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ABSTRACT. Let Qn be the n-dimensional Hamming cube and N = 2n. We prove that the number of maximal

independent sets in Qn is asymptotically

2n2N/4,

as was conjectured by Ilinca and the first author in connection with a question of Duffus, Frankl and Rödl.

The value is a natural lower bound derived from a connection between maximal independent sets and induced

matchings. The proof that it is also an upper bound draws on various tools, among them stability results for

maximal independent set counts and old and new results on isoperimetric behavior in Qn.

1. INTRODUCTION

1.1. Theorems and definitions. The purpose of this paper is to prove the following statement, which was

conjectured by Ilinca and the first author [8] in connnection with a question of Duffus, Frankl and Rödl [1].

We use mis(G) for the number of maximal independent sets (MIS’s) of a graph G, Qn for the n-dimensional

Hamming cube and N for 2n. (A few basic definitions are recalled below.)

Theorem 1.1.

(1) mis(Qn) ∼ 2n2N/4.

(As usual, an ∼ bn means an/bn → 1 as n→∞. The original question from [1], answered in [8], just asked

for the asymptotics of log mis(Qn).)

The general context for Theorem 1.1 is asymptotic enumeration in the spirit of, prototypically, Erdős,

Kleitman and Rothschild [2], who showed that a.a.1 triangle-free graphs on n vertices are bipartite.

Here we typically have some collection C (really, a sequence of collections Cn) and the goal is to say that

some natural, easily understood subcollection C′n accounts for a.a. of Cn.

Within this broad context Theorem 1.1 is closest to a short sequence of results beginning nearly forty

years ago with the asymptotic solution of Dedekind’s Problem by Korshunov [13] (and Sapozhenko [18]).

Other results in the sequence give asymptotics for the number of independent sets in Qn (again Korshunov

and Sapozhenko [14] and Sapozhenko [17]) and the numbers of proper q-colorings of Qn for q = 3, 4, due

respectively to Galvin [3] and the present authors [11]. (Similar ideas appear in work on certain statistical

physics models, e.g. in [5, 15], to mention just the earliest and most recent instances.) The reader familiar

with the earlier combinatorial results will note the striking purity of Theorem 1.1, which involves no terms

akin to the powers of e in [14, 17, 3, 11] or the far messier “extra” terms in the Dedekind asymptotic.
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1that is, all but a o(1) fraction as n → ∞
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2 JEFF KAHN AND JINYOUNG PARK

Before proceeding we briefly recall why the r.h.s. of (1) is an (asymptotic) lower bound. As usual an

induced matching (IM) is an induced subgraph that is a matching. It is easy to see that the largest IM’s of Qn
are of size N/4 and that there are exactly 2n of these, here called canonical matchings and denoted M∗ (see

below for a precise description). Each M∗ gives rise to exactly 2N/4 MIS’s, gotten by choosing one vertex

from each edge of M∗ and extending the resulting independent set to the (unique) MIS containing it. It is

also easy to see (an argument is sketched at the end of this section) that the overlaps between the sets of

MIS’s gotten from differentM∗’s are negligible, and the lower bound follows. In analogy with the problems

mentioned above (beginning with Dedekind’s) one may think of 2n ”phases,” one for eachM∗. (E.g. for the

simplest of the earlier instances—independent sets, or, in physics, the hard-core model—the vast majority of

those sets consist almost entirely of vertices of a single parity, and the phases are ”even” and ”odd.”)

So what Theorem 1.1 is really saying is that the number of MIS’s not corresponding to canonical match-

ings is negligible. The proof of this goes roughly as follows. We first (“Step 1”; Lemma 1.2) show that

almost every MIS is “associated” with some “large” IM. Step 2 (Lemma 1.3) then says that each “large” IM

is close to some M∗. Finally, in Step 3 (Lemma 1.4), we show that the number of MIS’s that are associated

with an IM close to some M∗ but are not obtained from M∗ as above (that is, miss at least one edge of M∗)

is small.

Before making this sketch concrete we need a few definitions. (A few more are given in Section 2.1.)

Definitions. We use Qn for the Hamming cube, the graph on {0, 1}n with two vertices (strings) adjacent if

they differ in exactly one coordinate. (We use v, w, x, y for vertices and vw or (v, w) for an edge joining v

and w.) A subcube is {x : xi = yi ∀i ∈ J} for some J ⊆ [n] and y ∈ {0, 1}J . Until further notice (in Section 6),

we use E andO for the sets of even and odd vertices of Qn (where the parity of x is the parity of
∑
xi). The

string gotten from x by flipping its ith coordinate (the neighbor of x in direction i) is denoted xi, and we

define the parity of the edge xxi to be the parity of
∑
j 6=i xj .

We use I and M for MIS’s and IM’s (respectively), I(G) for the set of MIS’s in G, and, in particular, I for

I(Qn). Write I ∼M if each edge of M meets I . For bookkeeping purposes we fix a linear order “≺” on the

set of IM’s of G and define MG(I) to be the first (in ≺) of the largest induced matchings M satisfying

(2) I ∼M

and

(3) ∇(V (M), I \ V (M)) = ∅

(where ∇(X,Y ) is the set of edges between X and Y and V (M) is the set of vertices contained in edges of

M ). We also set mG(I) = |MG(I)| and abbreviate MQn(I) = M(I) and mQn(I) = m(I).

A canonical matching of Qn is the set of edges vvi of parity ε, for some i ∈ [n] and ε ∈ {0, 1}. Canonical

matchings are denoted M∗. It is easy to see that (as mentioned earlier) the maximum size of an IM is N/4,

and an IM is of this size iff it is canonical. We set I∗ = {I ∈ I : I ∼M∗ for some M∗}.

Throughout the paper log is log2 and β = log(3/2) (≈ .58).

We can now formalize our plan. Let

J = {I ∈ I : m(I) > (1− log3 n/n)N/4}.

(The log3 n/n is not optimal, but it is convenient and we have some room.)
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Lemma 1.2.

|I \ J | = o(2N/4).

(The actual bound will be log |I \ J | < (1− Ω(log3 n/n))N/4.)

Lemma 1.3. With β = log(3/2) (as above), if

(4) |M | = (1− o(n−β))N/4,

then there is an M∗ with

|M∆M∗| = o(N)

(equivalently, |M ∩M∗| = (1− o(1))N/4).

We believe Lemma 1.3 remains true when n−β is replaced by n−1/2. This improvement, which is easily seen

to be the best one can hope for here, would follow from Conjecture 1.10 of [9]; see Remark 2.7.

