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FRACTIONAL ISOMORPHISM OF GRAPHONS

JAN GREBÍK AND ISRAEL ROCHA

Abstract. We work out the theory of fractional isomorphism of graphons as a generalization to the
classical theory of fractional isomorphism of finite graphs. The generalization is given in terms of
homomorphism densities of finite trees and it is characterized in terms of distributions on iterated

degree measures, Markov operators, weak isomorphism of a conditional expectation with respect to
invariant sub-σ-algebras and isomorphism of certain quotients of given graphons.

1. Introduction

Fractional isomorphism of finite graphs is an important and well-studied notion in graph theory and
combinatorial optimization. Its importance comes from the fact that it is a relaxation of the notoriously
difficult graph isomorphism problem, it can be solved in polynomial time and, by a result of Babai, Erdős,
and Selkov [1], it distinguishes almost all non-isomorphic graphs. In contrast, isomorphism problem is not
known to be solvable in polynomial time nor to be NP-complete.1 There are plenty of characterizations
of fractional isomorphism that use different, seemingly unrelated, properties of graphs. We summarize
some of these characterizations that are relevant for our purposes later in the introduction. We refer the
reader to the book of Scheinerman and Ullman [21] for a detailed study of the subject.

In this paper, we define and investigate the graphon counterpart of fractional isomorphism, i.e., frac-
tional isomorphism of graphons, and prove several equivalent characterizations. Graphons, introduced
by Borgs, Chayes, Lovász, Sós, Szegedy, and Vesztergombi [15, 4, 5], emerged as limit objects in the
theory of dense graph limits. The theory of graphons is mostly linked with problems in extremal graph
theory and random graphs. However, it has been successfully applied to solve problems in various areas
of combinatorics. We refer the reader to the beautiful book of Lovász [16] for more details and examples.

The main contribution of this paper is twofold. First, we provide a graphon versions of the most
important notions that are used as characterizations of fractional isomorphism of finite graphs and show
that they are all equivalent for graphons. Finding graphon counterparts of notions or statements from
graph theory is interesting in its own right, e.g. see [10, 11]. Usually it is easy to define the corresponding
notion and difficult to provide statements but in our case both tasks turned out to be difficult. Second,
as one of the possible definitions/characterizations of fractional isomorphism of graphons is given via
restricting the density vector to finite trees, i.e., graphons W and U are fractionally isomorphic if and
only if t(T,W ) = t(T, U) for every finite tree T , we find this property worth to investigate solely from the
graphon point of view. We describe what similarity must necessarily occur between graphons that have
the same tree densities and provide invariants in terms of special measures, called DIDM, that could be
computed in cut-distance continuous way.

1.1. Finite Graphs. The easiest way to define fractional isomorphism of finite graphs is as a relaxation
of the isomorphism problem via doubly stochastic matrices. For a given graph G denote as AG the
incidence matrix of G. Note that graphs G and H are isomorphic if and only if there is a permutation
matrix P such that AGP = PAH . We say that a matrix S is a doubly stochastic matrix if S has positive
entries, i.e., S ≥ 0, and S1 = ST1 = 1. It is easy to see that every permutation matrix is doubly
stochastic. We say that graphs G and H are fractionally isomorphic if there is a doubly stochastic
matrix S such that AGS = SAH .

Next we recall the equivalent concepts that we use in this paper. We start with iterated degree
sequences. For a graph G we denote as N(v) the set of all neighbors of a vertex v ∈ V (G) in G and put
degG(v) = |N(v)|. Define, as multisets,

(1) D1(G) = {degG(v) : v ∈ V (G)} and d1(v) = {degG(w) : w ∈ N(v)}

Greb́ık was supported by the Czech Science Foundation, grant number GJ16-07822Y, by the grant GAUK 900119 of
Charles University and by Leverhulme Research Project Grant RPG-2018-424. Part of the work was done while Greb́ık was
affiliated with Institute of Computer Science of the Czech Academy of Sciences, with institutional support RVO:67985807.

Rocha was supported by the Czech Science Foundation, grant number GJ16-07822Y and GA19-08740S.
1Recently Babai [2] found an algorithm for the isomorphism problem that runs in quasipolynomial time.
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2 JAN GREBÍK AND ISRAEL ROCHA

and then inductively for every k ∈ N

(2) Dk+1(G) = {dk(v) : v ∈ V (G)} and dk+1(v) = {dk(w) : w ∈ N(v)}.

Finally, we define the iterated degree sequence of a graph G as D(G) = (Dk(G))k∈N. It is a result of
Tinhofer [22, 23] that G and H are fractionally isomorphic if and only if D(G) = D(H).

An equitable partition2 of a graph G is a sequence C = {Cj}j∈[k] that is a non-trivial partition of V (G),
i.e., Cj 6= ∅ for every j ∈ [k],

⊔
j∈[k] Cj = V (G), and degG(v0, Cj) = degG(v1, Cj) for every i, j ∈ [k] such

that v0, v1 ∈ Ci. It means that each induced subgraph G[Ci] must be regular and each of the bipartite
graphs G[Ci, Cj ] must be biregular. The parameters of C are given by a pair (n, C), where n is an
k-dimensional vector and C is an k × k square matrix such that n(j) = |Cj | and C(i, j) = degG(v, Cj),
for some v ∈ Ci, i.e, the parameters of C are the numerical information that we can read from C. If G
and H admit equitable partitions C and D that can be indexed in such a way that the parameters of
C and D are the same, then we say that G and H have a common equitable partition. It is a result of
Ramana, Scheinerman and Ullman [17] that G and H are fractionally isomorphic if and only if they have
a common equitable partition. Prior to this it was shown by Tinhofer [22] that G and H are fractionally
isomorphic if and only if they have the same coarsest equitable partition. Recall that a partition C is
coarser than a partition D if every element of D is a subset of some element of C. It is not hard to verify
that every finite graph admits the coarsest equitable partition, i.e., equitable partition that is coarser
than any other equitable partition.

The last equivalence that we mention is the most surprising one. For finite graphs F and G we
denote as Hom(F,G) the collection of all homomorphisms from F to G. It is a result of Dell, Grohe and
Rattan [6] that G and H are fractionally isomorphic if and only if |Hom(T,G)| = |Hom(T,H)| for every
finite tree T , see also Dvořák [7].

1.2. Graphons. A graphon is a symmetric measurable function W : X × X → [0, 1], where (X,B) is
a standard Borel space endowed with a Borel probability measure µ.3 We write W0 for the space of
all graphons after identifying graphons that are equal almost everywhere. This makes W0 a subset of
L∞(X × X,µ × µ) and of L2(X ×X,µ × µ) and one may consider the distances on W0 induced from
the corresponding norms. However, the most relevant notion of distance for studying graphons as dense
graph limits comes from the cut-norm and is defined as

d✷(W,U) = sup
A,B⊆X

∣∣∣∣
∫

A×B

(W − U) d(µ× µ)

∣∣∣∣ ,

where the supremum runs over all measurable subsets A,B of X . The cut-distance δ✷ is then defined as

δ✷(W,U) = inf
ϕ

d✷(W
ϕ, U),

whereWϕ(x, y) = W (ϕ(x), ϕ(y)) and the infimum runs over all ϕ : X → X measure preserving bijections
of X . Considering Wϕ and W to be the same is the measurable analogue of considering two finite
graphs the same if they are isomorphic. However, in the qualitative version given by d✷ we might get
δ✷(W,U) = 0 while there is no single ϕ such that Wϕ = U . Therefore, we say that W and U are
isomorphic if we have ϕ such that Wϕ = U for some measure preserving bijection ϕ : X → X and we
say that W and U are weakly isomorphic if δ✷(W,U) = 0. Notice that δ✷ is only a pseudometric on W0.

We write W̃0 for the quotient space W0 modulo weak isomorphism equivalence. It is easy to see that δ✷

is a metric on W̃0 and it is a fundamental result in the theory of graphons that
(
W̃0, δ✷

)
is a compact

metric space, see [15].

An equivalent description of convergence in the space W̃0 can be obtained via homomorphism densities.
Let F and G be finite graphs. The homomorphism density of F in G is defined as

t(F,G) =
|Hom(F,G)|

|V (G)||V (F )|
.

That is, t(F,G) is the probability that a random map of the vertices of F to the vertices of G is
a homomorphism. Note that the notion is invariant under isomorphisms. The analogous notion for

2Here and throughout the paper we refer to the definition of equitable partition from [21], not to be confused with the
definition of an equitable partition in the formulation of Szemerédi’s regularity lemma.

3The reason why we use standard Borel spaces and not standard probability spaces (or simply unit interval with the
Lebesgue measure as it is usual) is that we work with the space of all Borel measures which is a standard Borel space under
the assumption that the base space is standard Borel space. Also we note that every standard probability space is given
as the measure completion of some standard Borel space with a Borel probability measure.
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graphons is defined as

t(F,W ) =

∫

XV (F )

∏

{v,w}∈E(F )

W (y(v), y(w)) dµ⊕|V (F )|(y)

and it is not hard to see that t(F,W ) = t(F,U) whenever W and U are weakly isomorphic. Remarkably,
the authors of [15, 4] proved an equivalence between the two types of convergence: a sequence of graphons
Wn converges toW in the cut-distance topology if and only if for every finite graph F we have t(F,Wn) →
t(F,W ).

An important way to view graphons is as self-adjoint Hilbert-Schmidt operators on L2(X,µ). Namely,
for a graphon W ∈ W0 the operator TW : L2(X,µ) → L2(X,µ) is defined as

TW (f)(x) =

∫

X

W (x, y)f(y) dµ(y),

where f ∈ L2(X,µ) and x ∈ X , see [16, Section 7.5].

1.3. Fractional Isomorphism of Graphons. We use a graphon analogue of the characterization of
Dell, Grohe and Rattan mentioned above to define fractional isomorphism of graphons. This shift from
the number of homomorphisms to the homomorhism densities (of trees) when transitioning from graphs
to graphons parallels the more classical situation of isomorphisms. Indeed, we already saw that weak
isomorphism of graphons is characterized by homomorphism densities, the finite counterpart to this is
a result of Lovász [14] which says that graphs G and H are isomorphic if and only if |Hom(F,G)| =
|Hom(F,H)| for every finite graph F .

Definition 1.1 (Fractional Isomorphism of Graphons). We say that graphons W and U are fractionally
isomorphic if

t(T, U) = t(T,W )

for every finite tree T .

