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On transitive ovoids of finite Hermitian polar spaces

Tao Feng Weicong Li∗

Abstract

In this paper, we complete the classification of transitive ovoids of finite Hermitian polar
spaces.

Keywords: transitive ovoids, Hermitian polar spaces, Singer orbits.
Mathematics Subject Classification(2010): 51E20, 05B25, 51A50

1 Introduction

An ovoid O of a finite classical polar space P of rank r > 1 is a subset of points of P that has
exactly one point in common with each maximal totally singular subspace of P. The size of an
ovoid, if one exists, is called the ovoid number, which we denote by θ(P). Alternatively, an ovoid of
P is a set of θ(P) points of P no two of which are perpendicular. There has been extensive research
on ovoids due to their close connection with various geometric objects as well as other branches of
combinatorics, cf. [19, 20]. There have been two major generalizations of the concept of ovoids in
the past two decades, namely m-systems and intriguing sets. Please refer to [14, Chapter 7] and
[2] for more details and the references therein.

Let V be an (n+1)-dimensional vector space over Fq2 , equipped with a nondegenerate Hermitian
form h : V × V → Fq2 . Let PG(V ) be the projective space associated to V , and denote by 〈v〉 the
projective point that corresponds to the 1-dimensional vector space spanned by a nonzero vector
v. The Hermitian polar space H(n, q2) associated to the pair (V, h) consists of the totally singular
subspaces of V with respect to h, with inclusion as incidence relation. The maximal totally singular
subspaces of H(n, q2) have dimension r = ⌊(n+1)/2⌋, and H(n, q2) has rank r. In the case n > 2 is
even, H(n, q2) has no ovoids, cf. [19]. In the case n ≥ 3 is odd, there are many ovoids in H(3, q2),
but for odd n with n > 3 little is known about the existence of ovoids in H(n, q2) besides the results
in [6, 12, 17]. Let n be odd and O be an ovoid of H(n, q2). Then O has size qn + 1. For a point P
of H(n, q2), we have

|P⊥ ∩O| =
{ 1, if P ∈ O
qn−2 + 1, if P 6∈ O

, (1.1)

by [2]. Here, ⊥ is the polarity associated with H(n, q2). Moreover, it is clear that g(O) is also an
ovoid for each g ∈ PΓU(n+ 1, q2); we say that g(O) is projectively equivalent to O.

All the known ovoids of Hermitian polar spaces of rank r > 1 live in H(3, q2). A nondegenerate
plane section of H(3, q2) is a classical ovoid, and all classical ovoids of H(3, q2) are projectively
equivalent. There is a powerful way to obtain new ovoids from an old ovoid of H(3, q2), known
as derivation, due to Payne and Thas [21]. To be specific, given an ovoid O of H(3, q2) such that
there is a line ℓ of PG(3, q2) that intersects O in q + 1 points, let O′ be the set obtained from O
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by removing the points on ℓ and then adding the singular points on ℓ⊥. Then O′ is also an ovoid.
The Singer-type ovoids with q even, which we will describe later, can be obtained from the classical
ovoids by multiple derivations.

An ovoid of H(n, q2) is transitive if there is a subgroup H of PΓU(n + 1, q2) that stabilizes
and acts transitively on the points of O. If H is a subgroup of PGU(n + 1, q2), then it is said
to be linearly transitive. In H(3, q2), the classical ovoids are linearly transitive ovoids, whose full
stabilizer has a nonabelian composition factor PSU(3, q2). When q > 2 is even, Cossidente and
Korchmáros constructed a new family of transitive ovoids of H(3, q2), the Singer-type ovoids, based
on the cyclic spreads of H(2, q2) in [1]. Such ovoids have a soluble stabilizer in PΓU(4, q2). In the
same paper, they classified the linearly transitive ovoids of H(3, q2) with q even, and the only such
ovoids are the classical ovoids and the Singer-type ovoids. The smallest case q = 2 is due to Brouwer
and Wilbrink [9], who classified all ovoids of H(3, 22). In 2009, Bamberg and Penttila [5] classified
transitive ovoids of finite classical polar spaces admitting an insoluble transitive automorphism
group, which is based on the deep results in [13]. There are no such transitive ovoids in H(n, q2)
with n > 3. Besides the classical ovoids, the only such ovoids in H(3, q2) exist when q = 5. We
refer the reader to [5] for a survey of classification results of transitive ovoids in other classical polar
spaces.

In this paper, we give a complete classification of transitive ovoids in H(3, q2), and show that
for a given odd integer n ≥ 5 there is no transitive ovoid in H(n, q2). To be specific, we prove the
following theorem.

Theorem 1.1. Let q be a prime power and n ≥ 3 be an integer. Suppose that O is a transitive
ovoid of H(n, q2). Then n = 3, and O is projectively equivalent to one of the following:

(1) a classical ovoid H(2, q2), with full stabilizer ΓU(3, q2);

(2) a Singer-type ovoid for even q = 2d, with full stabilizer Zq3+1 : 6d if q > 2;

(3) an exceptional ovoid of H(3, 52), with full stabilizer Z2 × (Z3 × PSL(2, 7)) : 2;

(4) an ovoid of H(3, 82), with full stabilizer Z57 : 9;

(5) an ovoid of H(3, 82), with full stabilizer Z57 : 18.

Remark 1.2. Please refer to [5] for a description of the exceptional ovoid in H(3, 52), which is
based on a unital spread of H(2, 52) discovered in [11]. For a description of the Singer-type ovoids
and the two exceptional ovoids in H(3, 82), please refer to Example 3.1 and Example 3.2 respectively.

This paper is organized as follows. In Section 2, we first present some preliminary results. In
Section 3, we introduce the model of H(n, q2), n odd, that we shall use in this paper. We study the
orbits of certain Singer groups of order qn + 1 and determine when they form ovoids of H(n, q2).
In particular, in the case n = 3 and q is even we give an algebraic description of the Singer-type
ovoids. In Section 4, we first derive some restrictions on the parameters of a transitive ovoid with
a soluble stabilizer in PΓU(n+ 1, q2), and then give the proof of Theorem 1.1.

2 Preliminaries

2.1 Some technical lemmas

Throughout this paper, let p be a prime, d be a positive integer and n be an odd positive integer
greater than or equal to 3. Set q = pd, take ω0 to be a fixed element of order (qn+1)(q−1) in Fq2n ,
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and write ω = ωq−1
0 . If E is a field extension of F of finite degree, we use TrE/F for the relative

trace function from E to F .

Lemma 2.1. Take notation as above, and set W := F
∗
qn · 〈ω〉. Then F

∗

q2n = W if q is even, and
F
∗

q2n =W ∪Wω0 if q is odd.

Proof. In the case q is odd, gcd(qn+1, qn− 1) = 2, so W is a multiplicative subgroup of index 2 in

F
∗

q2n ; moreover, ω0 is a nonsquare of F∗

q2n since q2n−1
(qn+1)(q−1) = qn−1+qn−2+ · · ·+1 is odd. The claim

now follows readily. In the case q is even, the claim follows from the fact gcd(qn+1, qn− 1) = 1. �

Lemma 2.2. Take notation as above, and assume that n = 3. Let x be an element of 〈ω〉 \ Fq2.
Then TrFq6/Fq2

(x) 6= 1.