We use Lemma 1.3 to say that each I not covered by Lemma 1.2 (i.e. I ∈ J ) is closely tied to some M∗;

precisely, for a suitable ζ = ζ(n) = o(1), each I ∈ J satisfies

there is an M∗ with |M(I)∆M∗| < ζN.

Thus, the following lemma completes the proof of Theorem 1.1.

Lemma 1.4. For any M∗,

(5) |{I 6∈ I∗ : |M(I)∆M∗| < ζN}| = 2N/4−ω(n/ logn)

Outline. Lemmas 1.2, 1.3 and 1.4 are proved in Sections 4, 5 and 6 respectively. Section 2 collects a few

further basics and the various earlier results we will use, and Section 3 treats an algorithm that underlies

the proofs of Lemmas 1.2 and 1.4. While they do require additional ideas, Lemma 1.2 is substantially based

on Theorem 2.2 below, which was proved in [10] (and which will also play a crucial role in the proof of

Lemma 1.4), and the main point for Lemma 1.3 (Theorem 2.6 below) is from [9] (which was originally

motivated by the present application). So the most important and interesting contribution of the present

paper is the proof of Lemma 1.4, which depends especially on Sapozhenko’s Lemma 2.12. It is interesting

that Theorem 1.1 seems to require as much as it does in addition to Sapozhenko’s ingenious and difficult

argument for (ordinary) independent sets in Qn (the main ideas for which are pretty well represented by

Lemma 2.12).

We close this section with the promised lower bound discussion.

Proposition 1.5. Let M∗1 ,M∗2 be distinct canonical matchings and I∗j = {I ∈ I : I ∼M∗j } for j = 1, 2. Then

|I∗1 ∩ I∗2 | ≤ 3N/8.

Proof. This is easy and we just give an informal sketch. We may assumeM∗1 andM∗2 use different directions,

since otherwise I∗1 ∩ I∗2 = {E ,O}. We may further assume the two directions are n− 1 and n, and consider

the natural projection π : {0, 1}[n] → {0, 1}[n−3]; thus the π−1(v)’s are copies of Q3 partitioning Qn. It is

then easy to see that for an I ∈ I∗1 ∩I∗2 there are at most three possibilities for each I ∩π−1(v)∩V (M∗1 ∪M∗2 )

(and that these choices determine I), yielding the bound in the lemma. �
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2. TOOLS

2.1. More definitions. Let G be a graph and x ∈ V = V (G). As usual, Nx denotes the neighborhood of x

and N(A) = ∪x∈ANx. For S ⊆ V , dS(x) = |S ∩Nx|. For A ⊆ V , the closure of A is

[A] = {x ∈ V : Nx ⊆ N(A)}

and A is closed if A = [A].

For a positive integer k, say A ⊆ V is k-linked if for any u, v ∈ A, there are vertices u = u0, u1, . . . , ul = v

in A such that for each i ∈ [l], ui−1 and ui are at distance at most k in G. The k-components of A are its

maximal k-linked subsets. (So we use “component” for a set of vertices rather than a subgraph.) In what

follows we will only be interested in k = 2.

In the rest of the paper we use V for V (Qn).

For disjoint A,B ⊆ V and i ∈ [n], ∇(A,B) = {(x, y) ∈ E(Qn) : x ∈ A, y ∈ B}, ∇A = ∇(A, V \ A),

∇i(A,B) = {(x, xi) : x ∈ A, xi ∈ B} and∇iA = ∇i(A, V \A).

2.2. Step 1 supplies. (This name is not very accurate, as the main point of the section, Theorem 2.2, is

crucial for Lemma 1.4 as well as Lemma 1.2.)

Theorem 2.1 (Hujter-Tuza [7]). For any m-vertex, triangle-free graph G,

log mis(G) ≤ m/2,

with equality iff G is a perfect matching.

Theorem 2.2 ([10], Theorem 3.4). There is c > 0 such that for any ε and m-vertex, triangle-free graph G,

log |{I ∈ I(G) : mG(I) < (1− ε)m/2}| < (1− cε)m/2.

In particular, with im(G) denoting the size of a largest induced matching in G, log mis(G) > (1 − ε)m/2
implies im(G) > (1−O(ε))m/2; this is Theorem 1.4 of [10], a “stability” version of Theorem 2.1.

In what follows we will mainly be concerned with I ∈ I (recall this is {MIS’s of Qn}) havingm(I) ≈ N/4,

for which the next little point will be helpful.

Observation 2.3. If |M(I)| > (1− ε)N/4, then |I \ V (M(I))| < εN .

Proof. With M = M(I), W = V (M) and Z = N(W ) \W , we have I ∩ Z = ∅ (by definition of M(I)) and

(n− 1)|W | = |∇(W,Z)| ≤ (n− 1)|Z|,

implying |Z| ≥ |W | and

|I \ V (M)| ≤ |V \ (W ∪ Z)| < εN.

�
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2.3. Step 2 supplies. For A ⊆ V , define hA : V → N by

hA(x) =

dV \A(x) if x ∈ A,

0 if x /∈ A.

For f : V → N and a probability measure ν on V ,∫
fdν :=

∑
x∈V

f(x)ν(x).

In the next three results, the second and third of which are derived from the first in [9], µ is uniform measure

on V .

Theorem 2.4 ([9], Theorem 1.1). For any A ⊆ V ,∫
hβAdµ ≥ 2µ(A)(1− µ(A)).

Corollary 2.5 ([9], Corollary 3.2). If R ∪ S ∪ U is a partition of V with µ(R ∪ U) = α, then∫
R

hR∪Udµ ≥ 2α(1− α)− nβµ(U).

Theorem 2.6 ([9], Theorem 1.9). Suppose A ∪ B ∪W is a partition of V with µ(A) = (1 ± ε)/2, µ(W ) ≤ εn−β

and

|∇(A,B)| < (1 + ε)2n−1.

Then there is i ∈ [n] such that

|∇iA| = (1−O(ε))2n−1.

Furthermore, there is a subcube C (of dimension n− 1) such that

µ(C∆A) = O(ε).

(As usual a± b denotes a quantity from (a− b, a+ b).)

Remark 2.7. Conjecture 1.10 of [9] says Theorem 2.6 remains true if we replace β by 1/2; this would imply

the strengthening of Lemma 1.3 mentioned earlier.

2.4. Step 3 supplies. Recall that a composition of m is a sequence (a1, . . . , as) of positive integers summing

to m (the ai’s are the parts of the composition), and that:

Proposition 2.8. The number of compositions of m is 2m−1 and the number with at most b ≤ m/2 parts is∑
i≤b
(
m−1
i

)
< exp2[b log(em/b)].

