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Abstract

A clutter is intersecting if the members do not have a common element yet every two members intersect.

It has been conjectured that for clutters without an intersecting minor, total primal integrality and total dual

integrality of the corresponding set covering linear system must be equivalent. In this paper, we provide a

polynomial characterization of clutters without an intersecting minor.

One important class of intersecting clutters comes from projective planes, namely the deltas, while another

comes from graphs, namely the blockers of extended odd holes. Using similar techniques, we provide a poly-

nomial algorithm for finding a delta or the blocker of an extended odd hole minor in a given clutter. This result

is quite surprising as the same problem is NP-hard if the input were the blocker instead of the clutter.

1 Introduction

All sets considered in this paper are finite. Let V be a set of elements, and let C be a family of subsets of V

called members. C is a clutter over ground set V if no member contains another [11]. The two clutters {}, {∅}
are called trivial while the other ones are called nontrivial.

A cover is a subset B ⊆ V such that B ∩ C 6= ∅ for all C ∈ C ([21], Volume C, §77.5). The covering

number, denoted by τ(C), is the minimum cardinality of a cover while the packing number, denoted by ν(C), is

the maximum number of pairwise disjoint members. Notice that τ(C) ≥ ν(C). We say that C is an intersecting

clutter if τ(C) ≥ 2 and ν(C) = 1, that is, if the members do not have a common element yet every two members

intersect. We do not consider the trivial clutters intersecting.

Given disjoint I, J ⊆ V , the minor of C obtained after deleting I and contracting J is the clutter over ground

set V − (I ∪ J) whose members are

C \ I/J := the inclusion-wise minimal sets of {C − J : C ∈ C, C ∩ I = ∅}.

If I ∪ J 6= ∅, then C \ I/J is a proper minor.

Conjecture 1.1. Let C be a clutter over ground set V . For w ∈ ZV
+ consider the dual pair of linear programs

(P )

min w>x

s.t.
∑

(xu : u ∈ C) ≥ 1 ∀C ∈ C
x ≥ 0

(D)

max 1>y

s.t.
∑

(yC : u ∈ C ∈ C) ≤ wu ∀u ∈ V
y ≥ 0.
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If C has no intersecting clutter as a minor, then the following statements are equivalent:

(i) (P ) has an integral optimal solution for all w ∈ ZV
+ ,

(ii) (D) has an integral optimal solution for all w ∈ ZV
+ .

We will see in §2 that Conjecture 1.1 is a simple rephrasing of the τ = 2 Conjecture of Cornuéjols, Guenin

and Margot [8]. Upon a first reading of Conjecture 1.1, a natural question comes to mind: What does it mean for

a clutter not to have an intersecting minor? We will provide a polynomial characterization of this property.

Let I ⊆ V and let

J := {u ∈ V − I : {u} is a cover of C \ I}.

We refer to C \ I/J as a restriction of C and say that it is obtained from C after restricting I .1 If I ∪ J 6= ∅, then

C \ I/J is a proper restriction. Notice that a nontrivial restriction has covering number at least two, and that a

restriction of some restriction of C is also a restriction of C.

Remark 1.2. A clutter has an intersecting minor if, and only if, it has an intersecting restriction.

Proof. (⇐) is immediate. (⇒) Let C be a clutter over ground set V . Pick disjoint I, J ⊆ V such that C \ I/J
is an intersecting clutter. We will prove that restricting I gives an intersecting minor as well. Let J ′ := {u ∈
V − I : {u} is a cover of C \ I}. Since τ(C \ I/J) ≥ 2, J ′ ⊆ J . As a result, since C \ I/J does not have disjoint

members, neither does C \ I/J ′. Moreover, as a nontrivial restriction of C, τ(C \ I/J ′) ≥ 2. Hence, C \ I/J ′ is

an intersecting restriction.

Thus, to look for an intersecting minor in C, we can just go through the restrictions, thereby bringing the size of

the search space from 3|V | down to 2|V |. In §3 we prove the following characterization:

Theorem 1.3. Let C be a clutter over ground set V . Then the following statements are equivalent:

(i) C has an intersecting minor,

(ii) there are distinct members C1, C2, C3 such that restricting V − (C1 ∪ C2 ∪ C3) yields no two disjoint

members.

This turns out to be a polynomial characterization due to the following immediate consequence:

Theorem 1.4. Take integers n,m ≥ 1 and a clutter over n elements and m members. Then one can find an

intersecting minor, or certify that none exists, in time O(nm5).

