
THE ASYMPTOTIC SPECTRUM OF GRAPHS
AND THE SHANNON CAPACITY

JEROEN ZUIDDAM

Abstract. We introduce the asymptotic spectrum of graphs and apply the
theory of asymptotic spectra of Strassen (J. Reine Angew. Math. 1988) to
obtain a new dual characterisation of the Shannon capacity of graphs. Elements
in the asymptotic spectrum of graphs include the Lovász theta number, the
fractional clique cover number, the complement of the fractional orthogonal
rank and the fractional Haemers bound.

1. Introduction

1.1. Shannon capacity of graphs. This paper is about the Shannon capacity of
graphs, which was introduced by Shannon in [Sha56]. Let G be a (finite simple)
graph with vertex set V (G) and edge set E(G). An independent set (also called
stable set) in G is a subset of V (G) that contains no edges. The independence
number or stability number α(G) is the cardinality of the largest independent set
in G. For graphs G and H, the and-product G�H, also called the strong graph
product, is defined by

V (G�H) = V (G)× V (H)

E(G�H) =
{
{(g, h), (g′, h′)} :

(
{g, g′} ∈ E(G) and {h, h′} ∈ E(H)

)
or
(
{g, g′} ∈ E(G) and h = h′

)
or
(
g = g′ and {h, h′} ∈ E(H)

)}
.

The Shannon capacity Θ(G) is defined as the limit

Θ(G) := lim
N→∞

α(G�N )1/N .

This limit exists and equals the supremum supN α(G�N )1/N by Fekete’s lemma:
if x1, x2, x3, . . . ∈ R≥0 satisfy xm+n ≥ xm + xn, then limn→∞ xn/n = supn xn/n.

Computing the Shannon capacity is nontrivial already for small graphs. Lovász
in [Lov79] computed the value Θ(C5) =

√
5, where Ck denotes the k-cycle graph,

by introducing and evaluating a new graph parameter ϑ which is now known as
the Lovász theta number. For example the value of Θ(C7) is currently not known.
The Shannon capacity Θ is not known to be hard to compute in the sense of
computational complexity. On the other hand, deciding whether α(G) ≥ k, given a
graph G and k ∈ N, is NP-complete [Kar72].

1.2. Result: new dual characterisation of Shannon capacity. The result of
this paper is a new dual characterisation of the Shannon capacity of graphs. This char-
acterisation is obtained by applying Strassen’s theory of asymptotic spectra [Str88],
which in turn is based on the representation theorem of Kadison–Dubois [BS83]
(see also [PD01] and [Mar08]).
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To state our result we need the standard notions graph homomorphism, graph
complement and graph disjoint union. Let G and H be graphs. A graph homo-
morphism f : G → H is a map f : V (G) → V (H) such that for all u, v ∈ V (G),
if {u, v} ∈ E(G), then {f(u), f(v)} ∈ E(H). In other words, a graph homomorphism
maps edges to edges. The complement G of G is defined by

V (G) = V (G)

E(G) =
{
{u, v} : {u, v} 6∈ E(G), u 6= v

}
.

We define the relation 6 on graphs as follows: let G 6 H if there is a graph
homomorphism G→ H from the complement of G to the complement of H. The
disjoint union G tH is defined by

V (G tH) = V (G) t V (H)

E(G tH) = E(G) t E(H).

For n ∈ N the complete graph Kn is the graph with V (Kn) = [n] := {1, 2, . . . , n} and
E(Kn) = {{i, j} : i, j ∈ [n], i 6= j}. Thus K0 = K0 is the empty graph and K1 = K1

is the graph consisting of a single vertex and no edges.
We define the relation 6∼ on graphs as follows: let G 6∼ H if there is a se-

quence (xN ) ∈ NN with x1/NN → 1 when N →∞ such that for every N ∈ N

G�N 6 (H�N )txN = H�N t · · · tH�N︸ ︷︷ ︸
xN

holds.

Theorem 1.1. Let S ⊆ {graphs} be a collection of graphs which is closed under
the disjoint union t and the strong graph product �, and which contains the graph
with a single vertex, K1. Define the asymptotic spectrum X(S) as the set of all
maps φ : S → R≥0 such that, for all G,H ∈ S

(1) if G 6 H, then φ(G) ≤ φ(H)
(2) φ(G tH) = φ(G) + φ(H)
(3) φ(G�H) = φ(G)φ(H)
(4) φ(K1) = 1.

Then we have

(i) G 6∼ H iff ∀φ ∈ X(S) φ(G) ≤ φ(H)
(ii) Θ(G) = minφ∈X(S) φ(G).

