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Abstract

The Caccetta-Häggkvist conjecture implies that for every integer k ≥ 1, if G is a bipartite digraph,
with n vertices in each part, and every vertex has out-degree more than n/(k + 1), then G has a
directed cycle of length at most 2k. If true this is best possible, and we prove this for k = 1, 2, 3, 4, 6
and all k ≥ 224,539.

More generally, we conjecture that for every integer k ≥ 1, and every pair of reals α, β > 0 with
kα+β > 1, if G is a bipartite digraph with bipartition (A,B), where every vertex in A has out-degree
at least β|B|, and every vertex in B has out-degree at least α|A|, then G has a directed cycle of
length at most 2k. This implies the Caccetta-Häggkvist conjecture (set β > 0 and very small), and
again is best possible for infinitely many pairs (α, β). We prove this for k = 1, 2, and prove a weaker
statement (that α+ β > 2/(k + 1) suffices) for k = 3, 4.



1 Introduction

The Caccetta-Häggkvist conjecture [1] states:

1.1 Conjecture ([1]): For every integer k ≥ 1, and all n > 0, every n-vertex digraph in which
every vertex has out-degree at least n/k has girth at most k.

(Digraphs in this paper are finite, and without loops or parallel edges; thus, there may be an edge
uv and another edge vu, but not two edges uv. A digraph has girth at most k if it has a directed
cycle of length at most k.) This is vacuous for k = 1 and trivial for k = 2; but for k ≥ 3 it remains
open, and indeed for k = 3 it is one of the most well-known open questions in graph theory. There
are numerous partial results (see [6] for a survey).

In this paper we study an analogue of 1.1 for bipartite digraphs. (A digraph is bipartite if the
graph underlying it is bipartite, and a bipartition of a digraph means a bipartition of this graph.) If
we take disjoint sets V1, . . . , V2k+2, each of cardinality t for some fixed t > 0, and make a digraph
with vertex set V1 ∪ · · · ∪V2k+2, by making every vertex in Vi adjacent from every vertex in Vi−1, for
1 ≤ i ≤ 2k + 2 (where V0 means V2k+2), we obtain a digraph with a bipartition into parts both of
cardinality (k + 1)t (= n say), in which every vertex has out-degree n/(k + 1), and with no directed
cycle of length at most 2k. This seems to be an extremal example, and motivates the following
conjecture, the topic of this paper:

1.2 Conjecture: For every integer k ≥ 1, if G is a bipartite digraph, with n > 0 vertices in each
part, and every vertex has out-degree more than n/(k + 1), then G has girth at most 2k.

We show in section 4 that this is implied by the Caccetta-Häggkvist conjecture 1.1. The latter
is not known to be true for any k ≥ 3, but there have been many theorems showing that for certain
values of k, there exists c such that every non-null digraph G with minimum out-degree at least
c|V (G)| has girth at most k, where c is a little bigger than, but close to, the conjectured 1/k. We
call these “CH-approximations”. There is a curious phenomenon, that a good CH-approximation for
some value of k can be enough to imply 1.2 for that value of k. Because of this, we are able to prove
1.2 for a number of values of k:

1.3 For k = 1, 2, 3, 4, 6, and all k ≥ 224,539, if G is a bipartite digraph, with n > 0 vertices in each
part, and every vertex has out-degree more than n/(k + 1), then G has girth at most 2k.

The proof for k = 3 is given in section 7, for k = 4 in section 8, for k ≥ 224,539 in section 6, and for
k = 6 it is sketched in section 9. There is more evidence for 1.2; we will prove:

1.4 For all k ≥ 1, if G is a bipartite digraph, with n > 0 vertices in each part, and every vertex has
in-degree and out-degree exactly αn, where α > 1/(k + 1), then G has girth at most 2k.

Second, we examine a conjecture that is stronger than 1.2 (and, indeed, implies 1.1):

1.5 Conjecture: For every integer k ≥ 1, and every pair of reals α, β > 0 with kα+β > 1, if G is
a non-null bipartite digraph with bipartition (A,B), where every vertex in A has out-degree at least
β|B|, and every vertex in B has out-degree at least α|A|, then G has girth at most 2k.

For each value of k, this (if true) is best possible for infinitely many values of α, β, as we discuss
later; for α = β it is equivalent to 1.2, and for β → 0 it implies 1.1. Thus it would be optimistic to
hope to prove it for k = 3. It is easy for k = 1, and we will show it holds for k = 2, that is:

1



1.6 For every pair of reals α, β > 0 with 2α + β > 1, if G is a non-null bipartite digraph with
bipartition (A,B), where every vertex in A has out-degree at least β|B|, and every vertex in B has
out-degree at least α|A|, then G has girth at most four.

This theorem is the fundamental tool from which everything else in the paper is derived.
Third, we investigate variants of 1.5 for small k. We prove a weakening, which still contains the

k = 3 and k = 4 cases of 1.3:

1.7 For k = 3, 4 and every pair of reals α, β > 0 with α+ β ≥ 2/(k + 1), if G is a bipartite digraph
with bipartition (A,B), where every vertex in A has out-degree at least β|B|, and every vertex in B
has out-degree at least α|A|, then G has girth at most 2k.

2 Preliminaries

Let us fill in the details of a few straightforward things from the previous section. First, to see that
1.5 implies 1.1, suppose H is a counterexample to 1.1. Thus H is a digraph with n > 0 vertices, and
for some integer k > 0, every vertex of H has out-degree at least n/k, and H has girth at least k+1.
Let V (H) = {h1, . . . , hn}. Take two disjoint sets A = {a1, . . . , an} and B = {b1, . . . , bn}, and make
a digraph G with vertex set A∪B in which ai is adjacent to bi for each i, and for every edge hihj of
H, bi is adjacent to aj in G. Then G has girth at least 2k + 2. Moreover, every vertex in B has at
least n/k out-neighbours in A, and every vertex in A has exactly one out-neighbour in B. Now let
α = (1−α)/k and β = 1/(2n). Then every vertex in B has more than αn out-neighbours in A, and
every vertex in A has more than βn out-neighbours in B; and so we have a counterexample to 1.5,
for the same value of k.

Let G be a digraph with a bipartition (A,B); if α, β ≥ 0 are reals, we say G is (α, β)-compliant
or complies with (α, β) (via the bipartition (A,B)) if G is non-null and every vertex in A has at
least β|B| out-neighbours in B and every vertex in B has at least α|A| out-neighbours in A. Given
α, β > 0, for which k is it true that every (α, β)-compliant digraph has girth at most 2k? (We
denote this by (α, β) → 2k.) Note that by replacing every vertex in A by a set of |B| new vertices,
and each vertex in B by a set of |A| new vertices, and making each pair of new vertices adjacent if
the corresponding pair of old vertices was adjacent, we may assume that |A| = |B| = n when it is
convenient.