Proof. Let C be a clutter over ground set V such that |V | = n and |C| = m. Consider the following algorithm:

1. For all distinct C1, C2, C3 ∈ C:

(i) let C′ be the restriction of C obtained after restricting V − (C1 ∪ C2 ∪ C3),

1This definition is a slight departure from the one proposed in [21], Volume C, §77.2.

2



(ii) if C′ does not have disjoint members, then output C′ as an intersecting minor.

2. If (ii) fails for every triple, then there is no intersecting minor.

The correctness of this algorithm is guaranteed by Theorem 1.3. Its running time is
(
m
3

)
× O(nm2), where

O(nm2) upper-bounds the time it takes to determine whether or not a clutter over at most n elements and m

members has disjoint members. In short, the running time is O(nm5), thereby finishing the proof.

Hence, the hypothesis of Conjecture 1.1 can be tested in time polynomial in the size of the input. This theorem

confirms Conjecture 2.14 of [1].

1.1 Examples of intersecting clutters

Let C be a clutter over ground set V . A cover is minimal if it does not contain another cover. The blocker of C,

denoted b(C), is the clutter over ground set V of the minimal covers of C [11]. It can be readily checked that

b(b(C)) = C [15, 11] and b(C \I/J) = b(C)/I \J for disjoint I, J ⊆ V [22]. Two clutters C1, C2 are isomorphic

if one is obtained from the other after relabeling its ground set. Let us now provide three important examples of

intersecting clutters.

Consider the clutter over ground set {1, 2, 3, 4, 5, 6} whose members are {1, 3, 5}, {1, 4, 6}, {2, 3, 6} and

{2, 4, 5}. This clutter is denoted Q6 [23]. Notice that Q6 is the clutter of the triangles of K4, the complete graph

on four vertices whose edges form the ground set of the clutter. Since τ(Q6) = 2 > 1 = ν(Q6), Q6 is an

intersecting clutter.

Take an integer n ≥ 3. Let ∆n be the clutter over ground set [n] whose members are {1, 2}, {1, 3}, . . . ,
{1, n}, {2, 3, . . . , n}.2 Any clutter isomorphic to ∆n is referred to as a delta of dimension n [5]. Observe that

the elements and members of a delta correspond to the points and lines of a degenerate projective plane. Notice

that ∆n = b(∆n), and that ∆n is an intersecting clutter.

Assume that n is an odd integer and satisfies n ≥ 5. Let C be a clutter over ground set [n] whose minimum

cardinality members are {1, 2}, {2, 3}, . . . , {n − 1, n}, {n, 1}. Notice that C may have members of cardinality

at least three. Any clutter isomorphic to C is referred to as an extended odd hole of dimension n [6]. Since every

member of C has cardinality at least two, no element is common to all minimal covers. Moreover, the minimum

cardinality members of C guarantee that every minimal cover has cardinality at least n+1
2 . In particular, every

two minimal covers intersect. Thus, the blocker of an extended odd hole is an intersecting clutter.

As much as they may have in common, there is a point the first example and the other two disagree on.

1.2 Fractional packings of value two

Let C be a clutter over ground set V . A fractional packing of value two is a vector y ∈ RC+ such that∑
(yC : v ∈ C ∈ C) ≤ 1 ∀v ∈ V and 1>y = 2.

2[n] := {1, 2, . . . , n}
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If there are disjoint members, then there is a fractional packing of value two. The converse however does not

hold:

Remark 1.5. Q6 has a fractional packing of value two.

Proof. Recall thatQ6 is the clutter of the triangles ofK4, so a fractional packing of value two is obtained simply

by assigning 1
2 to each of the four triangles.

The following is an immediate consequence of Strong Linear Programming Duality:

Lemma 1.6. Let C be a clutter over ground set V . Then exactly one of the following statements holds:

(1) C has a fractional packing of value two,

(2) there exists w ∈ RV
+ such that

∑
(wu : u ∈ C) > 1>w

2 for all C ∈ C.

Proof. Consider the dual pair of linear programs

(P )

max z

s.t.
∑

(wu : u ∈ C) ≥ z ∀C ∈ C
1>w = 1

w ≥ 0

(D)

min t

s.t.
∑

(yC : v ∈ C ∈ C) ≤ t ∀v ∈ V
1>y = 1

y ≥ 0.

Notice that (2) holds if and only if the optimal value of (P ) is greater than 1
2 , while (1) holds if and only if the

optimal value of (D) is less than or equal to 1
2 . It therefore follows from Strong Linear Programming Duality

that exactly one of (1) and (2) holds.

As a consequence, and in contrast to Q6,

Remark 1.7. Neither a delta nor the blocker of an extended odd hole has a fractional packing of value two.

