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On tight 4-designs in Hamming association schemes
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Abstract

We complete the classification of tight 4-designs in Hamming association schemes H(n, q),
i.e., that of tight orthogonal arrays of strength 4, which had been open since a result by Noda
(1979). To do so, we construct an association scheme attached to a tight 4-design in H(n, q)
and analyze its triple intersection numbers to conclude the non-existence in all open cases.

1 Introduction

An orthogonal array with parameters (N,n, q, t) (OA(N,n, q, t) for short) is an N × n matrix with
entries from the alphabet {1, 2, . . . , q} such that in any its t columns, all possible row vectors of
length t occur equally often. Since orthogonal arrays were introduced by Rao [22] in 1947, they
became one of the central topics in combinatorics and found many applications in related areas
such as coding theory, cryptography, etc., see [14].

In the theory of orthogonal arrays, a fundamental problem is constructing orthogonal arrays
with extremal parameters. In particular, given the strength t, the alphabet size q, and the number
of columns n, we are interested in orthogonal arrays with minimum possible number of rows N .
For t = 2e, the lower bound on N was given by Rao [22] as

N ≥

e
∑

k=0

(

n

k

)

(q − 1)k. (1.1)

An orthogonal array is said to be complete or tight if it achieves equality in this bound.
The rows of an orthogonal array OA(N,n, q, t) can be naturally considered as a subset of points

of the Hamming association scheme H(n, q), which form a t-design, a design of strength t (we
refer the reader to Section 2 for the precise definitions), and then the problem of constructing
(tight) orthogonal arrays can be treated in the broader context of (tight) designs in association
schemes [2]. Informally speaking, design theory is devoted to finding subsets that represent a good
approximation of the whole space such as, for example, a Hamming association scheme H(n, q),
a Johnson association scheme J(v, k), or a real unit sphere Sd−1. The design theories for these
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spaces have been studied separately as orthogonal arrays, as block designs, and as spherical designs,
respectively.

The lower bounds on t-designs were provided for H(n, q) by Rao [22], for J(v, k) by Ray-
Chaudhuri and Wilson [23] (see also [29]), and for Sd−1 by Delsarte, Goethals and Seidel [12]. We
call a design tight if it achieves the corresponding lower bound.

Tight t-designs with large strength t seem very rare in general [1, 3, 4, 30], while the classification
problem of tight designs of small strength may lead to fundamental problems in combinatorics: for
example, any symmetric block design (and so a projective plane of order k) is tight in the Johnson
association scheme J(v, k+1), and a Hadamard matrix of order n+1 gives rise to a tight 2-design
in H(n, 2) (see Theorem 1.2).

Regarding tight designs of strength 4, Noda [21] showed the following in 1979.

Theorem 1.1. Let C be a tight 4-design in a Hamming association scheme H(n, q). Then one of
the following holds:

(1) (|C|, n, q) = (16, 5, 2),

(2) (|C|, n, q) = (243, 11, 3),

(3) (|C|, n, q) = (9a2(9a2 − 1)/2, (9a2 + 1)/5, 6), where a is a positive integer such that a ≡ 0
(mod 3), a ≡ ±1 (mod 5) and a ≡ 5 (mod 16).

The existence and uniqueness for (1) or (2) had been shown (see Examples 3.4 and 3.5 in
Section 3). It remains open to determine whether the third case exists or not. In this paper, we
show that there is no tight 4-design as in Theorem 1.1(3).

We briefly outline how to prove the non-existence result. A unifying framework to study designs
in the above mentioned settings are Q-polynomial association schemes, which were introduced and
developed by Delsarte [11]. In particular, an important necessary condition for the existence of tight
designs in the Johnson association schemes was established by Wilson (according to [11, Page 6], see
also [23]), and the result was extended to tight designs in Q-polynomial association schemes [11],
including the Johnson and Hamming association schemes, and in the real unit sphere [12]. Noda
used this result (see Theorem 2.3) in his proof of Theorem 1.1.

