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Abstract
We prove a lower bound of Ω(n2/ log2 n) on the size of any syntactically multilinear arithmetic
circuit computing some explicit multilinear polynomial f(x1, . . . , xn). Our approach expands
and improves upon a result of Raz, Shpilka and Yehudayoff ([31]), who proved a lower bound
of Ω(n4/3/ log2 n) for the same polynomial. Our improvement follows from an asymptotically
optimal lower bound for a generalized version of Galvin’s problem in extremal set theory.
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1 Introduction

An arithmetic circuit is one of the most natural and standard computational models for
computing multivariate polynomials. Such circuits provide a succinct representation of
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11:2 Unbalancing Sets and Lower Bounds for Multilinear Arithmetic Circuits

multivariate polynomials, and in some sense, they can be thought of as algebraic analogs
of boolean circuits. Formally, an arithmetic circuit over a field F and a set of variables
X = {x1, x2, . . . , xn} is a directed acyclic graph in which every vertex has in-degree either
zero or two. The vertices of in-degree zero (called leaves) are labeled by variables in X or
elements of F, and the vertices of in-degree two are labeled by either + (called sum gates) or
× (called product gates). A circuit can have one or more vertices of out degree zero, known
as the output gates. The polynomial computed by a vertex in any4 given circuit is naturally
defined in an inductive way: a leaf computes the polynomial which is equal to its label. A
sum gate computes the polynomial which is the sum of the polynomials computed at its
children and a product gate computes the polynomial which is the product of the polynomials
at its children. The polynomials computed by a circuit are the polynomials computed by its
output gates. The size of an arithmetic circuit is the number of vertices in it.

It is not hard to show (see, e.g., [7]) that a random polynomial of degree d = poly(n) in
n variables cannot be computed by an arithmetic circuit of size poly(n) with overwhelmingly
high probability. A fundamental problem in this area of research is to prove a similar
super-polynomial lower bound for an explicit polynomial family. Unfortunately, the problem
continues to remain wide open and the current best lower bound known for general arithmetic
circuits5 is an Ω(n logn) lower bound due to Strassen [37] and Baur and Strassen [5] from
more than three decades ago. The absence of substantial progress on this general question has
led to focus on the question of proving better lower bounds for restricted and more structured
subclasses of arithmetic circuits. Arithmetic formulas [19], non-commutative arithmetic
circuits [26], algebraic branching programs [22], and low depth arithmetic circuits [27, 13, 14,
30, 15, 11, 20, 24, 23] are some such subclasses which have been studied from this perspective.
For an overview of the definition of these models and the state of art for lower bounds for
them, we refer the reader to the surveys of Shpilka and Yehudayoff [35] and Saptharishi [34].

Several of the most important polynomials in algebraic complexity and in mathematics
in general are multilinear. Notable examples include the determinant, the permanent, and
the elementary symmetric polynomials. Therefore, one subclass which has received a lot of
attention in the last two decades and will be the focus of this paper is the class of multilinear
arithmetic circuits.

1.1 Multilinear arithmetic circuits
For an arithmetic circuit Ψ and a vertex v in Ψ, we denote by Xv the set of variables xi such
that there is a directed path from a leaf labeled by xi to v; in this case, we also say that v
depends on xi6. A polynomial P is said to be multilinear if the individual degree of every
variable in P is at most one.

An arithmetic circuit Ψ is said to be syntactically multilinear if for every multiplication
gate v in Ψ with children u and w, the sets of variables Xu and Xw are disjoint. We say that
Ψ is semantically multilinear if the polynomial computed at every vertex is a multilinear
polynomial. Observe that if Ψ is a syntactically multilinear circuit, then it is also semantically
multilinear. However, it is not clear if every semantically multilinear circuit can be efficiently
simulated by a syntactically multilinear circuit.

4 Throughout this paper, we will use the terms gates and vertices interchangeably.
5 In the rest of the paper, when we say a lower bound, we always mean it for an explicit polynomial

family.
6 We remark that this is a syntactic notion of dependency, since it is possible that every monomial with xi

might get canceled in the intermediate computation and might not eventually appear in the polynomial
computed at v.
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A multilinear circuit is a natural model for computing multilinear polynomials, but it is
not necessarily the most efficient one. Indeed, it is remarkable that all the constructions of
polynomial size arithmetic circuits for the determinant [8, 6, 25], which are fundamentally
different from one another, nevertheless share the property of being non-multilinear, namely,
they involve non-multilinear intermediate computations which eventually cancel out. There
are no subexponential-size multilinear circuits known for the determinant, and one may very
well conjecture these do not exist at all.

Multilinear circuits were first studied by Nisan and Wigderson [27]. Subsequently, Raz [29]
defined the notion of multilinear formulas7 and showed that any multilinear formula computing
the determinant or the permanent of an n× n variable matrix must have super-polynomial
size. In a follow up work [28], Raz further strengthed the results in [29] and showed that
there is a family of multilinear polynomials in n variables which can be computed by a
poly(n) size syntactically multilinear arithmetic circuits but require multilinear formulas of
size nΩ(logn).

Building on the ideas and techniques developed in [29], Raz and Yehudayoff [33] showed an
exponential lower bound for syntactically multilinear circuits of constant depth. Interestingly,
they also showed a super-polynomial separation between depth ∆ and depth ∆+1 syntactically
multilinear circuits for constant ∆.

