =
√

β(log n)/n. But this is routine: indeed, since

qi|O0(A,B)| ≥ qi ·γs2 ≫ qin ≫ √
n by (53), and πI ∼

√

log(Iσ) ∼ √
β logn by (56), using the definition (36)

of πI we readily infer

µ+ =
∑

0≤i<I

(qi|O0(A,B)| ± 1)p ∼
∑

0≤i<I

σqi/
√
n · |O0(A,B)|

= (πI − σ)/
√
n · |O0(A,B)| ∼ ρ|O0(A,B)|,

(92)

completing the proof of Lemma 29 (assuming Claim 30).

Proof of Claim 30. We start with X =
∑

0≤i<I |Oi(A,B) ∩ Γi+1|. Define

X+
i+1 := 1{Xi}

∑

e∈Oi(A,B)

1{e∈Γi+1} and X+ :=
∑

0≤i<I

X+
i+1.

Note that X = X+ when X≤I =
⋂

0≤i≤I Xi holds. Let Z
+
i+1

d
= Bin(⌊qi|O0(A,B)|⌋, p) be independent random

variables (where
d
= means equality in distribution, as usual). Since the Fi-measurable event Xi ⊆ Qi implies

|Oi(A,B)| ≤ qi|O0(A,B)|, it is easy to see that P(X+
i+1 ≥ t | Fi) ≤ P(Z+

i+1 ≥ t) for t ∈ R. Setting

Z+ :=
∑

0≤i<I

Z+
i+1

d
= Bin

(

∑

0≤i<I

⌊qi|O0(A,B)|⌋, p
)

, (93)

a standard stochastic domination argument then shows P(X+ ≥ t) ≤ P(Z+ ≥ t) for t ∈ R, so that

P(X ≥ t and X≤I) ≤ P(X+ ≥ t) ≤ P(Z+ ≥ t). (94)

Since Xi also implies |Oi(A,B)| ≥ τiqi|O0(A,B)|, an analogous argument gives

P(X ≤ t and X≤I) ≤ P(Z− ≤ t) with Z− d
= Bin

(

∑

0≤i<I

⌈τiqi|O0(A,B)|⌉, p
)

. (95)

Combining µ− ≥ τIµ
+ ≥ µ+/2 (see (81)) and (92) with |O0(A,B)| ≥ γs2, using δ2

√
βγ · C ≥ D0 = 108 (by

assumption and (38)) we have

δ2 min{µ−, µ+} ≥ δ2

2 µ
+ ≥ δ2

3 ρ|O0(A,B)| ≥ δ2

3

√

β(logn)/n · γC
√

n logn · s ≥ 36s logn. (96)

Using (93)–(95) and EZ± = µ±, by standard Chernoff bounds (see, e.g., Remark 14) we obtain, say,

P
(

X 6∈
[

(1− δ/2)µ−, (1 + δ/2)µ+
]

and X≤I

)

≤ P
(

Z− ≤ (1− δ/2)µ−)+ P
(

Z+ ≥ (1 + δ/2)µ+
)

≤ exp
(

−δ2µ−/8
)

+ exp
(

−δ2µ+/12
)

≤ 2n−3s.
(97)

Finally, turning to Y =
∑

0≤i<I |Oi(A,B) ∩ E(Di+1)|, for brevity we define

Yi+1 := |Oi(A,B) ∩E(Di+1)| and y := δ2µ−/9.

Note that Y =
∑

0≤i<I Yi+1 and Yi+1 ∈ N. Since X≤i =
⋂

0≤j≤i Xj, a union bound argument gives

P
(

Y ≥ δ2µ−/9 and X≤I

)

≤
∑

(y1,...,yI)∈N
I

∑
1≤i≤I yi=⌈y⌉

P
(

⋂

0≤i<I

(

Yi+1 ≥ yi+1 and X≤i+1

)

)

≤
∑

(y1,...,yI)∈N
I

∑
0≤i<I yi+1=⌈y⌉

∏

0≤i<I

P
(

Yi+1 ≥ yi+1

∣

∣

∣

⋂

0≤j<i

(

Yj+1 ≥ yj+1 and X≤j+1

)

)

.
(98)
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Gearing up to apply Theorem 15 to Yi+1, with an eye on Di+1 ⊆ Bi+1 and Ti ⊆ Ei (see Section 2.1) we define

I :=
{

{wu,wv} ⊆ Oi : uv ∈ Ei, |{u, v, w}| = 3, {wu,wv} ∩Oi(A,B) 6= ∅
}

∪
{

{uv, vw,wu} ⊆ Oi : |{u, v, w}| = 3, {uv, vw,wu} ∩Oi(A,B) 6= ∅
}

.