Here is a useful example. Take three integers k, s, t > 0, and let n = k(s + t− 1) + 1. Take two
disjoint sets A = {a1, . . . , an} and B = {b1, . . . , bn}, and make a digraph G with vertex set A∪B in
which for 1 ≤ i ≤ n (reading subscripts modulo n):

• ai is adjacent to bj for i ≤ j ≤ i+ s− 1; and

• ai is adjacent from bj for i− t ≤ j < i,

Then the digraph just constructed complies with
(

t

k(s+ t− 1) + 1
,

s

k(s+ t− 1) + 1

)

,

and it is easy to see that it has girth at least 2n/(s+ t− 1) > 2k (because starting from a vertex bi
and moving along two edges of G brings us to one of bi+1, . . . , bi+s+t−1). Consequently

(

t

k(s+ t− 1) + 1
,

s

k(s+ t− 1) + 1

)

6→ 2k.
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Not all these statements are needed. For instance, if we set s = 2, t = 3, k = 4, we find that
(3/17, 2/17) 6→ 8; and if we set s = 1, t = 1, k = 4 we find that (1/5, 1/5) 6→ 8. The second
fact implies the first because (1/5, 1/5) dominates (3/17, 2/17) in every coordinate, and in general
we only need to consider the pairs given by the construction that are maximal under domination.
These pairs turn out to be those with s = 1 or t = 1, that is, the pairs (t/(kt + 1), 1/(kt + 1)) and
(1/(kt + 1), k/(kt + 1)) for t ≥ 1, and henceforth we confine our attention to these.

Let us fix k = 2. Say (α, β) is good if (α, β) → 4, and bad otherwise. Which pairs are good? The
example shows that the pairs (1/(2t + 1), t/(2t + 1)) and (t/(2t + 1), 1/(2t + 1)) for t = 1, 2, . . . are
bad, and therefore so are all pairs they dominate. (See figure 1.) All these maximal bad pairs lie
on one of the lines α + 2β = 1, 2α + β = 1; and 1.6 says that all pairs outside the border formed
by these two lines are good. There are pairs that satisfy α + 2β ≤ 1 and 2α + β ≤ 1 that are not
dominated by pairs given by the example, and for most such pairs we do not know whether they
are good or bad. With Alex Scott, we proved that all points on the dotted lines are good except for
the bad points of the example; and indeed, for every such good point, there is an open disc of good
points including it. (We omit the proof.)

α

β

(1/3, 1/3)

(1/5, 2/5)

(1/7, 3/7)

(2/5, 1/5)

(3/7, 1/7)

BAD

GOOD

?

?

Figure 1: The good, the bad, and the ugly.

For general k, much the same holds, except that for k ≥ 3 we have not proved 1.5. All the pairs
given by the construction lie within the border given by the lines α + kβ = 1, kα + β = 1, and the
maximal such pairs all lie on one of these lines; and we conjecture that all points (α, β) outside this
border satisfy (α, β) → 2k. This is one of the motivations for 1.5 (the other is that it combines two
interesting special cases, when α = β and when β → 0).

Let us mention a difference between the Caccetta-Häggkvist question and our bipartite question.
The former asks whether minimum out-degree at least c|V (G)| forces girth at most k when c = 1/k,
and it is known that no smaller value of c is big enough. For our bipartite question, we ask whether
minimum out-degree cn forces girth at most 2k, where c > 1/(k+1), and we know that c = 1/(k+1)
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is not enough. (The point is, we need the strict inequality, while the Caccetta-Häggkvist conjecture
needs only the non-strict inequality.)

This causes a minor difficulty in terminology; for us, the important value is the maximal c that
is not “big enough”. The pairs (α, β) we need to talk about are those such that (α, β) 6→ 2k, and
the pair (α, β) is maximal with that property, for the correct notion of maximality.

We could ask that every pair (α′, β′) that strictly dominates (α, β) satisfies (α′, β′) → 2k, where
“strictly dominates” means α′ ≥ α, β′ ≥ β and α′ + β′ > α+ β; except this is not quite right. When
β = 0, increasing only α will not guarantee any directed cycles at all, so in that case we need to say
β′ > β; and we do not want to ask that both α′ > α, β′ > β hold, since that requires too much. Let
us say (α, β)  2k if (α′, β′) → 2k for every pair α′, β′ > 0 with α′ ≥ α, β′ ≥ β and α′ + β′ > α+ β.
Now we can write the statements from the first section more compactly; we can reformulate 1.1 as
“for k ≥ 2, (1/k, 0)  2k”; reformulate 1.3 as “for 1 ≤ k ≤ 4, (1/(k + 1), 1/(k + 1))  2k”; and
reformulate 1.5 as “if k ≥ 1 and α, β ≥ 0 with kα+ β = 1, then (α, β) 2k”.

The following implies the first (k = 1) case of 1.5:

2.1 Let G be a digraph with a bipartition (A,B), with more than |A| · |B| edges. Then G has girth
two.

The proof is trivial and we omit it.
We need the following definitions: If u, v ∈ V (G) where G is a digraph, we say the G-distance

from u to v is the number of edges in the shortest directed path of G from u to v. If v is a vertex of
a digraph G, Ni(v) denotes the set of all vertices u such that the G-distance from v to u is exactly
i, and Mi(v) denotes the set of all vertices u such that the G-distance from u to v is exactly i. Let
N∗

i (v) be the union of Nj(v) over all j with 1 ≤ j ≤ i and with the same parity as i; thus N∗
i (v) is

a subset of one of A,B, if (A,B) is a bipartition. We define M∗
i (v) similarly.

3 Previous results

In our proofs, we will apply several previous results, each of which is a partial result towards proving
the Caccetta-Häggkvist conjecture; and we have collected these results in this section.

We use these results in auxiliary digraphs; for example, in a bipartite digraph G with bipartition
(A,B), we can pick A′ ⊆ A and construct a digraph H with vertex set A′, and in which every vertex
v ∈ A′ is adjacent in H to N2(v) with respect to G. If G has girth at least 2k, then H has girth at
least k, and this allows us to deduce information about G by applying an approximate version of the
Caccetta-Häggkvist conjecture to H.

For this, we usually choose A′ such that every vertex in A′ has an out-neighbour in B with all
its out-neighbours in A′. Let G be an (α, β)-compliant digraph with α, β > 0, and let G have girth
at least 2k. If there is a vertex v and i ≥ 3 such that N∗

i (v) ⊆ B and |Ni(v)| < β|B|, then we let
A′ = N∗

i−1(v). Since every vertex in N∗
i−1(v) has an out-neighbour in N∗

i−2(v), it follows that every
vertex in H has α|A| out-neighbours in H. Therefore, if we know from an approximate version of the
Caccetta-Häggkvist conjecture that every digraph H of girth at least k has a vertex of out-degree
less than |V (H)|/δ, then this construction shows that α|A| < |A′|/δ, and so |N∗

i−1(v)| > αδ|A|. We
prove this formally in 4.1.

The first result we use is the following, an approximation for the cases k = 3 and k = 4 of the
Caccetta-Häggkvist conjecture.
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3.1 ([2, 3]) Let δ3 = 2.886, and let δ4 = 3.4814. For k = 3, 4, every non-null digraph G with
minimum out-degree at least |V (G)|/δk has girth at most k.

For k = 3 this was proved by Hladký, Král’ and Norin [2], and for k = 4 it is due to Liang and
Xu [3]. (There is an improvement to δ3 = 2.9534 claimed by Jan Volec in a lecture [7], but we do
not use this.)

We also use the following result of Shen:

3.2 ([5]) Let k ≥ 1 be an integer, and let δ = 3k/4; then every non-null digraph H with minimum
out-degree at least |V (H)|/δ has girth at most k.

This is used in the proof of 4.2, an Eulerian version of 1.2.
Finally, we need:

3.3 ([4]) For k > 74, if H is a non-null digraph and every vertex has out-degree at least |V (H)|/(k−
74), then H has girth at most k − 1.