Remark 1.2. Statement (ii) of Theorem 1.1 is nontrivial in the sense that Θ is
not an element of X({graphs}). Namely, Θ is not additive under t by a result of
Alon [Alo98], and Θ is not multiplicative under � by a result of Haemers [Hae79]. It
turns out that the graph parameter G 7→ maxφ∈X({graphs}) φ(G) is itself an element
of X(G), and is known as the fractional clique cover number χf (see Section 5.2 and
e.g. [Sch03, Eq. (67.112)]). While writing this paper it was brought to the author’s
attention that in [Fri17, Example 8.25] a statement is proven that is slightly weaker
than Theorem 1.1, in the sense that condition (2) is not imposed.

Remark 1.3. The relation G 6∼ H defined in Theorem 1.1 above can equivalently
be characterised by G�N 6 H�(N+o(N)). One may naturally consider the optimal
coefficient α ∈ R for which an asymptotic inequality G�N 6 H�(αN+o(N)) holds,
as is also studied in [WS17]. Statement (i) of Theorem 1.1 naturally implies a
characterisation of this optimal rate in terms of the asymptotic spectrum.
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1.3. Known elements in the asymptotic spectrum of graphs. Several graph
parameters from the literature can be shown to be in the asymptotic spectrum of
graphsX({graphs}). The elements inX({graphs}) that the author is currently aware
of are: the Lovász theta number ϑ [Lov79], the fractional clique cover number χf ,
the complement of the fractional orthogonal rank, ξf [CMR+14], and for each field F
the fractional Haemers bound RF

f [Bla13, BC18]. Bukh and Cox in [BC18] prove
a separation result which implies that the fractional Haemers bounds provide an
infinite family in X({graphs})!

1.4. Strassen: asymptotic rank and asymptotic subrank of tensors. Volker
Strassen developed the theory of asymptotic spectra in the context of tensors in the
series of papers [Str86, Str87, Str88, Str91]. For any family S of tensors (of some
fixed order, over some fixed field, but with arbitrary dimensions) which is closed
under tensor product and direct sum and which contains the “diagonal tensors”, there
is an asymptotic spectrum X(S) characterising the “asymptotic restriction preorder”
on S. The asymptotic restriction preorder is closely related to the asymptotic rank
and asymptotic subrank of tensors. Understanding these notions is in turn the
key to understanding the computational complexity of matrix multiplication (see
also [BCS97]), Strassen’s original motivation.

Strassen constructed a collection of elements in X(S) for the family S of “oblique
tensors”, a strict subset of all tensors [Str91]. These elements are called the support
functionals. Interestingly, the recent breakthrough result on the cap set prob-
lem [EG17, Tao16] can be proven using these support functionals [CVZ18]. Only
recently, Christandl, Vrana and Zuiddam in [CVZ18] constructed an infinite family
of elements in X({complex tensors of order k}), called the quantum functionals.

2. Asymptotic spectra

We discuss the theory of asymptotic spectra, following [Str88], but in the language
of semirings instead of rings. Let (S,+, ·, 0, 1) be a commutative semiring, meaning
that S is a set with a binary addition operation +, a binary multiplication operation ·,
and elements 0, 1 ∈ S, such that for all a, b, c ∈ S

(1) + is associative: (a+ b) + c = a+ (b+ c)
(2) + is commutative: a+ b = b+ a
(3) 0 + a = a
(4) · is associative: (a · b) · c = a · (b · c)
(5) · is commutative: a · b = b · a
(6) 1 · a = a
(7) · distributes over +: a · (b+ c) = (a · b) + (a · c)
(8) 0 · a = 0.

For n ∈ N we denote the sum of n ones 1 + · · ·+ 1 ∈ S by n.
Let 6 be a preorder on S, i.e. 6 is a relation on S such that for all a, b, c ∈ S
(1) 6 is reflexive: a 6 a
(2) 6 is transitive: a 6 b and b 6 c implies a 6 c.

Definition 2.1. A preorder 6 on S is a Strassen preorder if

(1) ∀n,m ∈ N n ≤ m in N iff n 6 m in S
(2) ∀a, b, c, d ∈ S if a 6 b and c 6 d, then a+ c 6 b+ d and ac 6 bd
(3) ∀a, b ∈ S, b 6= 0 ∃r ∈ N a 6 rb.