In spite of the aforementioned progress on the question of lower bounds for multilinear
formulas and bounded depth syntactically multilinear circuits, there was no Ω(n1+ε) lower
bounds known for general syntactically multilinear circuits for any constant ε > 0. In fact,
the results in [28] show that the main technical idea underlying the results in [29, 28, 33] is
unlikely to directly give a super-polynomial lower bound for general syntactically multilinear
circuits. However, a weaker super-linear lower bound still seemed conceivable via similar
techniques.

Raz, Shpilka and Yehudayoff [31] showed that this is indeed the case. By a sophisticated
and careful application of the techniques in [29] along with several additional ideas, they
established an Ω

(
n4/3

log2 n

)
lower bound for an explicit n variate polynomial. Since then, this has

remained the best lower bound known for syntactically multilinear circuits. In this paper, we
improve this result by showing an almost quadratic lower bound for syntactically multilinear
circuits for an explicit n variate polynomial. In fact, the family of hard polynomials in this
paper is the same as the one used in [31]. We now formally state our result.

I Theorem 1. There is an explicit family of polynomials {fn}, where fn is an n variate
multilinear polynomial, such that any syntactically multilinear arithmetic circuit computing
fn must have size at least Ω(n2/ log2 n).

For our proof, we follow the strategy in [31]. Our improvement comes from an improvement
in a key lemma in [31] which addresses the following combinatorial problem.

I Question 2. What is the minimal integer m = m(n) for which there is a family of
subsets S1, S2, . . . , Sm ⊆ [n], each Si satisfying 6 logn ≤ |Si| ≤ n−6 logn such that for every
T ⊆ [n], |T | = bn/2c, there exists an i ∈ [m] with |T ∩ Si| ∈ {b|Si|/2c − 3 logn, b|Si|/2c −
3 logn+ 1, . . . , b|Si|/2c+ 3 logn}?

Raz, Shpilka and Yehudayoff [31] showed that m(n) ≥ Ω
(
n1/3/logn

)
. For our proof, we

show that m(n) ≥ Ω (n/logn).

7 For formulas, it is known that syntactic multilinearity and semantically multilinearity are equivalent
(See, e.g., [29]).
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11:4 Unbalancing Sets and Lower Bounds for Multilinear Arithmetic Circuits

In addition to its application to the proof of Theorem 1, Question 2 seems to be a natural
problem in extremal combinatorics and might be of independent interest, and special cases
thereof were studied in the combinatorics literature. In the next section, we briefly discuss
the state of the art of this question and state our main technical result about it in Theorem 3.

1.2 Unbalancing Sets
The following question, which is of very similar nature to Question 2, is known as Galvin’s
problem (see [12, 9]): What is the minimal integer m = m(n), for which there exists a family
of subsets S1, . . . , Sm ⊆ [4n], each of size 2n, such that for every subset T ⊆ [4n] of size 2n
there exists some i ∈ [m] such that |T ∩ Si| = n?

It is not hard to show that m(n) ≤ 2n. Indeed, let Si = {i, i+ 1, . . . , i+ 2n− 1}, for
i ∈ {1, 2, . . . , 2n+ 1}, and let αi(T ) = |T ∩ Si| − |([4n] \ T ) ∩ Si|. Then αi(T ) is always
an even integer, α1(T ) = −α2n+1(T ), and αi − αi+1(T ) ∈ {0,±2} if i ≤ 2n. By a discrete
version of the intermediate value theorem, it follows there exists j ∈ [2n] such that αj(T ) = 0,
which implies that exactly n elements of Sj belong to T . Thus, the family {S1, . . . , S2n}
satisfies this property.

As for lower bounds, a counting argument shows that m(n) = Ω(
√
n), since for each fixed

S of size [2n] and random T of size 2n,

Pr[|T ∩ S| = n] =
(2n
n

)
·
(2n
n

)(4n
2n
) = Θ

(
1√
n

)
.

Frankl and Rödl [12] were able to show that m(n) ≥ εn for some ε > 0 if n is odd, and
Enomoto, Frankl, Ito and Nomura [9] proved that m(n) ≥ 2n if n is odd, which implies that
even the constant in the construction given above is optimal. Until this work, the question
was still open for even values of n: in fact, Markert and West (unpublished, see [9]) showed
that for n ∈ {2, 4}, m(n) < 2n.

For our purposes, we need to generalize Galvin’s problem in two ways. The first is to lift
the restriction on the set sizes. The second is to ask how small can the size of the family
F = {S1, . . . , Sm} ⊆ 2[n] be if we merely assume each balanced partition T is “τ -balanced”
on some S ∈ F , namely, if ||T ∩ S| − |S|/2|| ≤ τ for some S (the main case of interest for
us is τ = O(logn)). Of course, since T itself is balanced, very small or very large sets are
always τ -balanced, and thus we impose the (tight) non-triviality condition 2τ ≤ |S| ≤ n− 2τ
for every S ∈ F .

Once again, by defining Si = {i, i+ 1, . . . , i+ n/2− 1} (n is always assumed to be even),
the family F =

{
S1, S1+τ , S1+2τ , ..., S1+bn/(2τ)c·τ

}
gives a construction of size O(n/τ) such

that every balanced partition T is τ -balanced on some S ∈ F .
It is natural to conjecture that, perhaps up to a constant, this construction is optimal.

Indeed, this is what we prove here.

I Theorem 3. Let n be any large enough even number, and let τ ≥ 1 be an integer. Let
S1, . . . , Sm ⊆ [n] be sets such that for all i ∈ [m], 2τ ≤ |Si| ≤ n− 2τ . Further, assume that
for every Y ⊆ [n] of size n/2 there exists i ∈ [m] such that ||Y ∩ Si| − |Si|/2| < τ . Then,
m ≥ Ω(n/τ).