We use the next proposition in bounding the numbers of certain types of 2-linked sets in Qn. It follows

from the fact (see e.g. [12, p. 396, Ex.11]) that the infinite ∆-branching rooted tree contains precisely(
∆n
n

)
(∆− 1)n+ 1

≤ (e∆)n−1

rooted subtrees with n vertices.

Proposition 2.9 ([3], Lemma 1.6). For each fixed k, the number of k-linked subsets of V of size x containing some

specified vertex is at most 2O(x logn).
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The next two results are standard(ish) isoperimetric inequalities for Qn; see e.g. [14, Lemma 1.3] or [4,

Claim 2.5] for the first and [11, Lemma 3.4] for the second.

Proposition 2.10. For A ⊆ E with |A| ≤ N/4,

|N(A)| − |A|
|N(A)|

= Ω(1/
√
n).

Proposition 2.11. For A a subset of either E or O and k = no(1),

if |A| = nk, then |N(A)| > (1− o(1))(|A|n/k).

The next lemma, which recalls what we need from [16], follows from Lemmas 5.3-5.5 of the more acces-

sible [4]. Here, for whatever A ⊆ E is being discussed, we take G = N(A) and t = |G| − |[A]|.

Lemma 2.12. For g ∈ [n4, N/4] and G = G(a, g) := {A ⊆ E : A is 2-linked and closed, |A| = a and |G| = g},
there areW =W(a, g) ⊆ 2E × 2O with

|W| = 2O(t log2 n/
√
n)

and ϕ = ϕa,g : G → W such that for each A ∈ G, (S, F ) := ϕ(A) satisfies:

(a) S ⊇ A (= [A]), F ⊆ G;

(b) dF (u) ≥ n−
√
n/ log n ∀u ∈ S;

(c) |S| ≤ |F |+O(t/(
√
n log n)).

(For the reader familiar with or consulting [4]: we use the lemmas mentioned above with ϕ = n/2 (note

his ϕ is unrelated to the one in Lemma 2.12) and ψ =
√
n/ log n; the restriction to g ≤ N/4, with Proposi-

tion 2.10, gives t = Ω(g/
√
n), so that in Lemma 5.4 of [4] we are looking at the second bound in (20).)

3. ALGORITHM

Here we isolate an algorithmic framework that will play key roles in the proofs of Lemmas 1.2 and 1.4.

Like the basic algorithm in [10], this is motivated by an idea for counting (ordinary) independent sets due

to Sapozhenko [19], but the analyses here seem new; see the preview at the end of this section.

For the algorithm we fix some order “≺” on V = V (Qn). (This basic discussion makes sense for a general

graph G and independent set—as opposed to MIS—I , but we stick to what we will use.)

[Algorithm] Given I ∈ I and W ⊆ V , let X0 = W and repeat for i = 1, 2, . . .:

(1) Let xi be the first (in ≺) vertex of Xi−1 among those with largest degree in Xi−1.

(2) If xi ∈ I then let Xi = Xi−1 \ ({xi} ∪N(xi)); otherwise, let Xi = Xi−1 \ {xi}. Set ξi = 1{xi∈I}.

(3) STOP: the stopping rule will vary.

Let X = X(I) be the final Xi and H = H(I) = Qn[X]. Notice that ξ = ξ(I) = (ξ1, ξ2, . . .) encodes a

complete description of the run of the algorithm (so we may also write H = H(ξ)), including, in particular,

the identities of the xi’s; also that

(6) ξ(I) determines X and I \X
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and

(7) I ∩X is an MIS of H.

Analyses for the several uses of [Algorithm] below will vary. We close this discussion of what’s common

with two easy observations that will be needed in all cases, together with the promised preview.

Proposition 3.1. For ξ running over binary strings, with |ξ| denoting the length of ξ, and positive integers l and

r ≤ l/2,

log |{ξ : |ξ| ≤ l, |supp(ξ)| ≤ r}| ≤ r log(l/r) +O(r) + log(l + 1).

Proof. This follows from log
∑
t≤r
(
l
t

)
≤ lH(r/l) (where H is binary entropy). �

Proposition 3.2. If Z ⊆W ⊆ V , dZ(x) ≤ d ∀x ∈ Z and |∇W | ≤ L, then

|Z| ≤ (2n− d)−1(n|W |+ L).

Proof. This follows from

n|W \ Z| ≥ |∇(Z,W \ Z)| ≥ |Z|(n− d)− L.

�

Preview

In our uses of [Algorithm] one reason for stopping will usually be that degrees in Xi fall below some

specified d; we then have a tradeoff:

(i) Larger d tends to mean smaller supp(ξ): each xi ∈ I removes at least d vertices from consideration, so

|supp(ξ)| < |W |/d. (And by Proposition 3.1, smaller supp(ξ) means fewer possibilities for ξ.)

(ii) Smaller d tends to mean smaller X (by Proposition 3.2, applied with Z = X). Note the effect of varying

d is not insignificant here since we are usually interested in |X| − |W |/2.

A simple but seemingly new idea that is one of the main drivers of the present work is that we can do

better in (i) if we lower bound dXi−1(xi), not by the final cutoff d, but by whatever we get by plugging

Xi−1 in for Z in Proposition 3.2. We give two implementations of this idea; the first, in Section 4, is more

elegant and precise, while the cruder version in Section 6 more simply illustrates the basic principle. (See

also Remark 6.5.)

4. PROOF OF LEMMA 1.2

In this section, I is always in I \ J . The eventual key here is Theorem 2.2, but we need to first reduce

to a place where the theorem is helpful—so to a vertex set of size not much more than N/2 since we are

interested in induced matchings of size around N/4. The algorithm of Section 3 provides a “cheap” way to

do this.

For any subgraph H of Qn, let

MIS∗(H) = {I ∈ I(H) : mH(I) ≤ (1− log3 n/n)N/4},

and mis∗(H) = |MIS∗(H)|. (Note the cutoff for mH(I) here is the one in the definition of J .)

For the proof of Lemma 1.2 we run [Algorithm] with input our unknown I , stopping as soon as either
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(1) |supp(ξ)| ≥ logn
2n N , or

(2) Xi = ∅,

and let X = X(I) and H = H(I) (= H(ξ)) be as in Section 3. Notice that I ∈ I \ J implies

I ∩X ∈ MIS∗(H(I)),

so

|I \ J | ≤
∑
ξ

mis∗(H(ξ))

(where the sum runs over possible ξ’s). Proposition 3.1 bounds the number of possible ξ’s by

exp2

[
O
(
log2 n/n

)
N
]
,

so that Lemma 1.2 will follow from

(8) log mis∗(H(I)) ≤
(

1− Ω

(
log3 n

n

))
N/4 for all I.