Furthermore, due to Delsarte’s work, a tight 4-design C in H(n, q) yields an association scheme
of 2 classes. Decompose the vertex set C into q disjoint subsets which can be identified with
orthogonal arrays of strength 3 in H(n − 1, q). We then apply an analogue of the result in [25]
to these subsets in the Hamming association schemes to construct another association scheme S,
which, however, satisfies all known feasibility conditions. The association scheme S turns out to be
Q-antipodal, and this property allows us to calculate the triple intersection numbers with respect
to some triples of vertices of S. Triple intersection numbers can be thought of as a generalization
of intersection numbers to triples of starting vertices instead of pairs, and, to our best knowledge,
their investigation has been previously used to study strongly regular [8] and distance-regular
graphs [9, 13, 16, 17, 18, 26] only, but not strictly Q-polynomial association schemes. We hope that
this approach will find more applications in the theory of association schemes.

In the case when S corresponds to a tight 4-design inH(n, 6), as in Theorem 1.1(3), certain triple
intersection numbers turn out to be non-integral, which leads to a contradiction. This completes
the classification of tight 4-designs in H(n, q), or in other words, that of tight orthogonal arrays of
strength 4.
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The existence and classification problems of tight 2e-designs in H(n, q) have been extensive-
ly studied. Together with our result (see Corollary 4.2), its current state is summarized in the
following theorem.

Theorem 1.2. The following hold.

(1) [14, Theorem 7.5] For e = 1, q = 2, a tight 2-design in H(n, 2) is equivalent to a Hadamard
matrix of order n+ 1.

(2) [14, Theorem 3.1] For e = 1, q ≥ 3, there exists a tight 2-design in H(q2, q) for any prime
power q.

(3) [15] For e ≥ 3, q ≥ 3, there is no tight 2e-design in H(n, q).

(4) [21] For e = 2, if there exists a tight 4-design C in H(n, q), then one of the following occurs:

(a) (|C|, n, q) = (16, 5, 2),

(b) (|C|, n, q) = (243, 11, 3).

(5) [20] For e = 3, q = 2, if there exists a tight 6-design in H(n, 2), then n = 7, 23.

The organization of the paper is as follows. In Section 2, we prepare basic notions for association
schemes and orthogonal arrays. In Section 3, we show that tight 4-designs in H(n, q) yield Q-
antipodal Q-polynomial association scheme of 4 classes. Finally, in Section 4, we analyze triple
intersection numbers with respect to some triples of vertices of the scheme obtained in Section 3
to conclude that there are no tight 4-designs in H(n, 6).

2 Preliminaries

In this section we prepare the notions needed in subsequent sections.

2.1 Association schemes

Let X be a finite set of vertices and {R0, R1, . . . , RD} be a set of non-empty subsets of X×X. Let
Ai denote the adjacency matrix of the graph (X,Ri) (0 ≤ i ≤ D). The pair (X, {Ri}

D
i=0) is called

a (symmetric) association scheme of D classes if the following conditions hold:

(1) A0 = I|X|, which is the identity matrix of size |X|,

(2)
∑D

i=0 Ai = J|X|, which is the square all-one matrix of size |X|,

(3) A⊤
i = Ai (1 ≤ i ≤ D),

(4) AiAj =
∑D

k=0 p
k
ijAk, where pkij are nonnegative integers (0 ≤ i, j ≤ D).

The nonnegative integers pkij are called intersection numbers. The vector space A over R spanned
by the matrices Ai forms an algebra. Since A is commutative and semisimple, there exists a
unique basis of A consisting of primitive idempotents E0 = 1

|X|J|X|, E1, . . . , ED. Since the algebra

A is closed under the entry-wise multiplication denoted by ◦, we define the Krein parameters qkij
(0 ≤ i, j, k ≤ D) by Ei◦Ej =

1
|X|

∑D
k=0 q

k
ijEk. It is known that the Krein parameters are nonnegative

3



real numbers (see [11, Lemma 2.4]). Since both {A0, A1, . . . , AD} and {E0, E1, . . . , ED} form bases
of A, there exists a matrix Q = (Qij)