In particular, Theorem 3 proves a linear lower bound m = Ω(n) for the original problem
of Galvin, even when the universe size is of the form 4k for even k.

We remark that the relevance of problems of this form to lower bounds in algebraic
complexity was also observed by Jansen [18] who considered the problem of obtaining a
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lower bound on homogenous syntactically multilinear algebraic branching program (which is
a weaker model than syntactically multilinear circuits), and essentially proposed Theorem 3
as a conjecture. In fact, a special case of this theorem (see Theorem 9), which has a simpler
proof, is already enough to derive the improved lower bounds for syntactically multilinear
circuits.

Alon, Bergmann, Coppersmith and Odlyzko [1] considered a very similar problem of
balancing ±1-vectors: they studied families of vectors F = {v1, . . . , vm} such that vi ∈ {±1}n

for i ∈ [m], which satisfy the properties that for every w ∈ {±1}n (not necessarily balanced),
there exists i ∈ [m] such that | 〈vi, w〉 | ≤ d. They generalized a construction of Knuth [21]
and proved a matching lower bound which together showed that m = dn/(d+ 1)e is both
necessary and sufficient for such a set to exist. Galvin’s problem seems like “the {0, 1}
version” of the same problem, but, to quote from [1], there does not seem to be any simple
dependence between the problems.

1.3 Proof overview
In this section, we discuss the main ideas and give a brief sketch of the proofs of Theorem 1
and Theorem 3. Since our proof heavily depends on the proof in [31] and follows the same
strategy, we start by revisiting the main steps in their proof and noting the key differences
between the proof in [31] and our proof. We also outline the reduction to the combinatorial
problem of unbalancing set families in Question 2.

Proof sketch of [31]
The proof in [31] starts by proving a syntactically multilinear analog of a classical result of
Baur and Strassen [5], where it was shown that if an n variate polynomial f is computable
by an arithmetic circuit Ψ of size s(n), then there is an arithmetic circuit Ψ′ of size at most
5s(n) with n outputs such that the i-th output gate of Ψ′ computes fi = ∂f

∂xi
. Raz, Shpilka

and Yehudayoff show that if Ψ is syntactically multilinear, then the circuit Ψ′ continues to
be syntactically multilinear. Additionally, there is no directed path from a leaf labeled by xi
to the output gate computing fi.8

Once we have this structural result, it would suffice to prove a lower bound on the size of
Ψ′. For brevity, we denote the subcircuit of Ψ′ rooted at the output gate computing fi by Ψ′i.
As a key step of the proof in [31], the authors identify certain sets of vertices U1,U2, . . . ,Un
in Ψ′ with the following properties.

For every i ∈ [n], Ui is a subset of vertices in Ψ′i.
For every i ∈ [n] and v ∈ Ui, the number of j 6= i such that v ∈ Uj is not too large (at
most O(logn)).

Observe that at this point, showing a lower bound of s′(n) on the size of each Ui implies
a lower bound of Ω(ns′(n)/logn) on the size of Ψ′ and hence Ψ. In [31], the authors show
that there is an explicit f such that each Ui must have size at least Ω(n1/3/ logn), thereby
getting a lower bound of Ω(n4/3/ log2 n) on the size of Ψ.

For our proof, we follow precisely this high level strategy. Our improvement in the lower
bound comes from showing that each Ui must be of size at least Ω(n/ logn) and not just
Ω(n1/3/ logn) as shown in [31]. We now elaborate further on the main ideas in this step
in [31] and the differences with the proofs in this paper.

8 See Theorem 15 for a formal statement.
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11:6 Unbalancing Sets and Lower Bounds for Multilinear Arithmetic Circuits

We start with some intuition into the definition of the sets Ui in [31]. Consider a vertex v
in Ψ′ which depends on at least k variables. Without loss of generality, let these variables be
{x1, x2, . . . , xk}. From item 4 in Theorem 15, we know that the variable xi does not appear
in the subcircuit Ψ′i. Therefore, the vertex v cannot appear in the subcircuits Ψ′1,Ψ′2, . . . ,Ψ′k.
So, if we define the set Ui as the set of vertices in Ψ′i which depend on at least k variables,
then Ui must be disjoint from vertices in at least k of the subcircuits Ψ′1,Ψ′2, . . . ,Ψ′n. Picking
k ≥ n−O(logn) would give us the desired property. So, if we can prove a lower bound on
the size of the set Ui, we would be done. However, the definition of the set Ui so far turns
out to be too general: indeed, it is not even a priori clear that the Ui has any other gates
apart from the output gate of Ψ′i.

As is often the case, the solution to this obstacle is to prove a stronger claim by imposing
additional structure on the set Ui. In [31], the set Ui (called the upper leveled gates in Ψ′i) is
defined as the set of all vertices in Ψ′i which depend on at least n− 6 logn variables and have
a child which depends on more than 6 logn variables and less than n− 6 logn variables. This
additional structure is helpful in proving a lower bound on the size of Ui. We now discuss
this in some more detail.

For every i ∈ [n], let Li be the set of vertices u in Ψ′i, such that 6 logn < |Xu| < n−6 logn,
and u has a parent in Ui. These gates are referred to as lower leveled gates. Observe that
|Ui| ≥ |Li|

2 , since the in-degree of every vertex in ψ′i is at most 2. The key structural property
of the set Li is the following (see Proposition 5.5 in [31]).