We use 3.3 in the proof of 6.1 to say that for the first roughly k − 2r steps, the out-neighbourhood
of a vertex grows steadily.

4 Two results for all k

In this section we prove 1.4, and show that 1.1 implies 1.2.
We need the following, which will be our main tool throughout the paper:

4.1 Let k ≥ 1 be an integer, and let δ > 0 be such that every non-null digraph H with minimum out-
degree at least |V (H)|/δ has girth at most k. Let α, β > 0, and let G be an (α, β)-compliant digraph
via a bipartition (A,B), with girth more than 2k. Let v ∈ V (G). Then for each i ≥ 1, if Ni(v) ⊆ A
then either |Ni(v)| ≥ α|A|, or |N∗

i−1(v)| > βδ|B|; and if Ni(v) ⊆ B then either |Ni(v)| ≥ β|B|, or
|N∗

i−1(v)| > αδ|A|.

Proof. From the symmetry we may assume that Ni(v) ⊆ A, and |Ni(v)| < α|A|. Since G is (α, β)-
compliant, it follows that i ≥ 2. Since |Ni(v)| < α|A|, every vertex in N∗

i−1(v) has an out-neighbour
that does not belong to Ni(v). In particular, every vertex inN∗

i−1(v) has an out-neighbour inN∗
i−2(v).

Since G has girth more than two, every vertex in N1(v) has all its out-neighbours distinct from v,
and so i ≥ 3. Let H be the digraph with vertex set N∗

i−1(v) in which for distinct s, t ∈ N∗
i−1(v), t is

adjacent from s in H if some vertex in N∗
i−2(v) is adjacent in G from s and to t. Since every vertex in

N∗
i−1(v) has an out-neighbour in N∗

i−2, and every vertex in N∗
i−2(v) has at least β|B| out-neighbours

in N∗
i−1(v), it follows that every vertex of H has out-degree at least β|B| in H. But H has girth

more than k, since G has girth more than 2k; and so from the definition of δ, since V (H) 6= ∅ it
follows that in H, some vertex u ∈ V (H) has fewer than |V (H)|/δ out-neighbours in V (H). Thus
|V (H)| > βδ|B|. This proves 4.1.

Let us prove 1.4, which we restate:

4.2 Let k ≥ 1 be an integer, let α > 1/(k + 1), and let G be an (α,α)-compliant digraph via a
bipartition (A,B), such that every vertex in A has in-degree exactly α|B|, and every vertex in B has
in-degree exactly α|A|. Then G has girth at most 2k.
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Proof. We may assume that |A| = |B| = n say; and every vertex has in-degree exactly αn and
out-degree exactly αn. There is therefore a perfect matching of edges each with tail in A and head
in B.

(1) |N∗
i (v)| ≥ ((i+ 1)/2)αn for every vertex v and for every odd integer i ≥ 1 with i ≤ 3k/2 − 1.

Suppose not and choose i minimum such that this is false. Thus |N∗
i (v)| < ((i + 1)/2)αn. Note

that i ≥ 3. From the minimality of i, |N∗
i−2(v)| ≥ ((i− 1)/2)αn, and so |Ni(v)| < αn. Let δ = 3k/4;

then by 3.2 and 4.1, |N∗
i−1(v)| ≥ δαn. From the symmetry we may assume that v ∈ A, and so

Ni(v) ⊆ B. Since there is a perfect matching of edges each with tail in A and head in B, and every
vertex in N∗

i−1(v) is matched into some vertex in N∗
i (v), it follows that

((i+ 1)/2)αn > |N∗
i (v)| ≥ |N∗

i−1(v)| ≥ δαn,

and so i > 2δ − 1 = 3k/2 − 1, a contradiction. This proves (1).

(2) If k = 2 then |N∗
3 (v)| ≥ 2αn for every vertex v.

Let δ = 2. Then every non-null digraph H with minimum out-degree at least |V (H)|/δ has girth at
most 2, and now the claim follows as in (1). This proves (2).

If k is odd, then since k ≤ 3k/2 − 1, it follows from (1) that |N∗
k (v)| ≥ ((k + 1)/2)αn > n/2, for

every vertex v; and from 2.1, there are two vertices u, v with u ∈ N∗
k (v) and v ∈ N∗

k (u), and so G has
girth at most 2k, and so 1.4 holds. So we assume that k is even. Let H be the digraph with vertex
set V (G) in which for all u ∈ A and v ∈ B, u is adjacent to v if v ∈ N∗

k−1(u), and v is adjacent to u
if u ∈ N∗

k+1(v). We claim that H is (((k + 2)/2)α, (k/2)α)-compliant: if k = 2 this follows from (2),
and if k ≥ 4 this follows from (1), since k − 1, k + 1 are odd, and both are at most 3k/2 − 1. Since
((k + 2)/2)α + (k/2)α > 1, the truth of 1.5 for k = 1 implies that H has girth two, and so G has
girth at most 2k. This proves 1.4.

Next we show another of the claims of the introduction:
Proof of 1.2, assuming 1.1. Let k ≥ 1 be an integer, let α > 1/(k + 1), and let G be an
(α,α)-compliant digraph via a bipartition (A,B). We must show that G has girth at most 2k.
Suppose not. Since every vertex in B has at least α|A| out-neighbours, by averaging it follows
that some vertex v ∈ A has at least α|B| in-neighbours, that is, |M1(v)| ≥ α|B|. Now the k sets
N1(v), N3(v), . . . , N2k−1(v) are pairwise disjoint, and all disjoint from M1(v) since G has girth more
than 2k. Consequently not all of them have cardinality at least α|B|, since |M1(v)| ≥ α|B| and
|B| < (k + 1)α|B|. By 4.1, taking δ = k (this satisfies the requirement of 4.1 by the assumed truth
of 1.1) it follows that |N∗

2k−2(v)| > αk|A|. Since N2k(v) is disjoint from N∗
2k−2(v), it follows that

|N2k(v)| ≤ |A| − kα|A| < α|A|; and so by 4.1 again,

|N∗
2k−1(v)| > kα|B| > |B| − |M1(v)|,

a contradiction. This proves 1.2.

We remark that the same proof shows the slightly stronger result that, assuming 1.1, (α, β) 2k
for every pair α ≥ β ≥ 0 with α+ kβ ≥ 1. (Note that this is very different from the conjecture 1.5.)
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5 Girth four

In this section we prove 1.6. We need the following lemma:

5.1 For every pair of reals α, β > 0, if G is an (α, β)-compliant digraph with girth at least four, and
with bipartition (A,B), then for some vertex v ∈ B, |M1(v)|+ |M3(v)| ≥ (α+ β)|A|.

Proof. Let a = ⌈α|A|⌉ and b = ⌈β|B|⌉. Thus b 6= 0. By deleting edges we may assume that every
vertex in A has out-degree exactly b, and every vertex in B has out-degree exactly a. For each v ∈ B,
let w(v) = |M1(v)|/(b|A|). Thus

∑

v∈B w(v) = 1.

(1) For each u ∈ A,
∑

v∈N3(u)
w(v) ≥ α.

We write Ni(u) = Ni for brevity. Thus |N1| = b. There are a|N1| = ab edges with tail in N1, and they
all have head in N2. Since G has girth at least four, it follows that there are at most b|N2|−ab edges
from N2 to N1. But there are b|N2| edges with tail in N2, so at least ab edges from N2 to N3. Hence
the sum of the in-degrees of the vertices in N3 is at least ab; and so

∑

v∈N3(u)
w(v) ≥ ab/(b|A|) ≥ α.