Proof. Suppose to the contrary that x is an element of 〈ω〉 \Fq2 such that TrFq6/Fq2
(x) = 1. Write

s := x1+q2+q4 , which lies in F
∗

q2 . We compute that

TrFq6/Fq2
(xq

2+q4) = sTrFq6/Fq2
(x−1) = sTrFq6/Fq2

(xq
3
) = s.

Since x 6∈ Fq2 , the minimal polynomial of x over Fq2 is

(X − x)(X − xq
2
)(X − xq

4
) = X3 − TrFq6/Fq2

(x)X2 +TrFq6/Fq2
(xq

2+q4)X − s

= X3 −X2 + sX − s.

However, this polynomial factors as (X − 1)(X2+ s): a contradiction. This completes the proof. �

Lemma 2.3. Suppose that gcd(n, e) = 1. Then TrFqne/Fqe
(x) = TrFqn/Fq

(x) for x ∈ Fqn, and a
basis of Fqe over Fq is also a basis of Fqne over Fqn.

Proof. Take x ∈ Fqn , so that xq
n
= x. Since gcd(n, e) = 1, we have {ie (mod n) : 0 ≤ i ≤ n−1} =

{0, · · · , n− 1}, so

TrFqne/Fqe
(x) = x+ xq

e
+ · · · + xq

e(n−1)

= x+ xq + · · ·+ xq
n−1

= TrFqn/Fq
(x).

Let ζ1, · · · , ζe be a basis of Fqe over Fq. Suppose that
∑e

i=1 ciζi = 0 for some elements ci ∈ Fqn .
For any x ∈ Fqn , we have

0 = TrFqne/Fqe

(

x ·
e
∑

i=1

ciζi

)

=

e
∑

i=1

TrFqn/Fq
(cix)ζi

by the previous claim. Since the ζi’s form a basis over Fq, it follows that TrFqn/Fq
(cix) = 0 for each

i. This holds for any x ∈ Fqn , so we have ci = 0 for each i. This proves the second claim. �
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2.2 The bound of Blokhuis and Moorhouse

For an positive integer n and a prime p, define

F (n, p) :=
1

pn

(

n+ p− 1

n

)2

− 1

pn

(

n+ p− 2

n

)2

. (2.1)

Theorem 2.4. [17, Corollary 1.3] Let q = pd be a prime power with p prime and n be an odd
integer. If H(n, q2) contains an ovoid, then F (n, p) ≥ 1.

Since
(n+p−1

n

)

= n+p−1
n

(n+p−2
n−1

)

,
(n+p−2

n

)

= p−1
n

(n+p−2
n−1

)

, we have

F (n, p) =

(

n+ p− 2

n− 1

)2n+ 2p− 2

npn
.

We have the following Stirling’s approximation [18]:

n! = (ne−1)n
√
2πneαn ,

1

12n + 1
< αn <

1

12n
. (2.2)

Lemma 2.5. Let n be a positive integer and p be a prime. Let F (n, p) be the function defined in
(2.1).

(1) F (n+ 1, p) < F (n, p) if either p > 3 and n ≥ (p+ 1)/2, or p ≤ 3 and n ≥ p+ 1;

(2) For a prime p > 45, we have F ((p + 1)/2, p) < 1.

Proof. Since
(n+p−1

n

)

= n+p−1
n

(n+p−2
n−1

)

, we have

n2(n+1)pn+1

(n+p−2
n−1 )

2 · (F (n, p)− F (n+ 1, p))

= pn(n+ 1) · (n+ 2p − 2)− n2 · (n+p−1)2

n2 · (n+ 2p− 1)
= (p − 1) · (n3 + (2p− 3)n2 − 3(p − 1)n− 2p2 + 3p− 1).

Write fp(n) := n3 + (2p− 3)n2 − 3(p − 1)n − 2p2 + 3p− 1. Hence F (n, p)− F (n+ 1, p) > 0 if and
only if fp(n) > 0. Let p be fixed. Since

f ′p(n) = 3n2 + (4p− 6)n − 3(p− 1) = n2 + 2n(n − 1) + (p − 1)(4n − 3) > 0,

the function fp(n) is increasing in n when n ≥ 1. Here, we regard fp(n) as a polynomial in the
variable n. We directly compute that

fp

(

p+ 1

2

)

=
1

8
(p− 1)(5p2 − 18p + 1),

which is positive for p > 3. For p = 2, 3, we have fp(p + 1) = p(3p2 − p + 2) > 0. This proves the
first claim.

We have p+1
2 + p− 2 = 3

2(p− 1). By (2.2), we have

(

3(p − 1)/2

(p− 1)/2

)

=

(

3
2(p − 1)

)

!
(

p−1
2

)

! · (p − 1)!
=

3(3p−2)/2

2p−1
√

2π(p − 1)
eβ
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where β = α3(p−1)/2 − α(p−1)/2 − α(p−1). Since
1

12n+1 < αn <
1

12n , we have

β <
1

18(p − 1)
− 1

12(p − 1) + 1
− 1

6(p − 1) + 1
< 0.

We compute that

F ((p + 1)/2, p) =
33p−2

4p−1 · 2π(p − 1)
· 5p− 3

p(p+1)/2(p+ 1)
e2β =

(

6.752

p

)(p−1)/2
3(5p − 3)

2πp(p2 − 1)
e2β.

Since 6.752 = 45.5625, 3(5p−3) < 15p < 2πp(p2−1) and β < 0, we deduce that F ((p+1)/2, p) < 1
for p > 45 as desired. This completes the proof. �

2.3 Primitive divisors

For integers x and k, with x, k ≥ 2, a primitive prime divisor of xk − 1 is a prime divisor r of
xk − 1 which does not divide xk

′ − 1 for all 1 ≤ k′ < k. In other words, x has order k modulo r. As
a corollary, we have r ≡ 1 (mod k). By a theorem of Zsigmondy [22], there is at least one primitive
prime divisor of xk − 1 unless (x, k) = (2, 6) or k = 2 and x+ 1 is a power of 2. We denote such a
prime by xk. Note that if (x, k) 6= (2, 3), then xk + 1 is divisible by a primitive prime divisor x2k
of x2k − 1.

The primitive prime divisors play an important role in the study of geometric objects that
satisfy certain transitivity conditions, see [3, 5] for instance. In the situation of the present paper,
we have stronger information than the existence of primitive prime divisors. A divisor r of xk − 1
that is relatively prime to each xi − 1 for 1 ≤ i ≤ k is said to be a primitive divisor, and we call
the largest primitive divisor Φ∗

k(x) of x
k − 1 the primitive part. It is clear that each prime divisor

of Φ∗
k(x) is a primitive prime divisor, so in particular Φ∗

k(x) ≡ 1 (mod k) provided that Φ∗
k(x) > 1;

conversely, each primitive prime divisor of xk − 1 divides Φ∗
k(x).