I Lemma 4 ([31]). Let i ∈ [n], and let h1, h2, . . . , h` be the polynomials computed by the
gates in Li. Then, there exist multilinear polynomials g1, g2, . . . , g`, g such that

fi =
∑
j∈[`]

gj · hj + g (1)

where
For every j ∈ [`], hj and gj are variable disjoint.
The degree of g is at most O(logn).

Observe that (1) is basically a decomposition of a potentially-hard polynomial fi in terms
of the sum of products of multilinear polynomials in an intermediate number of variables.
The goal is to show that for an appropriate explicit fi, the number of summands on the
right hand side of (1) cannot be too small. A similar scenario also appears in the multilinear
formula lower bounds and bounded depth multilinear formula lower bounds of [29, 28, 33]
(albeit with some key differences). Hence, a natural approach at this point would be to use
the tools in [29, 28, 33], namely the rank of the partial derivative matrix, to attempt to prove
this lower bound. We refer the reader to Section 2.2 for the definitions and properties of the
partial derivative matrix and proceed with the overview. For each j ∈ [`], let the polynomial
hj in Lemma 4 depend on the variables Sj ⊆ X. The key technical step in the rest of the
proof is to show that there is a partition of the set of variables X = {x1, x2, . . . , xn} into Y
and Z such that |Y | = |Z| and for every j ∈ [`], ||Sj ∩ Y | − |Sj ∩ Z|| ≥ Ω(logn). In [31], the
authors show that there is an absolute constant ε > 0 such that if ` ≤ εn1/3/ logn, then there
is an equipartition of X which unbalances all the sets {Sj : j ∈ [`]} by at least Ω(logn). Our
key technical contribution (Theorem 3) in this paper is to show that as long as ` ≤ εn/ logn,
there is an equipartition which unbalances all the Sj ’s by at least Ω(logn). This implies an
Ω(n/ logn) on the size of each set Ui, and thus an Ω(n2/ log2 n) lower bound on the circuit
size.

Before we dive into a more detailed discussion on the overview and main ideas in the
proof of Theorem 3 in the next section, we would like to remark that the lower bound
question in (1) seems to be a trickier question than what is encountered while proving
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multilinear formula lower bounds [29, 28] or bounded depth syntactically multilinear circuit
lower bounds [33]. The main differences are that in the proofs in [29, 28, 33], the sets Sj have
a stronger guarantee on their size (at least nΩ(1) and at most n − nΩ(1)), and each of the
summands on the right has many variable disjoint factors and not just two factors as in (1).
For instance, in the formula lower bound proofs the number of variable disjoint factors in
each summand on the right is Ω(logn), and for constant depth circuit lower bounds it is
nΩ(1). Together, these properties make it possible to show much stronger lower bounds on `.
In particular, it is known that a random equipartition works for these two applications, in
the sense that it unbalances sufficiently many factors in each summand, thereby implying
that the rank of the partial derivative matrix of the polynomial is small. Hence, for an
appropriate9 fi, the number of summands must be large. However, since a set of size O(logn)
is balanced under a random equipartition with probability Ω(1/

√
logn) and the identity

in (1) involves just two variable disjoint factors, taking a random equipartition would not
enable us to prove any meaningful bounds.

Proof sketch of Theorem 3
Recall that our task is, given a small collection of subsets of [n], to find a balanced partition
which is unbalanced on each of the sets. Equivalently, we would like to prove that if F is a
family of subsets such that every balanced partition balances at least one set in F , then |F|
must be large (of course, F must satisfy the conditions in Theorem 3).

We first sketch the proof of a special case (which suffices for the main application here),
when n = 4p and p is a prime. For the sake of simplicity, suppose also that all subsets S ∈ F
are of even size, and assume further that for every subset T ⊆ [n] of size n/2 there exists
S ∈ F such that T completely balances S, namely, |T ∩ S| = |S|/2. One possible approach
to obtain lower bounds on |F| is via an application of the polynomial method as done, for
example, in [1]. Define the following polynomial over, say, the rationals:

f(x1, . . . , xn) =
∏
S∈F

(〈x,1S〉 − |S|/2).

By the assumption on F , the polynomial f evaluates to 0 over all points in {0, 1}n with
Hamming weight exactly n/2. We can also argue, using the assumption on the set sizes in
F , that f is not identically zero, and clearly deg(f) ≤ |F|. Thus, a lower bound on deg(f)
translates to a lower bound on |F|.

This idea, however, seems like a complete nonstarter, since there exists a degree 1 non-zero
polynomial which evaluates to 0 over the middle layer of {0, 1}n, namely,

∑
i xi − n/2.

A very clever solution to this potential obstacle was found by Hegedűs [16]. Suppose
n = 4p for some prime p. The main insight in [16] is to consider the polynomial f over Fp,
and to add the requirement that there exists some z ∈ {0, 1}4p, of Hamming weight exactly
3p, such that f(z) 6= 0. This requirement rules out the trivial example

∑
i xi − n/2, and

Hegedűs was able to show that the degree of any polynomial with these properties must be
at least p = n/4 (see Lemma 5 for the complete statement).

We are thus left with the task of proving that our polynomial evaluates to a non-zero
value over some point z ∈ {0, 1}4p of Hamming weight 3p. This turns out to be not very
hard to show, assuming each set is of size at least, say, 100 logn and at most n− 100 logn,

9 fi is chosen so that the the partial derivative matrix for fi is of full rank for every equipartition.