Proof of (8). Fix I and let X = X(I) (= V (H(I))). We first show that |X| cannot be much larger than N/2.

Let di = max{dXi
(v) : v ∈ Xi} and X̄i = V \Xi.

Observation 4.1. For each i, |Xi| ≤ (1 + di/n)N/2.

Proof. This follows from Proposition 3.2 with Z = Xi and W = V (and L = 0). �

Define αi by

|Xi| = (1 + αi)N/2 ;

so α0 = 1 and Observation 4.1 says

(9) di ≥ αin.

Observation 4.2. If ξi = 1, then αi < (1− 2n/N)αi−1.

Proof. Using (9), we have

(1 + αi)N/2 = |Xi| = |Xi−1| − di−1 − 1 < (1 + αi−1)N/2− αi−1n,

and the observation follows. �

Proposition 4.3.

(10) |X| < (1 + 1/n)N/2.

Proof. Let α be the final αi (so |X| = (1 + α)N/2). Assuming (as we may) that X 6= ∅, we have

|supp(ξ)| ≥ log n

2n
N,

so that Observation 4.2 (with α0 = 1 and the fact that αi is decreasing in i) gives

α ≤ (1− 2n/N)
log n
2n N < 1/n,

which is (10). �
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The results quoted in Section 2.2 combined with (10) now easily give (8): if

|X| < (1− Ω(log3 n/n))N/2

then (8) follows from Theorem 2.1; otherwise, applying Theorem 2.2 with m = |X| and a suitable ε =

Ω(log3 n/n) gives

log mis∗(H) < (1− cε)|X|/2 < (1− Ω(log3 n/n))N/4.

5. PROOF OF LEMMA 1.3

Let M be as in Lemma 1.3. We may assume that

(11) n− 1 and n are the two directions least used by M .

Let π : V → V (Qn−2) be the natural projection, namely

π((ε1, . . . , εn)) = (ε1, . . . , εn−2),

and for v ∈ V (Qn−2), let

Uv = π−1(v) = {(v, εn−1, εn) : εn−1, εn ∈ {0, 1}}.

For the rest of this section, “measure” refers to µ, the uniform measure on V (Qn−2).

Say v ∈ V (Qn−2) is red (or in R) if Uv ∩ V (M) = {(v, 0, 0), (v, 1, 1)} and blue (v in B) if Uv ∩ V (M) =

{(v, 1, 0), (v, 0, 1)}. (So v 6∈ R ∪ B iff Uv either contains an edge of M or meets V (M) at most once.) Say

v ∈ R ∪B is good if there is a (necessarily unique) v′ ∈ Nv with the same color (R or B) as v; thus v is good

iff Uv meets two edges of M and these have the same direction, and

(12) if w ∼ v are both good then they have the same color iff w = v′.

Let X be the set of good vertices and W = V (Qn−2) \X (the set of “bad” vertices).

Observation 5.1. µ(W ) = o(n−β)

Proof. As already noted, v is bad iff it satisfies one of: (i) Uv contains an edge of M ; (ii) |Uv ∩ V (M)| ≤ 1;

(iii) v is red or blue and there is no vertex of the same color in Nv . It follows from (11) that the fraction of

v’s of the first type is O(1/n), and from (4) that the fraction of the second type is o(n−β).

For v as in (iii), let xy be one of the two M -edges meeting Uv , say with x ∈ Uv and y ∈ Uw. Then

Uw ∩ V (M) = {y}, w is as in (ii), and v is the unique vertex of Qn−2 for which Uv and Uw are connected by

an edge of M . Thus the number of vertices in (iii) is less than (actually at most half) the number in (ii), so

these too make up an o(n−β)-fraction of the whole. �

Recall that the parity of the edge vvi is the parity of
∑
j 6=i vj and notice that

(13) v and vvi have the same parity iff vi = 0.

It follows from (12) that T := {(v, v′) : v ∈ X} is a perfect matching of Qn−2[X].

Observation 5.2. Each e = vv′ ∈ T corresponds to two edges ofM (((v, 0, 0), (v′, 0, 0)) and ((v, 1, 1), (v′, 1, 1))

if v ∈ R and similarly if v ∈ B), and these edges have the same parity as e if v ∈ R and the opposite parity

if v ∈ B.
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Let Γ = Qn−2[X]− T .

Observation 5.3. For each e ∈ T , the ends of e are in different components of Γ. In particular no component

of Γ has measure more than 1/2.

Proof. Assume for a contradiction that e = xy and P = (x = x0, x1, x2, . . . , xk = y) is a path in Γ. Notice

that (12) implies xi and xi+1 have different colors, while x and y have the same color. Thus P ∪ {e} is an

odd cycle in Qn−2, which is impossible. �

For the rest of this discussion we do not distinguish between components and their vertex sets.

Proposition 5.4. Γ contains two components of measure 1/2− o(1).

(We really only need one such component, but for the same price can give the correct picture.)

Proof. This follows from Observation 5.3 and

(14) If Z is a union of components of Γ with z := µ(Z) ≤ 1/2, then z is either o(1) or 1/2− o(1).

Proof of (14). Set Y = X\Z. Since∇(Z, Y ) ⊆ T and T is a perfect matching ofQn−2[X], we have hZ∪W (x) ∈
{0, 1} for x ∈ Z, which with Corollary 2.5 (applied in Qn−2 with (R,S, U) = (Z, Y,W )) and Observation 5.1

gives

z ≥
∫
Z

hZ∪W dµ ≥ 2z(1− z)− o(1),

implying (14). �

�

Let Z be one of the two large components promised by Proposition 5.4 and Y = X \ Z. Again (as in the

proof of (14)), we have hZ∪W (x) ∈ {0, 1} for x ∈ Z, which with Observation 5.1 and Theorem 2.6 implies

that there are i ∈ [n− 2] with

(15) |(∇iZ) ∩ T | = |∇i(Z, Y )| ∼ 2n−3

and ε ∈ {0, 1} such that

all but o(2n) vertices of Z lie in the subcube C(i, ε) = {v : vi = ε} (⊆ V (Qn−2)).

Assume (w.l.o.g.) that ε = 0 and set

Z ′ = {v ∈ Z ∩ C(i, 0) : vvi ∈ T}.

Connectivity of Z and (12) imply

(16) any two vertices of Z either agree in both color and parity or disagree in both.