Let S be a commutative semiring and let 6 be a Strassen preorder on S. We will
use ≤ to denote the usual preorder on R. Let R≥0 be the semiring of non-negative
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real numbers. Let X(S,6) be the set of 6-monotone semiring homomorphisms
from S to R≥0,

X(S) := X(S,6) := {φ ∈ Hom(S,R≥0) : ∀a, b ∈ S a 6 b⇒ φ(a) ≤ φ(b)}.
We call X(S,6) the asymptotic spectrum of (S,6). Note that for every φ ∈ X(S,6)
holds φ(1) = 1 and thus φ(n) = n for all n ∈ N. For a, b ∈ S, let a 6∼ b if there is a
sequence (xN ) ∈ NN with x1/NN → 1 when N →∞ such that for all N ∈ N we have
aN 6 bNxN . Fekete’s lemma implies that in the definition of 6∼ we may equivalently
replace the requirement x1/NN → 1 when N →∞ by infN x

1/N
N = 1. We call 6∼ the

asymptotic preorder induced by 6.
In terms of rings, the main theorem in the theory of asymptotic spectra is the

following.

Theorem 2.2 ([Str88, Cor. 2.6]). Let (R,+, · , 0, 1) be a commutative ring and
let R+ ⊆ R be a subset such that 0, 1 ∈ R+, −1 6∈ R+ and R = R+ − R+, and
such that (R+,+, · , 0, 1) forms a semiring. Let 6 be a Strassen preorder on R+

and let 6∼ be the asymptotic preorder induced by 6. Let X be the set of ring
homomorphisms R→ R that are 6-monotone on R+, i.e.

X = {φ ∈ Hom(R,R) : ∀a, b ∈ R+ a 6 b⇒ φ(a) ≤ φ(b)}.
Then for a, b ∈ R+ holds a 6∼ b iff ∀φ ∈ X φ(a) ≤ φ(b).

Let R be the Grothendieck ring of S. (As group under addition, R is the quotient
of the free abelian group on symbols [a], a ∈ S, and the subgroup generated by the
elements [a+ b]− [a]− [b], a, b ∈ S. To make R a ring, multiplication is defined by
setting [a][b] = [ab], a, b ∈ S and extending Z-linearly.) To study the asymptotic
preorder 6∼ on the semiring S, the natural approach is to apply Theorem 2.2 to R.
The canonical semiring homomorphism S → R : a 7→ [a] is, however, not injective in
general, which a priori seems an issue. Namely, [a] = [b] if and only if there exists
an element c ∈ S such that a+ c = b+ c.

To see that noninjectivity is not an issue we use the following lemma. Proving
the lemma is routine if done in the suggested order. A proof can be found in [Zui18,
Chapter 2].

Lemma 2.3. Let 4 be a Strassen preorder on a commutative semiring T . Let 4∼ be
the asymptotic preorder induced by 4 and let 4∼∼ be the asymptotic preorder induced
by 4∼. Then the following are true.

(i) Also 4∼ is a Strassen preorder on T .
(ii) For any a1, a2 ∈ T , if a1 4∼∼ a2, then a1 4∼ a2.
(iii) For any a1, a2, b ∈ T we have a1 + b 4∼ a2 + b iff a1 4∼ a2.

Let R+ ⊆ R be the image of S under the canonical map S → R. Define the
relation 6∼ on R+ by letting [a] 6∼ [b] if a 6∼ b for any a, b ∈ S. One verifies
using Lemma 2.3 that 6∼ is a Strassen preorder on R+ and that for any a, b ∈ S
holds [a] 6∼ [b] if and only if a 6∼ b. Moreover, one verifies that 6∼∼ coincides with 6∼
on R+. Applying Theorem 2.2 to R+ ⊆ R with the Strassen preorder 6∼, and using
the fact that X(S,6) = X(S,6∼), yields the following corollary.

Corollary 2.4. Let S be a commutative semiring and let 6 be a Strassen preorder
on S. Then

∀a, b ∈ S a 6∼ b iff ∀φ ∈ X(S,6) φ(a) ≤ φ(b).

Remark 2.5. One can prove that the semiring of graphs S that we will consider
in Section 4 is, in fact, additively cancellative, which means that for any a, b, c ∈ S
holds a+ c = b+ c if and only if a = b. In that case the canonical map S → R is
injective and the statement of Corollary 2.4 follows directly from Theorem 2.2. The
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above argument shows that S being additively cancellative is not necessary for the
conclusion of Corollary 2.4 to hold.