It follows from [6] that this definition extends the definition for finite graphs in the sense that G and
H are fractionally isomorphic (as finite graphs) if and only if they have the same number of vertices
and WG and WH , their graphon representations, are fractionally isomorphic (as graphons). This is in
analogy with the fact that G and H are isomorphic if and only if they have the same number of vertices
and WG and WH are weakly isomorphic. Also it is a trivial consequence of the definition that fractional

isomorphism is an equivalence relation on W̃0 that is closed in the cut-distance topology.4

To state our main result, Theorem 1.2, we need to introduce and recall some notions. We try to
keep things informal and rather intuitive in this section. We start with analogue of doubly stochastic
matrices. An operator S : L2(X,µ) → L2(X,µ) is a Markov operator5 if S ≥ 0, i.e., S(f) ≥ 0 whenever
f ≥ 0, and S(1X) = S∗(1X) = 1X , where S∗ is the adjoint of S.

We remind the reader that (X,B) is a standard Borel space and µ is a Borel probability measure.
A sub-σ-algebra C of B is W -invariant, where W is a graphon, if TW (f) is C-measurable whenever
f ∈ L2(X,µ) is C-measurable.6 We illustrate this notion with a few examples. If W is q-regular, i.e.,
q = degW (x) =

∫
X
W (x,−) dµ for (µ-almost) every x ∈ X , then C = 〈{∅, X}〉 is W -invariant. If

W satisfies degW (x) 6= degW (y) for every x 6= y ∈ X , then the only W -invariant sub-σ-algebra is B.
Another example is connected with the concept of twin-free graphons, see [16, Section 13.1.1]. Define

Ctwin = {B ∈ B : x ∈ B & W (x,−) = W (y,−) ⇒ y ∈ B}.

Then Ctwin is always W -invariant and Ctwin 6= B if and only if W is not twin-free graphon. We show that
for every graphon W there exists the unique minimum W -invariant sub-σ-algebra and we denote it as
C(W ). It is not obvious at this point but W -invariant algebras correspond to equitable partitions and
C(W ) corresponds to the coarsest equitable partition.

Unlike finite graphs, graphon space is rich enough to allow for averaging and quotients. Given a sub-
σ-algebra C of B we define WC as a conditional expectation of W given C×C, i.e., WC = E (W |C × C) . In
the context of standard Borel spaces it is possible to define a quotient graphon W/C on a quotient space

4If Wn
δ✷
−−→ W , Un

δ✷
−−→ U and Wn, Un are fractionally isomorphic for every n ∈ N, then W and U are fractionally

isomorphic.
5Our main reference for the theory of Markov operators is [8]. We note that in [8] Markov operators are defined on

L1-spaces rather than on L2-spaces. The fact that theses notions are the same is explained in Appendix D.
6To make this definition formally precise we require C to be relatively complete, i.e., A ∈ C whenever there is A′ ∈ C

such that A ⊆ A′ and µ(A′) = 0, see Section 5.
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(X/C, C′) with Borel probability measure µ/C that is weakly isomorphic to WC . Note that the quotient
graphon W/Ctwin is a twin-free version of W .

The last concept is inspired by iterated degree sequences. We describe the first two steps of the
analogous iterative construction. Given a graphon W and x ∈ X consider the Borel assignment

x 7→ iW,1(x) = degW (x) =

∫

X

W (x, y) dµ(y) ∈ [0, 1].

This is just the degree map that corresponds to degG in (1). Note that we can view iW,1(x) as a measure
on a one-point space {⋆} and that the space of all measures on {⋆} of total mass at most 1 is naturally
isomorphic to [0, 1]. Taking the Borel probability measure on [0, 1] that is the distribution of degrees of
W , i.e., the push-forward of µ via iW,1, is the analogue of D1 in (1). The second step is to assign to a
vertex x a measure that is a weighted modification of the distribution of the degrees of W with weights
given by W (x,−). More precisely we assign to a vertex x ∈ X a Borel measure iW,2(x) on [0, 1] that is
defined as

iW,2(x)(A) =

∫

i−1
W,1(A)

W (x, y) dµ(y).

This corresponds to d1 in (2) and similarly we define the analogue of D2 in (2) as the push-forward of µ
via iW,2, this is a Borel probability measure on the space of all Borel measures on [0, 1].

This construction can be iterated to define a Borel map iW : X → M, where iW (x) is an infinite
sequence of Borel measures and M is a compact metric space that is defined independently of W and
whose elements we call iterated degree measures. The analogue of an iterated degree sequence is then a
distribution νW onM that is the push-forward of µ via iW . We call such distributions DIDM, distributions
on iterated degree measures, a precise definition is given in Section 6. We show that the assignment
W → νW is continuous when W0 is endowed with the cut-distance topology and the space of Borel
probability measures on M with the weak* topology.

Now we are ready to state our main result.

Theorem 1.2 (Characterizations of Fractional Isomorphism of Graphons). Let W and U be graphons.
Then the following are equivalent:

(1) t(T,W ) = t(T, U) for every finite tree T ,
(2) νW = νU ,
(3) W/C(W ) and U/C(U) are isomorphic,
(4) there is a Markov operator S : L2(X,µ) → L2(X,µ) such that TW ◦ S = S ◦ TU ,
(5) there is a W -invariant sub-σ-algebra C and a U -invariant sub-σ-algebra D such that WC and UD

are weakly isomorphic.

Here is a good place to mention that the authors announced in [9], in a slightly different language, the
equivalence of (3)–(5). Indeed, it was our original motivation to find a graphon analogue of equitable
partitions and doubly stochastic matrices. However, after extending the characterization to (1), that was
inspired by [6], and following suggestions of one of the referees we decided to emphasize the equivalence
of (1) and (2) as the main result.

The paper is structured as follows. In Section 2 we describe the essential structure of fractionally
isomorphic graphons in the more intuitive language of measurable partitions and in Section 3 we collect
a few remarks and problems. The rest of the paper is devoted to the proof of Theorem 1.2. In Section 4
we sketch a strategy of the proof. In Section 5 we prove basic facts about sub-σ-algebras, invariant
subspaces and the minimum algebra C(W ). In Section 6 we construct the space M, define DIDM, and
show the correspondence between integral kernels and DIDM. In Section 7 we prove the main technical
result about the collection of tree functions T defined on M. Finally, in Section 8 we prove Theorem 1.2.
In Appendices A, B, C, D, and E we collect several well-known facts about standard Borel spaces,
spaces of probability measures, and the connection between sub-σ-algebras, conditional expectations,
and Markov operators that we need in our proof.

We denote as [n] the set {1, . . . , n}. We write µ⊕k for the product measure of k-many copies µ. All
the Lp spaces that we consider in this paper are real and so are the spaces of continuous functions on
compact spaces. 7

7Even though most of the classical results that we use are traditionally stated for complex Lp spaces, they do hold for
real spaces as well. This is because we work either with real valued integral kernels or Markov operators.
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2. Structure of Fractionally Isomorphic Graphons

In this section we describe informally a general construction of a V -biregular blowup of a graphon V
and show that every graphon obtained in this way is fractionally isomorphic to V . The easiest way to
describe this construction is in the language of measurable partitions that we used in [9]. This gives plenty
of examples of fractionally isomorphic graphons that are not derived from finite graphs. On the other
hand, Theorem 1.2 implies that this describes all the examples. Namely, for every pair of fractionally
isomorphic graphons W and U there is a graphon V such that W and U are V -biregular blowups. This
uses characterization (5) in Theorem 1.2. In the construction, we use some standard measure theoretic
techniques on product spaces. The reader familiar with these techniques can safely skip, after checking
the notation in the next paragraph, to Section 2.2.

An intuitive explanation of the construction is as follows. Pick a graphon V on a standard Borel space
Y with a probability measure ρ and form a space X by blowing up each y ∈ Y to a copy of the unit
interval. There is a canonical measure on X , namely the product measure ρ×λ, where λ is the Lebesgue
measure. For each y, z ∈ Y pick a biregular function Ωy,z ∈ BRegV (y,z) on [0, 1] (see below) and glue

them together to create a function W : X ×X → [0, 1]. If the choices are symmetric and measurable in
(y, z), then W is a graphon on X . Any such W is called a V -biregular blowup.

Before we formalize the definition, we recall the basic concepts. A partition η of a standard Borel
space X is measurable if there is a Borel map q : X → Y , where Y is a standard Borel space such that
η = {q−1(y)}y∈Y . A typical example of a measurable partition is a partition induced by a projection
in a product space, i.e., X = Y × [0, 1] and η = {{y} × [0, 1]}y∈Y . There is a correspondence between
measurable partitions and sub-σ-algebras.

Let q ∈ [0, 1] and define BRegq to be the space of all measurable functions U : [0, 1]2 → [0, 1] such
that

q =

∫

[0,1]

U(x,−) dλ =

∫

[0,1]

U(−, x) dλ

for (λ-almost) every x ∈ [0, 1] and put BReg =
⋃

q∈[0,1]BRegq. Moreover, let Regq be a subset of

BRegq that consists of symmetric functions.

2.1. Countable case. Before we present the general construction we start with a graphon V on a
countable measure space (Y,D) with a Borel probability measure ρ, i.e., |Y | ≤ ℵ0, D consists of all
subsets of Y and ρ is, after a slight abuse of notation, fully determined by a function ρ : Y → [0, 1] such
that

∑
y∈Y ρ(y) = 1. This corresponds to atomic sub-σ-algebras and countable measurable partitions.

Here the measurable analogue of equitable partition is easy to digest and so is its connection to invariant
sub-σ-algebras.

Let us start with a trivial case when |Y | = 1 and V is a constant graphon that attains a value
q ∈ [0, 1]. In this case a V -biregular blowup is any element of Regq. It is easy to see that if W ∈ Regq,
then C = 〈{∅, [0, 1]}〉 is aW -invariant subalgebra and W/C = V . Therefore elements ofRegq are pairwise
fractionally isomorphic. In the language of measurable partitions we might say that given W ∈ Regq we
consider the trivial partition η = {[0, 1]} of [0, 1]. Then η satisfies a measurable analogue of the condition
from the definition of equitable partition from previous section. Namely, we have

degW (x, [0, 1]) = degW (x) = q

for λ-almost every x ∈ [0, 1].
Suppose that Y = N and pick a graphon V on Y . Put Ii = [0, 1] and λi for the Lebesgue measure on Ii,

where i ∈ N. Consider a measure space X =
⊔

i∈N
Ii with a Borel probability measure µ =

∑
i∈N

ρ(i)λi.
Note that

µ(A) =

∫

Y

λi(A) dρ(i)

holds for every Borel set A ⊆ X . Let

Ω : N× N → BReg

be a map that satisfies Ω(i, j) = Ω(j, i) and Ω(i, j) ∈ BRegV (i,j). Now for every such Ω we define a
V -biregular blowup to be a graphon WΩ on X defined as

WΩ((i, r), (j, s)) = Ω(i, j)(r, s).