Finally, for Lemma 1.3: For v, w ∈ Z ′, Observation 5.2 and (13) imply that the edges of M corresponding

to vvi and wwi have the same parity iff v and w either agree in both parity and color or disagree in both;

but (16) says this is true for any v, w ∈ Z ′. So all edges of M corresponding to edges of ∇i(Z ′, Y ) have the

same parity and the lemma follows from (15).
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6. PROOF OF LEMMA 1.4

For the discussion in this section we fix a canonical matching M∗ and show (proving Lemma 1.4)

(17) |{I 6∈ I∗ : |M(I)∆M∗| < ζN}| = 2N/4−ω(n/ logn).

Assume (w.l.o.g.) that M∗ is the set of odd edges in direction n and let π : V (Qn) → V (Qn−1) be the

projection

π((ε1, . . . , εn)) = (ε1, . . . , εn−1).

Thus π(V (M∗)) is the set of odd vertices in Qn−1, which we from now on denote by O.

For ε ∈ {0, 1} let Vε = {x ∈ V (Qn) : xn = ε}, and for v ∈ V (Qn−1) let π−1(v) = {v0, v1} where vε ∈ Vε.
(We will not use the coordinates of v, so ”vε” should cause no confusion.) For I ∈ I, define the labeling

σ = σ(I) of V (Qn−1) by:

σv =


0 if v0 ∈ I

1 if v1 ∈ I

Λ if I ∩ {v0, v1} = ∅

Say v is unoccupied if σv = Λ, and occupied otherwise. Note that (since I ∈ I)

(18) no two adjacent vertices have the same label from {0, 1}

and

(19) if σv = Λ then both 0 and 1 appear on neighbors of v.

Call a labeling σ : V (Qn−1) → {0, 1,Λ} legal if it satisfies (18) and (19), and notice that I 7→ σ(I) is a

bijection between I and the set of legal labelings. We will find both viewpoints useful in what follows and

will assume, often without explicit mention, that when we are discussing I the labeling referred to is σ(I).

For the rest of Section 6 we restrict to I as in (17), noting that then σ = σ(I) satisfies

(20) all but a o(1)-fraction of odd vertices are occupied

and, by Observation 2.3,

(21) only a o(1)-fraction of the even vertices are occupied.

Notation below (E∗, Ai and so on) is for a given I , which the notation suppresses. Write E∗ for the set

of occupied even vertices. Notice that I /∈ I∗ implies that there is at least one unoccupied v ∈ O, which by

(19) must have neighbors in both σ−1(0) and σ−1(1); in particular

(22) there is a non-singleton 2-component in E∗.

(Recall k-components were defined in Section 2.1.)

Notation.

• Ai’s : non-singleton 2-components of E∗

• A = ∪Ai
• Gi = N(Ai), G = N(A)
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• Ai (or simply i) is

 small if |Gi| < n4 and

large otherwise

• X̂ = π−1(X) (for X ⊆ V (Qn−1)).

We usually (without comment) use lower case letters for the cardinalities of the sets denoted by the

corresponding upper case letters, except that we use a for |[A]| and ai for |[Ai]|. (Recall the closure [A] of A

was defined in Section 2.1.) We also set ti = gi − ai and t = g − a, noting that a ≥
∑
ai ([A] can properly

contain ∪[Ai]), so t ≤
∑
ti.

Before moving to lemmas we record two basic observations. The first says that in some sense all the

action is in the [Ai]’s and Gi’s (though this only approximately describes what will happen in the main

argument; see (30)).

(23) All vertices of O \G are occupied.

Proof. All neighbors of the set in (23) are in E \ A, and any occupied vertex from this set is a singleton

2-component of E∗, so by (19) has all its neighbors occupied (with a common label). �

The second observation (this will be crucial; see (42)-(43) and (50), which leads via (51) to (60)) is

(24) for each i, each edge contained in Ĝi has a neighbor in I ∩ Âi

(that is, one of its ends has such a neighbor; note these edges form an induced matching in Qn).

6.1. Main lemma. We continue to restrict to I as in (17) and to suppress dependence on I in our notation.

In what follows we use “cost of X” for the log of the number of possibilities for X.

Before turning to our main point, Lemma 6.2, we observe that there is not much to do when g is large:

Lemma 6.1. The number of I’s with g = Ω(N) is 2N/4−Ω(N).

Proof. By (21), the cost of specifying A is at most log
(
N/4
≤o(N)

)
= o(N), and that for labeling A is at most

|A| = o(N). But A and its labels determine G and its labels, while (23) says that the cost of labeling O \ G
(given G) is at most N/4 − g and that the labels for O \ G determine those for E \ N(G) (and all labels on

N(G) \A are Λ). The lemma follows. �

We may thus assume from now on that (say)

(25) g < N/4,

so that, by Proposition 2.10,

(26) t = Ω(g/
√
n) and ti = Ω(gi/

√
n) for each i.

This small but crucial point will be used repeatedly in what follows; indeed, one may say that the purpose

of Lemmas 1.2 and 1.3 was to get us to (26). (Namely: Lemmas 1.2 and 1.3 lead to (21); (21) is the basis for

Lemma 6.1; and Lemma 6.1 allows us to restrict to (25), where we have (26).)

Lemma 6.2. For any a 6= 0 and g < N/4

(27) log |{I : |[A]| = a, |G| = g}| = N/4− ω(t/ log n).
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To see that this (with Lemma 6.1) gives Lemma 1.4, note that we always have g ≥ 2n − 2, and that if

g ≤ n2 (say) then Proposition 2.11 gives t ∼ g. Thus Lemma 6.2 and (26) bound the number of I’s satisfying

(25) by

2N/4
[
n42−ω(n/ logn) +

∑
g>n2 g2−ω(g/(

√
n logn))

]
= 2N/4−ω(n/ logn)

(where the irrelevant n4 and initial g in the sum are for choices of (g, a) and a respectively).

6.2. Proof of Lemma 6.2. Before beginning in earnest, we dispose of the minor cost of specifying the ai’s

and gi’s (with
∑
ai ≤ a,

∑
gi = g). The only thing to notice here is that, since gi ≥ 2n− 2 ∀i, the number of

i’s is less than g/n. Thus Proposition 2.8 bounds the cost of the gi’s by (g/n) log(en) and that of the ai’s by{
(g/n) log(en) if (g >) a > 2g/n,

2g/n if a ≤ 2g/n,

so also the overall “decomposition” cost by

(28) O(g log n/n) = O(t log n/
√
n).

Preview and objective

It remains to specifyAi’s (and thusGi’s and [Ai]’s) corresponding to the above parameters, and a labeling

(σ) compatible with these specifications. For small i’s it turns out to be easy to directly identify the Ai’s and

their labels (which also gives the associated Gi’s and [Ai]’s and their labels).