Proof. Let C be a delta or the blocker of an extended odd hole of dimension, say, n. Definew ∈ Rn
+ as follows: If

C = ∆n then letw = (n− 2, 1, . . . , 1), and if C is the blocker of an extended odd hole then letw = (1, 1, . . . , 1).

Notice that
∑

(wu : u ∈ C) > 1>w
2 for all C ∈ C. It therefore follows from Lemma 1.6 that C does not have a

fractional packing of value two.

1.3 Finding a delta or the blocker of an extended odd hole minor

Take a clutter whose covering number is at least two. If there is no fractional packing of value two, then there is

a certificate given by Lemma 1.6, and using this certificate, Abdi and Lee [6] obtained a delta or the blocker of

an extended odd hole minor:

Theorem 1.8 ([6]). Let C be a clutter over ground set V such that τ(C) ≥ 2. Assume that there exists w ∈ RV
+

such that
∑

(wu : u ∈ C) > 1>w
2 for all C ∈ C. Then C has a delta or the blocker of an extended odd hole

minor, which can be found in strongly polynomial time with running time O(|V ||C|+ |V |4).
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Using this theorem, and deploying techniques similar to those used to prove Theorem 1.3, we prove in §4 the

following fractional analogue:

Theorem 1.9. Let C be a clutter over ground set V . Then the following statements are equivalent:

(i) C has a delta or the blocker of an extended odd hole minor,

(ii) there are distinct members C1, C2, C3 such that restricting V −(C1∪C2∪C3) yields no fractional packing

of value two.

Take integers n,m ≥ 1 and a clutter C over at most n elements and m members. Denote by T (n,m) the

minimum time it takes to solve a linear program of the form

max z

s.t.
∑

(wu : u ∈ C) ≥ z ∀C ∈ C
1>w = 1

w ≥ 0.

Keeping Lemma 1.6 in mind, notice the following immediate remark:

Remark 1.10. Let C be a clutter over ground set V such that τ(C) ≥ 2. In time T (|V |, |C|), one can output a

w ∈ RV
+ such that

∑
(wu : u ∈ C) > 1>w

2 for all C ∈ C, or declare that C has a fractional packing of value

two.

So, what is T (n,m)? We know from classic linear programming results that T (n,m) is bounded from above

by a polynomial in n,m. Let us explicitly compute one such bound, say Renegar’s [19]. After bringing our linear

program to his standard form max{c>x : Ax ≥ b}, where A is an m′ × n′ matrix and L is the total number

of bits needed to represent all the entries of A, b, c, our linear program can be solved with O((n′ +m′)1.5n′2L)

arithmetic operations and O((n′+m′)1.5n′2L2(logL)(log logL)) bit operations, the latter dominating the total

running time. In our case, the reader can check that

m′ ≤ n+m+ 2 and n′ ≤ n+ 1 and L ≤ (n+m+ 2)(n+ 1) + (n+m+ 2) + (n+ 1),

so

T (n,m) = O
(
(n+m)3.5n4 log(n+m) log log(n+m)

)
.

We are now ready to prove the following:

Theorem 1.11. Take integers n,m ≥ 1 and a clutter over n elements and m members. Then one can find a

delta or the blocker of an extended odd hole minor, or certify that none exists, in time at most

T (n,m) ·m3 +O(nm4 + n4m3).

More explicitly, the running time is

O
(
n4m3(n+m)3.5 log(n+m) log log(n+m)

)
.
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Proof. Let C be a clutter over ground set V such that |V | = n and |C| = m. Consider the following algorithm:

1. For all C1, C2, C3 ∈ C:

(i) let C′ be the restriction of C obtained after restricting V − (C1 ∪ C2 ∪ C3), and let U denote the

ground set of C′,

(ii) if there is a w ∈ RU
+ such that

∑
(wu : u ∈ C) > 1>w

2 for all C ∈ C′, then output a delta or the

blocker of an extended odd hole minor.

2. If (ii) fails for every triple, then there is no delta or the blocker of an extended odd hole minor.

The correctness of this algorithm is guaranteed by Theorems 1.8 and 1.9. Its running time by Theorem 1.8 and

Remark 1.10 is (
m

3

)
×
(
T (n,m) +O(nm+ n4)

)
≤ T (n,m) ·m3 +O(nm4 + n4m3),

as required.

Theorem 1.11, while confirming Conjecture 2.13 of [1], is a surprising result, as the same problem would be

NP-hard if the input were the blocker rather than the clutter, as was shown by Ding, Feng and Zang [10]. We

will discuss this anomaly and a potential implication in §5.