D
i,j=0 with Ei =

1
|X|

∑D
j=0QjiAj. The matrix Q is called the

second eigenmatrix of (X, {Ri}
D
i=0). An association scheme (X, {Ri}

D
i=0) is said to be Q-polynomial

if, for some ordering of E1, . . . , ED and for each i (0 ≤ i ≤ D), there exists a polynomial v∗i (x)
of degree i such that Qji = v∗i (Qj1) (0 ≤ j ≤ D). It is also known that an association scheme is
Q-polynomial if and only if the matrix of Krein parameters L∗

1 := (qk1j)
D
k,j=0 is a tridiagonal matrix

with nonzero superdiagonal and subdiagonal [5, p. 193] – then qkij = 0 holds whenever the triple
(i, j, k) does not satisfy the triangle inequality (i.e., when |i − j| < k or i + j > k). For a Q-
polynomial association scheme, set a∗i = qi1,i, b

∗
i = qi1,i+1, and c∗i = qi1,i−1. These Krein parameters

are usually gathered in the Krein array {b∗0, b
∗
1, . . . , b

∗
D−1; c

∗
1, c

∗
2, . . . , c

∗
D}, as the remaining Krein

parameters of a Q-polynomial association scheme can be computed from them. We say that a
Q-polynomial association scheme is Q-antipodal if b∗i = c∗D−i except possibly for i = ⌊D/2⌋. We
simply say Q-antipodal association schemes for Q-antipodal Q-polynomial association schemes.
In a Q-antipodal association scheme, we have qkij = 0 whenever i + j + k > 2D and the triple
(D − i,D − j,D − k) does not satisfy the triangle inequality. See [10] and [19] for more results on
Q-antipodal association schemes.

There exists a matrix G = (G0 G1 · · · GD) whose rows and columns are indexed by X,
satisfying that GG⊤ = |X|I|X| and G diagonalizes the adjacency matrices, where Ei =

1
|X|GiG

⊤
i

(0 ≤ i ≤ D) [11, p. 11]. We then define the i-th characteristic matrix Hi of a non-empty subset C
of X as the submatrix of Gi that lies in the rows indexed by C. (Throughout this paper, a subset
C of X is always non-empty.)

A subset C of X for a Q-polynomial association scheme (X, {Ri}
D
i=0) is a t-design if its charac-

teristic vector χ = χC satisfies that χ⊤Eiχ = 0 (1 ≤ i ≤ t).

2.2 Triple intersection numbers

For a triple of vertices u, v, w ∈ X and integers i, j, k (0 ≤ i, j, k ≤ D) we denote by
[

u v w
i j k

]

(or simply [i j k] when it is clear which triple (u, v, w) we have in mind) the number of vertices
x ∈ X such that (u, x) ∈ Ri, (v, x) ∈ Rj and (w, x) ∈ Rk. We call these numbers triple intersection
numbers.

Unlike the intersection numbers, the triple intersection numbers depend, in general, on the
particular choice of (u, v, w). Nevertheless, for a fixed triple (u, v, w), we may write down a system
of 3D2 linear Diophantine equations with D3 triple intersection numbers as variables, thus relating
them to the intersection numbers, cf. [17]:

D
∑

ℓ=0

[ℓ j k] = pUjk,
D
∑

ℓ=0

[i ℓ k] = pVik,
D
∑

ℓ=0

[i j ℓ] = pWij , (2.1)

where (v,w) ∈ RU , (u,w) ∈ RV , (u, v) ∈ RW , and

[0 j k] = δjW δkV , [i 0 k] = δiW δkU , [i j 0] = δiV δjU .

Moreover, the following theorem sometimes gives additional equations.