For the large i’s we think of “identification” and “labeling” phases, roughly corresponding to identifying

the [Ai]’s (and Gi’s), and then the restriction of σ to these sets—“roughly” because in the most interesting

(“slack”) case the first phase will not actually succeed in identifying the [Ai]’s. The identification phase

takes place in the projection on Qn−1 and leans mainly on Lemma 2.12. For the labeling phase we return to

Qn and work with maximal independent sets rather than labelings (recall these are interchangeable), with

arguments again based on the algorithm of Section 3. It is here that the crucial role of J will finally appear.

The large i’s will be of two types, “tight” and “slack.” The slack i’s are treated last, when we already

have full information on the small and tight i’s. Here we produce a single pair (S, F ) ⊆ E × O satisfying

(inter alia; e.g. the role of F will appear later)

(29) S ⊇ ∪{[Ai] : i slack}

and

S ∪N(S) is disjoint from ∪ {[Ai] ∪Gi : i small or tight},

and then specify labels for S ∪N(S).

Since N(S) ⊇ ∪{Gi : i slack}, (23) gives

(30) all vertices of O \ (∪{Gi : i small or tight} ∪N(S)) are occupied.

Note also that

a (legal) labeling is determined by its restriction to ∪{[Ai] : i small or tight} ∪ S ∪ O,

since each v not in this set (so v ∈ E) has at least one occupied neighbor (for if all neighbors of v are

unoccupied, then v is occupied and, by (19), N2(v) contains an occupied vertex, so v must be in some Ai).
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Thus the cost of σ given its restriction to

∪{[Ai] ∪Gi : i small or tight} ∪ S ∪N(S)

(so in particular the identity of this set) is at most

(31) N/4−
[∑
{gi : i small or tight}+ |N(S)|

]
.

This gives us a benchmark: for Lemma 6.2, the cost of the above information (through specification of labels

for S ∪N(S)) should be less by ω(t/ log n) than the subtracted quantity in (31) (which in particular makes

the decomposition cost (28) negligible). In the event, this will hold fairly locally: we will wind up paying

gi − Ω(ti) for each small or tight i and |N(S)| − ω(t′/ log n) for (all) the slack i’s, where t′ =
∑
{ti : i slack}.

(We will repeat this last bit more precisely at the end of the section, following the proof of Lemma 6.6.)

Small i’s. As suggested above, these are easy. Since |Ai| ≤ ai (= |[Ai]|), the cost of identifying Ai, together

with its labels, is at most

(32) (n− 2) +O(ai log n) + ai = n+O(ai log n) < gi − (1/2− o(1))ti.

Here the first two terms on the l.h.s., representing the cost of identifying Ai, are given by Proposition 2.9,

and the final bound follows from gi ≥ max{2n − 2, ti} and ai = O(gi/n), the latter holding for small i by

Proposition 2.11.

But Ai and its labels determine Gi, [Ai] and their labels (the labels since all vertices of N(Gi) \ Ai are

labeled Λ); so (32) actually bounds the total cost of identifying and labeling [Ai] ∪Gi.

Large i’s. For a given large i, Lemma 2.12 givesW =W(ai, gi), ϕ = ϕi, S = Si and F = Fi (as in the lemma),

at cost O(ti log2 n/
√
n); so the cost of specifying these for all large i is

(33) O(
∑
ti log2 n/

√
n).

Let ε = εn be a parameter satisfying

(34) 1� ε� 1/ log n,

and say i is tight if (with ε as in (34))

(35) gi − fi ≤ εti

and slack otherwise. (As usual we use si = |Si| and fi = |Fi|. The role of ε is just to enable proper definitions

of ”tight” and ”slack.”)

For our purposes the most significant difference between these two possibilities is that specification of

([Ai], Gi) given (Si, Fi) is cheap if i is tight, but becomes unaffordable as the difference in (35) grows; this

leads to the following plan. We first treat tight i’s, in each case paying for the full specification of [Ai] (which

determines Gi) and then the labels of [Ai] ∪Gi.

We then combine and slightly massage the remaining (slack) Si’s and Fi’s, taking account of what we

know so far, to produce a single pair (S, F ) that in some sense approximates the slack parts of the config-

uration, and from (S, F ) go directly to specification of labels (so we learn—implicitly—the identities of the

slack [Ai]’s and Gi’s only when we learn their labels.)
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Tight i’s. The next two lemmas bound the total cost of a tight i (so of [Ai], Gi and their labels) by

(36) gi − Ω(ti).

Lemma 6.3. For tight i, the cost of ([Ai], Gi) given (Si, Fi) is o(ti).

Lemma 6.4. The cost of labeling a given [Ai] ∪Gi is gi − Ω(ti).

Remark. Lemma 6.4 does not require that i be tight.

Proof of Lemma 6.3. Given (Si, Fi), fix some A∗ ∈ ϕ−1(Si, Fi). (Note A∗ is closed. Note also that we are

not considering possibilities for A∗, just naming a particular choice associated with (Si, Fi)—e.g. the first

member of ϕ−1
i (Si, Fi) according to some order—so the specification costs nothing. This strangely helpful

device is from [6].) The key (trivial) point here is that (given G∗ := A∗)

(G∗ \Gi, Gi \G∗) determines (Gi, [A]).

So we should bound the costs of G∗ \Gi and Gi \G∗. Since G∗ \Gi ⊆ G∗ \ Fi, the cost of G∗ \Gi is at most

|G∗ \ Fi| ≤ εti = o(ti) (since i is tight).

On the other hand,

Gi \G∗ = N([Ai] \A∗) \G∗

(since each x ∈ Gi \ G∗ has a neighbor in [Ai] and none in A∗); so we may specify Gi \ G∗ by specifying a

Y ⊆ [Ai] \ A∗ ⊆ Si \ A∗ of size at most |Gi \G∗| ≤ gi − fi = o(ti) with Gi \G∗ = N(Y ) \G∗ (let Y contain

one neighbor of x for each x ∈ Gi \ G∗). But, since si < fi + o(ti) ≤ gi + o(ti) (see (c) of Lemma 2.12), we

have |Si \ A∗| = si − ai ≤ ti + o(ti); and the cost of specifying a subset of size o(ti) from a set of size O(ti)

is o(ti). �

Proof of lemma 6.4. As promised earlier (see the discussion following (28)) we now return to Qn and, with

W = [̂Ai]∪Ĝi, bound the number of MIS’s in Γ := Qn[W ]. (Note that sinceAi is a 2-component of E∗, I∩W
is an MIS in Γ, possibilities for which correspond to possible (legal) labelings of [Ai] ∪Gi).