2 The τ = 2 Conjecture

Let C be a clutter over ground set V . C packs if τ(C) = ν(C), that is, if the minimum cardinality of a cover equals

the maximum number of pairwise disjoint members [23]. C has the packing property if every minor, including

the clutter itself, packs [8]. The following is a consequence of a seminal result of Lehman [17]:

Theorem 2.1 ([8]). If a clutter has the packing property, then it is ideal.

Here, C is ideal if the linear program

(P )

min w>x

s.t.
∑

(xu : u ∈ C) ≥ 1 ∀C ∈ C
x ≥ 0

has an integral optimal solution for all w ∈ ZV
+ [9]. If a clutter is ideal, then so is every minor of it [23].

The Replication Conjecture ([7]). The packing property implies the max-flow min-cut property.

Here, C has the max-flow min-cut property if the dual linear program of (P ),

(D)

max 1>y

s.t.
∑

(yC : u ∈ C ∈ C) ≤ wu ∀u ∈ V
y ≥ 0
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has an integral optimal solution for all w ∈ ZV
+ [7]. If a clutter has the max-flow min-cut property, then so

does every minor of it [23]. A classic result of Hoffman [14] and Edmonds and Giles [12] tells us that the max-

flow min-cut property implies idealness. Thus the Replication Conjecture, if true, would be a strengthening of

Theorem 2.1. It can be readily checked that the max-flow min-cut property implies the packing property, so the

Replication Conjecture, if true, would imply that these two properties are equivalent.

In an attempt to prove the Replication Conjecture, Conuéjols, Guenin and Margot [8] made a stronger con-

jecture, which is equivalent to Conjecture 1.1. To elaborate, a clutter is minimally non-packing if it does not pack

but every proper minor does. Theorem 2.1 tells us that every minimally non-packing clutter is either ideal or min-

imally non-ideal – it is not ideal but every proper minor is. The latter class is relatively well-understood thanks

to the seminal result of Lehman [17]. What about the former class? All known examples of ideal minimally

non-packing clutters have covering number two, so it has been conjectured that,

The τ = 2 Conjecture ([8]). Every ideal minimally non-packing clutter has covering number two.

These clutters are of particular relevance to us:

Remark 2.2. Let C be an ideal minimally non-packing clutter such that τ(C) = 2. Then C is an intersecting

clutter that has a fractional packing of value two.

Proof. Since C does not pack, 1 ≤ ν(C) < τ(C) = 2, so C is an intersecting clutter. Since C is an ideal clutter,

the common optimal value of the dual linear programs

min 1>x

s.t.
∑

(xu : u ∈ C) ≥ 1 C ∈ C
x ≥ 0

max 1>y

s.t.
∑

(yC : u ∈ C ∈ C) ≤ 1 u ∈ V
y ≥ 0

is two, implying in turn that C has a fractional packing of value two.

For instance, Q6, the clutter of the triangles of K4, is an ideal minimally non-packing clutter with covering

number two [18, 23]. Therefore, Remark 2.2 provides another justification for why Remark 1.5 must hold.

Let us say a few words on what is known about ideal minimally non-packing clutters.

Ideal minimally non-packing clutters can be grouped into “chains” of clutters with the same covering number,

and for those chains with covering number two, the clutter that has the smallest number of elements, and resides

at the bottom of the chain, contains what is called a cuboid [2].3 Apart from roughly a dozen small instances [20,

8], all known ideal minimally non-packing clutters – an infinite class [8] as well as over 700 small instances [3]

– are in fact cuboids.4

The τ = 2 Conjecture predicts that all ideal minimally non-packing clutters have covering number two. One

way to refute the τ = 2 Conjecture is to first refute the Replication Conjecture. Very briefly, a counterexample

to the Replication Conjecture would yield an ideal minimally non-packing clutter with replicated elements, and

thus with covering number at least three, thereby giving a counterexample to the τ = 2 Conjecture:
3To be precise, the members of minimum cardinality form a cuboid.
4This statement is no longer true. A new infinite class of ideal minimally non-packing clutters has very recently been found [4]. Each

clutter in this family has covering number two but is not a cuboid. Nonetheless, all of these clutters have what is called a cuboid core [4].
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Proposition 2.3 ([8]). If the τ = 2 Conjecture is true, then so is the Replication Conjecture.

Equipped with this, we are ready to see that the τ = 2 Conjecture is equivalent to Conjecture 1.1, predicting that

if a clutter has no intersecting minor, then it is ideal if and only if it has the max-flow min-cut property:

Proposition 2.4. The τ = 2 Conjecture is equivalent to Conjecture 1.1.