CCC 2018



11:8 Unbalancing Sets and Lower Bounds for Multilinear Arithmetic Circuits

by choosing a random such vector z. Indeed, it is not surprising that it is much easier to
directly show that a highly unbalanced partition of [n] (into 3n/4 vs n/4) unbalances all the
sets F .10

As mentioned earlier, the case n = 4p and τ ≥ 100 logn in Theorem 3 is considerably
easier to prove and suffices for the application to circuit lower bounds. Proving this theorem
for every even n and every τ ≥ 1 requires further technical ideas which appear in the full
version of this paper [2].

Even though Lemma 5 seems to be a fundamental statement about polynomials over
finite fields and could conceivably have an elementary proof, the proof in [16] uses more
advanced techniques. It relies on the description of Gröbner basis for ideals of polynomials
in F[x1, x2, . . . , xn] which vanish on all points in {0, 1}n of weight equal to n/2. A complete
description of the reduced Gröbner basis for such ideals was given by Hegedűs and Rónyai [17]
and their proof builds up on a number of earlier partial results [4, 10] on this problem.

To the best of our knowledge, the proof in [16] is the only known proof of Lemma 5, and
giving a self contained elementary proof of it seems to be an interesting question.

Organization of the paper

In the rest of the paper, we set up some notation and discuss some preliminary notions
in Section 2, prove Theorem 3 in Section 3 and complete the proof of Theorem 1 in Section 4.
Throughout the paper we assume, whenever this is needed, that n is sufficiently large, and
make no attempts to optimize the absolute constants.

2 Preliminaries

For n ∈ N, we denote [n] = {1, 2, . . . , n}. For a prime p, we denote by Fp the finite field
with p elements. For two integers i, j with i ≤ j, we denote [i, j] = {a ∈ Z : i ≤ a ≤ j}. The
characteristic vector of a set S ⊆ [n] is denoted by 1S ∈ {0, 1}n.

As is standard,
([n]
k

)
denotes the family {S ⊆ [n] : |S| = k}.

For an even n ∈ N and Y ⊆ [n] such that |Y | = n/2, we call Y a balanced partition of [n],
with the implied meaning that Y partitions [n] evenly into Y and [n] \ Y . The imbalance
of a set S ⊆ [n] under Y is dY (S) := ||Y ∩ S| − |S|/2|. Observe the useful symmetry
dY (S) = dY ([n] \ [S]), which follows from the fact that |Y | = n/2. We say S is τ -unbalanced
under Y if dY (S) ≥ τ .

We use the following lemma from [16].

I Lemma 5 ([16]). Let p be a prime, and let f ∈ Fp[x1, . . . , x4p] be a polynomial. Suppose
that for all Y ∈

([4p]
2p
)
, it holds that f(1Y ) = 0, and that there exists T ⊆ [4p] such that

|T | = 3p and f(1T ) 6= 0. Then deg(f) ≥ p.

2.1 Hypergeometric distribution

For parameters N,M, k, where N ≥M , by H(M,N, k), we denote the distribution of |S ∩ T |,
where S is any fixed subset of [N ] of size M , and T is a uniformly random subset of [N ] of

10 In our case, we need to argue that the imbalance is non-zero modulo p, which adds an extra layer of
complication, although again, one which is not hard to solve.
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size equal to k. Clearly,

Pr[|S ∩ T | = i] =
(
M
i

)(
N−M
k−i

)(
N
k

) .

The expected value of |S ∩ T | under this distribution is equal to kM/N . We need the
following tail bound of hypergeometric distribution for our proof.

I Lemma 6 ([36]). Let N,M, k, and H(M,N, k) be as defined above. Then, for every t

Pr[||S ∩ T | − kM/N | ≥ tk] ≤ e−2t2k .

I Lemma 7 (Hoeffding’s inequality, [3]). Let X1, X2, . . . , Xn be independent random variables
taking values in {0, 1}. Then,

Pr
[∣∣∣∣∣

n∑
i=1

Xi − E[
n∑
i=1

Xi]

∣∣∣∣∣ ≥ t
]
≤ 2 exp(−2t2/n) .

2.2 Partial derivative matrix
For a circuit Ψ, we denote by |Ψ| the size of Ψ, namely, the number of gates in it. For a gate
v, we denote by Xv the set of variables that occur in the subcircuit rooted at v.

Let X = {x1, . . . , xn} be a set of variables, Y ⊆ X (not necessarily of size n/2) and let
Z = X \ Y . For a multilinear polynomial f(X) ∈ F[X], we define the partial derivative
matrix of f with respect to Y,Z, denoted MY,Z(f), as follows: the rows of M are indexed
by multilinear monomials in Y . the columns of M are indexed by multilinear monomials in
Z. The entry which corresponds to (m1,m2) is the coefficient of the monomial m1 ·m2 in f .
We define rankY,Z(f) = rank(MY,Z(f)).

The following properties of the partial derivative matrix are easy to prove and well-
documented (see, e.g., [31]).

I Proposition 8. The following properties hold:
1. For every multilinear polynomial f(X) ∈ F[X], Y ⊆ X and Z = X \ Y , rankY,Z(f) ≤

min
{

2|Y |, 2|Z|
}
.

2. For every two multilinear polynomials f1(X), f2(X) ∈ F[X] and for every partition
X = Y t Z, rankY,Z(f1 + f2) ≤ rankY,Z(f1) + rankY,Z(f2).

3. Let f1 ∈ F[X1] and f2 ∈ F[X2] be multilinear polynomials such that X1 ∩ X2 = ∅.
Let Yi ⊆ Xi and Zi = Xi \ Yi for i ∈ {1, 2}. Set Y = Y1 ∪ Y2, Z = Z1 ∪ Z2. Then
rankY,Z(f1 · f2) = rankY1,Z1(f1) · rankY2,Z2(f2).