We run [Algorithm] (of Section 3) twice (or, really, once with a pause; here we index steps by j since i is

already taken). For the first run (on all of Γ, with input the unknown I) we STOP as soon as

dXj
(x) ≤ n2/3 for all x ∈ Xj .

This implies |supp(ξ)| ≤ 2(gi + ai)n
−2/3 (note e.g. |Ĝi| = 2gi), so Proposition 3.1 bounds the cost of this run

by

(37) (2 + o(1))(gi + ai)n
−2/3 log(n2/3) = o(ti),

where the ”o(ti)” uses (26). On the other hand, with Z1 the final Xj from this run, Proposition 3.2 with

Z = Z1, d = n2/3 and

(38) L = |∇(W )| = 2(n− 1)(gi − ai)

gives

|Z1| ≤ (2n− n2/3)−1(2n(gi + ai) + 2(n− 1)(gi − ai))

< (2n− n2/3)−14ngi < (1 + n−1/3)2gi.(39)
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We next run [Algorithm] on Qn[Z1] and STOP as soon as either

(a) dXj (x) ≤ n1/3 for all x ∈ Xj or

(b) |Xj | ≤ 2ai.

(Note we treat this as a fresh run rather than a continuation, and recycle Xj and ξ.)

Let Z2 be the final Xj for this run. From (39) and (b) we have z1 − z2 ≤ 2ti + 2n−1/3gi, so in view of (a),

|supp(ξ)| ≤ (z1 − z2)n−1/3 ≤ 2tin
−1/3 + 2gin

−2/3 =: r.

Proposition 3.1 (with this r and l = |W | ≤ 4gi) then bounds the run cost by

(40) O((tin
−1/3 + gin

−2/3) log n+ log gi) = o(ti),

with the o(ti) given by (26).

Finally we consider the cost of specifying I∩Z2 (an MIS ofQn[Z2]). If the second run ends with |Z2| ≤ 2ai

(as in (b)), then Theorem 2.1 bounds this cost by

ai = gi − ti.

Suppose instead that the algorithm halts due to (a). In this case we again use Proposition 3.2, now with

Z = Z2, d = n1/3 and L as in (38), to obtain (cf. (39))

(41) |Z2| < (1 + n−2/3)2gi = 2gi + o(ti).

We now apply Theorem 2.2 in Γ := Qn[Z2]. The key here is (24), which implies

(42) no edge of Ĝi can belong to MΓ(I ∩ Z2)

(since the neighbor promised by (24) cannot come from I \ Z2, which has no neighbors in Z2). It follows

that

(43) mΓ(I ∩ Z2) ≤ ai

(each edge of MΓ(I ∩Z2) meets (possibly meaning equals) one of the ai edges of Âi and, since MΓ(I ∩Z2) is

an induced matching, the edges met are distinct). The combination of (41), (43) and Theorem 2.2 now again

bounds the cost of I ∩ Z2 by gi − Ω(ti).

Summarizing, the cost of the two runs of [Algorithm] is o(ti) (see (37), (40)) and, regardless of how these

end, the cost of I ∩ Z2 is gi − Ω(ti). The lemma follows. �

Remark 6.5. Note—cf. the preview at the end of Section 3—the above argument does not work if we run

[Algorithm] just once, stopping when degrees in Xj fall below n1/3; for our bound on |supp(ξ)| then be-

comes 2(gi + ai)n
−1/3, so the cost bound in (37) increases to Θ(gin

−1/3 log n), which need not be small

compared to ti.

Slack i’s. At this point we have found and labeled

Y := ∪{[Ai] ∪Gi : i small or tight} ,

so are left with the slack i’s. As suggested above, these differ from tight i’s in that the step that identifies

the ([Ai], Gi)’s is no longer affordable, and we instead go directly from the (Si, Fi)’s to the labeling phase.
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Set YE = Y ∩ E and YO = Y ∩O (so YE = ∪{[Ai] : i small or tight} and similarly for YO). Writing ∪s and∑s for union and sum over slack i’s, set

S = (∪sSi) \N(YO), F = ∪sFi, X = N(S) \ F

(note N(YO) ⊇ YE ), g′ =
∑s

gi and t′ =
∑s

ti. Notice that

(44) g′ − f > εt′

and that with these definitions we still have the appropriate versions of (a)-(c) of Lemma 2.12, namely:

(a′) S ⊇ ∪s[Ai], F ⊆ ∪sGi;
(b’) dF (u) ≥ n− 1−

√
n/ log n ∀u ∈ S;

(c′) |S| ≤ |F |+O(t′/(
√
n log n)).

Here (b’) is immediate from the corresponding statement for the (Si, Fi)’s, as is (c′) once we observe that

the Fi’s are disjoint (since the Gi’s are, and Fi ⊆ Gi). Similarly, (a′) holds because Si ⊇ [Ai] (∀i) and—the

least uninteresting point here—N(YO)∩ (∪s[Ai]) = ∅ (since there are no edges between [Ai] andGj if i 6= j).

The last ingredient in the proof of Lemma 6.2 is Lemma 6.6 below, before turning to which we need a

few further observations.

First, we are about to return to Qn (as in the proof of Lemma 6.4), where we will be running [Algorithm]

on

(45) W := Ŝ ∪ F̂ ,

and for use in Proposition 3.2 will need a bound on |∇W |. Setting ψ =
√
n/ log n (and for the moment still

working in Qn−1), we have (from (b’))

(46) |∇S \ ∇(S, F )| ≤ sψ

and

|∇F \ ∇(S, F )| ≤ f(n− 1)− s(n− 1− ψ)

= (f − s)(n− 1) + sψ,
(47)

whence (now in Qn)

(48) L := |∇W | ≤ 2(f − s)(n− 1) + 4sψ.

Set U = Ŝ ∪ N̂(S). A second—crucial—observation is

(49) I ∩ U is an MIS of Qn[U ].

Proof. Suppose instead that x ∈ U \ (I ∪N(I ∩U)). Then, since I is an MIS ofQn, there are y ∼ x and z ∼ xn

with y, z ∈ I and y 6∈ U . Note this implies π(x) ∈ N(S) (as opposed to S), since otherwise N(x) ⊆ U . Now

π(y), π(z) are distinct occupied neighbors of π(x) (distinct since y and z, being in I , cannot be adjacent),

meaning that π(x) ∈ Gi for some slack i (slack because N(S) ∩ YO = ∅); but since Ai is a 2-component of

E∗, this implies π(y) ∈ Ai and y ∈ U , a contradiction. �
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Finally, we observe that

(50) the edges in N̂(S) with neighbors in I ∩ U are precisely those in ∪sĜi.