Let n be an odd integer with n ≥ 3, and let q = pd with p a prime. Suppose that O is a
transitive ovoid of the Hermitian polar space H(n, q2) with ambient vector space V , and let H be
its stabilizer in PΓU(n+ 1, q2). In the case (q, n) = (2, 3), O is either a classical ovoid or a Singer-
type ovoid by [9]. We assume that (q, n) 6= (2, 3) for the rest of the paper. In particular, we always
have Φ∗

2nd(p) > 1. Since Φ∗
2nd(p) is congruent to 1 modulo 2nd, we have gcd(2nd, Φ∗

2nd(p)) = 1. It
follows that H ∩ PGU(n + 1, q2) has order divisible by Φ∗

2nd(p). Since the case H is insoluble has
been settled in [5, Theorem 4.3], we only consider the case where H is soluble. We shall need the
following soluble case of the main theorem in [4], whose proof is based on [13].

Theorem 2.6. [4, Theorem 4.2] Let p be a prime, q = pd, and n be an odd integer such that
n ≥ 3, (p, nd) 6= (2, 3). Let V be an (n + 1)-dimensional vector space over Fq2, and let h be
a nondegenerate Hermitian form on V with linear isometry group GU(n + 1, q2). If a soluble
subgroup G of GU(n + 1, q2) has order divisible by Φ∗

2nd(p), then G fixes a subspace or quotient
space U of V of dimension n and GU ≤ ΓU(1, q2n), where GU is obtained from the induced action
of G on U . Moreover, GU has order divisible by Φ∗

2nd(p).

Theorem 2.6 is applicable to the full preimage G0 of H ∩PGU(n+1, q2) in GU(n+1, q2) by the
preceding remarks. As a consequence, there exists a nonsingular 1-dimensional subspace P = Fq2 ·v
fixed by H such that U = P⊥ or U = V/P , cf. [15, Propositions 4.1.4, 4.1.18] or [8, Table 2.3].
Since PΓU(n+1, q2) acts transitively on the nonsingular points, by replacing O with g(O) for some
g ∈ PΓU(n+1, q2) if necessary, we can take P to be a specific nonsingular 1-dimensional subspace
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that we choose. Moreover, by [4, Theorem 3.1] the quotient image of the group in Theorem 2.6
modulo the scalars is a subgroup of the extension field type, and there is a unique conjugacy class
of such subgroups in PΓU(n, q2) by [15, Proposition 4.3.6].

3 The model of H(n, q2) and the Singer orbits

In this section, we define and study the properties of the Singer orbits of H(n, q2), cf. (3.4)
below. Also, we will obtain an algebraic characterization of the Singer-type ovoids when q is even.
Since there is no ovoid in H(n, q2) if n > 2 is even, we assume that n is odd in the sequel. We
will establish a connection between a putative transitive ovoid and the Singer orbits in Lemma 4.4,
so the properties of the Singer orbits that we derive in this section, most notably Lemma 3.6, will
play an important role in the proof of Theorem 1.1.

Set V := Fq2 × Fq2n , and view it as an (n + 1)-dimensional vector space over Fq2 . We equip it
with the following Hermitian form:

h((a, x)) = aq+1 −TrFq2n/Fq2
(xq

n+1), for (a, x) ∈ V. (3.1)

Let H(n, q2) be the associated Hermitian polar space. We define

ρ : (a, x) 7→ (a, ωx),
φ : (a, x) 7→ (ap, xp),

(3.2)

where ω is an element of order qn + 1. We understand that both ρ and φ act from the left, i.e.,
the image of a vector v under ρ (resp. φ) is written as ρ(v) (resp. φ(v)). Both of them lie in
PΓU(n + 1, q2) and stabilize the point P = 〈(1, 0)〉. Let G be the group generated by ρ and φ,
which has order 2nd(qn + 1). Set U := P⊥. Then G also stabilizes U .

Example 3.1. Take n = 3 and suppose that q is even. The orbit O of (1, 1) under the group
G = 〈ρ, φ〉 is an ovoid of H(3, q2), and it has G as its full stabilizer when q > 2. In the case
q = 2, the full stabilizer of O has order 324. Any ovoid of H(3, q2) projectively equivalent to O is
referred to as a Singer-type ovoid. This example is due to [10], and its full stabilizer is determined
in the same paper. The fact that a Singer-type ovoid has such an algebraic description follows from
Lemma 3.5 below.

Example 3.2. Take q = 8 and n = 3, and let γ be a primitive element of F29 with minimal
polynomial X9 +X4 + 1 over F2. By an exhaustive search using Magma [7], there are exactly two
transitive ovoids with a soluble stabilizer in PΓU(4, 82) up to projective equivalence:

(1) The orbit O1 of 〈(1, γ39)〉 under the group H1 = 〈ρ9, ρ3φ2〉 is a transitive ovoid,

(2) The orbit O2 of 〈(1, γ109)〉 under the group H2 = 〈ρ9, φ〉 is a transitive ovoid.

In both cases, Hi is the full stabilizer of Oi in PΓU(4, 82), i = 1, 2.

We define the following group homomorphism:

η : G→ Aut(Fq2n), ρ
jφi 7→ φi. (3.3)

Then ker(η) = 〈ρ〉, and η is surjective. In particular, G has the structure Zqn+1 : 2nd. We
summarize some basic properties of G in the following lemma.

Lemma 3.3. Let G be as defined above. Then the following properties hold.

6



(1) φρφ−1 = ρp, and for nonnegative integers l, k, i it holds that

(ρlφk)i = ρ(p
ki−1)l/(pk−1)φki.

(2) If g ∈ G \ 〈ρ〉 has order 2, then g = ρjφnd for some integer j.

Proof. We omit the proof of (1) which is routine. Suppose that g = ρlφk has order 2, where
1 ≤ k ≤ 2nd− 1. Then by (1) we have 2nd|2k, qn+1|(1+ pk)l, from which we deduce that k = nd.
This proves (2). �

For a point 〈(1, y)〉 of the polar space H(n, q2), the Singer orbit Sy of 〈(1, y)〉 is its image under
the action of 〈ρ〉, i.e.,

Sy := {〈(1, ωiy)〉 : 0 ≤ i ≤ qn}. (3.4)

Let ω0 be an element of order (qn + 1)(q − 1) such that ω = ωq−1
0 . By Lemma 2.1, a Singer orbit

Sy contains either a point 〈(1, x)〉 or a point 〈(1, xω0)〉 for some x ∈ F
∗
qn . For each integer i with

0 ≤ i ≤ qn+1
q+1 − 1, we define

Li,y := {〈(1, ωi+j(qn+1)/(q+1)y)〉 : 0 ≤ j ≤ q}. (3.5)

Each Li,y has size q+1, and they form a partition of Sy. The subscript i is understood to be taken
modulo qn+1

q+1 , so that Li,y is defined for each integer i.

Lemma 3.4. Let q be even and n be an odd integer with n ≥ 5. Then there exists an element
z ∈ Fq2n such that zq

n+1 = 1, TrFq2n/Fq2
(z) = 1 and z 6= 1.

Proof. Take δ to be an element of Fq2 such that δ + δq = 1, and set v := δq+1 ∈ F
∗
q. Then 1, δ

form a basis of Fq2 over Fq. Since n is odd, they also form a basis of Fq2n over Fqn . Moreover, the
minimal polynomial of δ over Fq is X2 +X + v, which is irreducible over Fq.