Theorem 2.1. ([9, Theorem 3], cf. [7, Theorem 2.3.2]) Let (X, {Ri}
D
i=0) be an association scheme

of D classes with second eigenmatrix Q and Krein parameters qkij (0 ≤ i, j, k ≤ D). Then,

qkij = 0 ⇐⇒

D
∑

r,s,t=0

QriQsjQtk

[

u v w
r s t

]

= 0 for all u, v, w ∈ X.
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2.3 Hamming association schemes and orthogonal arrays

Let V = {1, 2, . . . , q} (q ≥ 2) and X = V n. For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ X, define the
Hamming distance d(x, y) to be the number of indices i with xi 6= yi. Suppose that Ri = {(x, y) |
x, y ∈ X, d(x, y) = i} for i = 0, 1, . . . , n. Then the pair (X, {Ri}

n
i=0) is an association scheme,

which is called the Hamming association scheme H(n, q). The Hamming association scheme has
the second eigenmatrix Q = (Kn,q,j(i))

n
i,j=0 and is a Q-polynomial association scheme with the

polynomials v∗i (x) = Kn,q,i(((q − 1)n − x)/q), where Kn,q,i(x) is the Krawtchouk polynomial of
degree i defined as Kn,q,i(x) =

∑i
j=0(−1)j(q − 1)i−j

(

x
j

)(

n−x
i−j

)

.
An orthogonal array OA(N,n, q, t) is an N × n matrix M with entries the numbers 1, 2, . . . , q

such that in any N × t submatrix of M all possible row vectors of length t occur equally often [14].
Let C be the set of row vectors of M . We identify the orthogonal array M with the subset C in
X. It is known from [11, Theorem 4.4] that an orthogonal array OA(N,n, q, t) is equivalent to a
t-design C with |C| = N in the Hamming association scheme H(n, q).

For t = 2e, the lower bound (1.1) on N was given by Rao [22]. An orthogonal array is said to
be complete or tight if it achieves equality in this bound.

The degree set of an orthogonal array C is the set S(C) of Hamming distances of x, y among
distinct x, y ∈ C, and the degree s of C is defined as s = |S(C)|. It is known that a tight 2e-
design has degree e [11, Theorem 5.12]. The following lemma characterizes designs in terms of
their characteristic matrices. The subsequent lemma and theorems are valid for any Q-polynomial
association scheme, but we state these only for H(n, q).

Lemma 2.2. [11, Theorem 3.15] Let C be a subset in H(n, q). The following conditions are equi-
valent:

(1) C is a t-design,

(2) H⊤
k Hℓ = δkℓ|C|I for 0 ≤ k + ℓ ≤ t.

Then the following theorems are crucial.

Theorem 2.3. Let C be a tight 2e-design in H(n, q) with degree set S = {α1, . . . , αe}. Then
|C|

∏e
i=1(1 − x/αi) =

∑e
j=0Kn,q,j(x) holds. In particular,

∑e
j=0Kn,q,j(x) has exactly e distinct

integral zeros in the interval [1, n].

Proof. See [11, Theorem 5.21].

Let C be a subset in H(n, q) with degree set S(C) = {α1, . . . , αs}. Set α0 = 0. Define
Si = {(x, y) ∈ C × C | d(x, y) = αi} (0 ≤ i ≤ s).

Theorem 2.4. Let C be a t-design in H(n, q) with degree s. If t ≥ 2s−2, then the pair (C, {Si}
s
i=0)

is a Q-polynomial association scheme of s classes.

Proof. Let Ai be the adjacency matrix of the graph (C,Si) for each i, and A the vector space
spanned by A0, A1, . . . , As.

Let Hi be the i-th characteristic matrix of C (0 ≤ i ≤ s − 1). Define Fi = 1
|C|HiH

⊤
i (0 ≤

i ≤ s − 1). Set Fs = I −
∑s−1

j=0 Fj . Then Fi = 1
|C|

∑s
j=0Kn,q,i(αj)Aj (0 ≤ i ≤ s − 1) by [11,

Theorem 3.13] and Fs = 1
|C|

∑s
j=0 f(αj)Aj where f(z) = |C|

∏s
i=1(1 − z/αi) −

∑s−1
j=0Kn,q,j(z).

Then Fi 6= O and Fi ∈ A for each i.
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By Lemma 2.2, we have FiFj = δijFi (0 ≤ i, j ≤ s−1), from which it follows that FiFs = FsFi =
O (0 ≤ i ≤ s−1) and F 2

s = Fs. These show that {F0, F1, . . . , Fs} form a set of mutually orthogonal
idempotents of A. Therefore A is closed under matrix multiplication and the pair (C, {Si}

s
i=0) is

an association scheme. Note that Fi is written as a polynomial of degree i in F1 with respect to
the entrywise product. Therefore the scheme is Q-polynomial.