Proof. Assume first that the τ = 2 Conjecture is false. Then there is an ideal minimally non-packing clutter C
such that τ(C) ≥ 3. Since every proper minor of it packs, C has no intersecting proper minor. Pick an arbitrary

element v. Then τ(C \ v) ≥ τ(C)− 1 ≥ 2. As a proper minor of C, C \ v must pack so it has disjoint members,

implying in turn that C has disjoint members. Thus, C has no intersecting minor. Since C does not pack, it does

not have the max-flow min-cut property, so as an ideal clutter, C constitutes a counterexample to Conjecture 1.1.

Thus, Conjecture 1.1 is false.

Assume conversely that the τ = 2 Conjecture is true. Let C be a clutter over ground set V without an

intersecting minor. The max-flow min-cut property in general implies idealness, so we need to prove that the

idealness of C implies its max-flow min-cut property. To this end, assume that C is ideal. Then since C has no

intersecting minor, and the τ = 2 Conjecture is true, C cannot have a minimally non-packing minor, implying

in turn that it has the packing property. By Proposition 2.3, the Replication Conjecture is true, so C also has the

max-flow min-cut property. Thus, Conjecture 1.1 is true.

3 Proof of Theorem 1.3

We will need the following tool for finding delta minors:

Theorem 3.1 ([2], Theorem 2.1). Let C be a clutter. If there are distinct members of the form {u, v}, {u,w}, C
such that C ∩ {u, v, w} = {v, w}, then C has a delta minor.

A clutter is strictly intersecting if it is intersecting but no proper restriction is. Notice that if a clutter has an

intersecting restriction, then it has a strictly intersecting restriction.

Remark 3.2. Let C be a strictly intersecting clutter over ground set V . Then every intersecting minor of C is a

contraction minor.

Proof. Choose disjoint I, J ⊆ V such that C \ I/J is intersecting. In particular, C \ I has an intersecting minor,

so by Remark 1.2, C \ I has an intersecting restriction. Since C has no intersecting proper restriction, it follows

that I = ∅, as required.

The following proposition is the key to proving Theorem 1.3:

Proposition 3.3. A strictly intersecting clutter has three members whose union is the ground set.

Proof. Let C be a strictly intersecting clutter over ground set V .
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Claim 1. If C has a delta minor, then there are three members whose union is V .

Proof of Claim. Suppose that C \ I/J = ∆n = {{1, 2}, {1, 3}, . . . , {1, n}, {2, 3, . . . , n}} for some disjoint

I, J ⊆ V and some integer n ≥ 3. Since ∆n is intersecting, it follows from Remark 3.2 that I = ∅. Consider

the three members {1, 2}, {1, 3}, {2, 3, . . . , n} of ∆n. Pick members C1, C2, C3 of C such that {1, 2} ⊆ C1 ⊆
{1, 2}∪J , {1, 3} ⊆ C2 ⊆ {1, 3}∪J and {2, 3, . . . , n} ⊆ C3 ⊆ {2, 3, . . . , n}∪J . We claim thatC1∪C2∪C3 =

V . Suppose otherwise. Pick an element u ∈ V − (C1 ∪ C2 ∪ C3). Clearly u ∈ J . Consider the minor

C′ := C \ u/(J − {u}) over ground set [n]. Then {1, 2}, {1, 3}, {2, 3, . . . , n} are still members of C′, implying

in turn that C′ is an intersecting clutter. This contradicts Remark 3.2. Thus, C1 ∪ C2 ∪ C3 = V . ♦

We may therefore assume that C has no delta minor. As C is an intersecting clutter, τ(C) ≥ 2. In fact,

Claim 2. τ(C) = 2 and every element appears in a minimum cover.

Proof of Claim. Let u ∈ V . It suffices to show that u appears in a cover of cardinality two. For if not, then C \ u
is a proper intersecting restriction, a contradiction as C is strictly intersecting. ♦

Take an element u ∈ V and let U := {v ∈ V : {u, v} is a minimal cover of C}. By Claim 2, U 6= ∅.

Claim 3. U is not a cover.

Proof of Claim. Suppose otherwise. Let B be a minimal cover contained in U . Clearly |B| ≥ 2. Pick distinct

elements v, w ∈ B. Then by Theorem 3.1, the three minimal covers {u, v}, {u,w}, B imply that b(C) has a

delta minor, implying in turn that C has a delta minor, contrary to our assumption. ♦

Thus there is a member C ∈ C such that C ∩ U = ∅. Note that u ∈ C.

Claim 4. If a member excludes u, then it properly contains U .