Let N be the number of elements z ∈ Fq2n such that TrFq2n/Fq2
(z) = 1, zq

n+1 = 1. There exist

x, y ∈ Fqn such that z = 1+x+ yδ. Upon expansion, the first equation reduces to TrFqn/Fq
(x) = 0,

TrFqn/Fq
(y) = 0, and the second reduces to x2 + y2v + xy + y = 0.

Let ψ be the canonical additive character of Fqn , i.e., ψ(x) = (−1)
TrFqn/F2

(x)
for x ∈ Fqn .

In particular, we have ψ(x2) = ψ(x) for each x. For a divisor d of n, it is well known that
∑

x∈F
qd
ψ(ax) = qd if TrFqn/Fqd

(a) = 0, and = 0 otherwise, cf. [16]. We thus have

qn+2N =
∑

x,y∈Fqn

∑

a,b∈Fq

∑

z∈Fqn
ψ(ax+ by + z(x2 + y2v + xy + y))

= q2n +
∑

a,b∈Fq

∑

x,y∈Fqn

∑

z∈F∗

qn
ψ(ax+ by + z(x2 + y2v + xy + y))

= q2n +
∑

a,b∈Fq

∑

x,y∈Fqn

∑

z∈F∗

qn
ψ(ax+ by + xz1/2 + y(zv)1/2 + zxy + zy)

= q2n +
∑

a,b∈Fq

∑

y∈Fqn

∑

z∈F∗

qn
ψ(by + y(zv)

1
2 + yz) ·∑x∈Fqn

ψ(x(a+ z1/2 + yz)).

The last sum is nonzero only if a+ z1/2 + yz = 0, i.e., y = az−1 + z−1/2. We thus have

qn+2N = q2n + qn
∑

a,b∈Fq

∑

z∈F∗

qn
ψ(baz−1 + bz−1/2 + az−1/2v1/2 + v1/2 + a+ z1/2)

= q2n + qn
∑

a,b∈Fq
ψ(v + a)K(ψ; 1, b2 + ba+ a2v).

Here, K(ψ; 1, u) =
∑

z∈F∗

qn
ψ(z + u/z) is a Kloosterman sum for u 6= 0, and K(ψ; 1, u) = −1 for

u = 0. In both cases, we have |K(ψ; 1, u)| ≤ 2qn/2 by [16, Theorem 5.45]. Since X2 + X + v is
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irreducible over Fq, we deduce that the only pair (a, b) in Fq × Fq such that b2 + ba + a2v = 0 is
(0, 0). It follows that

qn+2N ≥ q2n + qnψ(v)− (q2 − 1) · 2q3n/2 ≥ q2n − qn − (q2 − 1) · 2q3n/2.

That is, N ≥ qn−2 − q−2 − 2(q2 − 1)qn/2−2. We deduce that N > 1 unless (q, n) = (2, 5), and this
latter case can be verified directly. This completes the proof. �

Lemma 3.5. Suppose that q is even and n is an odd integer, n ≥ 3. Then the Singer orbit S1 is
an ovoid of H(n, q2) if and only if n = 3.

Proof. The set S1 is an ovoid if and only if no two points of S1 are perpendicular. This amounts
to 1 +TrFq2n/Fq2

(ωk) 6= 0 for 1 ≤ k ≤ qn, where o(ω) = qn +1. In the case ωk ∈ Fq2 , this condition

clearly holds. So we only need to consider the case ωk 6∈ Fq2 . The claim now follows from Lemma
2.2 for n = 3 and Lemma 3.4 for n ≥ 5. �

To better understand the structure of the Singer orbits, we need to consider their interplay with
the following subset of H(n, q2):

T := {〈(0, t)〉 : t ∈ F
∗
qn such that TrFqn/Fq

(t2) = 0}, (3.6)

which contains qn−1−1
q−1 distinct points in H(n, q2). Let Π := {〈(0, x)〉 : x ∈ F

∗
qn} be a Baer

subgeometry of the hyperplane P⊥, where P = 〈(1, 0)〉. In the case q is even, these points form a
hyperplane of Π. In the case q is odd, they form a parabolic quadric on Π.

Lemma 3.6. Take notation as above. Choose Rt = 〈(0, t)〉 ∈ T and x ∈ F
∗
qn, and set y = x or

y = xω0, where o(ω0) = (qn + 1)(q − 1). If U := R⊥
t ∩ Sy, then |U | = k(q + 1) for some integer k.

Moreover, if k is odd, then TrFqn/Fq
(xt) = 0 in both cases.

Proof. A point 〈(1, ωiy)〉 lies in R⊥
t if and only if

TrFq2n/Fq2
(wiyt) = 0. (3.7)

The following are two easy consequences.

(a) The element ω(qn+1)/(q+1) lies in Fq2 , since ω has order qn+1. Therefore, the point 〈(1, ωiy)〉
lies in R⊥

t implies that Li,y ⊆ R⊥
t . That is, U is the union of some Li,y’s. As a corollary,

|U | = k(q + 1) for some integer k.

(b) Take a to be the unique integer such that 0 ≤ a ≤ qn and ωa = yq
n−1. By raising both sides

of (3.7) to the qn-th power, we get TrFq2n/Fq2
(ωa−iyt) = 0. That is, Li,y ⊆ U implies that

La−i,y ⊆ U .

Write M := qn+1
q+1 , which is an odd integer. The two subsets Li,y and La−i,y are equal if and

only if i ≡ a − i (mod M), i.e., 2i ≡ a (mod M). Since M is odd, there is exactly one integer i0
such that 0 ≤ i0 ≤ M − 1 and Li0,y = La−i0,y. To be specific, if y = x, then a = 0 and i0 = 0; if
y = xω0, then a = qn−1

q−1 and i0 ≡ qn−1
q−1 t (mod M), where t is the inverse of 2 modulo M . In the

later case, we have (q − 1)i0 + 1 = (qn − 1)t+ 2t ≡ 0 (mod M), i.e., ωi0ω0 ∈ F
∗

q2 .

If k is odd, then we must have Li0,y ⊆ U by (b). That is, (3.7) holds with i = i0. In both cases,
we plug in the expressions of i0 and y and deduce that TrFq2n/Fq2

(xt) = 0 upon simplification. The

second claim now follows, since xt is in Fqn . �
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Theorem 3.7. Let n ≥ 3 be an odd integer. For a point 〈(1, y)〉 of H(n, q2), define Sy as in (3.4).
Then Sy is not an ovoid of H(n, q2) unless Sy is the Singer-type ovoid S1 of H(3, q2) for even q.

Proof. By Lemma 2.1, Sy contains an element 〈(1, x)〉 or 〈(1, xω0)〉, where x ∈ F
∗
qn and o(ω0) =

(qn + 1)(q − 1). We assume without loss of generality that y = x or y = xω0 for some x ∈ F
∗
qn .

Moreover, if q is even we only need to consider the case y = x ∈ F
∗
qn .