Let C be a sub-σ-algebra generated by the partition η = {Ii}i∈N. It is straightforward to check that C
is W -invariant and WΩ/C = V . Therefore any two V -biregular blowups are fractionally isomorphic. It
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follows from the definition that η satisfies

degW ((i, r), Ij) =

∫

Ij

W ((i, r), (j, s)) dλi(s) = V (i, j)

for every i, j ∈ N and µ-almost every r ∈ Ii. This is the measurable analogue of the equitable condition
for a countable Y .

2.2. Uncountable case. Suppose that Y is an uncountable standard Borel space with a Borel proba-
bility measure ρ and V is a graphon on Y . A rough strategy to define V -biregular blowup is the same as
above, i.e., replace each point by a copy of a unit interval and glue together elements of BReg according
to values of V . However, we need to be more careful in this case to preserve measurability.

Let X = Y × [0, 1] and µ = ρ × λ be the product measure. One can think of µ as a collection of
measures {λy}y∈Y , where λy is the Lebesgue measure on the strip {y} × [0, 1] such that

µ(A) =

∫

Y

λy(A) dρ(y)

holds for every Borel set A ⊆ X . Let

Ω : Y × Y → BReg

be a Borel map that satisfies Ω(y, z) = Ω(z, y) and Ω(y, z) ∈ BRegV (y,z). A V -biregular blowup that is
given by Ω is a graphon WΩ on X defined as

WΩ((y, r), (z, s)) = Ω(y, z)(r, s).

Let η = {{y}× [0, 1]}y∈Y be a measurable partition of X and C be the sub-σ-algebra generated by η. It
follows from the construction that the following condition, a measurable analogue of equitable partition,
is satisfied

degW ((y, r), {z} × [0, 1]) =

∫

[0,1]

WΩ((y, r), (z,−)) dλz = V (y, z)

holds for every y, z ∈ Y and λy-almost every (y, r) ∈ {y}× [0, 1]. It is straightforward to check that this
condition implies that C is WΩ-invariant and WΩ/C = V . Consequently all V -biregular blowups of V
are pairwise fractionally isomorphic.

2.3. Reversed direction. We briefly sketch why the above construction describes all the examples
without going into technical details.

Let W be a graphon on X and C be a W -invariant sub-σ-algebra. Up to a small technical nuance, it
follows from the Measure Disintegration Theorem, see [12, Exercise 17.35], that there is a standard Borel
space Y with a Borel probability measure ρ and an isomorphism between (X,µ) and (Y × [0, 1], ρ× λ)
such that C is exactly the sub-σ-algebra generated by the preimage of the measurable partition η =
{{y} × [0, 1]}y∈Y under this isomorphism. Therefore, we may abuse the notation and assume that W is
a graphon on Y × [0, 1] and V = W/C is a graphon on Y . Define

Ω(y, z) = W ↾ ({y} × [0, 1])× ({z} × [0, 1]) .

It follows that Ω is a Borel map and one can show that the condition that C is W -invariant implies
Ω(y, z) ∈ BRegV (y,z) for (ρ× ρ)-almost every (y, z) ∈ Y × Y .

Now by (5) in Theorem 1.2, ifW and U are fractionally isomorphic, then they are V -biregular blowups,
where V = W/C(W ) = W/C(U).

3. Further remarks and problems

A direct consequence of Theorem 1.2 is that the assignment

W 7→ WC(W )

is a well defined map from W̃0 to W̃0. We denote the range of the map as F ⊆ W̃0 and call elements of F
fraction-free graphons. It follows from (3) in Theorem 1.2 that the restriction of the equivalence relation
induced by fractional isomorphism to F is equal to weak isomorphism. Finally, it follows Corollary 7.7
that W 7→ νW is a cut-distance continuous map when the set of all Borel probability measures on M,
P(M), is endowed with the weak* topology. Therefore those DIDM that correspond to graphons form
a closed subset of P(M).

Question 3.1. Is W 7→ WC(W ) cut-distance continuous?
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This is equivalent with F being closed. Suppose that F is closed, Un →δ✷ U and put Vn = (Un)C(Un).
By compactness of cut-distance and our assumption, we may assume that Vn →δ✷ V ∈ F . Since fractional
isomorphism is a closed equivalence relation we have that V and U are fractionally isomorphic. By (3)
and (5) in Theorem 1.2, we deduce that VC(V ) is weakly isomorphic to UC(U). However, VC(V ) = V and

that gives immediately UC(U) = V in W̃0. Reversed implication is trivial.

Question 3.2. Let W and U be fractionally isomorphic graphons. Is it possible to find sequences
{Gn}n∈N and {Hn}n∈N of finite graphs such that Gn is fractionally isomorphic to Hn for each n ∈ N

and

Gn →δ✷ W and Hn →δ✷ U?

A positive answer to this question combined with the observation that fractional isomorphism is a
closed equivalence relation would provide a new characterization in Theorem 1.2.

4. Structure of the proof

We summarize the structure of the proof of Theorem 1.2. We note that it is more suitable to work
with general integral kernels (non-symmetric functions) rather than graphons.

• (1) ⇒ (2): we define a collection of continuous functions T ⊆ C(M,R) that corresponds in a
certain sense to tree densities and separates points of M (Section 7), then we use a version of
Stone-Weierstrass’s Theorem (Corollary B.2),

• (2) ⇒ (3): we define an integral kernel U[ν] for every DIDM and show that U[νW ] and W/C(W )
are isomorphic for every graphon W (Section 6),

• (3) ⇒ (4): we show that E(−|C(W )) ◦TW = TWC(W )
◦E(−|C(W )) and that isomorphic graphons

are intertwined by a Markov operator (Section 5 and Appendix E),
• (4) ⇒ (5): we observe that (4) implies TW ◦ (S ◦ S∗) = (S ◦ S∗) ◦ TW (similarly for U) and use
the Mean Ergodic Theorem (Theorem D.3) to show that 1

n

∑
k∈[n](S

∗S)k converges to a Markov

projection; then we exploit the duality between Markov projections and relatively complete sub-
σ-algebras (Appendix D),

• (5) ⇒ (1): tree densities are preserved when taking a conditional expectation given invariant
sub-σ-algebras (Section 7).

5. Subalgebras

In this section we prove basic statements about invariant sub-σ-algebras, conditional expectations
and quotients of graphons, and define the minimum W -invariant sub-σ-algebra C(W ) via a canonical
sequence of sub-σ-algebras

{
CW
n

}
n∈N

.

Recall that (X,B) is a standard Borel space and µ is a Borel probability measure onX , see Appendix A.
The L2-spaces are real and we denote the scalar product as 〈−,−〉. For V ⊆ L2(X,µ) we let V ⊥ be the
orthogonal complement of V . We write 1A for the characteristic function of A ⊆ X . If C is (relatively
complete) sub-σ-algebra of B, then it is a standard fact that the linear hull of {1A}A∈C is dense in
L2(X, C, µ), see the corresponding definitions below.

If f and g are measurable functions defined on some measure space Y , then we abuse the notation
and write f = g for equality almost everywhere. It is always clear from the context what type of equality
we mean.

5.1. Kernels. An integral kernel on X is a (B × B)-measurable map

W : X ×X → [0, 1].

The corresponding integral operator TW : L2(X,µ) → L2(X,µ) defined as

TW (f)(x) =

∫

X

W (x, y)f(y) dµ(y)

is a well-defined Hilbert-Schmidt operator (see [18, Chapter 4, Exercise 15]). We consider integral
kernels W and U on X to be the same if TW = TU . It is a standard fact that this is equivalent with
W (x, y) = U(x, y) for (µ× µ)-almost every (x, y) ∈ X ×X . In other words, W and U are the same as
elements of L∞(X×X,µ×µ). We say that an integral kernelW is a graphon (on X) ifW (x, y) = W (y, x)
for (µ× µ)-almost every (x, y) ∈ X ×X .

Claim 5.1. Let W be an integral kernel on X. Then TW is self-adjoint if and only if W is a graphon.
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For a closed linear subspace V ⊆ L2(X,µ) we denote as PV the orthogonal projection onto V . We
say that a subspace V is W -invariant, where W is an integral kernel, if TW (V ) ⊆ V . The following
characterization of invariant subspaces for graphons is a standard application of the fact that TW is a
compact operator.

Proposition 5.2. Let W be a graphon and V ⊆ L2(X,µ) be a closed linear subspace. Then the following
are equivalent

(1) V is W -invariant,
(2) there is an orthonormal basis of V made of eigenvectors of TW ,
(3) TW commutes with the projection PV ,
(4) TW (V ⊥) ⊆ V ⊥.

5.2. Conditional Expectation and Invariant Subspaces.

Definition 5.3 (Relative complete sub-σ-algebra). We say that C ⊆ B is a µ-relatively complete sub-
σ-algebra of B if it is a sub-σ-algebra and Z ∈ C whenever there is Z0 ∈ C such that µ(Z△Z0) = 0. We
define Θµ as the set of all µ-relatively complete sub-σ-algebras of B.

Since the measure µ is always fixed we say simply relatively complete sub-σ-algebra.

Claim 5.4. Let Φ be a non-empty family of relatively complete sub-σ-algebras. Then

{Z ∈ B : ∀C ∈ Φ, Z ∈ C} ∈ Θµ.

As a direct consequence we have that every X ⊆ C generates a unique relatively complete sub-σ-algebra
that we denote as 〈X 〉.

Given C ∈ Θµ we define L2(X, C, µ) to be the collection of all functions in L2(X,µ) that are C-
measurable. A standard fact about conditional expectation, see Theorem C.1, yields the following.

Claim 5.5. Let C ∈ Θµ. Then L2(X, C, µ) is a closed linear subspace and

E (−|C) : L2(X,µ) → L2(X,µ)

is the orthogonal projection onto L2(X, C, µ).

In the introduction we defined for a graphon W and a W -invariant algebra C ∈ Θµ a graphon WC as
the conditional expectation of W given C ×C. Here, we slightly abuse the notation and define WC as the
conditional expectation of W given B × C, i.e.,

WC = E (W |B × C) ,

for every integral kernel W and any C ∈ Θµ. We show in Claim 5.7 that for graphons the assumption
that the algebra is invariant implies that these definitions are the same.