(We have already noted in (24) that edges in ∪sĜi do have such neighbors (in ∪sÂi), so what (50) really

says is that the remaining edges in N̂(S) do not. This is because there are no occupied vertices in S \ ∪sAi:
by (b’) each v in S has a neighbor in F , so in some slack Gi, so if occupied must lie in Ai.) Of course at this

point we don’t know the Gi’s, but what we can use from (50) is

(51) exactly g′ edges in N̂(S) have neighbors in I ∩ U (so in I ∩ Ŝ).

Lemma 6.6. The cost of labeling S ∪N(S) is at most

(52) f + x− Ω(εt′) (= |N(S)| − Ω(εt′))

(where x is the size of X , which was defined two lines before (44)).

Proof. This is similar to the proof of Lemma 6.4. We again run [Algorithm] in two stages, but this time only

on W (defined in (45)). As before we STOP the first run when

dXi
(x) ≤ n2/3 ∀x ∈ Xi,

and let Z1 be the (final) Xi produced by this stage. We then run the algorithm on Qn[Z1], in this case

stopping as soon as either

(a) dXi
(x) ≤ n1/3 for all x ∈ Xi or

(b) |Xi| ≤ 2(f − t′)

(of course (b) is possible only if f ≥ t′), and letting Z2 be the final Xi.

As before: the ξ produced by the first run has (|ξ| ≤ |W | = 2(s + f) and) |supp(ξ)| ≤ 2(s + f)n−2/3, so

Proposition 3.1 bounds the cost of this run by

(53) (2 + o(1))(s+ f)n−2/3 log(n2/3) = o(εt′)

(using s + f ≤ 2g′, as follows from (c′) and (44), with (26) and (34)); Proposition 3.2 with Z = Z1, d = n2/3

and L as in (48) gives

|Z1| < (2n− n2/3)−1[2n(s+ f) + 2(f − s)n+ 4sψ]

= (2n− n2/3)−1[4nf + 4sψ]

≤ 2f(1 + n−1/3) +O(sψ/n)

= 2f(1 + n−1/3) + o(εt′)(54)

(using sψ/n = O(g′/(
√
n log n)) = o(εt′), which follows from (26) and (34); this is the reason for the lower

bound in (34)); (a), (b) and (54), now with the ξ from the second run, imply

|supp(ξ)| ≤ (z1 − z2)n−1/3 ≤ r :=

{
(2fn−1/3 +O(t′))n−1/3 if f ≥ t′,
(2 + o(1))t′n−1/3 if f < t′;

Proposition 3.1 with this r and l = |W | = O(f) (note (b’) implies s < (1 + o(1))f ) bounds the run cost by

(55) O((fn−2/3 + t′n−1/3) log n+ log f) = o(εt′),
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with the o(εt′) given by (26) (and f ≤ g′); and Proposition 3.2, with Z = Z2, d = n1/3 and, again, L as in

(48), gives (cf. (54))

|Z2| < (2n− n1/3)−1[2n(s+ f) + 2(f − s)n+ 4sψ]

≤ 2f(1 + n−2/3) + o(εt′) = 2f + o(εt′)(56)

(again—as in (54)—using sψ/n = o(εt′)).

Let P = I ∩ (W \ Z2) (the set of vertices that were ”processed” in the two runs of the algorithm and

turned out to be in I), X ′ = X̂ \N(P ), Z ′ = Z2 ∪X ′ and Γ = Qn[Z ′]. So we are down to identifying I ∩ Z ′

(Z ′ being the set of vertices of U whose membership in I is still in question). Noting that

(57) I ∩ Z ′ is an MIS of Γ

(see (49)) and recalling that the run costs in (53) and (55) were o(εt′), we find that Lemma 6.6 will follow

from

(58) the cost of identifying I ∩ Z ′ is at most f + x− Ω(εt′).

(Note we are still enforcing (51).)

If |Z ′| ≤ 2(f + x) − Ω(εt′) then (58) is given by Theorem 2.1 (and (57)). In particular this is true if the

second run ends because of (b), since then |Z ′| ≤ z2 + 2x ≤ 2(f + x− t′).

So we are left with cases where the run is stopped by (a) and

|Z ′| > 2(f + x)− o(εt′),

which by (56) implies x′ = 2x− o(εt′), i.e.

(59) |X̂ \X ′| = o(εt′).

But (51) and the fact that each edge of F̂ has a neighbor in I ∩ Ŝ imply that exactly g′ − f > εt′ edges in X̂

have neighbors in I ∩ Ŝ, which with (59) yields

(60) (1− o(1))εt′ edges in X ′ have neighbors in Z2 ∩ I ∩ Ŝ.

Now let M = MΓ(I ∩ Z ′). According to the definition of MΓ (see (3)) no edge as in (60) can be in M (cf.

(42)), so M fails to cover at least one vertex from each of these edges (since, M being induced, V (M) meets

any edge not in M at most once). But then z′ ≤ 2(f + x) + o(εt′) (which follows from (56) and z′ ≤ z2 + 2x)

implies

mΓ(I ∩ Z ′) = |M | < (2(f + x)− (1− o(1))εt′)/2 = f + x− Ω(εt′),

and a final application of Theorem 2.2 (with the above bound on z′) again gives (58), completing the proof

of Lemma 6.6. �

In sum (making precise the discussion following (31)), we have paid:

• O(t log n/
√
n) for the decompositions of a and g (see (28));

• gi − Ω(ti) for specification and labeling of [Ai] and Gi for each small i (see (32));

• O(
∑
ti log2 n/

√
n) for the (Si, Fi)’s, i large (see (33));

• for each tight i, gi − Ω(ti) for specification and labeling of [Ai] and Gi, given (Si, Fi) (see (36));
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• |N(S)| − Ω(εt′) for labeling S ∪ N(S), given (S, F ) (which is determined by the (Si, Fi)’s, together with

the Gi’s for small and tight i); see (52).

Finally, the sum of all these cost bounds is at most

|N(S)|+
∑
{gi : i small or tight}+O(

∑
ti log2 n/

√
n)− Ω (

∑
{ti : i small or tight})− Ω(εt′),

which (recalling t′ =
∑
{ti : i slack}, t ≤

∑
ti and ε = ω(1/ log n)) is at most

|N(S)|+
∑
{gi : i small or tight} − ω(t/ log n);

and combining this with the additional cost in (31) (paid for the remaining labels in O) gives Lemma 6.2.
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