Proof of Claim. Take a member C ′ such that u /∈ C ′. Our definition of U implies that U ⊆ C ′. Since C is

intersecting, C ′ ∩ C 6= ∅, implying in turn that C ′ 6= U , as required. ♦

In fact,

Claim 5. There are distinct members C1, C2 such that u /∈ C1 ∪ C2 and C1 ∩ C2 = U .

Proof of Claim. Since C is strictly intersecting, the restriction C \u/U is not intersecting. That is, the restriction

C \ u/U is either trivial or has disjoint members. Claim 4 however implies that this restriction is a nontrivial

clutter, so C \u/U must have a pair of disjoint members; any such pair corresponds to a pair of distinct members

C1, C2 of C such that u /∈ C1 ∪ C2 and C1 ∩ C1 ⊆ U , but C1 ∩ C2 ⊇ U by Claim 4, thus C1 ∩ C2 = U , as

required. ♦

Claim 6. C ∪ C1 ∪ C2 = V .
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Proof of Claim. Suppose for a contradiction that there is an element v /∈ C ∪ C1 ∪ C2. By Claim 2, there is

an element v′ such that {v, v′} is a cover of C. Since {v, v′} ∩ C 6= ∅, we have v′ ∈ C, so {v, v′} ∩ U = ∅,
implying in turn that {v, v′} ∩ C1 or {v, v′} ∩ C2 is empty, a contradiction. ♦

This finishes the proof of the proposition.

We are now ready to prove Theorem 1.3, claiming that for a clutter C over ground set V , the following

statements are equivalent:

(i) C has an intersecting minor,

(ii) there are distinct members C1, C2, C3 such that restricting V − (C1 ∪ C2 ∪ C3) yields no two disjoint

members.

Proof of Theorem 1.3. (ii)⇒ (i) is immediate. (i)⇒ (ii): It follows from Remark 1.2 that C has an intersecting

restriction, implying in turn that C has a strictly intersecting restriction obtained after restricting, say, I ⊆ V .

That is, for J := {u ∈ V − I : {u} is a cover of C \ I}, the minor C \ I/J is strictly intersecting and therefore

has no two disjoint members. By Proposition 3.3, C \ I/J has members C ′1, C
′
2, C

′
3 such that C ′1 ∪ C ′2 ∪ C ′3 =

V − (I ∪ J). For each i ∈ [3], let Ci := C ′i ∪ J . Notice that C1, C2, C3 are members of C that satisfy

I = V − (C1 ∪ C2 ∪ C3). As a result, C1, C2, C3 are the desired members.

This theorem was already proved for cuboids ([3], Theorem 1.12). Unlike the situation here, however, deltas and

delta minors did not play a role in proving that special case.

4 Proof of Theorem 1.9

We will need the following tool:

Theorem 4.1 ([6]). Let V be a set of cardinality at least 4. Let C be a clutter over ground set V where

min {|C| : C ∈ C} = 2 and the minimum cardinality members correspond to the edges of a connected bipartite

graph G over vertex set V with bipartition R ∪ B = V . If R contains a member of C, then C has a delta or an

extended odd hole minor.

We are now ready to prove the following:

Proposition 4.2. Take an odd integer n ≥ 5, and let C be an extended odd hole over ground set [n] whose

minimum cardinality members are {1, 2}, {2, 3}, . . . , {n− 1, n}, {n, 1}. If C has no delta or extended odd hole

proper minor, then for each i ∈ [n],{
i+ 2k − 1 mod n : k = 1, 2, . . . ,

n+ 1

2

}
is a minimal cover.
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Proof. It suffices to show that this set is a cover, as minimality follows from the existence of the minimum

cardinality members. We may assume that i = 1. Suppose for a contradiction that {1, 2, 4, 6, . . . , n− 3, n− 1}
is not a cover. Then there is a C ∈ C such that C ⊆ {3, 5, 7, . . . , n − 2, n}. Consider the graph G over vertex

set {2, 3, . . . , n} whose edges are {2, 3}, {3, 4}, . . . , {n− 2, n− 1}, {n− 1, n}. Then G is a connected bipartite

graph whose color classes areB := {2, 4, 6, . . . , n−1} andR := {3, 5, 7, . . . , n−2, n}. Observe that the edges

of G correspond to the members of C \ 1 of minimum cardinality. Since C ∈ C \ 1 and C ⊆ R, it follows from

Theorem 4.1 that C \ 1 has a delta or an extended odd hole minor, a contradiction to our assumption.