Suppose to the contrary that Sy is an ovoid of H(n, q2). Let T be as in (3.6). By (1.1), we have

|R⊥
t ∩ Sy| = qn−2 + 1, where Rt = 〈(0, t)〉 ∈ T for some t ∈ Fqn . Since n is odd, qn−2+1

q+1 is odd. By

Lemma 3.6, we have TrFqn/Fq
(xt) = 0. This holds for all t ∈ F

∗
qn such that TrFqn/Fq

(t2) = 0.

(1) In the case q is even, it follows that y = x ∈ F
∗
q. Since 〈(1, y)〉 lies on H(n, q2), we deduce

that y = 1. The claim now follows from Lemma 3.5.

(2) In the case q is odd, this implies that the points of T lie on the hyperplane {〈(0, t)〉 :
TrFqn/Fq

(xt) = 0} of the Baer subgeometry Π = PG({0} × Fqn) of PG({0} × Fq2n). This
is impossible, since T is a nondegenerate parabolic quadric on Π.

This completes the proof. �

4 The classification of transitive ovoids of H(n, q2)

In this section, we give the proof of Theorem 1.1. By [19] there is no ovoid in H(n, q2) when
n is even, so we assume that n is odd with n ≥ 3. Let q = pd with p prime. Suppose that O is a
transitive ovoid of H(n, q2) whose stabilizer in PΓU(n + 1, q2) is H. Since the case H is insoluble
has been settled in [5], we only need to consider the case where H is soluble. By Theorem 2.6
and the arguments following it, we can take the model of H(n, q2) as introduced in Section 3, and
assume without loss of generality that H is a subgroup of G = 〈ρ, φ〉, where ρ and φ are as in (3.2).

Let ω0 be a fixed element of order (qn + 1)(q − 1) in Fq2n , and write ω = ωq−1
0 . We keep

the model of H(n, q2) and the notation as introduced in Section 3. Let Sy and T be as in (3.4)
and (3.6). By Lemma 2.1, there exists some g ∈ G such that g(O) contains a point of one of the
following forms:

(1) 〈(1, x)〉 with x ∈ F
∗
qn ;

(2) 〈(1, xω0)〉 with x ∈ F
∗
qn , in the case q is odd.

If q is even, only the first form occurs. Therefore, we assume without loss of generality that O
contains a point 〈(1, y)〉 of one of the two prescribed forms.

4.1 Restrictions on the parameters

Since H acts transitively on O, there is a positive integer m such that |H| = m(qn + 1). Write
H ∩ 〈ρ〉 = 〈ρs〉, where s|qn + 1. In the case s = 1, O = Sy for some y ∈ F

∗

q2n , which has been
settled in Theorem 3.7, so we assume that s > 1 below. By considering the restriction of the
homomorphism η : G→ Aut(Fq2n) to H, we see that

H = 〈ρs, ρjφk〉 (4.1)

for some integers k, j such that 0 ≤ j ≤ s − 1, k|2nd and qn+1
s · 2nd

k = |H|. The last equality is
equivalent to 2nd = mks.
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Lemma 4.1. We have mks = 2nd, s|(qn + 1), and p2nd−1
pk−1

· j ≡ 0 (mod s).

Proof. By (1) of Lemma 3.3, (ρjφk)2nd/k = ρj(p
2nd−1)/(pk−1), so it lies in H ∩ 〈ρ〉 = 〈ρs〉. This gives

this last congruence in the lemma. �

Corollary 4.2. If q is even, then s is odd; if q is odd, then s is not a multiple of 4.

Proof. The case q is even is clear, since qn + 1 is odd. Assume that q is odd, and suppose to the
contrary that s is multiple of 4. By 2nd = mks, we deduce that 2|d. Then qn + 1 = pnd + 1 ≡ 2
(mod 4), so qn + 1 is not divisible by 4. This contradicts the fact that s divides qn + 1. �

Lemma 4.3. Suppose that q = pd is odd and s is even, and let 〈(1, y)〉 be a point of O.

(1) If m is even and y ∈ F
∗
qn, then y ∈ F

∗

pks
.

(2) If y = xω0 for some x ∈ F
∗
qn, then m is odd and y(p

ks/2−1)(qn+1) = 1.

Proof. Recall that H is the stabilizer of the ovoid O in the group G, and ω0 is an element of order
(qn + 1)(q − 1) such that ω = ωq−1

0 . Since H has order m(qn + 1) and acts transitively on O, the
stabilizer A of 〈(1, y)〉 in H has order m. It is clear that A ∩ 〈ρ〉 = 1, so η(A) has order m, where
η is the homomorphism in (3.3). It follows that A = 〈ρlφks〉 for some nonnegative integer l, where
we used the fact 2nd = mks in Lemma 4.1. Since

ρlφks(〈(1, y)〉) = 〈(1, ypksωl)〉 = 〈(1, y)〉,

we have
yp

ks−1 = ω−l. (4.2)

Since H = 〈ρs, ρjφk〉 and η(ρlφks) = η(ρjφk)s, there exists an integer a such that

ρsa(ρjφk)s = ρsa+j(pks−1)/(pk−1)φks = ρlφks ∈ A.

Here we have used (1) of Lemma 3.3 in the first equality. It follows that

l ≡ sa+ j
pks − 1

pk − 1
(mod qn + 1). (4.3)

Since q is odd and s is even, we deduce that pks−1
pk−1

= pks−1
p2k−1

· (pk + 1) is even. It follows that l is
even. We are now ready to prove the two claims.

(1). Assume that m is even and y ∈ F
∗
qn . In this case, ωl = y1−pks lies in both F

∗
qn and 〈w〉, so

has order dividing gcd(qn+1, qn− 1) = 2. On the other hand, d is even since 2nd = mks and both
m, s are even. It follows that qn + 1 = pnd + 1 ≡ 2 (mod 4). Since l is even, ωl has odd order. We

conclude that ωl = 1 and thus yp
ks−1 = 1. This proves the first claim.

(2). Assume that y = xω0 for some x ∈ F
∗
qn . Recall that ω

q−1
0 = ω. The element ρ−(qn−1)/(q−1)φnd

stabilizes 〈(1, xω0)〉, since

ρ−(qn−1)/(q−1)φnd(〈(1, xω0)〉) = 〈(1, xωqn

0 w−(qn−1)/(q−1))〉 = 〈(1, xω0)〉.

We first show that m is odd. Suppose to the contrary that m is even. We have ks|nd from mks =
2nd, so there is an element ρvϕnd in A. It follows that ρv+(qn−1)/(q−1) = (ρvϕnd)(ρ−(qn−1)/(q−1)φnd)−1 ∈
A, yielding v = −(qn − 1)/(q − 1). Therefore, there exist integers i, b such that

ρsi(ρlφks)b = ρsi+l(pksb−1)/(pks−1)φksb = ρ−(qn−1)/(q−1)φnd. (4.4)
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Here we have used (1) of Lemma 3.3 in the first equality. We deduce that

si+
pksb − 1

pks − 1
l ≡ −q

n − 1

q − 1
(mod qn + 1).

The left hand side is even, since l and s are even. This leads to the contradiction that (qn − 1)/(q − 1)
is even. We conclude that m is odd.

Write y = γh, where γ is a primitive element of Fq2n . Since l is even, we raise both sides of

(4.2) to the qn+1
2 -th power and deduce that

h(pks − 1) · (q
n + 1)

2
≡ 0 (mod q2n − 1), i.e., h(pks − 1)/2 ≡ 0 (mod qn − 1).