3 Tight 4-designs in H(n, q) and Q-antipodal association schemes

of 4 classes

Let C be a tight 4-design in H(n, q) with degree set S(C) = {α1, α2} where α1, α2 (α1 < α2) are
the zeros of

∑2
j=0Kn,q,j(x) = 0. Set α0 = 0, and define Si = {(x, y) ∈ C × C | d(x, y) = αi} for

each i. By Theorem 2.4, the pair (C, {Si}
2
i=0) is an association scheme of 2 classes. In this section,

we decompose S1 and S2 into two subsets so that a tight 4-design in H(n, q) yields a Q-antipodal
association scheme of 4 classes.

Define Ci to be

Ci = {(x2, . . . , xn) | (i, x2, . . . , xn) ∈ C} (1 ≤ i ≤ q).

Then C =
⋃q

i=1{i} ×Ci holds. Note that Ci is obtained from C by deleting the first coordinate of
the vectors with x1 = i in C and |Ci| = |C|/q for each i. Setting C̃ =

⋃q
i=1Ci, we will consider

further combinatorial structure on C̃ based on its partition C̃ =
⋃q

i=1 Ci.

Denote by H
(i)
k the k-th characteristic matrix of Ci in H(n − 1, q), and observe that Ci is a

3-design with degree 2 in H(n − 1, q). First we claim the following lemma, which is crucial to
construct an association scheme on C̃.

Lemma 3.1. Let C be a tight 4-design in H(n, q). Define F
(i,j)
ℓ to be

F
(i,j)
ℓ =

1
√

|Ci||Cj |
H

(i)
ℓ (H

(j)
ℓ )⊤ (1 ≤ i, j ≤ q, ℓ ∈ {0, 1})

and

F
(i,i)
2 = I − F

(i,i)
0 − F

(i,i)
1 (1 ≤ i ≤ q).

Then F
(i,j)
ℓ F

(j,k)
ℓ′ = δℓℓ′F

(i,k)
ℓ holds for 1 ≤ i, j, k ≤ q and ℓ, ℓ′ ∈ {0, 1}, and F

(i,i)
2 F

(i,j)
ℓ = F

(i,j)
ℓ F

(j,j)
2

= O holds for 1 ≤ i, j ≤ q and ℓ ∈ {0, 1}.

Proof. By Lemma 2.2.

Recall C̃ =
⋃q

i=1Ci. Then C̃ is a subset in H(n − 1, q) and S(C̃) = {α1, α2, α1 − 1, α2 − 1}.
Define S̃0, S̃1, . . . , S̃4 by S̃0 = {(x, y) ∈ C̃ × C̃ | d(x, y) = 0} and

S̃2i−1 = {(x, y) ∈ C̃ × C̃ | d(x, y) = αi − 1},

S̃2i = {(x, y) ∈ C̃ × C̃ | d(x, y) = αi}

for i ∈ {1, 2}. The following theorem is the main theorem in this section.
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Theorem 3.2. Let C be a tight 4-design in H(n, q). Then (C̃, {S̃i}
4
i=0) is a Q-antipodal association

scheme of 4 classes with Krein array

{(n − 1)(q − 1), (n − 2)(q − 1), 2(q − 1), 1; 1, 2, (n − 2)(q − 1), (n − 1)(q − 1)}.

Proof. Let Ai be the adjacency matrix of the graph (C̃, S̃i) (0 ≤ i ≤ 4), and let A be the vector
space spanned by A0, A1, . . . , A4 over R.

Since each Ci is a 3-design with degree 2 in H(n − 1, q), Ci provides an association scheme of
2 classes by Theorem 2.4. It follows from the proof of Theorem 2.4 that the primitive idempotents

of Ci are F
(i,i)
0 , F

(i,i)
1 , F

(i,i)
2 := I − F

(i,i)
0 − F

(i,i)
1 , where F

(i,i)
ℓ = 1

|Ci|
H

(i)
ℓ (H

(i)
ℓ )⊤ for ℓ ∈ {0, 1}.