This proves (1).

Let us choose v ∈ B at random, choosing each vertex v with probability w(v). The expectation
of w(v) is at least 1/|B| by the Cauchy-Schwarz inequality, and the expectation of |M1(v)| is b|A|
times the expectation of w(v), and so at least b|A|/|B| ≥ β|A|. By (1), the expectation of |M3(v)| is
at least α|A|; and so the expectation of |M1(v)| + |M3(v)| is at least (α+ β)|A|. Since B 6= ∅, some
vertex v ∈ B satisfies |M1(v)| + |M3(v)| ≥ (α+ β)|A|. This proves 5.1.

We deduce 1.6, which we restate:

5.2 (α, β) 4 for every pair of reals α, β ≥ 0 with 2α+ β ≥ 1.

Proof. Let α′ + β′ > 0 with 2α′ + β′ > 1 and β′ > 0; we must show that (α′, β′) → 4. Let G be
(α′, β′)-compliant, via a bipartition (A,B), and we assume for a contradiction that G has girth at
least six. By 5.1, there exists v ∈ B with |M1(v)| + |M3(v)| ≥ (α′ + β′)|A|. Since |N1(v)| ≥ α′|A|,
it follows that the sum of the cardinalities of the three sets M1(v),M3(v) and N1(v) is at least
(2α′ + β′)|A| > |A| (since A 6= ∅), and so some two of these three sets have nonempty intersection,
contradicting that G has girth six. This proves 5.2.

We use R+ to denote the set of nonnegative real numbers. For an application later in the paper,
we will need a more elaborate version of 1.6, and to prove that we need a lemma:

5.3 Let x, y, β, γ, µ ∈ R+ such that x ≤ y ≤ 1. For p, q, r ∈ R+, define

f(p, q, r) = x(p − γ)2 + (y − x)q2 + (1 − y)r2.

Let p, q, r ∈ R+, with px+ q(y − x) + r(1− y) = β and px+ q(y − x) ≥ µ.

(a) If β ≤ xγ, then f(p, q, r) ≥ (β − xγ)2/x.
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(b) If β ≥ xγ, then f(p, q, r) ≥ (β − xγ)2.

(c) If β ≥ xγ and yβ + x(1− y)γ ≤ µ, then f(p, q, r) ≥ (µ− xγ)2/y + (β − µ)2/(1 − y).

(In each case, an expression with a zero denominator also has a zero numerator and should be taken
to be zero.)

Proof.
We first prove (a). Since xγ ≥ β ≥ px, it follows that

f(p, q, r) ≥ x(p− γ)2 ≥ (xγ − px)2/x ≥ (xγ − β)2/x.

To prove (b), we use the weighted inequality between quadratic mean and arithmetic mean that

xa2 + (y − x)b2 + (1− y)c2 ≥ (xa+ (y − x)b+ (1− y)c)2

for all a, b, c ∈ R such that xa+(y−x)b+(1−y)c ≥ 0. Since 0 ≤ β−xγ = x(p−γ)+q(y−x)+r(1−y),
setting a = p− γ, b = q, and c = r implies that f(p, q, r) ≥ (β − xγ)2.

Finally, we prove (c). The weighted inequality between quadratic mean and arithmetic mean
implies that

xa2 + (y − x)b2 ≥ (xa+ (y − x)b)2/y

for a, b ∈ R with xa + (y − x)b ≥ 0. We let a = p − γ and b = q. It follows that xa + (y − x)b =
µ− xγ ≥ y(β − xγ) ≥ 0, and hence x(p− γ)2 + (y − x)q2 ≥ (µ− xγ)2/y. Since r ≥ (β − µ)/(1− y),
it follows that (1− y)r2 ≥ (β − µ)2/(1− y). Together, these inequalities imply that

f(p, q, r) ≥ (µ− xγ)2/y + (β − µ)2/(1− y).

Next, we prove the 5.4, which in turn will be used to prove 5.5. The aim of 5.5 is to take advantage
of certain “unbalanced” parts of the digraph. For example, we will use 5.4 with b(v)|A| = |M1(v)|
and a(v) = |N∗

k−2(v)| for some odd k. We will use the set X below to capture vertices that can reach
unusually many vertices in at most k− 2 steps, and we will use Y as a set with more incoming edges
than the expected number β|A||Y |.

5.4 Let B be a finite set, and let x, y, β, γ, λ, µ ∈ R+ such that x ≤ y ≤ 1. For each v ∈ B, let
a(v), b(v) ∈ R+, such that:

•
∑

v∈B b(v) = β|B|;

• for each v ∈ B, a(v) ≥ λ;

• there is a subset X ⊆ B with |X| = x|B| such that a(v) ≥ γ + λ for all v ∈ B \X.

• there is a subset Y ⊆ B with |Y | = y|B|, such that
∑

v∈Y b(v) ≥ µ|B|;

• β ≥ xγ and yβ + x(1− y)γ ≤ µ.
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Then
∑

v∈B b(v)2 +
∑

v∈B 2a(v)b(v) ≥ ((µ − xγ)2/y + (β − µ)2/(1− y) + 2β(λ + γ)− xγ2)|B|.
(In each case, an expression with a zero denominator also has a zero numerator and should be

taken to be zero.)

Proof. Let g =
∑

v∈B b(v)2 +
∑

v∈B 2a(v)b(v). We may assume that a(v) = λ for each v ∈ X,
and a(v) = λ + γ for each v ∈ B \X. Consequently we may assume that b(u) ≥ b(v) for all u ∈ X
and v ∈ B \X (for if not, exchanging the values of b(u) and b(v) reduces g). Consequently we may
assume that X ⊆ Y (since y ≥ x). Let

∑

v∈X

b(v) = px|B|;

∑

v∈Y \X

b(v) = q(y − x)|B|;

∑

v∈B\Y

b(v) = r(1− y)|B|.

Thus px + q(y − x) + r(1 − y) = β, and px + q(y − x) ≥ µ. By the Cauchy-Schwarz inequality,
∑

v∈X b(v)2 ≥ p2x|B|, and
∑

v∈Y \X b(v)2 ≥ q2(y − x)|B|, and
∑

v∈B\Y b(v)2 ≥ r2(1− y)|B|; and so

g/|B| ≥ p2x+ 2pxλ+ q2(y − x) + 2q(y − x)(λ+ γ) + r2(1− y) + 2r(1− y)(λ+ γ).

By 5.3,
x(p− γ)2 + (y − x)q2 + (1− y)r2 ≥ (µ − xγ)2/y + (β − µ)2/(1 − y).

Thus

g/|B| ≥ x(p2 + 2pλ) + (y − x)(q2 + 2q(λ+ γ)) + (1− y)(r2 + 2r(λ+ γ))

≥ (µ− xγ)2/y + (β − µ)2/(1− y) + (2px+ 2q(y − x) + 2r(1− y))(λ+ γ)− xγ2

= (µ− xγ)2/y + (β − µ)2/(1− y) + 2β(λ + γ)− xγ2.

This proves 5.4.

We now prove 5.5. In the following, we will often take a bipartite digraph G with bipartition
(A,B) and girth at least 2k for k odd, and construct an auxiliary digraph H with the same edges
as in G from A to B, and in which every vertex v in B is adjacent to N∗

k−2(v) with respect to
G. Then H has girth more than four, and we use methods similar to those in the proof of 1.6 to
derive the desired inequality as one of the results of 5.5. Furthermore, we generalize this approach
to accommodate even numbers k by introducing edge sets R and S as edges in H from v ∈ B to
N∗

k−3(v) in G and N∗
k−1(v) in G, respectively.