4. Let f(X) ∈ F[X] be a multilinear polynomial such that X = Y t Z and |Y | = |Z| = n/2.
Suppose rankY,Z(f) = 2n/2, and let g = ∂f/∂x for some x ∈ X. Then rankY,Z(g) =
2n/2−1.

5. Let f(X) ∈ F[X] be a multilinear polynomial of total degree d. Then for every partition
X = Y t Z such that |Y | = |Z| = n/2, rankY,Z(f) ≤ 2(d+1) log(n/2).

3 Unbalancing sets under a balanced partition

In this section, we prove Theorem 3. We start by proving a special case (see Theorem 9
below) when n equals 4p for some prime p, and τ ≥ Ω(logn). This special case already
suffices for the application to the proof of Theorem 1 (for infinitely many values of n), and
has a somewhat simpler proof. We then move on to prove the case for general n and τ , which
while being similar to the proof of Theorem 9, needs some additional ideas and care.

CCC 2018



11:10 Unbalancing Sets and Lower Bounds for Multilinear Arithmetic Circuits

3.1 Special case: n = 4p and τ ≥ Ω(logn)
I Theorem 9. Let p be a large enough prime, and let log p ≤ τ ≤ p/1000. Let S1, . . . , Sm ⊆
[4p] be sets such that for all i ∈ [m], 100τ ≤ |Si| ≤ 4p− 100τ . Further, assume that for every
balanced partition Y of [4p] there exists i ∈ [m] such that dY (Si) < τ . Then, m ≥ 1

2 · p/τ .

We start with the following lemma, which shows that a small collection of sets can be
unbalanced (modulo p) by a partition which is very unbalanced.

I Lemma 10. Let p be a large enough prime, and let log p ≤ τ ≤ p/1000. Let S1, . . . , Sm ⊆
[4p] be sets such that for all i ∈ [m], 100τ ≤ |Si| ≤ 2p. Assume further m ≤ p. Then,
there exists T ⊆ [4p], |T | = 3p such that for all i ∈ [m] and for all −τ + 1 ≤ t ≤ τ ,
|Si ∩ T | 6≡ b|Si|/2c+ t mod p.

To prove Lemma 10, we use the following two technical claims. Let µ3/4 denote the
probability distribution on subsets of [4p] obtained by putting each j ∈ [4p] in T with
probability 3/4, independently of all other elements.

I Claim 11. For a random set T ∼ µ3/4, Pr[|T | = 3p] = Θ(1/√p).

Proof. The probability that |T | = 3p is given by
(4p

3p
)
· (3/4)3p · (1/4)p, which is Θ(1/√p),

by Stirling’s approximation. J

I Claim 12. Let log p ≤ τ ≤ p/1000 and let S ⊆ [4p] such that 100τ ≤ |S| ≤ 2p. For a
random set T ∼ µ3/4, the probability that for some integer −τ + 1 ≤ t ≤ τ it holds that
|T ∩ Si| = b|Si|/2c+ t mod p is at most 1/p5.

Proof. Denote s = |S|. Then E[|T ∩ S|] = 3s/4. We say T is bad for S if |T ∩ S| =
bs/2c+ t+ kp for some −τ ≤ t ≤ τ + 1 and k ∈ Z. We claim this in particular implies that
||T ∩ Si| − 3s/4| ≥ s/5. Indeed, since |T ∩ S| is an integer in the interval [0, 2p], and by the
bounds on s, the only cases needed to be analyzed are k = 0,±1.

If |T ∩ S| = bs/2c+ t− p, then clearly |T ∩ S| ≤ bs/2c which implies the statement.
If |T ∩ S| = bs/2c+ t+ p, then, as s ≤ 2p and τ ≤ s/100,

|T ∩ S| − 3s/4 ≥ −s/4− 1 + t+ p ≥ p/2 + t− 1 ≥ s/4 + t− 1 ≥ s/5

(The “−1” accounts for the fact that s/2 might not be an integer).
Finally, if |T ∩ S| = bs/2c+ t, it holds that

|T ∩ S| ≤ s/2 + τ ≤ s/2 + 2s/100,

which again implies the statement.
By Chernoff Bound (see, e.g., [3]), Pr[||T ∩ Si| − 3s/4| ≥ s/5] ≤ 2−|S|/20 ≤ 1/p5, hence

T is bad for S with at most that probability. J

The proof of Lemma 10 is now fairly immediate.

Proof of Lemma 10. Pick T ∼ µ3/4. By Claim 11, |T | = 3p with probability Θ(1/√p).
Recall that T is bad for Si if |T ∩ Si| = b|Si|/2c + t mod p for t ∈ {−τ + 1, . . . , τ}. By
Claim 11, for each Si, T is bad for Si with probability at most 1/p5. Hence, the probability
that there exists i ∈ [m] such that T is bad for Si is at most m/p5 ≤ 1/p4.

It follows that with probability at most 1−Θ(1/√p) + 1/p4 < 1, either |T | 6= 3p or T is
bad for some Si, and hence there exists a selection of T such that |T | = 3p and T is good for
all Si’s. J
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We are now ready to prove Theorem 9.