Claim 5.6. Let C ∈ Θµ. Then TWC
= TW ◦E(−|C). In particular, TW ↾ L2(X, C, µ) = TWC

↾ L2(X, C, µ).

Proof. Let A ∈ C and B ∈ B. Then we have

〈TWC
(1A),1B〉 =

∫

B×A

WC d(µ× µ) =

∫

B×A

W d(µ× µ)

= 〈TW (1A),1B〉 = 〈(TW ◦ E(−|C)) (1A),1B〉 ,

where we used Theorem C.1 (3) in the second equality. Since linear hulls of {1A}A∈C and {1B}B∈B are
dense in L2(X, C, µ) and L2(X,µ), respectively, we get that the claim holds for every f ∈ L2(X, C, µ).

Let f ∈ L2(X, C, µ)⊥ and B ∈ B. Define F (x, y) = f(y) and note that E(F |B × C) = 0 by Fubini’s
Theorem. We have

〈TWC
(f),1B〉 =

∫

B×X

WC(x, y)f(y) d(µ× µ)(x, y) =

∫

B×X

WC(x, y)F (x, y) d(µ× µ)(x, y)

=

∫

B×X

W (x, y)E(F |B × C)(x, y) d(µ× µ)(x, y) = 0,

where we used Theorem C.1 (2) in the third equality. This implies that TWC
(f) = 0 and the proof is

finished. �

We say that C ∈ Θµ isW -invariant if L2(X, C, µ) isW -invariant, i.e., if TW (L2(X, C, µ)) ⊆ L2(X, C, µ).
Equivalently by Claim 5.6, we have

TWC
◦ E(−|C) = TW ◦ E(−|C) = E(−|C) ◦ TW ◦ E(−|C) = E(−|C) ◦ TWC

,

i.e., TWC
commutes with E(−|C).
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Claim 5.7. Let C ∈ Θµ be W -invariant. Then WC = E(W |B × C) = E(W |C × C). Moreover, if W is a
graphon, then so is WC .

Proof. Let U = E(W |C × C) and A,B ∈ C. We have

〈TWC
(1A),1B〉 =

∫

B×A

WC d(µ× µ) =

∫

B×A

W d(µ× µ)

=

∫

B×A

E(W |C × C) d(µ× µ) = 〈TU (1A),1B〉

by Theorem C.1 (3). The assumption that C is W -invariant implies that TWC
(f) = TU (f) for every

f ∈ L2(X, C, µ). It follows from Claim 5.6 that TWC
(f) = 0 whenever f ∈ L2(X, C, µ)⊥ and it is easy

to see that the same argument as in the proof of Claim 5.6 shows that the same holds for TU . Then we
have TWC

= TU and consequently WC = U . The additional part follows easily by Claim 5.1. �

Taking conditional expectation can be reformulated in the language of quotient spaces. First we
recall Theorem E.1. For every C ∈ Θµ there is a standard Borel space (X/C, C′), a probability measure
µ/C ∈ P(X/C) and a Borel map qC : X → X/C such that µ/C is the push-forward of µ via qC . Moreover
there is a unique linear isometry

IC : L2(X/C, µ/C) → L2(X,µ)

defined as

IC(f)(x) = f(qC(x))

that is a Markov operator onto L2(X, C, µ). If we write SC for the adjoint of IC , then SC is a Markov
operator, SC ↾ L2(X, C, µ) is an isometrical isomorphism and SC = SC ◦ E(−|C). It follows that SC ◦ IC
is the identity on L2(X/C, µ/C) and IC ◦ SC is equal to E(−|C).

Definition 5.8. Let C ∈ Θµ be W -invariant. We define W/C = SC×C(WC).

Formally, W/C is defined on the space (X ×X)/(C × C) but it can be easily verified that there is a
measure preserving bijection

i : (X ×X)/(C × C) → (X/C)× (X/C)

such that (i ◦ qC×C)(x, y) = (qC(x), qC(y)) for (µ× µ)-almost every (x, y) ∈ X ×X . Therefore, we abuse
the notation and assume that W/C is defined on X/C × X/C. Consequently by Claim 5.7, we have
IC×C(W/C) = WC and

WC(x, y) = (W/C)(qC(x), qC(y))

for (µ× µ)-almost every (x, y) ∈ X ×X .

Proposition 5.9. Let W be an integral kernel and C ∈ Θµ be W -invariant. Then

(i) if W is a graphon, then W/C is a graphon. Furthermore, WC and W/C are weakly isomorphic,
(ii) TW/C ◦ SC = SC ◦ TWC

,
(iii) if W is a graphon, then we have TW/C ◦ SC = SC ◦ TW .

Proof. (i) It follows from the remark before this proposition that WC is a pull-back of W/C. This implies
easily both claims in (i).

(ii) If f ∈ L2(X, C, µ)⊥, then the equality clearly holds. Suppose that f0, f1 ∈ L2(X, C, µ). By the
definition, we find h0, h1 ∈ L2(X/C, µ/C) such that IC(hi) = fi and SC(fi) = hi for i ∈ {0, 1}. Then we
have 〈(

TW/C ◦ SC

)
(f0), h1

〉
=

〈
TW/C(h0), h1

〉

=

∫

(X/C)×(X/C)

h1(r)(W/C)(r, s)h0(s) d((µ/C)× (µ/C))(r, s)

=

∫

X×X

f1(x)WC(x, y)f0(y) d(µ× µ)(x, y) = 〈TWC
(f0), f1〉

= 〈TWC
(f0), IC(h1)〉 = 〈(SC ◦ TWC

) (f0), h1〉

and the claim follows.
(iii) Proposition 5.2 implies that TW commutes with E(−|C). By (ii) and Claim 5.6, we have

TW/C ◦ SC = SC ◦ TWC
= SC ◦ TW ◦ E(−|C) = SC ◦ E(−|C) ◦ TW = SC ◦ TW

and the proof is finished. �
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5.3. The minimum invariant sub-σ-algebra. Let W be an integral kernel on X . We show in this
section that there is the minimum W -invariant relatively complete sub-σ-algebra and that it admits a
canonical description. First we need to introduce some auxiliary notion.

Definition 5.10. Let D, E ∈ Θµ. We say that (D, E) is a W -invariant pair if

TW (L2(X,D, µ)) ⊆ L2(X, E , µ).

Note that C ∈ Θµ is W -invariant if and only if (C, C) is a W -invariant pair. Given C ∈ Θµ define Φ to
be the collection of D ∈ Θµ such that (C,D) is a W -invariant pair. Then Φ is non-empty because B ∈ Φ.
By Claim 5.4, we have

m(C) = {Z ∈ B : ∀D ∈ Φ, Z ∈ D} ∈ Θµ.

The following is straightforward.

Claim 5.11. Let C ∈ Θµ. Then (C,m(C)) is a W -invariant pair.

Definition 5.12 (Canonical sequence
{
CW
n

}
n∈N

). Define CW
0 = 〈{∅, X}〉 and inductively CW

n+1 =

m
(
CW
n

)
. Furthermore, we define

C(W ) =

〈
⋃

n∈N

CW
n

〉
.

Proposition 5.13. Let W be an integral kernel. Then C(W ) is the minimum W -invariant relatively
complete sub-σ-algebra of B.

Proof. Suppose that C ∈ Θµ is W -invariant. Then we have trivially CW
0 ⊆ C and by induction CW

n ⊆ C
for every n ∈ N. This shows C(W ) ⊆ C.

It remains to show that C(W ) is W -invariant. First note that
⋃

n∈N
CW
n is an algebra (not necessarily

σ-algebra) that generates C(W ). By [12, Exercise 17.43], we can find for each A ∈ C(W ) a sequence An ∈
CW
n such that 1An

→ 1A in L2(X,µ). By continuity of TW , we have TW (1An
) → TW (1A) in L2(X,µ)

and, by Claim 5.11, we have TW (1An
) ∈ L2

(
X, CW

n+1, µ
)
⊆ L2(X, C(W ), µ). Since L2(X, C(W ), µ) is

closed, by Claim 5.5, we have TW (1A) ∈ L2(X, C(W ), µ). Since the linear hull of {1A}A∈C(W ) is dense

in L2(X, C(W ), µ) and TW is linear and continuous we conclude that C(W ) is W -invariant. �

6. Distributions on iterated degree measures

In this section we define the compact metric space M whose elements are iterated degree measures.
This definition is independent of W0. We assign to a graphon W on X a Borel map iW : X → M and a
Borel probability measure νW on M that encodes the canonical sequence {CW

n }n∈N. These measures are
called distributions on iterated degree measures, DIDM. Lastly, we show that every DIDM ν encodes an
integral kernel U[ν] on M such that W/C(W ) is isomorphic to U[νW ] for every graphon W .

6.1. The Space M. For a compact metric space K we denote as M≤1(K) the set of all Borel measures
on K of total mass at most 1. Moreover, we put P(K) for the set of all Borel probability measures on
K, i.e., distributions on K, and we denote as C(K,R) the space of all real-valued continuous functions on
K. It is a standard fact from functional analysis that M≤1(K) and P(K) are compact and metrizable
when endowed with the weak* topology, see Appendix B.

Definition 6.1. Let P 0 = {⋆} be the one-point space and define inductively

Mn =
∏

i≤n

P i and Pn+1 = M≤1 (Mn)

for every n ∈ N. We put M = M∞ =
∏

n∈N
Pn and denote as pn,k : Mk → Mn the canonical projection,

where n ≤ k ≤ ∞.

It is an easy consequence of the discussion above together with Tychonoff’s Theorem, see [18, Theorem
A3], that M is a compact metric space.

A particularly interesting subspace of M consists of coherent sequences of measures. Namely, define

P = {α ∈ M : ∀n ∈ N α(n+ 1) = (pn,n+1)∗α(n+ 2)} ,

where (pn,n+1)∗α(n + 2) ∈ M≤1(Mn) denotes the push-forward of α(n + 2) ∈ M≤1(Mn+1) via pn,n+1,
see Appendix A for definition. It follows from Kolmogorov’s Existence Theorem [3, Theorem 36.1] that
for every α ∈ P there is a unique µα ∈ M≤1(M) such that

(pn,∞)∗µα = α(n+ 1).

for every n ∈ N. In fact, we have the following uniform version.
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Claim 6.2. The set P is closed in M and the map α 7→ µα that satisfies

(pn,∞)∗µα = α(n+ 1)

for every n ∈ N is a continuous map from P to M≤1(M).