Remark 2.6. Alternatively, to prove Corollary 2.4 one may integrate the proofs
of Strassen [Str88] and Becker–Schwartz [BS83] in a manner that avoids passing to
the Grothendieck ring altogether. Such a proof can be found in the author’s PhD
thesis [Zui18, Chapter 2].

Remark 2.7. For a ∈ S, let â : X(S) → R≥0 : φ 7→ φ(a). Let R≥0 have the
Euclidean topology. Endow X(S) with the weak topology with respect to the
maps â for a ∈ S. It can be shown that with this topology X(S) is a nonempty
compact Hausdorff space, see e.g. [Str88].

3. Rank and subrank

Strassen in [Str88] studied the asymptotic rank and asymptotic subrank of tensors
(cf. Section 1.4). We generalise the notions of asymptotic rank and asymptotic
subrank of tensors to arbitrary semirings S with a Strassen preorder 6. Let a ∈ S.
Define the rank

R(a) := min{r ∈ N : a 6 r}
and the subrank

Q(a) := max{s ∈ N : s 6 a}.
Then Q(a) ≤ R(a). Define the asymptotic rank

˜R(a) := lim
N→∞

R(aN )1/N .

When a = 0 or a ≥ 1 define the asymptotic subrank

˜Q(a) := lim
N→∞

Q(aN )1/N .

By Fekete’s lemma these limits exist, and asymptotic rank is an infimum and
asymptotic subrank is a supremum as follows,

˜R(a) = inf
N

R(aN )1/N

˜Q(a) = sup
N

Q(aN )1/N when a = 0 or a ≥ 1.

Corollary 2.4 implies that the asymptotic rank and asymptotic subrank have the
following dual characterisation in terms of the asymptotic spectrum. The proof is
essentially the same as the proof of [Str88, Th. 3.8].

Corollary 3.1 (cf. [Str88, Th. 3.8]). Let a ∈ S such that a > 1 and such that there
exists an element k ∈ N with ak > 2. Then

˜Q(a) = min
φ∈X(S)

φ(a).

Let a ∈ S such that a > 1. Then

˜R(a) = max
φ∈X(S)

φ(a).

Proof. Let φ ∈ X(S). For N ∈ N, Q(aN ) ≤ φ(aN ) = φ(a)N . Therefore ˜Q(a) ≤ φ(a).
We conclude ˜Q(a) ≤ minφ∈X(S) φ(a). It remains to prove ˜Q(a) ≥ minφ∈X(S) φ(a).
Let a > 1 and ak > 2. Let y := minφ∈X(S) φ(a). From a > 1 follows that for
all φ ∈ X(S) holds φ(a) ≥ φ(1) = 1, and so y ≥ 1. By definition of y we have

∀φ ∈ X(S) φ(a) ≥ y.
Take the mth power on both sides,

∀φ ∈ X(S),m ∈ N φ(am) ≥ ym.
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Take the floor on the right-hand side,

∀φ ∈ X(S),m ∈ N φ(am) ≥ bymc.
Apply Corollary 2.4 to pass to the asymptotic preorder

∀m ∈ N am >∼ by
mc.

Then, by the definition of asymptotic preorder,

∀m,N ∈ N amN2εm,N > bymcN for some εm,N ∈ o(N).

Now we use ak > 2 to get

∀m,N ∈ N amN+kεm,N > bymcN .
Then

∀m,N ∈ N Q(amN+kεm,N )
1

mN+kεm,N ≥ bymc
N

mN+kεm,N .

Choose m = m(N) with m(N) → ∞ as N → ∞ and εm(N),N ∈ o(N) to ob-
tain ˜Q(a) = supN Q(aN )1/N ≥ y. This proves the first statement.

The second statement is proven similarly. �

4. The asymptotic spectrum of graphs

We apply the theory of the previous two sections to graphs. Let G be the set of
isomorphism classes of finite simple graphs. Let � be the strong graph product,
let t be the disjoint union of graphs, and let Kn be the complete graph with n
vertices, as defined in the introduction.

Lemma 4.1. The set G with addition t, multiplication �, additive unit K0 and
multiplicative unit K1 is a commutative semiring.

The complements K0,K1,K2, . . . of the complete graphs behave like N in G.
Let G,H ∈ G. Let G 6 H if there is a graph homomorphism G → H. In

other words, G 6 H iff there is a map φ : V (G) → V (H) such that ∀u, v ∈ V (G)
with u 6= v, if {u, v} 6∈ E(G), then {φ(u), φ(v)} 6∈ E(H).

The reader readily verifies the following lemma.