5.5 Let x, y, λ, β, γ, µ ≥ 0, with x ≤ y ≤ 1, and let G be a digraph with a bipartition (A,B). Let
R,S ⊆ E(G), both consisting of edges of G from B to A. For v ∈ B, we denote by aR(v) and aS(v)
the number of edges in R (respectively, S) with tail v; and let a(v) = (aR(v)+aS(v))/(2|A|). Suppose
the following hold.

• β ≥ xγ and yβ + x(1− y)γ ≤ µ.
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• Every vertex in A has at least β|B| out-neighbours in B.

• G has girth at least four and there is no directed cycle in G of length four with an edge in R
and a different edge in S.

• For each v ∈ B, a(v) ≥ λ.

• There is a subset X ⊆ B with |X| ≤ x|B| such that a(v) ≥ γ + λ for all v ∈ B \X.

• There is a subset Y ⊆ B with |Y | ≤ y|B|, such that at least µ|A| · |B| edges have head in Y .

Then
1

y
(µ − xγ)2 +

1

1− y
(β − µ)2 + 2β(λ + γ)− xγ2 ≤ β.

(In each case, an expression with a zero denominator also has a zero numerator and should be
taken to be zero.)

Proof. We may assume that β, x, y are rational; choose an integer N > 0 such that βN, xN, yN
are all integers. Let H be the digraph obtained from G as follows; we replace each vertex v of G by
a set Nv of N new vertices, and for each edge uv of G we add an edge from each member of Nu to
each member of Nv. Let R′, S′ be the sets of edges of H that arise from edges in R,S respectively.
If the result holds for H then it holds for G; and so, replacing G by H if necessary, we may assume
that β|B|, x|B|, y|B| are all integers.

We may assume that every vertex in A has out-degree exactly β|B|; and (by adding vertices to
X,Y ) that |X| = x|B| and |Y | = y|B|. We may assume that every edge from B to A belongs to
R ∪ S. For each v ∈ B, let b(v)|A| denote its in-degree. Thus

∑

v∈B b(v) = β|B|, since there are
β|A| · |B| edges from A to B.

We define an R-path to be a directed path of G such that all its edges with tail in B belong to
R; and an S-path is defined similarly. For u ∈ V (G) and i ≥ 1, let NR

i (u) be the set of all vertices v
such that there is an R-path of length i from u to v, but no shorter R-path; and let MR

i (u) be the
set of v such that u ∈ NR

i (v). Define NS
i (u),M

S
i (u) similarly.

For each edge uv of G with u ∈ A and v ∈ B, the sets M1(v),M
R
3 (v), NS

1 (v) are pairwise disjoint
subsets of A, and so the sum of their cardinalities is at most |A|. Summing over all uv, we deduce
that

∑

v∈B

b(v)2|A|2 +
∑

v∈B

b(v)aS(v)|A| +
∑

v∈B

b(v)|A| · |MR
3 (v)| ≤ β|A|2|B|,

since there are β|A| · |B| edges uv from A to B. But
∑

v∈B b(v)|A| · |MR
3 (v)| is the sum over all

u ∈ A, of the sum of the in-degrees of the vertices in NR
3 (u); and so at least the sum over u ∈ A,

of the number of edges from NR
2 (u) to NR

3 (u). The latter is at least the number of edges in R from
N1(u) to NR

2 (u), since all vertices in A have the same out-degree. The number of edges in R from
N1(u) to NR

2 (u) is at least the sum of aR(v) over all v ∈ N1(u). So

∑

v∈B

b(v)|A| · |MR
3 (v)| ≥

∑

v∈B

b(v)aR(v)|A|.

The result therefore follows from 5.4. This proves 5.5.
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6 Very large k

In this section we prove that 1.2 holds for all sufficiently large k.

6.1 Let r ≥ 0 be an integer such that for all k ≥ r + 1, if G is a non-null digraph and every
vertex has out-degree at least |V (G)|/(k − r), then G has girth at most k − 1. Let k be such that
k2 +2(r+ r2)2 +2r2 > k(r3/2 + 4r2 +4r) and k ≥ r(r+2). (For instance with r = 74, this requires
k > 224,538.) Then (1/k, 1/k)  2k − 2.

Proof. Let (A,B) be a bipartition of a digraph G, such that every vertex in A has more than |B|/k
out-neighbours in B, and every vertex in B has more than |A|/k out-neighbours in A. We must show
that G has girth at most 2k− 2. Suppose not; Inductively we assume the result for all digraphs with
fewer vertices. If k is odd, for each v ∈ B let a(v)|A| = |N∗

k−2(v)|. If k is even let

a(v)|A| = (|N∗
k−3(v)| + |N∗

k−1(v)|)/2 = |N∗
k−3(v)| + |Nk−1(v)|/2.

Let X be the set of all vertices v ∈ B such that a(v) ≤ (k − 1)/(2k).

(1) X 6= ∅.

Let H be the digraph with bipartition A,B, in which the edges from A to B are the same as
in G, and u ∈ B is adjacent to v ∈ A if the G-distance from u to v is at most k − 1. Let S be the
set of all edges of H from B to A. Let R be the set of all edges uv of H with u ∈ B and v ∈ A such
that the G-distance from u to v is at most k − 2. (So S = R if k is odd.) Thus, defining aR(v) and
aS(v) as in 5.5, we have aR(v) + aS(v) = 2a(v)|A|. Now the digraph H has girth at least four, and
has no directed 4-cycle with an edge in R and a different edge in S, since G has girth at least 2k.
Let λ be the minimum of a(v) over all v ∈ B. By 5.5, taking x = 0, y = 1, µ = β = 1/k, and γ = 0,
we have 1− y = 0 = β − µ, and therefore,

1

y
(µ − xγ)2 + 2β(λ+ γ)− xγ2 ≤ β.

Consequently 1/k + 2λ ≤ 1. This proves (1).

Let δ = k − r. From the choice of r, δ satisfies the condition of 4.1.

(2) There exists Y ⊆ A with |Y | ≤ |A|/2 such that at least δ|A| · |B|/k2 edges have their head
in Y . Moreover, if v ∈ X then

• there are at least δ|B|/k vertices in B with distance at most k − 2 from v; and

• a(v) ≥ (k − r − 1)/(2k).

Choose v ∈ X (this is possible by (1)). We claim that there exists j, odd, with k − 3 ≤ j ≤ k − 1,
such that |N∗

j (v)| ≤ (j + 1)|A|/(2k). If k is odd, this is true taking j = k − 2, so we assume that k
is even. Then

|N∗
k−3(v)|+ |N∗

k−1(v)| = 2a(v)|A| ≤ (k − 1)|A|/k

11



and so either |N∗
k−3(v)| ≤ (k− 2)|A|/(2k) or |N∗

k−1(v)| ≤ k|A|/(2k), and again the claim holds, with
j = k − 3 or k − 1.