Since each edge-set α ∈ I contains at least one edge from Oi(A,B), when the Fi-measurable event X≤i holds
we infer by the usual reasoning (using, e.g., Pi ∩ Qi and max{πiqi, q

2
i } ≤ 1) that

∑

α∈I
E(1{α⊆Γi+1} | Fi) ≤

∑

e∈Oi(A,B)

∑

α∈I:e∈α

p|α| ≤
∑

e∈Oi(A,B)

(

|Ye(i)| · p2 + |Xe(i)| · p3
)

≤ qi|O0(A,B)| ·
(

2πiqi
√
n · p2 + q2i n · p3

)

≤ 3σ · qi|O0(A,B)|p =: µ∗
i+1.

Since Di+1 is a collection of edge-disjoint elements of Bi+1 (and thus {α ∈ Di+1 : α ∩ β 6= ∅} = {β} for
all β ∈ Di+1), using E(Di+1) =

⋃

α∈Di+1
α ⊆ Γi+1 ⊆ Oi, |α| ≤ 3 and Ti ⊆ Ei it is not difficult to check that

Yi+1 =
∑

α∈Di+1

|α ∩Oi(A,B)| ≤ 3 ·
∑

α∈I∩Di+1

1{α∈Γi+1} ≤ 3Z1,

where Z1 is defined as in Theorem 15. Applying inequality (49) with C = 1 and µ = µ∗
i+1 (in the probability

space conditional on Fi; cf. the beginning of Section 3.1), when X≤i holds it follows that, say,

P(Yi+1 ≥ yi+1 | Fi) ≤ P(Z1 ≥ yi+1/3 | Fi) ≤







(

eµ∗
i+1

yi+1/3

)yi+1/3

≤ σyi+1/6 if yi+1 ≥ 9µ∗
i+1/

√
σ,

1 otherwise.
(99)

Comparing the definition of
∑

0≤i<I µ
∗
i+1 with µ−, using τi ≥ τI ≥ 1/2 (see (81)) and σ ≪ 1 we see that

∑

0≤i<I:
yi+1≤9µ∗

i+1/
√
σ

yi+1 ≤ 9/
√
σ ·

∑

0≤i<I

µ∗
i+1 ≤ 9/

√
σ · 6σµ− ≪ δ2µ−/9 = y.

So, inserting (99) into (98), using (96) and the definition of s it follows that y/ log y = Ω(
√
n) ≫ I and

P
(

Y ≥ δ2µ−/9 and X≤I

)

≤
∑

(y1,...,yI)∈N
I

∑
0≤i<I yi+1=⌈y⌉

σ⌈y⌉/6−o(y) ≤ (y + 2)I · σy/7 ≤ e−ω(δ2µ−) ≤ n−ω(s),

completing the proof together with the probability estimate (97).
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A Appendix

Proof of Theorem 12. We may assume that I = {1, . . . , |I|}. Recalling X = f
(

(ξi)i∈I
)

, we define

Di := E(X | ξ1, . . . , ξi−1, ξi = 1)− E(X | ξ1, . . . , ξi−1, ξi = 0) ∈ [−ci, 0],

where Di ≤ 0 follows from the assumption that f is decreasing, and |Di| ≤ ci follows, as usual, from
the assumed discrete Lipschitz property of f . Analogous to, e.g., the proof of [36, Theorem 1.3], writing
pi = P(ξi = 1) it is routine to check that

∆i := E(X | ξ1, . . . , ξi)− E(X | ξ1, . . . , ξi−1) = Di(1− pi)1{ξi=1} −Dipi1{ξi=0}.

Since 1 + x ≤ ex for x ∈ R and ex ≤ 1 + x+ x2/2 for x ≤ 0, for θ ≥ 0 it follows easily that

E
(

eθ∆i | ξ1, . . . , ξi−1

)

= (1− pi) · e−θDipi + pi · eθDi(1−pi) = e−θDipi(1− pi + pie
θDi)

≤ e−θDipi+pi(e
θDi−1) ≤ eθ

2D2
i pi/2 ≤ eθ

2c2ipi/2.

Hence E
(

eθ
∑

i∈I ∆i
)

≤ eθ
2λ/2, where λ =

∑

i∈I c2i pi. Noting X − EX =
∑

i∈I ∆i, we deduce

P(X ≥ EX + t) = P
(

eθ
∑

i∈I ∆i ≥ eθt
)

≤ E
(

eθ
∑

i∈I ∆i
)

e−θt ≤ eθ
2λ/2−θt = e−t2/(2λ)
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by choosing θ = t/λ, completing the proof of (47).