Proof of Theorem 9. Let S1, . . . , Sm be a collection of sets as stated in the theorem. Since
dY (Sj) = dY ([n] \ Sj), we can assume without loss of generality, by possibly replacing a
set with its complement, that |Sj | ≤ 2p for all j ∈ [m]. We may further assume m ≤ p as
otherwise the statement directly follows. For j ∈ [m], define the following polynomials over
Fp:

Bj(x1, . . . , x4p) =
τ∏

t=−τ+1
(
〈
x,1Sj

〉
− b|Sj |/2c − t),

where x = (x1, . . . , x4p) and 〈u, v〉 =
∑
uivi is the usual inner product. Further, define

f(x1, . . . , x4p) =
m∏
j=1

Bj(x1, . . . , x4p),

as a polynomial over Fp.
By assumption, for every Y ∈

([4p]
2p
)
, f(1Y ) = 0. This follows because

〈
1Y ,1Sj

〉
=

|Y ∩ Sj |, and by assumption, for some j is holds that dY (Sj) < τ , so it must be that
|Y ∩ Sj | − b|Sj |/2c ∈ {−τ + 1, . . . , 0, . . . , τ}, so that Bj(1Y ) = 0.

Furthermore, Lemma 10 guarantees the existence of a set T ∈
([4p]

3p
)
such that f(1T ) 6= 0,

as the set T from Lemma 10 satisfies the property that (
〈
1T ,1Sj

〉
− b|Sj |/2c − t) 6= 0 mod p

for all −τ + 1 ≤ t ≤ τ and for all j ∈ [m].
By Lemma 5, deg(f) ≥ p, and by construction, deg(f) ≤ 2τ ·m, which implies the desired

lower bound on m. J

In the full version of the paper we extend Theorem 9 for a more general range of
parameters, by proving the following.

I Theorem 13. Let n be a large enough even natural number, and let τ ∈ {1, 2, . . . , n/106}
be a parameter. Let S1, S2, . . . , Sm ⊆ [n] be sets such that for each i ∈ [m], 2τ ≤ |Si| ≤ n−2τ .
Furthermore, assume that for every balanced partition Y of [n], there exists an i such that
dY (Si) < τ . Then, m ≥ 1

105 · n/τ .

The proof of Theorem 13 appears in the full version of the paper [2]. We remark that
Theorem 9 suffices for the application to circuit lower bounds.

4 Syntactically Multilinear Arithmetic Circuits

In this section, for the sake of completeness, we review the arguments of Raz, Shpilka and
Yehudayoff [31], and show how Theorem 9 implies a lower bound of Ω(n2/ log2 n). We mostly
refer for [31] for the proofs.

Specifically, we will show the following.

I Theorem 14. Let n be an even integer, and X = {x1, . . . , xn}. Let f(X) ∈ F[X] be a
multilinear polynomial such that for every balanced partition X = Y t Z, rankY,Z(f) = 2n/2.
Let Ψ be a syntactically multilinear circuit computing f . Then |Ψ| = Ω(n2/ log2 n).

The first step in proof of Theorem 14 is to show that if f is computed by a syntactically
mutilinear circuit of size s, then there exists a syntactically multilinear circuit of size O(s)
that computes all the first-order partial derivatives of f , with the additional important
property that for each i, the variable xi does not appear in the subcircuit rooted at the
output gate which computes ∂f/∂xi.
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I Theorem 15 ([31], Theorem 3.1). Let Ψ be a syntactically multilinear circuit over a field
F and the set of variables X = {x1, . . . , xn}. Then, there exists a syntactically multilinear
circuit Ψ′, over F and X, such that:
1. Ψ′ computes all n first-order partial derivatives ∂f/∂xi, i ∈ [n].
2. |Ψ′| ≤ 5|Ψ|.
3. Ψ′ is syntactically multilinear.
4. For every i ∈ [n], xi 6∈ Xvi

, where vi is the gate in Ψ′ computing ∂f/∂xi.
In particular, if v is a gate in Ψ′, then it is connected by a directed path to at most n− |Xv|
output gates.

The proof of Theorem 15 appears in [31], and mostly follows the classical proof of Baur
and Strassen [5] of the analogous result for general circuits, with additional care in order to
guarantee the last two properties.

Next we define two types of gates in a syntactically multilinear arithmetic circuits.

I Definition 16. Let Φ be a syntactically multilinear arithmetic circuit. Define L(Φ, k), the
set of lower-leveled gates in Φ, by

L(Φ, k) = {u : u is a gate in Φ, k < |Xu| < n− k, and u has a parent
v with |Xv| ≥ n− k}.

Define U(Φ, k), the set of upper-leveled gates in Φ, by

U(Φ, k) = {v : v is a gate in Φ, |Xv| ≥ n− k, and u has a child v ∈ L(Φ, k)} .

The following lemma shows that if the set of lower-leveled gates is small, then there exists
a partition X = Y t Z under which the polynomial computed by the circuit is not of full
rank.

I Lemma 17. Let Φ be a syntactically multilinear arithmetic circuit over F and X =
{x1, . . . , xn}, for an even integer n, computing f . Let τ = 3 logn and L = L(Φ, 100τ). If
|L| < n/(105τ), then there exists a partition X = Y t Z such that rankY,Z(f) < 2n/2−1.

We first sketch how Theorem 14 follows from Lemma 17. The proof is identical to the
proof given in [31] with slightly different parameters.

Proof of Theorem 14 assuming Lemma 17. Let Ψ′ be the arithmetic circuit computing
all n first-order partial derivatives of f , given by Theorem 15. Set τ = 3 logn and let
L = L(Ψ′, 100τ) and U = U(Ψ′, 100τ) as in Definition 16.