Since m is odd and ks = 2nd
m , we have gcd(ks, nd) = nd

m · gcd(2,m) = nd
m . It follows that

gcd(pks − 1, qn − 1) = pgcd(ks,nd) − 1 = pnd/m − 1.

Since pks−1
pnd/m−1

= pnd/m+1 is even, we see that pnd/m−1 also divides pks−1
2 . Hence pnd/m−1 divides

gcd
(

pks−1
2 , qn − 1

)

, which clearly divides gcd(pks− 1, qn − 1). We thus have gcd
(

pks−1
2 , qn − 1

)

=

pnd/m − 1. It follows that h is a multiple of qn−1
pnd/m−1

. Therefore, y(p
nd/m−1)(qn+1) = 1 as desired.

This completes the proof. �

For each integer i, ρi(O) is also an ovoid. Set

O :=
s−1
⋃

i=0

ρi(O), (4.5)

which is a multiset. Recall that the Singer orbit Sy is defined in (3.4). The following lemma will
play a crucial role in our arguments.

Lemma 4.4. Take notation as above, and let 〈(1, y)〉 be a point of O.

(i) We have O =
⋃s−1

i=0 φ
ik(Sy), and

∑s−1
i=0 |R⊥

t ∩φik(Sy)| = s(qn−2+1) for any point Rt = 〈(0, t)〉
in T , where T is as in (3.6);

(ii) We have Sy = φks(Sy) and y
(pks−1)(qn+1) = 1.

Proof. Let Cy be the image of 〈(1, y)〉 under 〈ρs〉; in particular, ρs(Cy) = Cy. Then Sy =
⋃s−1

i=0 ρ
i(Cy), and O =

⋃s−1
a=0(ρ

jφk)a(Cy). We have

O =

s−1
⋃

i,a=0

ρi(ρjφk)a(Cy) =

s−1
⋃

i,a=0

ρi+j(pka−1)/(pk−1)φka(Cy)

=
s−1
⋃

i,a=0

φkaρ(i+j(pka−1)/(pk−1))p2nd−ka
(Cy) =

s−1
⋃

i=0

φik(Sy).

In the last equality, we have used the fact that

{(

i+ j
pka − 1

pk − 1

)

p2nd−ka (mod s) : 0 ≤ i ≤ s− 1

}

= {0, 1, · · · , s− 1}
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for a given integer a. Here j, k are constants such that H = 〈ρs, ρjφk〉. This proves the first
equation in (i). Since a point Rt = 〈(0, t)〉 ∈ T has a zero first coordinate, it does not lie in any of
the ρi(O)’s, and thus |R⊥

t ∩ ρi(O)| = qn−2 + 1 for each i by (1.1). The second equation in (i) now
follows from O =

⋃s−1
i=0 φ

ik(Sy).

We now prove (ii). By induction we have φbρa = ρap
b
φb from (1) of Lemma 3.3, where a, b are

nonnegative integers. Applying φk to O, we have

φk(O) =

s−1
⋃

i=0

φkρi(O) =

s−1
⋃

i=0

ρip
k−j(ρjφk(O)) =

s−1
⋃

i=0

ρip
k−j(O).

Here we have used the fact that ρjφk stabilizes O. The set {ipk − j (mod s) : 0 ≤ i ≤ s − 1}
equals {0, 1, · · · , s − 1} and ρs stabilizes O, so φk(O) = O. It follows that φks(Sy) = Sy. As a
consequence, there is some integer i such that

φks(〈(1, y)〉) = 〈(1, ypks)〉 = 〈(1, ωiy)〉 ∈ Sy, i.e., y
pks = ωiy.

It follows that y(p
ks−1)(qn+1) = 1. This completes the proof. �

Lemma 4.5. If q = 2d and 2d ≥ nd, then s ≥ q + 1 unless n = 3 and O is a Singer-type ovoid.

Proof. By the arguments in the beginning of this section, we assume without loss of generality
that O contains a point 〈(1, y)〉 with y ∈ F

∗
qn . Write X := {ypki : 0 ≤ i ≤ s− 1}.

We claim that TrFqn/Fq
(yp

ki
t) = 0 for some i with 0 ≤ i ≤ s− 1, where t is any element of F∗

qn

with TrFqn/Fq
(t) = 0. Let t be such an element, and set Rt := 〈(0, t)〉 which is any element of T .

By (i) of Lemma 4.4,
∑s−1

i=0 |R⊥
t ∩φki(Sy)| = s(qn−2+1). Each term in the summation is a multiple

of q + 1 by Lemma 3.6. By Corollary 4.2, s is odd; also, it is easy to see that qn−2+1
q+1 is odd. It

follows that there is at least one i such that |R⊥
t ∩φki(Sy)| = u(q+1) for some odd integer u. Since

φki(Sy) = S
ypki

, the claim now follows from Lemma 3.6.

In the case y ∈ F
∗
q, we deduce that y = 1 by the fact 〈(1, y)〉 is a singular point. We have

φki(S1) = S1 for each i and thus O = s · S1, which implies that O = S1. By Lemma 3.5, S1 is an
ovoid if and only if n = 3.

It remains to check the case y 6∈ F
∗
q. Assume to the contrary that s ≤ q. We then have

⌈ qn−1−1
s ⌉ ≥ ⌈qn−2 − q−1⌉ = qn−2. By the pigeonhole principle, there exists some i such that

TrFqn/Fq
(yp

ki
t) = 0 for at least qn−2 nonzero elements t ∈ Fqn such that TrFqn/Fq

(t) = 0. We

deduce that yp
ki ∈ F

∗
q, i.e., y ∈ F

∗
q: a contradiction. Hence the case y 6∈ F

∗
q can not occur. This

completes the proof. �

We now consider the odd characteristic case. The proof follows the same line as in that of
Lemma 4.5. We need the following technical lemma.

Lemma 4.6. Suppose that q = pd is odd and 〈(1, y)〉 is an element of O, where x := y ∈ F
∗
qn or

x := yω−1
0 ∈ F

∗
qn. Set X := {xpka : 0 ≤ a ≤ s−1}; if s is even, set Xh := {xpka : 0 ≤ a ≤ s/2−1}.

Let Rt = 〈(0, t)〉 be an element of T , where T is as in (3.6).

(i) If m or s is odd, then there is an element of X such that TrFqn/Fq
(xt) = 0;

(ii) Ifm and s are both even and t ∈ Fpnd/e, then there is an element of Xh such that TrFqn/Fq
(xt) =

0, where e is the highest power of 2 dividing m.
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Proof. In the case s is odd, the argument is exactly the same as in the proof of Lemma 4.5, so we
assume that s is even below. By Corollary 4.2, we have s = 2s0 for an odd integer s0. By Lemma
4.1, we have 2nd = mks. It follows that nd = mks0. Also, we have we have Sy = φks(Sy) and

y(p
ks−1)(qn+1) = 1 by (ii) of Lemma 4.4.
First consider the case m is odd. We claim that Sy = φks0(Sy). To prove this, we consider two

separate cases.