Proof. Let {αk}k∈N
⊆ P, α ∈ M be such that αk → α and n ∈ N. By the definition, we have αk(n+2) →

α(n + 2) in M≤1(Mn+1) and (pn,n+1)∗αk(n + 2) = αk(n + 1) → α(n + 1) in M≤1(Mn). However, this
implies

∫

Mn

f dαk(n+ 1) =

∫

Mn+1

f ◦ pn,n+1 dαk(n+ 2)

→

∫

Mn+1

f ◦ pn,n+1 dα(n+ 2) =

∫

Mn

f d(pn,n+1)∗α(n+ 2)

for every f ∈ C(Mn,R). This shows that α(n+ 1) = (pn,n+1)∗α(n+ 2) and consequently that α ∈ P.
It follows from Theorem B.1 that

A =
⋃

n∈N

C(Mn,R) ◦ pn,∞

is uniformly dense in C(M,R). Let αk, α ∈ P for every k ∈ N such that αk → α in M (or equivalently
in P). This means by definition that (pn,∞)∗µαk

= αk(n+ 1) → α(n+ 1) = (pn,∞)∗µα for every n ∈ N.
Then we have ∫

M

f ◦ pn,∞ dµαk
=

∫

Mn

f d(pn,∞)∗µαk

→

∫

Mn

f d(pn,∞)∗µα =

∫

M

f ◦ pn,∞ dµα

for every f ∈ C(Mn,R). It follows from the the uniform density of A that µαk
→ µα in M≤1(M). �

Finally we are ready to state the main definition of this section. Note that in the definition, (2) makes
sense by (1).

Definition 6.3. We say that ν ∈ P(M) is a distribution on iterated degree measures, DIDM, if

(1) ν(P) = 1,
(2) µα is absolutely continuous with respect to ν with the corresponding Radon–Nikodym derivative

satisfying 0 ≤ dµα

dν ≤ 1 for ν-almost every α ∈ M.

6.2. From Kernels to DIDM. For a given integral kernel W on X we define inductively a map
iW : X → M and show that νW , the push-forward of µ via iW , is a DIDM. Compare the definition of iW
with the informal definition given in the introduction. Moreover, we show that C(W ) is the minimum
relatively complete sub-σ-algebra that makes iW measurable.

Definition 6.4. Let (X,B) be a standard Borel space and W be an integral kernel on X. We define
iW,0 : X → M0 = {⋆} to be the constant map. Inductively, we define iW,n+1 : X → Mn+1 such that

(a) iW,n+1(x)(j) = iW,n(x)(j), for every j ≤ n and
(b) iW,n+1(x)(n + 1)(A) =

∫
i−1
W,n

(A)
W (x,−) dµ, whenever A ⊆ Mn is a Borel set.

Denote as

iW : X → M

the unique map defined as iW (x)(n) = iW,n(x)(n). Finally, let νW to be the push-forward of µ via iW .

To make sure that we can proceed with the inductive construction and that νW is well-defined we
need to show that iW,n is a measurable map for every n ∈ N. In fact, we show that CW

n is the minimum
relatively complete sub-σ-algebra that makes iW,n measurable.

For each n ∈ N denote as B(Mn) the Borel σ-algebra of Mn. First we need a claim that we use in our
inductive arguments.

Claim 6.5. Let n ∈ N and suppose that iW,n is measurable. Then
∫

Mn

f d (iW,n+1(x)(n + 1)) =

∫

X

W (x, y)(f ◦ iW,n)(y) dµ(y)

for every bounded Borel function f : Mn → R and every x ∈ X.

Proof. This a straightforward consequence of (b) from the definition of iW,n+1. �
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Proposition 6.6. Let W be an integral kernel and n ∈ N. Then iW,n is measurable and
〈{

i−1
W,n(A) : A ∈ B(Mn)

}〉
= CW

n ,

i.e., the minimum relatively complete sub-σ-algebra of B that makes the map iW,n measurable is CW
n .

Proof. It is clear that the claim holds for n = 0 because CW
0 = 〈{∅, X}〉 =

〈{
i−1
W,0(∅), i

−1
W,0({⋆})

}〉
.

Suppose that the claim holds for n ∈ N. It follows from [12, Theorem 17.24] together with the definition
of Mn+1 that B(Mn+1) is generated by {p−1

n,n+1(A) : A ∈ B(Mn)} and the maps

Mn+1 ∋ κ 7→

∫

Mn

f dκ(n+ 1) ∈ R,

where f : Mn → R is a bounded Borel function.
Let A ∈ B(Mn). Then we have

i−1
W,n+1(p

−1
n,n+1(A)) = i−1

W,n(A) ∈ CW
n ⊆ CW

n+1

by the inductive hypothesis. Let f : Mn → R be a bounded Borel function. Then the map

X ∋ x 7→

∫

Mn

f d (iW,n+1(x)(n + 1)) =

∫

X

W (x, y) (f ◦ iW,n) (y) dµ(y)

is CW
n+1 measurable by the definition of CW

n+1 together with the inductive hypothesis and Claim 6.5. This

shows that iW,n+1 is measurable and Dn+1 ⊆ CW
n+1, where we denote as Dn+1 the minimum relatively

complete sub-σ-algebra that makes iW,n+1 measurable.

It remains to show that CW
n+1 = Dn+1. For A ∈ CW

n we find B ∈ B(Mn) such that µ
(
A△i−1

W,n(B)
)
= 0

by the inductive hypothesis. Then we have that the function

X ∋ x 7→ iW,n+1(x)(n + 1)(B) =

∫

X

W (x, y) (1A) (y) dµ(y) = TW (1A)(x)

is Dn+1 measurable. An easy argument shows that CW
n+1 is the minimum relatively complete sub-σ-

algebra that makes {TW (1A)}A∈CW
n

measurable. Consequently Dn+1 = CW
n+1 and the proof is finished.

�

Corollary 6.7. Let W be an integral kernel. Then iW is measurable and
〈{

i−1
W (A) : A ∈ B(M)

}〉
= C(W ),

i.e., the minimum relatively complete sub-σ-algebra of B that makes the map iW measurable is C(W ).

Proof. It is a standard fact that B(M) is generated by
⋃

n∈N

{
p−1
n,∞(A) : A ∈ B(Mn)

}

as a σ-algebra (see [12, Section 10]). The rest is an easy consequence of the definition of C(W ) together
with Proposition 6.6 �

It remains to show that νW is a DIDM. By the definition, we have νW ∈ P(M).

Proposition 6.8. Let W be an integral kernel. Then νW is a DIDM and iW (x) ∈ P for every x ∈ X.

Proof. First we show that iW (x) ∈ P for every x ∈ X . This immediately implies that νW (P) = 1. Let
A ∈ B(Mn). Then we have

iW (x)(n+ 1)(A) = iW,n+1(x)(n + 1)(A) =

∫

i−1
W,n

(A)

W (x, y) dµ(y)

=

∫

i−1
W,n+1(p

−1
n,n+1(A))

W (x, y) dµ(y) = iW,n+2(x)(n+ 2)(p−1
n,n+1(A))

= iW (x)(n + 2)(p−1
n,n+1(A)) = (pn,n+1)∗ (iW (x)(n + 2)) (A)

by the definition of iW . This shows that iW (x) ∈ P for every x ∈ X .
Let x ∈ X and write µx = µiW (x). It follows from Corollary 6.7 and Corollary E.2 that there is a

function gx : M → [0, 1] such that

E(W (x,−)|C(W )) = gx ◦ iW
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holds µ-almost everywhere. We show that gx is the desired Radon–Nikodym derivative dµx

dνW
. To this

end, let A ∈
⋃

n∈N
B(Mn). Then we have

µx(p
−1
n,∞(A)) = iW (x)(n+ 1)(A) =

∫

i−1
W,n

(A)

W (x,−) dµ

=

∫

i−1
W,n

(A)

E
(
W (x,−)|CW

n

)
dµ =

∫

i−1
W,n

(A)

E(W (x,−)|C(W )) dµ

=

∫

i−1
W,n

(A)

gx ◦ iW dµ =

∫

i−1
W

(p−1
n,∞(A))

gx ◦ iW dµ =

∫

p−1
n,∞(A)

gx dνW ,

where the third equality follows from i−1
W,n(A) ∈ CW

n by Proposition 6.6 and the sixth equality by the

fact that x ∈ i−1
W,n(A) if and only if x ∈ i−1

W (p−1
n,∞(A)) by the definition of iW . The rest follows from the

fact that µx and νW are well defined and

⋃

n∈N

{
p−1
n,∞(A) : A ∈ B(Mn)

}

generates B(M). �

6.3. From DIDM to Integral Kernels. We start with a DIDM ν and define an integral kernel U[ν].
Then we show what is the connection between W and U[νW ]. Recall that by the definition, ν is
concentrated on P and the map α 7→ µα is continuous by Claim 6.2. This is enough to get the following.

Claim 6.9. Let ν be a DIDM. Then there is U[ν] ∈ L∞(M×M, ν × ν) such that ‖U[ν]‖∞ ≤ 1 and

U[ν](α,−) =
dµα

dν

for ν-almost every α ∈ M.

Proof. Let A ∈ B(M×M) and put Aα = {β ∈ M : (α, β) ∈ A}. Then the assignment

M ∋ α 7→ µα(Aα) ∈ [0, 1]

is defined ν-almost everywhere and it is an easy consequence of Claim 6.2 that it is measurable. This
allows to compute

Φ(A) =

∫

M

µα(Aα) dν.

It is straightforward to check that Φ is a Borel probability measure onM×M that is absolutely continuous
with respect to (ν×ν). LetU[ν] be the corresponding Radon–Nikodym derivative. We leave as an exercise

to show that U[ν](α,−) = dµα

dν for ν-almost every α ∈ M. �

Theorem 6.10. Let W be an integral kernel on X. Then

WC(W )(x, y) = U[νW ](iW (x), iW (y))

for (µ× µ)-almost every (x, y) ∈ X ×X.

Proof. Recall that by Proposition 6.8, we have that U[νW ] is well defined because νW is a DIDM and

iW (x) ∈ P for every x ∈ X . Consequently, U[νW ](iW (x),−) =
dµiW (x)

dνW
for µ-almost every x ∈ X by

Claim 6.9.
Define an integral kernel U on X as

U(x, y) = U[νW ](iW (x), iW (y)).