Choose g ≥ 1, odd, minimal such that |N∗
g (v)| ≤ (g+1)|A|/(2k). Thus g ≤ k− 1, and |N∗

g (v)| ≤
(g + 1)|A|/(2k), and |N∗

g−2(v)| > (g − 1)|A|/(2k), so |Ng(v)| ≤ |A|/k. By 4.1, |N∗
g−1(v)| ≥ δ|B|/k =

(1 − r/k)|B|. This proves the first bullet of (2). In particular, |N∗
g (v)| ≤ a(v)|A| ≤ |A|/2; all the

edges with tail in N∗
g−1(v) have head in N∗

g (v), and since |N∗
g−1(v)| ≥ δ|B|/k, this proves the first

statement of (2) by taking Y = N∗
g (v).

It remains to prove the second bullet of (2). We claim that |Ni(v)| ≥ |A|/(2k) for all odd i with
g ≤ i < k. To see this, let G′ be the subdigraph induced on N∗

i−2(v) ∪N∗
i−1(v). We may assume it

is not (α,α)-compliant for any α > 1/k, from the inductive hypothesis, and since

|N∗
i−2(v)| ≤ |N∗

j (v)| < (j + 1)|A|/(2k) ≤ |A|/2

it follows that some vertex in N∗
i−1(v) has fewer than |A|/(2k) out-neighbours in N∗

i−2(v). Its other
out-neighbours all belong to Ni(v), and so |Ni(v)| ≥ |A|/(2k), as claimed.

We claim that a(v) ≥ (k − r − 1)/(2k). To see this there are two cases, depending on the parity
of k. First, suppose k is odd. Since

|N∗
k−2(v)| = a(v)|A| ≤ (k − 1)|A|/(2k) < δ|A|/k

(because k > 2r− 1), it follows from 4.1 that |Ni(v)| ≥ |B|/k for all even i with 1 ≤ i ≤ k− 1. Since
N∗

g−1(v) is disjoint from the sets Ni(v) for all even i with g + 1 ≤ i ≤ k − 1, and there are (k − g)/2
such values of i, it follows that

(1− r/k)|B|+ ((k − g)/2)|B|/k ≤ |B|,

that is, k − g ≤ 2r. In particular, g ≥ k − 2r. So

a(v) =
|N∗

k−2(v)|

|A|
≥

|N∗
g−2(v)|

|A|
+

(k − g)/2

2k
≥

g − 1

2k
+

k − g

4k
≥

k − r − 1

2k

as claimed, since |N∗
g−2(v)| ≥ (g − 1)|A|/(2k), and g ≥ k − 2r.

Now we assume k is even. Since

|N∗
k−3(v)| < a(v)|A| ≤ (k − 1)|A|/(2k) < δ|A|/k

(because k > 2r− 1), it follows from 4.1 that |Ni(v)| ≥ |B|/k for all even i with 1 ≤ i ≤ k− 2. Since
N∗

g−1(v) is disjoint from the sets Ni(v) for all even i with g + 1 ≤ i ≤ k − 2, it follows that

(1− r/k)|B|+ ((k − 1− g)/2)|B|/k ≤ |B|,

that is, k − 1− g ≤ 2r. In particular, g ≥ k − 1− 2r. As above, it follows that

|N∗
k−3(v)|

|A|
≥

|N∗
g−2(v)|

|A|
+

(k − g − 1)/2

2k
≥

g − 1

2k
+

k − g − 1

4k
≥

k − r − 2

2k
,

not quite what was promised. We can gain the missing 1/(2k) as follows. We may assume that
a(v) < (k − r − 1)/(2k), and since |N∗

k−3(v)|/|A| ≥ (k − r − 2)/(2k), it follows that

|N∗
k−1(v)|

|A|
≤

k − r − 1

k
−

k − r − 2

2k
=

1

2
−

r + 1

2k
< δ/k;
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and so by 4.1, |Nk(v)| ≥ |B|/k. But then the argument above shows that

(1− r/k)|B|+ ((k + 1− g)/2)|B|/k ≤ |B|,

that is, g ≥ k+1−2r; and then the estimate for |N∗
k−3(v)|/|A| improves by the missing 1/(2k). This

proves the claim that a(v) ≥ (k − r − 1)/(2k), and so proves (2).

(3) |X| ≤ 2r|B|/k.

Let H be the digraph with vertex set B in which u is adjacent to v if the G-distance from u to
v is at most k − 1. Then H has girth at least three. Every vertex in X has out-degree at least
δ|B|/k in H; and yet the number of edges of H with tail in X is at most |X|2/2 + |X|(|B| − |X|),
since H has no directed cycles of length two. Hence |X|δ|B|/k ≤ |X|2/2 + |X|(|B| − |X|), that is,
|X| ≤ 2(1 − δ/k)|B| ≤ 2r|B|/k. This proves (3).

From (1) and (2) and the symmetry between A and B, there exists Y ⊆ B with |Y | ≤ |B|/2
such that at least δ|A| · |B|/k2 edges have head in Y . By 5.5, taking λ = (k − r − 1)/(2k), β = 1/k,
γ = r/(2k), µ = δ/k2, x = 2r/k and y = 1/2, we observe that β ≥ xγ (since k ≥ r(r + 2)) and
yβ + x(1− y)γ ≤ µ. By taking R and S as in the proof of (1), we deduce from 5.5 that

1

y
(µ − xγ)2 +

1

1− y
(β − µ)2 + 2β(λ + γ)− xγ2 ≤ β,

that is,

2(δ/k2− (2r/k)r/(2k))2+2(1/k− δ/k2)2+2(1/k)((k− r−1)/(2k)+ r/(2k))− (2r/k)r2/(4k2) ≤ 1/k,

which, recalling δ = k − r, simplifies to

k2 + 2(r + r2)2 + 2r2 ≤ k(r3/2 + 4r2 + 4r),

a contradiction. This proves 6.1.

7 Girth six

In this section we prove the case k = 3 of 1.7, that (α, β) 6 if α+ β ≥ 1/2; and therefore the case
k = 3 of 1.3. Equivalently, we must show:

7.1 (α, β) → 6 for all α, β > 0 with α+ β > 1/2.

Proof. Let α, β > 0 with α + β > 1/2, and let G be (α, β)-compliant, via a bipartition (A,B); we
will prove that G has girth at most six, by induction on |V (G)|. By deleting edges, and by increasing
α to ⌈α|A|⌉/|A| and increasing β to ⌈β|B|⌉/|B|, we may assume that every vertex in B has exactly
α|A| out-neighbours in A, and every vertex in A has exactly β|B| out-neighbours in B.

We assume for a contradiction that G has girth more than six. Thus inductively, for all pairs
α′, β′ > 0 with α′ + β′ > 1/2, no proper subdigraph of G is (α′, β′)-compliant. From the symmetry
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we may assume that α ≥ β. Let δ3 be as in 3.1.

(1) There exists a real number x with

max

(

βδ3,
2αβ

2β − α

)

≤ x ≤ 1− β

such that some vertex u ∈ A has in-degree at least 2αx|B|.

By 5.1, there exists v ∈ B with |M1(v)|+ |M3(v)| ≥ (α+ β)|A|; let |N2(v)| = x|B|, and we will show
that x satisfies the claim. Since |N1(v)| = α|A|, and the four sets M3(v),M1(v), N1(v), N3(v) are
pairwise disjoint subsets of A, it follows that

|N3(v)| ≤ |A| − (2α+ β)|A| < β|A| ≤ α|A|.