(i) If y ∈ F
∗
qn , then the order of y divides D := gcd(qn − 1, (qn + 1)(pks − 1)). We have

D = gcd(qn − 1, 2(pks − 1)) = (pks0 − 1) · gcd
(

qn − 1

pks0 − 1
, 2(pks0 + 1)

)

= (pks0 − 1) · gcd
(

qn − 1

pks0 − 1
, pks0 + 1

)

= gcd(qn − 1, p2ks0 − 1)

= pgcd(mks0,2ks0) − 1 = pks0 − 1.

Here, we have used the fact that qn−1
pks0−1

= 1+pks0+ · · ·+p(m−1)ks0 is odd in the third equality.

It follows that y ∈ F
∗

pks0
, and so Sy = φks0(Sy).

(ii) If y = xω0 for some x ∈ F
∗
qn , then by Lemma 4.3 we have y(p

ks0−1)(qn+1) = 1, i.e., yp
ks0 ∈ y〈ω〉.

In this case, we have φks0(Sy) = Sy as desired.

In both cases, φki(Sy) = φk(s0+i)(Sy) for each integer i. We thus have
∑s0−1

i=0 |R⊥
t ∩ φki(Sy)| =

s0(q+1) by (i) of Lemma 4.4. The claim (i) now follows by a parity argument and invoking Lemma
3.6 as in the proof of Lemma 4.5.

Next we consider the case m is even. Let e be the highest power of 2 that divides m. From
nd = mks0 and the fact n is odd we deduce that e divides d. Set q1 := pd/e, and define a subset T1
as follows:

T1 := {〈(0, t)〉 : t ∈ F
∗
qn1

such that TrFqn
1
/Fq1

(t2) = 0}. (4.6)

Since gcd(d, nd/e) = d
e · gcd(e, n) = d/e, we have Fq ∩ Fqn1

= Fq1 . It follows that TrFqn1
/Fq1

(t2) =

TrFqn/Fq
(t2) for t ∈ Fqn1

. Hence T1 is a subset of T of size
qn−1
1 −1
q1−1 .

By (2) of Lemma 4.3, the case yω−1
0 ∈ F

∗
qn does not occur, and by (1) of the same lemma we

must have y ∈ F
∗

pks
. For Rt = 〈(0, t)〉 in T1, the element 〈(1, ωayp

ki〉 lies in R⊥
t ∩ φki(Sy) if and

only if

TrFq2n/Fq2
(ωayp

ki
t) = 0. (4.7)

Observe that qn1 = pmks0/e and m/e is odd. By raising both sides of (4.7) to the pmks0/e-th power,

we deduce from y ∈ Fpks that the condition (4.7) is equivalent to TrFq2n/Fq2
(ωapmks0/eyp

ks0+ki
t) = 0.

It follows that 〈(1, ωayp
k(s0+i)

)〉 is in R⊥
t ∩φk(s0+i)(Sy). This gives a bijection between R⊥

t ∩φki(Sy)
and R⊥

t ∩ φk(s0+i)(Sy) via

〈(1, ωayp
ki
)〉 7→ 〈(1, ωapmks0/e

yp
k(s0+i)

)〉.

We thus have
∑s0−1

i=0 |R⊥
t ∩ φki(Sy)| = s0(q

n−2 + 1) by (i) of Lemma 4.4. The claim now follows as
in the case m is odd. �

Lemma 4.7. Suppose that q = pd is odd. Then we have:
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(i) If one of m, s is odd, then s ≥ q+1
2 when n = 3 and s ≥ q when n ≥ 5;

(ii) If both m and s are even, then s ≥ pd/e + 1 when n = 3 and s ≥ 2pd/e when n ≥ 5, where e
is the highest power of 2 dividing m.

Proof. By the argument in the beginning of this section, we assume without loss of generality that
O contains a point 〈(1, y)〉 with x := y ∈ F

∗
qn or x := yω−1

0 ∈ F
∗
qn . Let X and Xh be as in Lemma

4.6, and write xi := xp
ki
.

First, consider the case where one of m and s is odd. Let Π be the projective geometry
with ambient Fq-linear vector space Fqn , and Q be the quadric defined by the equation Q(t) =
TrFqn/Fq

(t2). It is easy to see that Q is nondegenerate. Since q and n are odd, Q is a parabolic

quadric. Since 〈(1, y)〉 lies in H(n, q2), we deduce from the fact x ∈ F
∗
qn and the expression

of the Hermitian form h in (3.1) that Q(x) = 1 or Q(x) = ω
−(qn+1)
0 according as y = x or

y = xω0. Here, we recall that o(ω0) = (qn+1)(q− 1). Let πi be the hyperplane of Π with equation
TrFqn/Fq

(xit) = 0, 0 ≤ i ≤ s − 1. By Lemma 4.6, each point 〈t〉 of Q is on some hyperplane πi.

Since Q(xi) = Q(x)p
ki 6= 0, we see that each πi intersects Q in a nondegenerate quadric, i.e., a

Q+(n− 2, q) or Q−(n− 2, q). We thus have |Q| ≤ |X| · |Q+(n− 2, q)|, i.e.,

|X| ≥
⌈

qn−1 − 1

(q(n−1)/2 − 1)(q(n−1)/2−1 + 1)

⌉

=

⌈

q(n−1)/2 + 1

q(n−1)/2−1 + 1

⌉

= q −
⌊

q − 1

q(n−1)/2−1 + 1

⌋

.

When n = 3, we get |X| ≥ q+1
2 ; when n ≥ 5, we get |X| ≥ q. Since |X| ≤ s, the claim follows in

this case.
Second, consider the case where both m and s are even. By Lemma 4.3, we have x = y ∈ F

∗

pks
.

Let e be the highest power of 2 dividing m; in particular, we have gcd(e, n) = 1 since n is odd.
Recall that we have 2nd = mks by Lemma 4.1, so e divides d. Set q1 := pd/e, so that q = qe1.
Choose a basis ζ1, · · · , ζe of Fq over Fq1 ; then they also form a basis of Fqn over Fqn1

by Lemma
2.3. For each i, write xi =

∑e
j=1 xijζj with xij ∈ Fqn1

, and set zi to be some nonzero xij . Let Π be
the projective geometry with ambient Fq1-linear vector space Fqn1

, and Q1 be the quadric defined
by the equation Q1(t) = TrFqn

1
/Fq1

(t2). It is easy to check that Q1 is nondegenerate. Since both

q1 and n are odd, Q1 is a parabolic quadric. Since 〈(1, xi)〉 lies in H(n, q2), we deduce as in the
previous case that TrFqn/Fq

(x2i ) = 1. Let πi be the hyperplane of Π with equation TrFqn
1
/Fq1

(zit) = 0,

0 ≤ i ≤ s/2− 1. By Lemma 4.6, for each point 〈t〉 of Q1 there exists i such that

TrFqn/Fq
(xit) = 0, i.e.,

e
∑

j=1

TrFqn
1
/Fq1

(xijt)ζj = 0.

It follows that TrFqn1
/Fq1

(xijt) = 0 for each j, and so 〈t〉 is on the hyperplane πi by our choice of zi.