Let C be a clutter over ground set V such that τ(C) ≥ 2. We say that C is dense if there exists w ∈ RV
+ such

that
∑

(wu : u ∈ C) > 1>w
2 for all C ∈ C. Recall that by Lemma 1.6, C is dense or has a fractional packing of

value two, but not both. As was shown in Remark 1.7, deltas and blockers of extended odd holes are dense, and

in fact, by Theorem 1.8, every dense clutter has a delta or the blocker of an extended odd hole minor.

Remark 4.3. Let C be a clutter over ground set V such that τ(C) ≥ 2. If a contraction minor of C is dense, then

so is C.

Proof. Assume that C/J is dense for some J ⊆ V . Then there is a w ∈ RV−J
+ such that

∑
(wu : u ∈ C ′) >

1>w
2 for all C ′ ∈ C/J . Extend w to a vector in RV

+ by setting we := 0 for all e ∈ J . It can be readily checked

that
∑

(wu : u ∈ C) > 1>w
2 for all C ∈ C, implying in turn that C is dense.

As a consequence,

Remark 4.4. Let C be a clutter over ground set V . Then the following statements are equivalent:

(i) C has a delta or the blocker of an extended odd hole minor,

(ii) C has a dense restriction.

Proof. (ii) ⇒ (i) follows immediately from Theorem 1.8. (i) ⇒ (ii): Assume that C \ I/J is a delta or the

blocker of an extended odd hole for some disjoint I, J ⊆ V . Then C \ I/J is dense. Let J ′ := {u ∈ V − I :

{u} is a cover of C \ I}. Then J ′ ⊆ J , so by Remark 4.3, the restriction C \ I/J ′ is dense, as required.

A clutter is strictly dense if it is dense but no proper restriction is. Notice that if a clutter has a dense

restriction, then it has a strictly dense restriction. The following is the key to proving Theorem 1.9:

Proposition 4.5. A strictly dense clutter has three members whose union is the ground set.

Proof. Let C be a strictly dense clutter over ground set V .

Claim 1. No proper deletion minor of C has a delta or the blocker of an extended odd hole minor.

Proof of Claim. If so, then by Remark 4.4, a proper deletion minor of C has a dense restriction, implying in turn

that a proper restriction of C is dense, a contradiction as C is strictly dense. ♦
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By Theorem 1.8, C has a delta or the blocker of an extended odd hole minor, and any such minor must be a

contraction minor by Claim 1. Pick a maximal J ⊆ V such that C/J is a delta or the blocker of an extended odd

hole. Our maximal choice of J implies that every proper minor of C/J is different from a delta or the blocker of

an extended odd hole.

Claim 2. C/J has members C ′1, C
′
2, C

′
3 such that C ′1 ∩ C ′2 ∩ C ′3 = ∅ and C ′1 ∪ C ′2 ∪ C ′3 = V − J .

Proof of Claim. If C/J = ∆n, then let C ′1 := {1, 2}, C ′2 := {1, 3} and C ′3 := {2, 3, . . . , n}. Otherwise, C/J
is the blocker of an extended odd hole. We may assume that C/J has ground set {1, 2, . . . , n} and its minimum

cardinality covers are {1, 2}, {2, 3}, . . . , {n − 1, n}, {n, 1}. Since every proper minor of C/J is different from

a delta or the blocker of an extended odd hole, we may apply Proposition 4.2 to get that for i ∈ [3],

C ′i :=

{
i+ 2k − 1 mod n : k = 1, 2, . . . ,

n+ 1

2

}
is a member of C/J . In both cases, it can be readily checked that C ′1, C

′
2, C

′
3 are the desired members. ♦

For each i ∈ [3], pick a member Ci of C such that C ′i ⊆ Ci ⊆ C ′i ∪ J .

Claim 3. C1 ∪ C2 ∪ C3 = V .

Proof of Claim. Suppose for a contradiction that there is an element u ∈ V − (C1 ∪C2 ∪C3). Since C ′1 ∪C ′2 ∪
C ′3 = V − J , u ∈ J . Consider the minor C′ := C \ u/(J − {u}). As C ′1, C

′
2, C

′
3 are members of C/J , they are

still members of C′. Since C ′1 ∩ C ′2 ∩ C ′3 = ∅, it follows that τ(C′) ≥ 2. Since C/J is a delta or the blocker of

an extended odd hole, it is a dense clutter. Since every member of C′ contains a member of C/J , and the two

clutters have the same ground set, C′ must be dense too. Thus by Theorem 1.8, C′ and therefore C \ u has a delta

or the blocker of an extended odd hole minor, a contradiction to Claim 1. ♦

This claim finishes the proof of the proposition.