Lemma 4.2. The relation 6 is a Strassen preorder on G. That is:
(i) For n,m ∈ N, Kn 6 Km iff n ≤ m.
(ii) If A 6 B and C 6 D, then A t C 6 B tD and A� C 6 B �D.
(iii) For A,B ∈ G, if B 6= K0, then there is an r ∈ N with A 6 Kr �B.

Let 6∼ be the asymptotic preorder induced by 6. As in the previous section,
let Q(G) = max{m ∈ N : m 6 G} be the subrank. One verifies that Q(G) equals
the independence number α(G). Let R(G) = min{n ∈ N : G 6 n} be the rank. One
verifies that R(G) equals the clique cover number χ(G), i.e. the chromatic number
of the complement χ(G).

Recall the definition of the Shannon capacity Θ(G) := limN→∞ α(G�N )1/N .
Thus Θ(G) equals the asymptotic subrank ˜Q(G). One analogously defines the
asymptotic clique cover number ˜χ(G) = limN→∞ χ(G�N )1/N , which equals the
asymptotic rank ˜R(G). It is a nontrivial fact that the parameter ˜χ(G) equals the
so-called fractional clique cover number χf (G), see Section 5.2.

Proof of Theorem 1.1. Let S ⊆ G be a semiring. By Lemma 4.1 and Lemma 4.2
we may apply Corollary 2.4. This gives statement (i) of Theorem 1.1. Let G ∈ S.
If G = K0, then φ(G) = 0 = ˜Q(G) for any φ ∈ X(S). If K1 6 G 6 K1,
then φ(G) = 1 = ˜Q(G) for any φ ∈ X(S). Otherwise G > K2. Then we may apply
Corollary 3.1. This gives statement (ii) of Theorem 1.1. �
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We are left with a clear goal: explicitly describe the asymptotic spectrum of
graphs X(G).

5. Known elements in the asymptotic spectrum of graphs

We finish with an overview of some known elements in the asymptotic spectrum
of graphs X(G).

5.1. Lovász theta number. For any real symmetric matrix A let Λ(A) be the
largest eigenvalue. The Lovász theta number ϑ(G) is defined as

ϑ(G) := min{Λ(A) : A ∈ RV (G)×V (G) symm., {u, v} 6∈ E(G)⇒ Auv = 1}.

The parameter ϑ(G) was introduced by Lovász in [Lov79]. We refer to [Knu94]
and [Sch03] for a survey. It follows from now well-known properties that ϑ ∈ X(G).

5.2. Fractional graph parameters. Besides the Lovász theta number there are
several elements in X({graphs}) that are naturally obtained as fractional versions
of sub-multiplicative, sub-additive, 6-monotone maps G → R≥0. For any map
φ : G → R≥0 we define a fractional version φf by

φf (G) = inf
d

φ
(
G�Kd

)
d

.

We will discuss several fractional parameters from the literature.

5.2.1. Fractional clique cover number. We consider the fractional version of the
clique cover number χ(G) = χ(G). It is well-known that χf ∈ X(G), see e.g. [Sch03].
The fractional clique cover number χf in fact equals the asymptotic clique cover
number ˜χ(G) = limN→∞ χ(G�N )1/N which we introduced in the previous section,
see [MP71] and also [Sch03, Th. 67.17].

5.2.2. Fractional Haemers bound. Let rank(A) denote the matrix rank of any ma-
trix A. For any set C of matrices define rank(C) := min{rank(A) : A ∈ C}. For a
field F and a graph G define the set of matrices

MF(G) := {A ∈ FV (G)×V (G) : ∀u,v Avv 6= 0, {u, v} 6∈ E(G)⇒ Auv = 0}.

Let RF(G) := rank(MF(G)). The parameter RF(G) was introduced by Haemers
in [Hae79] and is known as the Haemers bound. The fractional Haemers bound RF

f

was studied by Anna Blasiak in [Bla13] and was recently shown to be �-multiplica-
tive by Bukh and Cox in [BC18]. From this it is not hard to prove that RF

f ∈ X(G).
Bukh and Cox in [BC18] furthermore prove a separation result: for any field F of
nonzero characteristic and any ε > 0, there is a graph G such that for any field F′
with char(F) 6= char(F′) the inequality RF

f (G) < εRF′

f (G) holds. This separation
result implies that there are infinitely many elements in X(G)!

5.2.3. Fractional orthogonal rank. In [CMR+14] the orthogonal rank ξ(G) and its
fractional version the projective rank ξf (G) are studied. It easily follows from results
in [CMR+14] that G 7→ ξf (G) is in X(G).
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