Denote fi = ∂f/∂xi and let vi be the gate in Ψ′ computing fi, and Ψ′i be the subcircuit
of Ψ′ rooted at vi. Let Li = L(Ψ′i, 100τ). It is not hard to show (see [31]) that Li ⊆ L, and
by Lemma 17 and item 4 in Proposition 8, it follows that |Li| ≥ n/(105τ).

For every gate v in Ψ′ define Cv = {i ∈ [n] : v is a gate in Ψi} to be the set of indices i
such that there exists a directed path from v to the output gate computing fi. For i ∈ [n],
let Ui = {u ∈ U : u is a gate in Ψ′i}, so that

∑
u∈U Cu =

∑
i∈[n] |Ui|.

Since the fan-in of each gate is at most two, |Li| ≤ 2|Ui|, and since every u ∈ U satisfies
|Xu| ≥ n− 100τ , it follows by Theorem 15 that |Cu| ≤ 100τ . Thus, we get

n · n

105τ
≤
∑
i∈[n]

|Li| ≤ 2
∑
i∈[n]

|Ui| = 2
∑
u∈U

Cu ≤ 2|U| · 100τ.

By item 2 in Theorem 15, and τ = 3 logn,

|Ψ| = Ω(|Ψ′|) = Ω(|U|) = Ω
(

n2

log2 n

)
. J
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It remains to prove Lemma 17. As the proof mostly appears in [31], we only sketch the
main steps.

Proof sketch of Lemma 17. Suppose L ≤ n/(105τ). By applying Theorem 13 to the family
of sets {Xv : v ∈ L}, it follows that there exists a balanced partition Y t Z of X such that
Xv is τ -unbalanced for every gate v ∈ L (one could get slightly improved constants in the
case n = 4p by applying Theorem 9).

The proof now proceeds in the exact same manner as the proof of Lemma 5.2 in [31]. In
Proposition 5.5 of [31], it is shown that one can write

f =
∑
i∈[`]

gihi + g,

where L = {v1, . . . , v`}, hi is the polynomial computed at vi, and the set of variables
appearing in gi is disjoint from Xvi .

In Claim 5.7 of [31], it is shown that for every i ∈ [`], rankY,Z(gihi) ≤ 2n/2−τ . This uses
the fact that Xvi

is τ -unbalanced, the upper bound in item 1 in Proposition 8, and item 3 in
the same proposition.

In Proposition 5.8 of [31], it is shown (with the necessary change of parameters) that the
degree of g is at most 200τ .

Thus, by the fact that τ = 3 logn, item 5 and item 2 of Proposition 8, it follows that for
large enough n,

rankY,Z(f) ≤ ` · 2n/2−τ + 2τ
3
< 2n/2−1. J

4.1 An explicit full-rank polynomial
In this section, for the sake of completeness, we give a construction of a polynomial which is
full-rank under any partition of the variables.

I Construction 18 (Full rank polynomial, [31]). Let n be an even integer, and let W =
{ω1, . . . , ωn} and X = {x1, . . . , xn} be sets of variables. For a set B ∈

( [n]
n/2
)
, denote by

i1 < · · · < in/2 the elements of B in increasing order, and by j1 < · · · < jn/2 the elements of
[n] \B in increasing order. Define rB =

∏
`∈B ω`, and gB =

∏
`∈[n/2](xi` + xj`

).
Finally, define

f =
∑

B∈( [n]
n/2)

rBgB .

I Claim 19 ([31]). For f from Construction 18, it holds that for every balanced partition of
X = Y t Z, rankY,Z(f) = 2n/2, where the rank is taken over F(W).

We give a proof which is shorter and simpler than the one given in [31].

Proof of Claim 19. Fix a balanced partition X = Y t Z, and consider the matrix MY,Z(f)
where f is interpreted as a polynomial in f ∈ (F [W])[X] (that is, the rows and columns of
the matrix are indexed by X variables and its entries are polynomials in W). We want to
show that det(MY,Z(f)) ∈ F[W] is a non-zero polynomial. Fix ωi = 1 if i ∈ Y and ωi = 0
otherwise. Under this restriction, f = gY . It is also not hard to see that det(MY,Z(gY )) 6= 0,
since this is a permutation matrix (this also follows from item 3 of Proposition 8). Thus,
det(MY,Z(f)) evaluates to a non-zero value under this setting of the variables W, which
implies it a non-zero polynomial. J
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I Corollary 20. Every syntactically multilinear circuit computing the polynomial f has size
at least Ω(n2/ log2 n).

The polynomial f in Construction 18 is in the class VNP of explicit polynomials, but it is
not known whether there exists a polynomial size multilinear circuit for f .

Raz and Yehudayoff [32] constructed a full-rank polynomial g ∈ F[X,W ′] that has a
syntactically multilinear circuit of size O(n3). Their construction also uses a set of auxiliary
variables W ′ of size O(n3). Thus, if one measures the complexity as a function of |X| ∪ |W ′|,
the quadratic lower bound of Theorem 14 is meaningless, because a lower bound of Ω(n3)
holds trivially. However, we believe that since the rank is taken over F(W ′), it is only fair
to consider computations over F(W ′), where any rational expression in the variables of
W ′ is merely a field constant. Thus, in this setting, an input gate can be labeled by an
arbitrarily complex rational function in the variables of W ′, and the complexity is measured
as a function of |X| alone. In this model the lower bound of Theorem 14 is meaningful, and
furthermore, this example shows that the partial derivative matrix technique cannot prove
an ω(n3) lower bound.
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