Now we define E0, E1, . . . , E4 as

Ei =
1

q













F
(1,1)
i F

(1,2)
i · · · F

(1,q)
i

F
(2,1)
i F

(2,2)
i · · · F

(2,q)
i

...
...

. . .
...

F
(q,1)
i F

(q,2)
i · · · F

(q,q)
i













for i ∈ {0, 1},

E2 =













F
(1,1)
2 O · · · O

O F
(2,2)
2 · · · O

...
...

. . .
...

O O · · · F
(q,q)
2













,

E4−i =
1

q













(q − 1)F
(1,1)
i −F

(1,2)
i · · · −F

(1,q)
i

−F
(2,1)
i (q − 1)F

(2,2)
i · · · −F

(2,q)
i

...
...

. . .
...

−F
(q,1)
i −F

(q,2)
i · · · (q − 1)F

(q,q)
i













for i ∈ {0, 1}.

Note that each Ei is a non-zero matrix. Since the matrices













F
(1,1)
i O · · · O

O F
(2,2)
i · · · O

...
...

. . .
...

O O · · · F
(q,q)
i













,













O F
(1,2)
i · · · F

(1,q)
i

F
(2,1)
i O · · · F

(2,q)
i

...
...

. . .
...

F
(q,1)
i F

(q,2)
i · · · O













are written as a linear combinations of A0, A1, . . . , A4, so are the matrices E0, E1, . . . , E4. From
Lemma 3.1, it follows that E0, E1, . . . , E4 are mutually orthogonal idempotents. Thus A is closed
under the matrix multiplication, and (C̃, {S̃i}

4
i=0) is an association scheme of 4 classes with the

primitive idempotents E0, E1, . . . , E4. The second eigenmatrix Q is given as:

Q =













1 (n− 1)(q − 1) 1
2(n

2−3n+2)(q−1)2 (n− 1)(q − 1)2 q−1
1 1

2(q − 2 + d) 0 −1
2(q − 2 + d) −1

1 1
2(−q−2+d) 1

2q(q − d) 1
2 (q−1)(−q−2+d) q−1

1 1
2(q − 2− d) 0 −1

2(q − 2− d) −1
1 1

2(−q−2−d) 1
2q(q + d) 1

2 (q−1)(−q−2−d) q−1













,
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where d =
√

q2 + 4(n− 2)(q − 1). Then the matrix L∗
1 is

L∗
1 =













0 (n− 1)(q − 1) 0 0 0
1 q − 2 (n− 2)(q − 1) 0 0
0 2 n(q − 1)− 3q + 1 2(q − 1) 0
0 0 (n− 2)(q − 1) q − 2 1
0 0 0 (n − 1)(q − 1) 0













.

Therefore the scheme is a Q-antipodal scheme with the given Krein array.

Remark 3.3. The association scheme (C̃, {S̃i}
4
i=0) is a fission scheme of (C, {Si}

2
i=0) in the

following way. Let φ be a mapping from C to C̃ defined by φ(x1, x2, . . . , xn) = (x2, . . . , xn) and
extended from C ×C to C̃ × C̃ with respect to entrywise. Then φ(S0) = S̃0 and φ(Si) = S̃2i−1 ∪ S̃2i

for i = 1, 2 hold.

Example 3.4. There exists a unique tight 4-design in H(5, 2). It is the dual code of the repetition
code of length 5. By Theorem 3.2, it yields a Q-antipodal association scheme of 4 classes with Krein
array {4, 3, 2, 1; 1, 2, 3, 4} (i.e., the Hamming association scheme H(4, 2)).

Example 3.5. There exists a unique tight 4-design in H(11, 3), namely the dual code of ternary
Golay code. By Theorem 3.2, it yields a Q-antipodal association scheme of 4 classes with Krein
array {20, 18, 4, 1; 1, 2, 18, 20}.

4 Triple intersection numbers of a Q-antipodal association scheme

of 4 classes

In this section we calculate triple intersection numbers of a Q-antipodal association scheme of 4
classes obtained from a tight 4-design in H((9a2 + 1)/5, 6) where a is a positive integer such that
a ≡ 0 (mod 3), a ≡ ±1 (mod 5) and a ≡ 5 (mod 16).