It is clearly enough to show that TWC(W )
= TU . By the definition of WC(W ) and Corollary 6.7, we

have that WC(W ) and U are (C(W )× C(W ))-measurable. This implies TWC(W )
(f) = TU (f) = 0 whenever

f ∈ L2(X, C(W ), µ)⊥. It is therefore enough to show that TWC(W )
(1A) = TU (1A) for every A ∈

⋃
n∈N

CW
n .

To this end, pick such an A ∈ CW
n for some n ∈ N. By Proposition 6.6, we may assume (up to a µ-null

set) that there is B ∈ B(Mn) such that A = i−1
W,n(B). Recall that it follows from the construction of iW
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that i−1
W (p−1

n,∞(B)) = A. Then we have

TWC(W )
(1A)(x) =

∫

A

W (x,−) dµ =

∫

i−1
W,n

(B)

W (x,−) dµ

= iW (x)(n+ 1)(B) = µiW (x)(p
−1
n,∞(B))

=

∫

p−1
n,∞(B)

dµiW (x)

dνW
dνW =

∫

p−1
n,∞(B)

U[νW ](iW (x),−) dνW

=

∫

A

U(x,−) dµ = TU (1A)

by the definition of iW , µα and U[ν] for µ-almost every x ∈ X . �

Corollary 6.11. Let W be a graphon. Then W/C(W ) is isomorphic to U[νW ]. In particular, U[νW ] is
a graphon.

Proof. By Theorem E.1 and Corollary E.2, the maps qC(W ) and iW induce Markov injections IC(W ) :

L2(X/C(W ), µ/C(W )) → L2(X,µ) and I : L2(M, νW ) → L2(X,µ) that are isometries onto L2(X, C(W ), µ).
It follows that

(IC(W ))
∗ ◦ I = I−1

C(W ) ◦ I : L2(M, νW ) → L2(X/C(W ), µ/C(W ))

is a Markov isomorphism. By Theorem E.3, we find a measurable measure preserving almost bijec-
tion jW : X/C(W ) → M such that iW = jW ◦ qC(W ). Now it follows easily that (W/C(W ))(x, y) =
U[νW ](jW (x), jW (y)) for ((µ/C(W ))× (µ/C(W )))-almost every (x, y) ∈ (X/C(W )) × (X/C(W )) by the
definition of W/C(W ) and Theorem 6.10. �

7. Tree functions

This section is the most technical part of the paper. We show two things. First, if W is a graphon
and C ∈ Θµ is W -invariant, then

t(T,W ) = t(T,WC)

for every finite tree T . Second, there is a collection T ⊆ C(M,R) that satisfies assumption of Corol-
lary B.2, i.e., T separates measures, such that for every f ∈ T there is a finite tree T such that

t(T,W ) =

∫

M

f dνW

for every graphon W .
Since we work with arbitrary integral kernels, not necessarily graphons, we state all the results in

terms of rooted trees rather than trees. Recall that for a Borel probability measure µ on X we denote
as µ⊕k the Borel probability measure on Xk that is the product of k-many copies of µ.

7.1. Tree Functions and Invariant Subspaces. A finite rooted tree T is a pair (T, v), where T =
(V (T ), E(T )) is a finite tree and v is a distinguished vertex of T . The height, h(T), of T is the maximum
number of edges in a path that starts at v. We denote as c(T) the degree of v in T . Every finite
rooted tree T of non-zero height can be decomposed into subtrees that are rooted at the neighbors of v.
Namely, there is a sequence {Ti}i∈[c(T)] of finite rooted trees such that V (T ) = {v}∪

⋃
i∈[c(T)] V (Ti) and

E(T ) =
⋃

i∈[c(T)]{v, vi}∪E(Ti), where Ti = (Ti, vi). We call {Ti}i∈c([T]) the corresponding decomposition

of T. Note that if h(T) > 0, then h(Ti) < h(T) for every i ∈ [c(T)] and there is i ∈ [c(T)] such that
h(Ti) + 1 = h(T).

Definition 7.1. Let W be an integral kernel and T be a finite rooted tree. We define inductively function
fW
T

: X → [0, 1] as follows. If h(T) = 0, then put fW
T

= 1. Suppose that h(T) > 0 and define

fW
T (x) =

∫

X[c(T)]

∏

i∈[c(T)]

fW
Ti

(y(i))W (x, y(i)) dµ⊕c(T)(y),

where {Ti}i∈[c(T)] is the corresponding decomposition of T.

Proposition 7.2. Let W be an integral kernel on X, T be a finite rooted tree and C ∈ Θµ be W -invariant.

Then fW
T

is CW
h(T)-measurable and fWC

T
(x) = fW

T
(x) for µ-almost every x ∈ X.
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Proof. We prove both statements simultaneously by induction. If h(T) = 0, then the claim clearly holds.
Suppose that h(T) = n+ 1 and that the claim holds for all finite rooted trees of height at most n. Let
{Ti}i∈c(T) be the corresponding decomposition of T. We have

fW
T (x) =

∫

X[c(T)]

∏

i∈[c(T)]

fW
Ti

(y(i))W (x, y(i)) dµ⊕c(T)(y)

=
∏

i∈[c(T)]

(∫

X

fW
Ti

(y)W (x, y) dµ(y)

)
=

∏

i∈[c(T)]

(∫

X

fWC

Ti
(y)W (x, y) dµ(y)

)

=
∏

i∈[c(T)]

(∫

X

fWC

Ti
(y)E(W (x,−)|C)(y) dµ(y)

)

=
∏

i∈[c(T)]

(∫

X

fWC

Ti
(y)WC(x, y) dµ(y)

)
= fWC

T
(x)

for µ-almost every x ∈ X , where the second equality is Fubini’s Theorem, the third is by inductive
hypothesis, the fourth follows from Theorem C.1 (2) together with CW

n ⊆ C(W ) ⊆ C and the fifth follows
from the fact that E(W (x,−)|C) = WC(x,−) for µ-almost every x ∈ X . Note that by the definition of
CW
n+1, we have that fW

T
is CW

n+1-measurable by the second equality and that finishes the proof. �

Proposition 7.3. Let W be a graphon on X, T = (T, v) be a finite rooted tree and C ∈ Θµ be W -
invariant. Then

t(T,W ) =

∫

X

fW
T (x) dµ(x).

In particular, t(T,W ) = t(T,WC) = t(T,U[νW ]) for every finite tree T .

Proof. If h(T) = 0, then the claim holds. Suppose that h(T) = n+1 and {Ti}i∈c([T]) is the corresponding
decomposition of T, where Ti = (Ti, vi). It is easy to see by induction on h(T) together with Fubini’s
Theorem that for fixed x ∈ [0, 1] we have

∫

X

W (x, y)fW
Ti

(y) dµ(y) =

∫

XV (Ti)

W (x, y(vi))
∏

{w,u}∈E(Ti)

W (y(w), y(u)) dµ⊕|V (Ti)|(y)

and that gives immediately

t(T,W ) =

∫

XV (T )

∏

{w,u}∈E(T )

W (y(w), y(u)) dµ⊕|V (T )|(y)

=

∫

X

∏

i∈[c(T)]



∫

XV (Ti)

W (x, y(vi))
∏

{w,u}∈E(Ti)

W (y(w), y(u)) dµ⊕|V (Ti)|(y)


 dµ(x)

=

∫

X

∏

i∈[c(T)]

(∫

X

W (x, y)fW
Ti

(y) dµ(y)

)
dµ(x)

=

∫

X

fW
T (x) dµ(x)

as desired. Note that the assumption that W is symmetric is implicitly used in the second equality.
It follows from Proposition 7.2 that t(T,W ) = t(T,WC). In particular, we have t(T,W ) = t(T,WC(W ))

and t(T,WC(W )) = t(T,U[νW ]) by Proposition 5.9 together with Corollary 6.11. �

7.2. Collection T . In this section we work exclusively with the space M. We define a collection T ⊆
C(M,R) that is closed under multiplication and contains 1M. The construction proceeds recursively on
n ∈ N, where in step n ∈ N we construct Tn ⊆ C(M,R) that factors through Mn, i.e., for every f ∈ Tn
there is f ′ ∈ C(Mn,R) such that f = f ′ ◦ pn,∞, and is uniformly dense in C(Mn,R) ◦ pn,∞.

The set Tn+1 is constructed from Tn using two operations. Informally, these operations correspond
to the following constructions on finite trees, the correspondence is made precise in the proof of Propo-
sition 7.6. (I) Given a rooted tree we add an extra vertex that is the new root and its only neighbor
is the old root. (II) Given a sequence of rooted trees {Tj}j∈[k] we define a rooted tree T as a disjoint

union of {Tj}j∈[k] and glue the roots to a single vertex, the new root.

Definition 7.4. Let n, k ∈ N and f, f1, . . . , fk ∈ C(M,R) be such that f factors through Mn. Then
define for every α ∈ M
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(I) F (f, n)(α) =
∫
Mn

f ′ dα(n+ 1), where f ′ ∈ C(Mn,R) and f = f ′ ◦ pn,∞,

(II) G(f1, . . . , fk)(α) =
∏

j∈[k] fj(α)

It is easy to see by the definition of M that F (f, n) and G(f1, . . . , fk) are elements of C(M,R) and
that F (f, n) factors through Mn+1.

We put T0 = {1M}. Suppose that Tn is defined. Then let

Tn+1 = {G(f1, . . . , fk) : ∀i ∈ [k] ∃gi ∈ Tn (gi = fi ∨ F (gi, n) = fi)} ,

i.e., first apply (I) on Tn and then (II) on all new and old functions. Finally, we put T =
⋃

n∈N
Tn.

Proposition 7.5. The collection T is closed under multiplication, contains 1M and separates points of
M.

Proof. We only need to show that T separates points. We show by induction on n ∈ N that Tn separates
α, β ∈ M whenever there is i ∈ [n] such that α(i) 6= β(i). This clearly suffices to prove the claim. Note
that each Tn is closed under multiplication and contain 1M by (II).

If n = 0 there is nothing to prove. Suppose that the claim holds for n ∈ N. Let α 6= β ∈ M be
such that α(i) 6= β(i) for some i ∈ [n + 1]. Either there is f ∈ Tn such that f(α) 6= f(β) or i = n + 1
by the inductive assumption. Let T ′

n = {f ′ ∈ C(Mn,R) : ∃f ∈ Tn f = f ′ ◦ pn,∞}. It follows by the
inductive assumption that T ′

n is closed under multiplication, contain 1Mn
and separates points of Mn.

By Corollary B.2, there is f ′ ∈ T ′
n such that

∫

Mn

f ′ dα(n + 1) 6=

∫

Mn

f ′ dβ(n + 1).