As in the previous case, πi intersect the quadric Q1 is a Q−(n− 2, q1) or Q
+(n − 2, q1). It follows

that |Q1| ≤ |Q+(n − 2, q1)| · s/2. As in the previous case, we deduce that s
2 ≥ q1+1

2 when n = 3,
and s

2 ≥ q1 when n ≥ 5. This completes the proof. �
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4.2 The proof of Theorem 1.1

We continue to use the notation that we have introduced in the beginning of this section. In
particular, q = pd with p prime, O is a transitive ovoid of H(n, q2) that contains an element 〈(1, y)〉
with x := y ∈ F

∗
qn or x := yω−1

0 ∈ F
∗
qn , and H = 〈ρs, φjρk〉 is the stabilizer of O in PΓU(n+ 1, q2),

where ρ and φ are as defined in (3.2). We write |H| = m(qn + 1). By Lemma 4.1, we have
mks = 2nd, s|qn + 1.

Lemma 4.8. Let p be a prime, d be a positive integer, and write q = pd. Suppose that s is a divisor
of gcd(6d, q3 + 1).

(1) If p = 2 and d ≥ 4, then s < q + 1.

(2) If p is odd, then 2s < q + 1 unless (p, d) ∈ {(3, 1), (5, 1), (11, 1)}.

Proof. In the case p = 2, we have gcd(6d, q3 + 1) = gcd(3d, q3 + 1) ≤ 3d, so s ≤ 3d < 2d + 1 for
d ≥ 4. In the case p is odd, we consider two cases:

(i) If p ≡ 0, 1 (mod 3), then q3 +1 is not divisible by 3, and so gcd(6d, q3 +1) = gcd(2d, q3 +1).
It follows that 2s ≤ 4d < pd + 1 unless (p, d) = (3, 1) in this case.

(ii) If p ≡ 2 (mod 3), then 2s ≤ 12d < 5d + 1 ≤ pd + 1 if d ≥ 2. It remains to consider the case
d = 1. In this case, 2s ≤ 12 < p+ 1 if p > 11.

This completes the proof. �

We first restate and prove the soluble case with n = 3 in Theorem 1.1.

Theorem 4.9 (Theorem 1.1, soluble case with n = 3). Let p be a prime and let q = pd. Suppose
that O is a transitive ovoid of H(3, q2) whose stabilizer H in PΓU(4, q2) is soluble. Then q is even,
and O is projectively equivalent to a Singer-type ovoid or one of the two ovoids of H(3, 82) described
in Example 3.2.

Proof. As we remarked in the beginning of Subsection 4.1, the case s = 1 has been settled in
Theorem 3.7, so we assume that s > 1. By Lemma 4.1 and Corollary 4.2, we have mks = 6d,
s|qn + 1, and s is odd if q = pd is even.

First consider the case q is even. The case d = 1 follows from the classification of Brouwer
and Wilbrink [9]. The case d = 2 can be excluded, since gcd(6d, 23d + 1) = 1 in this case. In the
case d = 3, gcd(6d, 23d + 1) = 9, so s = 3 or s = 9. We enumerate the triples (m,k, s) such that
mks = 6d, s ∈ {3, 9}, and check whether the orbits of the subgroups of the form as in (4.1) form
ovoids by Magma [7]. It turns out that up to projective equivalence there are exactly two transitive
ovoids besides the classical ovoids and the Singer-type ovoids, namely those listed in Example 3.2.
In the case d ≥ 4, we have s < q+1 by Lemma 4.8. Since 2d ≥ 3d in this case, we see that O must
be a Singer-type ovoid by Lemma 4.5.

Next consider the case q = pd is odd. For q ∈ {3, 5, 11}, an exhaustive search using Magma [7]
shows that there is no ovoid O of the prescribed form. The search strategy is the same as in the case
q = 23. So we assume that q 6∈ {3, 5, 11} below. We have 2s < q + 1 by Lemma 4.8. If one of m, s
is odd, this contradicts (i) of Lemma 4.7. If both m and s are even, by (ii) of Lemma 4.7 we have
s ≥ pd/e + 1, where e is the highest power of 2 dividing m. On the other hand, gcd(3, q3 + 1) = 1
since d is even, so gcd(3, s) = 1. It follows from mks = 6d that s divides 2d/e. So we deduce that
2d/e ≥ pd/e + 1, which is impossible. This completes the proof. �

We next consider the soluble case with n ≥ 5 in Theorem 1.1.
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Theorem 4.10 (Theorem 1.1, soluble case with n ≥ 5). Let n be an odd integer with n ≥ 5 and
q be any prime power. Then there is no transitive ovoid in H(n, q2) with a soluble stabilizer in
PΓU(n+ 1, q2).

Proof. We first consider the case where p > 45. If n ≥ p+1
2 , then there is no ovoid in H(n, q2) by

Lemma 2.5 and Theorem 2.4. If n ≤ p−1
2 , then we consider two cases:

(1) If one of m, s is odd, then we have s ≥ q = pd by (i) of Lemma 4.7. On the other hand, s|2nd,
so s ≤ (p− 1)d < pd < pd: a contradiction.

(2) If both m and s are even, then s ≥ 2pd/e by (ii) of Lemma 4.7, where e is the highest power
of 2 dividing m. On the other hand, from mks = 2nd we deduce that s divides 2nd/e, so
s ≤ (p− 1)d/e < pd/e < 2pd/e: a contradiction.

This established the claim for the case p > 45.
It remains to consider the case p < 45. By (1) of Lemma 2.5, when n ≥ p + 1, F (n, p) is

a decreasing function in n for a given p, where F is as in (2.1). In Table 1, we list the largest
odd integer np such that F (np, p) ≥ 1 for each prime p < 45 as follows. The existence of ovoids in

Table 1: The largest dimension np not excluded by Theorem 2.4 for p < 45

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43

np 5 5 7 7 9 9 11 11 13 15 15 17 17 17

H(n, p2d) can not be excluded by Theorem 2.4 when n ≤ np. For such a pair (p, n) with 5 ≤ n ≤ np,
we search for 4-tuples (m, s, k, d) such that 2nd = mks, s|pnd + 1, and the bounds in Lemma 4.5
and Lemma 4.7 are satisfied. In Table 2 we list the cases that survive, where k = 2nd

ms is omitted.
For the case H(n, q2) = H(5, 24) or H(5, 34), an exhaustive search by Magma [7] shows that there

Table 2: The cases where all parameter restrictions are satisfied
(n, pd) (5, 22) (5, 32) (9, 11) (7, 13) (9, 17) (15, 29)

s 5 10 18 14 18 30

m 1, 2, 4 1, 2 1 1 1 1

is no transitive ovoid of the prescribed form. In all the remaining cases, we have s = 2n, m = 1,
k = 1 and d = 1. In the proof of Lemma 4.7, we have shown that |X| ≥ q (m = 1 is odd), where

X = {xpka : 0 ≤ a ≤ s − 1} for some element x of F∗
qn . Since q is a prime in these cases, we see

that |X| ≤ n. We deduce that n ≥ p, which is incorrect in each case. This excludes all the cases
listed in Table 2. �

Theorem 1.1 now follows by combining [5, 19] and Theorem 4.9, Theorem 4.10.
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