Let C be a tight 4-design in H((9a2 + 1)/5, 6). The corresponding association scheme (C̃,
{S̃i}

4
i=0) has Krein array {9a2 − 4, 9a2 − 9, 10, 1; 1, 2, 9a2 − 9, 9a2 − 4}. By substituting 3a = r, we

get the Krein array {r2 − 4, r2 − 9, 10, 1; 1, 2, r2 − 9, r2 − 4}. This parameter set is feasible for all
odd r ≥ 5 (i.e., the intersection numbers and multiplicities are nonnegative integers, and the Krein
parameters are nonnegative real numbers).

An association scheme with such parameters has r2(r2 − 1)/2 vertices and is Q-antipodal, so
many of its Krein parameters are zero. For a chosen triple of vertices of the association scheme, this
allows us to augment the system of equations (2.1) with new equations derived from Theorem 2.1.
We used the sage-drg package [27] (see also [28]) for the SageMath computer algebra system [24]
to derive the following result.

Theorem 4.1. Let (X, {Ri}
4
i=0) be a Q-polynomial association scheme with Krein array {r2 −

4, r2 − 9, 10, 1; 1, 2, r2 − 9, r2 − 4}. Then r = 9.

Proof. Since the Krein array above is obtained from the Krein array in Theorem 3.2 by setting
n = (r2 + 1)/5, q = 6, we may write the corresponding second eigenmatrix as

Q =













1 r2 − 4 1
2(r

2 − 4)(r2 − 9) 5(r2 − 4) 5
1 r + 2 0 −r − 2 −1
1 r − 4 −6(r − 3) 5(r − 4) 5
1 −r + 2 0 r − 2 −1
1 −r − 4 6(r + 3) −5(r + 4) 5













.

8



As noted above, r must be odd and at least 5 for the intersection numbers pkij (0 ≤ i, j, k ≤ 4)

to be all nonnegative and integral. In particular, we have p111 = (r2 − 3r+6)(r2 − 1)/12 > 0 for all
such r, so we can choose u, v, w ∈ X such that (u, v), (u,w), (v,w) ∈ R1.

Solving the system of equations (2.1) for the triple (u, v, w) augmented by equations derived from
Theorem 2.1 for each zero Krein parameter yields a one-parametrical solution (see the notebook
QPoly-d4-tight4design.ipynb on the sage-drg package repository for computation details). Let
α = [1 2 3], and write r = 2t+ 1. Then we may express

[1 1 1] = t4 + 2t3 + 2t2 − 3α−
5r + 4− 9/r

8
.

Clearly, this expression can only be integral when r divides 9. Since we must have r ≥ 5, this leaves
r = 9 as the only feasible solution.

Corollary 4.2. A tight 4-design as in Theorem 1.1(3) does not exist.

Proof. Let (C̃, {S̃i}
4
i=0) be the association scheme corresponding to a tight 4-design in H((9a2 +

1)/5, 6). By Theorem 3.2, its Krein array matches that of Theorem 4.1 with r = 3a, from which
a = 3 follows. But this fails the condition a ≡ ±1 (mod 5), so such a design cannot exist.

Theorem 4.1 allows for the existence of a Q-polynomial association scheme with Krein ar-
ray {77, 72, 10, 1; 1, 2, 72, 77}. No such scheme is known, however such a scheme would have as
a subscheme a strongly regular graph (i.e., an association scheme of 2 classes) with parameters
(v, k, λ, µ) = (540, 154, 28, 50). This parameter set is also feasible, but no example is known,
see [6].
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[16] A. Jurǐsić, J. Koolen, and P. Terwilliger. Tight distance-regular graphs. J. Algebraic Combin.,
12(2):163–197, 2000. doi:10.1023/A:1026544111089.

[17] A. Jurǐsić and J. Vidali. Extremal 1-codes in distance-regular graphs of diameter 3. Des.
Codes Cryptogr., 65(1–2):29–47, 2012. doi:10.1007/s10623-012-9651-0.
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