By 4.1, |N2(v)| ≥ βδ3|B|, and so x ≥ βδ3. Since

|N1(v) ∪N3(v)| ≤ |A| − (α+ β)|A| ≤ |A|/2 < αδ3|A|,

4.1 implies that |N4(v)| ≥ β|B|. Thus |N2(v)| ≤ |B| − β|B|, and so x ≤ 1− β. Each vertex in N1(v)
has at least β|B| out-neighbours in N2(v); and since |N3(v)| ≤ β|A|, each vertex in N2(v) has at least
α|A| − β|A| = ((α − β)/α)|N1(v)| out-neighbours in N1(v). Consequently the subdigraph induced
on N1(v) ∪N2(v) complies with

(

α− β

α
,

β|B|

|N2(v)|

)

,

and from the inductive hypothesis,

α− β

α
+

β|B|

|N2(v)|
≤

1

2
.

Hence
β|B|

|N2(v)|
≤

1

2
−

α− β

α
=

β

α
−

1

2
=

2β − α

α
,

and so (2β − α)|N2(v)| ≥ 2αβ|B|, and therefore x ≥ 2αβ/(2β − α). Since there are at least
α|A| · |N2(v)| edges with tail in N2(v), and they all have head in N1(v) ∪N3(v), and

|N1(v) ∪N3(v)| ≤ |A| − (α+ β)|A| ≤ |A|/2,

some vertex in N1(v) ∪N3(v) has in-degree at least α|A||N2(v)|/(|A|/2) = 2αx|B|. This proves (1).

(2) β > 0.219.

From (1) it follows that (2β − α)(1 − β) ≥ 2αβ, and so since α > 1/2 − β, it follows that
(3β − 1/2)(1 − β) ≥ (1− 2β)β and so β > 0.219. This proves (2).

By (1), there exists u ∈ A with in-degree at least 2αx|B|.
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(3) |N1(u) ∪N3(u) ∪N5(u)| < βδ3|B|.

Since the sets N1(u) ∪ N3(u) ∪ N5(u) and M1(u) are disjoint, and |M1(u)| ≥ 2αx|B|, it follows
that

|N1(u) ∪N3(u) ∪N5(u)| ≤ (1− 2αx)|B| ≤ (1− (1− 2β)x)|B|.

Thus it suffices to show that 1 − (1 − 2β)x < βδ3, that is, x > (1 − βδ3)/(1 − 2β). Now from
(1), x ≥ βδ3, so we may assume that βδ3 ≤ (1 − βδ3)/(1 − 2β), and so β < 0.223; and hence
0.219 < β < 0.223 from (2). On the other hand, the second lower bound from (1) tells us that
x ≥ 2αβ/(2β − α), that is, x ≥ (1− 2β)β/(3β − 1/2), and for 0.219 < β < 0.223

(1− 2β)β/(3β − 1/2) ≥ (1− βδ3)/(1 − 2β).

Consequently x > (1− βδ3)/(1 − 2β) as required. This proves (3).

(4) β > 0.242, and |N6(u)| ≥ α|A|, and |N1(u)|, |N3(u)| ≥ β|B|.

From (3) and 4.1, each of |N4(u)|, |N6(u)| ≥ α|A|. In particular, since N2(u), N4(u), N6(u) are
pairwise disjoint, it follows that |N2(u)| ≤ (1−2α)|A| ≤ αδ3|A|; and so by 4.1, |N3(u)| ≥ β|B|. Since
also |N1(u)| ≥ β|B|, it follows from (3) that |N5(u)| ≤ βδ3|B| − 2β|B| < β|B| (since δ3 < 3), and so
by 4.1, |N2(u) ∪N4(u)| > αδ3|A|. Since |N6(u)| ≥ α|A|, it follows that αδ3|A| + α|A| ≤ |A|, and so
α < 1/(1 + δ3) < 0.258. So β > 0.242. This proves (4).

Since β > 0.242 and α+ β ≥ 1/2 it follows that αβ ≥ 0.0624, and so

|M1(u)| ≥ 2αx|B| ≥ 2αβδ3|B| ≥ 0.36|B|.

Let A′ = N2(u) ∪ N4(u) and B′ = N1(u) ∪ N3(u). Now |A′| ≤ (1 − α)|A| since |N6(u)| ≥ α|A|;
and so every vertex in B′ has at least α|A| ≥ α|A′|/(1 − α) ≥ |A′|/3 out-neighbours in A′. Let
|N5(u)| = y|B|; since |M1(u)| ≥ 0.36|B|, it follows that |B′| ≤ (0.64 − y)|B|. But every vertex in A′

has at least β|B| out-neighbours in B, and they all lie in B′ except for at most y|B| of them; and so
the subdigraph induced on A′ ∪B′ complies with

(

1

3
,

β − y

0.64 − y

)

.

From the inductive hypothesis, these two numbers sum to at most 1/2; so (β − y)/(0.64− y) ≤ 1/6,
that is, 5y ≥ 6β − 0.64. Since |M1(u)| ≥ 0.36|B|, and |N1(u)|, |N3(u)| ≥ β|B|, it follows that

0.36 + 2β + (6β − 0.64)/5 ≤ 1,

that is, β ≤ 0.24, contrary to (4). This proves 7.1.
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8 Girth eight

Now we prove the remaining part of 1.7, namely that (α, β)  8 for every pair α, β ≥ 0 with
α+β ≥ 2/5. The method is much the same as that for 7.1; we prove that some vertex v ∈ A has big
in-degree, and then work with the cardinalities of the various sets Ni(v), using 4.1 and induction on
|V (G)|. One difficulty is that now we have to use δ4 rather than δ3, and the value given for δ4 seems
to be further (in some vague sense) from the conjectured 4 than δ3 is from 3.

We will prove:

8.1 For all α, β > 0 with α+ β > 2/5, every (α, β)-compliant digraph has girth at most eight.

Proof. Let G be a digraph that is (α, β)-compliant via a bipartition (A,B), where α, β > 0 and
α + β > 2/5, and suppose that G has girth at least ten. Inductively, we may assume that for all
α′, β′ > 0 with α′ +β′ > 2/5 and α′ ≥ β′, no proper subdigraph of G is (α′, β′)-compliant. From the
symmetry we may assume that α ≥ β, and (by reducing α, β) that β ≤ 1/5.

(1) Every vertex in A has in-degree at most (1− βδ4)|B|.

Let x = 1− βδ4, and suppose some vertex v ∈ A has in-degree more than x|B|. Since x+ βδ4 = 1,
the union of N1(v), N3(v), N5(v) and N7(v) has cardinality less than β|B|δ4; and so by 4.1, each
of N2(v), N4(v), N6(v), N8(v) has cardinality at least α|A|. In particular, the union of N2(v) and
N4(v) has cardinality at most |A|(1 − 2α) < αδ4|A|, and so by 4.1, N1(v), N3(v), N5(v) all have
cardinality at least β|B|. The sets M1(v), N1(v), N3(v), N5(v), N7(v) are pairwise disjoint, and since
x+4β > 1 and |N1(v)| ≥ β|B|, not all of N3(v), N5(v), N7(v) have cardinality at least β|B|. By 4.1,
|N2(v)∪N4(v)∪N6(v)| > αδ4|A|. Let A

′ = N2(v)∪N4(v)∪N6(v) and B′ = N1(v)∪N3(v)∪N5(v).
Thus |A′| ≤ |A|(1 − α), since |N8(v)| ≥ α|A|; and |B′| ≤ (1 − x − y)|B| where |N7(v)| = y|B|. The
subdigraph induced on A′ ∪B′ complies with

(

α

1− α
,

β − y

1− x− y

)

,

and so
α

1− α
+

β − y

1− x− y
≤ 2/5

from the inductive hypothesis. But x + y + 3β ≤ 1, and so β−y
1−x−y ≥ 4β−1+x

3β by letting a =

3β− 1+x+ y ≤ 0, b = β− y, c = 1−x− y, and noting that a+b
a+c ≤ b

c since ca+ bc ≤ ab+ bc (because
b ≤ c and a ≤ 0). This implies that

α

1− α
+

4β − 1 + x

3β
≤ 2/5.