Proof of Lemma 17. Note that the ODE Ψ′(x) = e−Ψ2(x) and Ψ(0) = 0 has the implicit solution

x =

∫ Ψ(x)

0

et
2

dt. (100)

For x ≥ 0 it follows that Ψ(x) is strictly increasing, so that Ψ′(x) ≥ 0 is strictly decreasing. Recalling qi =
Ψ′(iσ), we deduce qi ≥ qi+1 and 0 ≤ qi ≤ q0 = 1 for all i ≥ 0.

To facilitate our upcoming calculations, we first prove the auxiliary claim that, for all i ≥ 0,

πi −Ψ(iσ) ∈ [σ, 2σ]. (101)

Indeed, using Ψ(0) = 0 and monotonicity of Ψ′ (for the first two inequalities) together with Ψ′(0) = 1
and Ψ′ ≥ 0 (for the last inequality) it follows that

0 ≤
(

∑

0≤j≤i−1

σΨ′(jσ)

)

−Ψ(iσ) ≤ σ(Ψ′(0)−Ψ′(iσ)) ≤ σ,

which establishes (101) by the definition (36) of πi and Ψ′(jσ) = qj .
For (56), note that by (101) and I = ⌈nβ⌉ ≫ 1 it suffices to show

√
log x−1 ≤ Ψ(x) ≤ √

log x+1 for x ≥ e

(with room to spare). The upper bound follows from
∫

√
log x+1

0 et
2

dt ≥ x and (100). Using the inequality

(y − 1)e−2y+1 ≤ 1 with y =
√
log x, the lower bound follows from

∫

√
log x−1

0
et

2

dt ≤ x and (100).

Turning to (53), note that the above calculations for (56) imply Ψ′(x) = e−Ψ2(x) = x−1+o(1) as x → ∞,
so that qI = n−β+o(1). Together with qi ≥ qI , it then is routine to see that (53) holds for β < β0 = 1/14.

Now we focus on (52). As a warm-up, note that πi ≤ πI for 0 ≤ i ≤ I by the definition (36) of πi, and
that πI ≤

√

log(Iσ) + 2 ≪ logn = σ−1/2 by (56), so that
√
σπi ≤ 1. Next, using (101) together with the

simple inequalities e−x2

x ≤ 1/2 and e−x2

x2 ≤ 1/2, we also infer that

qiπi ≤ e−Ψ2(iσ)
(

Ψ(iσ) + 2σ
)

≤ 1, (102)

qiπ
2
i ≤ e−Ψ2(iσ)

(

Ψ2(iσ) + 4σΨ(iσ) + 4σ2
)

≤ 1. (103)

Combined with qi ≤ 1 this implies qiπ
j
i ≤ 1 for all j ∈ {0, 1, 2}, completing the proof of (52).

Turning to (54), note that Ψ((i+1)σ) ≤ πi+1−σ ≤ πi by (101), (36) and qi ≤ 1. Since Ψ ≥ 0 is increasing
and Ψ′ ≥ 0 is decreasing, using qj = Ψ′(jσ) together with Ψ′′(x) = −2Ψ′(x)2Ψ(x) and (102) it follows that

|qi − qi+1| ≤ σ max
iσ≤ξ≤(i+1)σ

|Ψ′′(ξ)| ≤ σ · 2Ψ′(iσ)2 ·Ψ((i+ 1)σ) ≤ σ · 2q2i πi ≤ σ · 2min{qi, qiπi}. (104)

Noting that (104) also implies qi ∼ qi+1, this completes the proof of (54) since qi ≥ qi+1.
Finally, for (55) it suffices to show |qi − qi+1 − 2σq2i πi| ≤ 8σ2q2i . Since qi = Ψ′(iσ), it follows that

∣

∣qi − qi+1 + σΨ′′(iσ)
∣

∣ ≤ σ2

2 max
iσ≤ξ≤(i+1)σ

|Ψ′′′(ξ)|.

As Ψ′(x) = e−Ψ2(x), it is routine to check that Ψ′′′(x) = 2Ψ′(x)3
(

4Ψ2(x) − 1
)

. Since Ψ ≥ 0 is increasing
and Ψ′ ≥ 0 is decreasing, using Ψ((i + 1)σ) ≤ πi (as above), (103) and qi ≤ 1 we infer

max
iσ≤ξ≤(i+1)σ

|Ψ′′′(ξ)| ≤ 2Ψ′(iσ)3 ·max
{

4Ψ2((i + 1)σ), 1
}

≤ 2q3i max
{

4π2
i , 1

}

≤ 8q2i .

Furthermore, since Ψ′′(x) = −2Ψ′(x)2Ψ(x), using (101) we deduce

∣

∣Ψ′′(iσ)− (−2q2i πi)
∣

∣ =
∣

∣−2q2iΨ(iσ) + 2q2i πi

∣

∣ ≤ 4σq2i ,

which completes the proof of (55).
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