By (I), we have F (f, n)(α) 6= F (f, n)(β), where f ∈ Tn is such that f = f ′ ◦ pn,∞. Since F (f, n) ∈ Tn+1

the proof is finished. �

Proposition 7.6. Let f ∈ T . Then there is a finite rooted tree T such that for every DIDM ν we have

f(α) = f
U[ν]
T

(α)

for ν-almost every α ∈ M.

Proof. We prove the claim by induction on n ∈ N. It is easy to see that if f = 1M, then T that satisfies
h(T) = 0 works, i.e., the claim holds for T0.

Suppose that the claim holds for Tn, where n ∈ N. Let f = F (g, n) for some g ∈ Tn. Fix a finite
rooted tree S = (S,w) that corresponds to g and g′ ∈ C(Mn,R) such that g = g′ ◦ pn,∞. Define a finite
rooted tree T such that c(T) = 1 and {S} is the corresponding decomposition of T, i.e., we add an extra
vertex that is the new root and its only neighbor is the old root. Given a DIDM ν we have

f
U[ν]
T

(α) =

∫

M

f
U[ν]
S

(β)U[ν](α, β) dν(β) =

∫

M

g(β)U[ν](α, β) dν(β)

=

∫

M

g dµα =

∫

M

g′ ◦ pn,∞ dµα =

∫

Mn

g′ d(pn,∞)∗µα

=

∫

Mn

g′ dα(n + 1) = F (g, n)(α) = f(α)

for ν-almost every α ∈ M.
Let f ∈ Tn+1. By the definition, we have f = G(f1, . . . , fk) for some fi such that either fi ∈ Tn or

fi = F (gi, n) for some gi ∈ Tn. In both cases, either by inductive assumption or by previous paragraph,
we find a finite rooted tree T

i that satisfy the claim for fi for every i ∈ [k]. Let {Ti
j}j∈[c(Ti)] be the

corresponding decomposition of Ti, where Ti
j = (T i

j , v
i
j) for every i ∈ [k]. Put I = {(i, j) : i ∈ [k] j ∈

[c(Ti)]} and define T = (T, v) as

V (T ) = {v} ∪
⋃

(i,j)∈I

V (T i
j ) and E(T ) =

⋃

(i,j)∈I

{v, vij} ∪E(T i
j ).
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Note that {Ti
j}(i,j)∈I is the corresponding decomposition of T. Given a DIDM ν we have

f
U[ν]
T

(α) =

∫

MI

∏

(i,j)∈I

f
U[ν]

Ti
j

(β(i, j))U[ν](α, β(i, j)) dν⊕|I|(β)

=
∏

i∈[k]

∫

M[c(Ti)]

∏

j∈c([Ti])

f
U[ν]

Ti
j

(β(j))U[ν](α, β(j)) dν⊕c(Ti)(β)

=
∏

i∈[k]

f
U[ν]
Ti (α) =

∏

i∈[k]

fi(α) = f(α)

for ν-almost every α ∈ M and that finishes the proof. �

Corollary 7.7. The map W 7→ νW is continuous when W0 is endowed with the cut-distance and P(M)
with the weak* topology. Moreover, if U and W are graphons such that νW 6= νU , then there is a finite
tree T such that t(T,W ) 6= t(T, U).

Proof. It follows from Theorem B.1 together with Proposition 7.5 that T is uniformly dense in C(M,R).
It follows that the weak* topology on P(M) is generated by functionals that correspond to elements of

T . Let Wn
δ✷−→ W and f ∈ T . Fix a finite (rooted) tree T that corresponds to f as in Proposition 7.6.

By Propositions 7.3, 7.6, we have∫

M

f dνWn
= t(T,U[νWn

]) = t(T,Wn) → t(T,W ) = t(T,U[νW ]) =

∫

M

f dνW .

That shows that the assignment is continuous.
Suppose that νW 6= νU . By Corollary B.2 together with Proposition 7.5, we find f ∈ T such that∫

M

f νW 6=

∫

M

f dνU .

A finite (rooted) tree T that corresponds to f as in Proposition 7.6 satisfies

t(T,W ) 6= t(T, U)

by Proposition 7.3. �

8. Proof of Theorem 1.2

We recall the statement.

Theorem 8.1. Let W and U be graphons. Then the following are equivalent:

(1) t(T,W ) = t(T, U) for every finite tree T ,
(2) νW = νU ,
(3) W/C(W ) and U/C(U) are isomorphic,
(4) there is a Markov operator S : L2(X,µ) → L2(X,µ) such that TW ◦ S = S ◦ TU ,
(5) there is a W -invariant sub-σ-algebra C and a U -invariant sub-σ-algebra D such that WC and UD

are weakly isomorphic.

Proof of Theorem 1.2. (1) ⇒ (2) Follows immediately from Corollary 7.7.
(2) ⇒ (3). Follows from Corollary 6.11 applied twice to both W and U .
(3) ⇒ (4). See paragraph after Claim 5.7 for definitions. We let Y = X/C(W ), Z = X/C(U),

µY = µ/C(W ), µZ = µ/C(U), WY = W/C(W ) and UZ = U/C(U). By (3), there is a measure preserving
isomorphism j : Y → Z such that

WY (x, y) = UZ(j(x), j(y))

for (µY × µY )-almost every (x, y) ∈ Y × Y . The map

Sj : L
2(Y, µY ) → L2(Z, µZ)

defined as Sj(f)(x) = f(j−1(x)) is a Markov isomorphism by Theorem E.3 and it is routine to check
that Sj ◦ TWY

= TUZ
◦ Sj .

By Proposition 5.9 (iii), we have TWY
◦ SC(W ) = SC(W ) ◦ TW and

IC(U) ◦ TUZ
=

(
TUZ

◦ SC(U)

)∗
=

(
SC(U) ◦ TU

)∗
= TU ◦ IC(U).

We define a Markov operator S = IC(U) ◦ Sj ◦ SC(W ). It is easy to check that

S ◦ TW = TU ◦ S

and that finishes the proof.
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(4) ⇒ (5). Let S be a Markov operator such that TW ◦ S = S ◦ TU . Then S ◦ S∗ and S∗ ◦ S are
self-adjoint Markov operators by Proposition D.1. We have

TW ◦ (S ◦ S∗) = S ◦ (TU ◦ S∗) = S ◦ (S ◦ TU )
∗

= S ◦ (TW ◦ S)∗ = (S ◦ S∗) ◦ TW

and similarly TU ◦(S∗◦S) = (S∗◦S)◦TU because TW and TU are self-adjoint by Claim 5.1. In particular,
we have

TW ◦


∑

k∈[n]

(S ◦ S∗)k


 =


∑

k∈[n]

(S ◦ S∗)k


 ◦ TW and TU ◦


∑

k∈[n]

(S∗ ◦ S)k


 =


∑

k∈[n]

(S∗ ◦ S)k


 ◦ TU

for every n ∈ N.
Let P be the orthogonal projection onto {f ∈ L2(X,µ) : (S ◦ S∗)(f) = f} and Q be the orthogonal

projection onto {f ∈ L2(X,µ) : (S∗ ◦ S)(f) = f}. By the Mean Ergodic Theorem, Theorem D.3, we
have ∥∥∥∥∥∥

1

n

∑

k∈[n]

(S ◦ S∗)k(f)− P (f)

∥∥∥∥∥∥
2

→ 0 and

∥∥∥∥∥∥
1

n

∑

k∈[n]

(S∗ ◦ S)k(f)−Q(f)

∥∥∥∥∥∥
2

→ 0

for every f ∈ L2(X,µ). It follows from Proposition D.1 that P and Q are Markov projections and by
Theorem D.2 that there are relatively complete sub-σ-algebras C and D such that P = E(−|C) and
Q = E(−|D).

Let f ∈ L2(X,µ). Then we have

‖(P ◦ S)(f)− (S ◦Q)(f)‖2 ≤

∥∥∥∥∥∥
(P ◦ S)(f)−


 1

n

∑

k∈[n]

(S ◦ S∗)k ◦ S


 (f)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥


 1

n

∑

k∈[n]

(S ◦ S∗)k ◦ S


 (f)−


S ◦

1

n

∑

k∈[n]

(S∗ ◦ S)k


 (f)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥


S ◦

1

n

∑

k∈[n]

(S∗ ◦ S)k


 (f)− (S ◦Q)(f)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
P (S(f))−

1

n

∑

k∈[n]

(S ◦ S∗)k(S(f))

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
S


 1

n

∑

k∈[n]

(S∗ ◦ S)k(f)−Q(f)



∥∥∥∥∥∥
2

→ 0

and similarly S∗ ◦ P = Q ◦ S∗.
Let f ∈ L2(X,D, µ). Then we have Q(f) = E(f |D) = f and P (S(f)) = S(Q(f)) = S(f) by the

previous paragraph. Moreover,

‖S(f)‖22 = 〈S(f), S(f)〉 = 〈(S∗ ◦ S)(f), f〉 = 〈f, f〉 = ‖f‖2

by the definition of Q. This shows that S ↾ L2(X,D, µ) is an isometric embedding into L2(X, C, µ). A
similar argument shows that S∗ ↾ L2(X, C, µ) is an isometric embedding into L2(X,D, µ). Since S∗ ◦ S
is identity when restricted to L2(X,D, µ) and similarly for S ◦ S∗ we conclude that S is an isometrical
isomorphism between L2(X,D, µ) and L2(X, C, µ).

Putting this together with properties of quotients, see definitions after Claim 5.7, we get that

R = SC ◦ S ◦ ID : L2(X/D, µ/D) → L2(X/C, µ/C)

is a Markov isomorphism such that

R ◦ TU/D =SC ◦ S ◦ ID ◦ TU/D = SC ◦ S ◦ TU ◦ ID

= SC ◦ TW ◦ S ◦ ID = TW/C ◦ SC ◦ S ◦ ID

= TW/C ◦R.

By Theorem E.3, there is a measure preserving (almost) bijection i : X/D → X/C such that R(f)(x) =
f(i−1(x)). We show that (U/D)(i−1(x), i−1(y)) = (W/C)(x, y) for ((µ/C)× (µ/C))-almost every (x, y) ∈
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(X/C)×(X/C). This implies that U/D and W/C are isomorphic and consequently UD and WC are weakly
isomorphic, by Proposition 5.9 (i), as desired.