Since α + β > 2/5, this implies x < β/5 + 9/(3 + 5β) − 2, a contradiction, since x = 1 − βδ4 >
β/5 + 9/(3 + 5β)− 2 for all β with 0 < β ≤ 1/5. This proves (1).

(2) Let z = (2/5 − β)(3/5 + 1/(1 − β)). Then |N1(v) ∪N3(v)| ≥ z|A| for every vertex v ∈ B.
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Let v ∈ B, and let |N1(v) ∪ N3(v)| = w|A|. We need to show that w ≥ z, so we may assume
that w ≤ 2α. Hence by 4.1, |N4(v)| ≥ β|B|, and so |N2(v)| ≤ (1 − β)|B|. The subdigraph induced
on N1(v) ∪N2(v) complies with

(

2α− w

α
,

β

1− β

)

,

and so
2α −w

α
+

β

1− β
≤ 2/5,

that is,

w ≥

(

2

5
− β

)(

3

5
+

1

1− β

)

.

This proves (2).

(3) 0.17 < β < 0.19.

Let H be the digraph with vertex set A ∪B, in which the edges from A to B are the same as in G,
and v ∈ B is adjacent to u ∈ A if the G-distance from v to u is at most three. Then H has girth at
least six. Let d be the minimum out-degree in H of vertices in B; then by 1.6, 2d/|A| + β ≤ 1, and
so d ≤ (1−β)|A|/2; and so in G, some vertex v ∈ B satisfies |N1(v)∪N3(v)| ≤ (1−β)|A|/2 < 2α|A|.
By (2),

(2/5 − β)(3/5 + 1/(1 − β)) ≤ (1− β)/2,

and so β > 0.17. Also, by 4.1, |N2(v)| ≥ βδ4|B|, and so there are at least αβ|A|δ4|B| edges from
N2(v) to N1(v) ∪N3(v). Since |N1(v) ∪N3(v)| ≤ (1− β)|A|/2, (1) implies that

αβ|A|δ4|B| ≤ ((1− β)|A|/2)(1 − βδ4)|B|,

that is,
(4/5 − 2β)β ≤ (1− β)(1/δ4 − β),

and so β < 0.19. This proves (3).

(4) Let y = 5β/(3 + 5β) + 3β/5. Then |N2(v) ∪N4(v)| ≥ y|B| for every vertex v ∈ B.

Let |N2(v)∪N4(v)| = x|B|, and let A′ = N1(v)∪N3(v), and B′ = N2(v). Suppose that x < y. Since
|N4(v)| ≤ (x− β)|B|, every vertex in A′ has at least

β|B| − |N4(v)| = (β − x)|B|+ |B′| ≥
2β − x

β
|B′|

out-neighbours in B′. By 4.1, since x < y < βδ4, it follows that |N5(v)| ≥ α|A|, and so |A′| ≤
(1− α)|A|. Consequently every vertex in B′ has at least α|A| ≥ α

1−α |A
′| out-neighbours in A′. Thus

the subdigraph induced on A′ ∪B′ complies with

(

α

1− α
,
2β − x

β

)

,
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and so
α

1− α
+

2β − x

β
≤ 2/5,

that is,

x ≥
5β

3 + 5β
+

3β

5
= y,

a contradiction. This proves (4).

(5) Let

x =
β(δ4 + 1)− 1/2

β(δ4 + 1)− y
.

There are at least x|B| vertices v ∈ B with |N3(v)| ≥ α|A|.

Let H be the digraph with vertex set B, in which for all distinct u, v, v is adjacent from u in
H if the G-distance from u to v is at most four. Then H has girth at least three, since G has girth
more than eight; and so |E(H)| ≤ |B|2/2. Thus

∑

u∈B

|N2(u) ∪N4(u)| ≤ |B|2/2.

Let X be the set of all vertices v ∈ B with |N3(v)| ≥ α|A|. For each v ∈ B \X, 4.1 implies that
|N2(v)| ≥ βδ4|A|, and |N4(v)| ≥ β|B|; and so |N2(u)∪N4(u)| ≥ β(δ4 +1)|B| for each u ∈ B \X. By
(4), |N2(u) ∪N4(u)| ≥ y|B| for each u ∈ X; and so

(|B| − |X|)β(δ4 + 1)|B|+ |X|(y|B|) ≤ |B|2/2.

By taking x = |X|/|B| and dividing by |B|2, we obtain

x(β(δ4 + 1)− y) ≥ β(δ4 + 1)−
1

2
.

This proves (5).

Since y = (5β/(3 + 5β) + 3β/5), it follows from (3) that y ≥ 0.32; and since

z = (2/5 − β)(3/5 + 1/(1 − β)),

it follows from (3) that z ≥ 0.38. Consequently

x ≥ x′ =
β(δ4 + 1)− 1/2

β(δ4 + 1)− 0.32
.

Let us apply 5.5 to the digraph H of (3) above and setting λ = 0.38, γ = 2α − 0.38, x = 1− x′, y =
1, µ = β. By (2), (4) and (5), it follows that α ≤ 1/2 and

(2α− 0.38)x′
(

2−
(2α − 0.38)(1 − x′)

β

)

+ 2(0.38) + β ≤ 1.

But this is impossible for 0.17 < β < 0.19, contrary to (3). This proves 8.1.
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9 Girth twelve

There is one other claim of the introduction that is not yet proved, that (1/7, 1/7)  12. We do not
give the proof in full because it contains no new ideas; here is a sketch.

First, show that every non-null digraph with minimum out-degree |V (H)|/δ has girth at most
six, where δ = 5.219; this follows from the result of 3.1 that δ3 = 2.886. Now let G be a digraph
with a bipartition (A,B), where every vertex in A has more than |B|/7 out-neighbours in B and vice
versa. By 1.6, there is a vertex u ∈ A with |N1(u)∪N3(u)∪N5(u)| of cardinality at most 3|B|/7. By
4.1, |N2(u) ∪N4(u)| > δ|A|/7. Consequently there are a disproportionate number of edges entering
N1(u)∪N3(u)∪N5(v), and we can apply 5.5 (taking x = 0). We deduce that there is a vertex u ∈ A
with |N1(u)∪N3(u)∪N5(u)| ≤ .3993|B|, and consequently there is a vertex v ∈ B of in-degree at least
.2667|A|. Now .2667 > 1− δ/7, and so by 4.1, the sets N2(v), N4(v), N6(v), N8(v), N10(v), N12(v) all
have cardinality at least |B|/7. So N2(v) ∪N4(v) ∪N6(v) ∪N8(v) has cardinality less than δ|B|/7,
and so N3(v), N5(v), N7(v), N9(v) all have cardinality at least |A|/7. Now let A′ be the union of
N3(v), N5(v), N7(v), N9(v), and B′ the union of N2(v), N4(v), N6(v), N8(v), N10(v); every vertex in
A′ is adjacent to more than |B′|/7 vertices in B′ and vice versa, so we can apply induction to this
subgraph. This completes the sketch.
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