We are now ready to prove Theorem 1.9:

Proof of Theorem 1.9. Let C be a clutter over ground set V . By Lemma 1.6, we need to show that the following

statements are equivalent:

(i) C has a delta or the blocker of an extended odd hole minor,

(ii) there are distinct members C1, C2, C3 such that restricting V − (C1 ∪ C2 ∪ C3) yields a dense clutter.

(ii) ⇒ (i) follows from Theorem 1.8. (i) ⇒ (ii): By Remark 4.4, C has a dense restriction, implying in turn

that C has a strictly dense restriction obtained after restricting, say, I ⊆ V . That is, for J := {u ∈ V − I :

{u} is a cover of C \ I}, the minor C\I/J is strictly dense. By Proposition 4.5, C\I/J has membersC ′1, C
′
2, C

′
3

such that C ′1 ∪C ′2 ∪C ′3 = V − (I ∪ J). For each i ∈ [3], let Ci := C ′i ∪ J . Notice that C1, C2, C3 are members

of C that satisfy I = V − (C1 ∪ C2 ∪ C3). As a result, C1, C2, C3 are the desired members.
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5 Discussion on complexity and another conjecture

Recall that a clutter is minimally non-ideal if it is not ideal but every proper minor is. Take an odd integer n ≥ 5.

An odd hole of dimension n is an extended odd hole of dimension n without a member of cardinality at least

three. Deltas, odd holes, as well as some other extended odd holes, are minimally non-ideal [16, 23].

Theorem 5.1 ([17]). The 3-dimensional delta, and odd holes are the only minimally non-ideal clutters where

every element appears in at most two members.

As an immediate consequence,

Corollary 5.2. Let C be a clutter where every element appears in exactly two members. Then the following

statements are equivalent:

(i) C is ideal,

(ii) C has no ∆3 or odd hole minor,

(iii) C has no delta or extended odd hole minor.

Ding, Feng and Zang showed the following surprising result:

Theorem 5.3 ([10], Theorem 1.5 (1)). Let C be a clutter where every element appears in exactly two members.

Then the problem “Is C an ideal clutter?” is co-NP-complete.

Corollary 5.2 and Theorem 5.3 have the following immediate consequence:

Corollary 5.4. Let C be a clutter over ground set V where every element belongs to exactly two members. Then

the following problems are NP-complete:

(i) Does C have a ∆3 or an odd hole minor?

(ii) Does C have a delta or an extended odd hole minor?

(iii) Does C have an odd hole minor?

(iv) Does C have an extended odd hole minor?

Proof. These four problems are clearly in NP. Corollary 5.2 and Theorem 5.3 imply that (i) and (ii) are NP-

complete. It can be readily checked that the problem “Does C have a ∆3 minor?” belongs to P. Thus (iii) is also

NP-complete. Clearly, C has a delta minor if and only if it has a ∆3 minor. Thus, the problem “Does C have a

delta minor?” belongs to P also. So (iv) is NP-complete as well.

Given a clutter C, notice that finding a delta or an extended odd hole minor in C is mathematically, but

not computationally, equivalent to finding a delta or the blocker of an extended odd hole minor in b(C). As a

consequence, Corollary 5.4 (ii) is in total contrast with Theorem 1.11. These results are not at odds with each

other because C and b(C) may have different complexity, in particular, the number of members of b(C) may be

exponential in the number of members of C. Nevertheless,
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Theorem 5.5 ([16]). A clutter is ideal if and only if its blocker is ideal.

Theorems 1.11 and 5.5 suggest the following:

Conjecture 5.6. There is an algorithm that given clutters C,B over ground set V outputs one of the following

in time polynomial in |V |, |C|, |B|:

(i) C,B are not blockers,

(ii) at least one of C,B is not ideal,

(iii) C,B are blocking ideal clutters.

Determining whether or not two clutters are blockers is computationally and mathematically equivalent to

determining whether or not two monotone disjunctive normal forms are duals, and as such we have the following

result by Fredman and Khachiyan:

Theorem 5.7 ([13]). Let C,B be clutters over the same ground set, and let n := |C|+ |B|. Then in time nO(logn),

one can determine whether or not C,B are blockers.

It was pointed out in the proof of Corollary 5.4 that finding a ∆3 minor belongs to P. In fact, finding a delta

minor in general belongs to P:

Theorem 5.8 ([2], Theorem 2.3). There is an algorithm that given a clutter C over ground set V finds a delta

minor, or certifies that none exists, in time polynomial in |V | and |C|.

Theorems 1.11 and 5.8 lead to the following natural question:

Question 5.9. Given a clutter C over ground set V , what is the complexity of finding the blocker of an extended

odd hole minor in C?
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