Let V be a graphon on X/C defined as V (x, y) = (U/D)(i−1(x), i−1(y)) and f, g ∈ L2(X/C, µ/C). We
have

〈TW/C(f), g〉 =〈R−1(TW/C(f)), R
−1(g)〉 = 〈TU/D(R

−1(f)), R−1(g)〉

=

∫

(X/D)×(X/D)

f(i(x))(U/D)(x, y)g(i(y)) d((µ/D)× (µ/D))(x, y)

=

∫

(X/C)×(X/C)

f(x)V (x, y)g(y) d((µ/C)× (µ/C))(x, y) = 〈TV (f), g〉.

That shows TW/C = TV , consequently W/C = V and the proof is finished.
(5) ⇒ (1). It follows from Proposition 7.3 that t(T,W ) = t(T,WC) whenever T is a tree and C

is W -invariant, and similarly t(T, U) = t(T, UD). Since, WC and UD are weakly isomorphic, we have
t(T,WC) = t(T, UD) and that finishes the proof. �
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Appendix A. Standard Borel spaces

Let X be a set and B a σ-algebra of subsets of X . We say that (X,B) is a standard Borel space if
there is a separable completely metrizable topology τ on X such that B is equal to the σ-algebra of Borel
subsets generated by τ (see [12, Section 12]). We denote the space of all Borel probability measures on
X as P(X) and the space of all measures of total mass at most 1 as M≤1(X). Note that the sets P(X)
and M≤1(X) endowed with the σ-algebra generated by the maps

A 7→ µ(A),

http://arxiv.org/abs/1512.03547
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where A ∈ B, are standard Borel spaces (see [12, Section 17]).
Let µ, ν ∈ M≤1(X). We say that ν is absolutely continuous with respect to µ if µ(A) = 0 whenever

ν(A) = 0. The classical Radon–Nikodym Theorem [20, Theorem 6.10] states that this occurs if and only
if there is a unique f ∈ L1(X,µ) such that

ν(A) =

∫

A

f dµ

for every A ∈ B. We call f the Radon–Nikodym derivative of ν with respect to µ and denote it as dν
dµ .

Let (X,B) and (Y, C) be standard Borel spaces. Suppose that µ ∈ P(X) and f : X → Y is a Borel
map. Then we define the push-forward of µ via f , in symbols f∗µ, as

f∗µ(A) = µ(f−1(A))

for every A ∈ C. It is a standard fact that f∗µ ∈ P(Y ), see [12, Exercise 17.28].

Appendix B. Compact Spaces

Let K be a compact metric space. Write C(K,R) for the vector space of all continuous functions from
K to R. Then C(K,R) with the supremum norm and pointwise multiplication is a real Banach algebra.
We denote the σ-algebra of Borel sets of K as B(K). Then (K,B(K)) is a standard Borel space.

It is a standard fact, see [12, Section 17], that the space of Borel measures of total mass at most 1, i.e.,
M≤1(K), coincides with the space of all positive real-valued Radon measures of total mass at most 1. By
the Riesz Representation Theorem [20, Theorem 6.19], these are exactly the positive linear functionals
with norm at most 1 in the dual space of C(K,R). The weak* topology on M≤1(K) is then defined as
the coarsest topology that makes the maps

∫

K

f dµn →

∫

K

f dµ

continuous for every f ∈ C(K,R). It is a standard fact that M≤1(K) endowed with the weak* topology
is compact metrizable space, see [12, Theorem 17.22], and that the σ-algebra of Borel sets generated by
the weak* topology on M≤1(K) coincides with the standard Borel structure on M≤1(K) generated by
the maps

A 7→ µ(A),

where A ∈ B(K) (see [12, Section 17]).

Theorem B.1 (Real Stone–Weierstrass). [19, Theorem 7.32] Let K be a compact metric space and
A ⊆ C(K,R) be a subalgebra that contains 1K and separates points, i.e., for every k 6= l ∈ K there is
f ∈ A such that f(k) 6= f(l). Then A is uniformly dense in C(K,R).

Corollary B.2 (Separating Measures). Let K be a compact metric space and E ⊆ C(K,R) be closed
under multiplication, contain 1K , and separate points. Then for every µ 6= ν ∈ M≤1(K) there is f ∈ E
such that ∫

K

f dµ 6=

∫

K

f dν,

i.e., the linear functionals that correspond to elements of E separate points in M≤1(K).

Appendix C. Conditional Expectation

Let (X,B) be a standard Borel space and µ ∈ P(X). A sub-σ-algebra C of B is relatively complete
if Z ∈ C whenever there is Z0 ∈ C such that µ(Z△Z0) = 0. We denote the collection of all relatively
complete sub-σ-algebras as Θµ.

If C ∈ Θµ and (Y,D) is a standard Borel space, then we say that a map f : X → Y is C-measurable
if f−1(A) ∈ C for every A ∈ D. We denote as L2(X, C, µ) the closed linear subspace of L2(X,µ) that
consists of C-measurable functions.

Theorem C.1. [3, Section 34] Let (X,B) be a standard Borel space, µ be a Borel probability measure
and C ∈ Θµ. Then there is a bounded self-adjoint linear operator

E(−|C) : L2(X,µ) → L2(X, C, µ)

that enjoys the following properties:

(1) E(−|C) is the orthogonal projection onto L2(X, C, µ),
(2)

∫
X fE(g|C) dµ =

∫
X E(f |C)g dµ for every f, g ∈ L2(X,µ),
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(3) for every A ∈ C and f ∈ L2(X,µ) we have
∫

A

f dµ =

∫

A

E(f |C) dµ.

Appendix D. Markov Operators

We need the theory of Markov operators for the correspondence between Markov projections and
relatively complete sub-σ-algebras, and for the Mean Ergodic Theorem. Our main reference is [8]. We
point out that it is more convenient for us to define and work with Markov operators on L2 spaces rather
than on L1 spaces (as it is defined in [8]). However, it follows from [8, Chapter 13, Proposition 13.6]
that every Markov operator on L2 space has a unique extension to a Markov operator on L1 space and
that the restriction of a Markov operator on L1 space to L2 space is a Markov operator.

Let (X,B) and (Y,D) be standard Borel spaces with Borel probability measures µ and ν, respectively.
We say that a bounded linear operator S : L2(X,µ) → L2(Y, ν) is a Markov operator if S(f) ≥ 0
whenever f ≥ 0, S(1X) = 1Y and S∗(1Y ) = 1X .

Proposition D.1. [8, Theorems 13.2 and 13.8] The class of Markov operators is closed under adjoints,
composition and pointwise limits, in the sense that if Sn : L2(X,µ) → L2(Y, ν) are Markov operators for
every n ∈ N and there is S : L2(X,µ) → L2(Y, ν) such that

||Sn(f)− S(f)||2 → 0

for every f ∈ L2(X,µ), then S is a Markov operator. Moreover, every Markov operator is a contraction,
i.e., its norm is bounded by 1.

We say that P : L2(X,µ) → L2(X,µ) is a Markov projection if it is an orthogonal projection and a
Markov operator (see [8, Section 13.3]).

Theorem D.2 (Structure of Markov projections). [8, Theorem 13.20] Let (X,B) be a standard Borel
space and µ be a Borel probability measure. There is a one-to-one correspondence between

(1) Markov projections,
(2) Θµ, the relatively complete sub-σ-algebras of B.

The correspondence is given as

P 7→ {A ∈ B : P (1A) = 1A} and C 7→ E(−|C).

Theorem D.3 (Mean Ergodic Theorem). [8, Theorem 8.6, Example 13.24] Let (X,B) be a standard
Borel space, µ be a Borel probability measure and S : L2(X,µ) → L2(X,µ) be a Markov operator. Then

∥∥∥∥∥∥
1

n

∑

k∈[n]

Sk(f)− P (f)

∥∥∥∥∥∥
2

→ 0

for every f ∈ L2(X,µ), where P is the orthogonal projection onto the closed subspace {g ∈ L2(X,µ) :
S(g) = g}.

Appendix E. Quotient Spaces

Theorem E.1. Let (X,B) be a standard Borel space, µ be a Borel probability measure on X and C ∈ Θµ.
There is a standard Borel space (X/C, C′), a Borel probability measure µ/C on X/C, measurable surjection
qC : X → X/C, and Markov operators

SC : L2(X,µ) → L2(X/C, µ/C) and IC : L2(X/C, µ/C) → L2(X,µ)

such that

(1) µ/C is the push-forward of µ via qC,
(2) S∗

C = IC ,
(3) SC ◦ E(−|C) = SC,
(4) IC is an isometry onto L2(X, C, µ),
(5) IC ◦ SC = E(−|C),
(6) SC ◦ IC is the identity on L2(X/C, µ/C),
(7) IC(f)(x) = f(qC(x)) for every f ∈ L2(X/C, µ/C).

Proof. The existence of (X/C, C′), µ/C and qC follows from [12, Exercise 17.43 ii)]. Define IC by the
condition (7). Then it is easy to see that IC is a Markov embedding by [8, Section 12.2, Theorem 13.9]
and all the other properties follow from [8, Section 13.2 and 13.3]. �
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The next results imply that the space X/C is unique up to a “µ-negligible part”.

Corollary E.2. Let (X,B) and (Y,D) be standard Borel spaces. Suppose that µ is a Borel probability
measure on X and f : X → Y is a Borel function. Write C ∈ Θµ for the minimum relatively complete
sub-σ-algebra that makes f measurable. Then for every g0 ∈ L2(X, C, µ) there is a Borel map g1 : Y → C

such that g0(x) = (g1 ◦ f) (x) for µ-almost every x ∈ X.

Proof. Put ν = f∗µ ∈ P(Y ) and note that by [12, Theorem 21.10] there is a Y0 ∈ D such that Y0 ⊆ f(X)
and ν(Y0) = 1. Then use Theorem E.1. �

We say that a map S : L2(X,µ) → L2(Y, ν) is a Markov isomorphism if it is a Markov operator that
is an isometrical bijection (see [8, Section 12.2]).

Theorem E.3. Let (X,B), (Y,D) be a standard Borel spaces, µ be a Borel probability measure on X
and ν be a Borel probability measure on Y . Then there is a one-to-one correspondence between

(1) Markov isomorphisms S : L2(X,µ) → L2(Y, ν),
(2) measure preserving almost bijections i : X → Y .

The correspondence from (2) to (1) is given as

i 7→ Si(f)(x) = f(i−1(x)).

Proof. It follows from [8, Theorem 12.10] that there is a correspondence between Markov isomorphisms
and measure algebra isomorphisms. It is a standard fact (see [13, Theorem 1.9]) that every measure alge-
bra isomorphism is induced by a measurable measure preserving almost bijection under the assumption
that the spaces are standard Borel. �
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