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Abstract

We prove that for every m there is a finite point set P in the plane such that no matter
how P is three-colored, there is always a disk containing exactly m points, all of the same
color. This improves a result of Pach, Tardos and Tóth who proved the same for two
colors. The main ingredient of the construction is a subconstruction whose points are in
convex position. Namely, we show that for every m there is a finite point set P in the
plane in convex position such that no matter how P is two-colored, there is always a disk
containing exactly m points, all of the same color. We also prove that for unit disks no
similar construction can work, and several other results.

1 Introduction

Coloring problems for hypergraphs defined by geometric range spaces have been studied a lot
in different settings. A pair (P,S), where P is a set of points in the plane and S is a family
of subsets of the plane (the range space), defines a (primal) hypergraph H(P,S) whose vertex
set is P, and for each S ∈ S we add the edge S ∩P to the hypergraph. Given any hypergraph
G, a planar realization of G is defined as a pair (P,S) for which H(P,S) is isomorphic to G.
If G can be realized with some pair (P,S) where S is from some family F , then we say that
G is realizable with F .

A hypergraph is (properly) c-colorable if its vertices can be colored by c colors such that no
edge is monochromatic. In this paper we focus on the c-colorability of hypergraphs realizable
with disks. It is an easy consequence of the properties of Delaunay-triangulations and the
Four Color Theorem that any hypergraph realizable with disks is four-colorable if every edge
contains at least two vertices. Since K4 is realizable with disks, this is sharp. But are less
colors sufficient if all edges are required to contain at least m vertices for some large enough
constant m? Pach, Tardos and Tóth [21] have shown that two colors are not enough for any
m, i.e., for any m, there exists an m-uniform hypergraph that is not two-colorable and that
permits a planar realization with disks. Our main theorem is the following strengthening,
which shows that three colors are also not enough, by realizing a four-chromatic hypergraph,
completely resolving this question.

Theorem 1. For any m, there exists an m-uniform hypergraph that is not three-colorable and
that permits a planar realization with disks.

The proof of Theorem 1 is based on two ideas. The first one is from [13], where colorings of
so-called ABAB-free hypergraphs were considered. We will use a construction, based on one
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from [13], to create a point set that is not two-colorable with respect to disks and, furthermore,
the points are close to a prescribed set of points that lie on a circle. Then using ideas from [1]
and [21], we will combine several copies of this non-two-colorable construction to create point
sets that are not three-colorable. The non-two-colorable construction can be of independent
interest.

Theorem 2. For any m, there exists an m-uniform hypergraph that is not two-colorable and
that permits a planar realization with disks that all contain some fixed point.
Moreover, in the realization (P,D), the points P can be placed arbitrarily close to some given
points on a circle such that the boundary of each disk from D is also arbitrarily close to this
circle.

Previously, such a construction was only known for pseudo-disks containing a fixed point,
and it was also shown that such hypergraphs are always three-colorable (already for m = 2)
[1].

Note that if we require the points of P to be placed close enough to the given points on
the circle, then the points of P will be in convex position.

The construction of Theorem 1 can be generalized as follows.

Theorem 3. Let C be any closed convex set in the plane, that has two parallel supporting
lines such that C is strictly convex in some neighbourhood of the two points of tangencies. For
any m, there exists an m-uniform hypergraph that is not three-colorable and that permits a
planar realization with homothets of C.

To complement our results, we also show that no similar construction for unit disks exists.

Theorem 4. For any k, any finite point set P can be k-colored such that any unit disk, that
contains some fixed point o /∈ P and 8k − 7 points from P, will contain all k colors.

Note that the condition o /∈ P is in fact not required, we only state our results this way
to emphasize that the common point o need not be from P.

It is known that without requiring a common point o, the statement does not hold [19].
By using the well-known equivalence of the hypergraphs defined by primal and dual range

spaces of the translates of any set [18, 20], we can conclude the following.

Corollary 5. For any k, any finite collection of unit disks D can be partitioned into k parts
such that any point of a fixed unit disk D0 /∈ D that was covered by at least 8k− 7 members of
D will be covered by all k parts.

This statement is sharp in the sense that for a disk D0 of larger radius it fails already for
k = 2, even if the members of D are required to be very close to each other; this follows from
taking the dual of the construction from [19]. The function 8k − 7 is unlikely to be sharp.

Theorem 4 can be extended in two different ways. Firstly, instead of stabbed unit disks
we can consider stabbed translates of a given convex set.

Theorem 6. For any plane convex set C and any integer k the following holds. Any finite
point set P can be k-colored such that any translate of C, that contains some fixed point o /∈ P
and 24k − 23 points from P, will contain all k colors.
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Secondly, it is also interesting to consider the case when our family contains stabbed
homothetic copies of a given convex set. Theorem 2 implies that the natural analogue of
Theorem 4 does not hold for homothetic copies of a disk. On the other hand we can show the
following for polygons.

Theorem 7. For any convex polygon P there is a tP such that for any k the following holds.
Any finite point set P can be k-colored such that any homothetic copy of P , that contains some
fixed point o /∈ P and tP k points from P, will contain all k colors.

The rest of the paper is organized as follows. In Section 2 we prove Theorem 2, then
building on this construction, in Section 3 we prove Theorem 1. In Section 4 we prove Theorem
4. The sketch of the proofs of the generalizations for other shapes (not disks), can be found
in Section 5. Finally, in Section 6 we highlight the most important problems left open. We
end this introduction with a bit more history, and a basic observation.

Related results

Pach proved in 1986 that any sufficiently thick covering of the plane [18] by the translates of a
centrally symmetric open convex polygon can be partitioned into two disjoint coverings. The
proof followed from showing that for every such polygon P there is an m(P ) for which any
hypergraph, whose edges contain at least m(P ) vertices and can be realized with translates
of P , is two-colorable. Several results followed, eventually showing that the similar statement
is true for the translates of all convex polygons [7, 23], while counterexamples were given for
non-convex polygons [21, 22] and convex shapes with a smooth boundary [19]. We know much
less when instead of translates, homothetic (i.e., scaled and translated) copies are considered
[2, 5, 10, 15] or about the problem of decomposing into multiple coverings/polychromatic
colorings [4, 7, 24]. For a summary of the most closely related results, see Table 1; for more
results, see the decade-old survey [20] or the webpage https://coge.elte.hu/cogezoo.html.

The above papers mainly focused on two- or polychromatic colorability. Proper three-
colorability of geometric hypergraphs was studied in detail in [8] and [12]. In the latter paper
it was shown that for every convex polygon P there is an m(P ) such that every m(P )-uniform
hypergraph realizable by homothetic copies of P is proper three-colorable. Our results imply
that this is not the case for disks, disproving a conjecture from both of the above papers.

In this paper all disks are assumed to be open.1 Let P be a point set and let D be a
family of disks. An important folklore observation that we will use many times is that small
perturbations of the points and the disks will not change the hypergraph H(P,D). To put
this into more precise terms, we will say that two points are ε-close if their distance is less
than ε and two disks/circles are ε-close if their centers are ε-close and the difference of their
radius is also smaller than ε.

Observation 8. Suppose we have a finite point set P and a finite set of open disks D such
that none of the points lie on the boundary of any of the disks. Then there is an ε such that
replacing each disk with any ε-close disk and each point with any ε-close point will not change
the hypergraph H(P,D).

1But note that our results also hold for closed disks, as we could slightly shrink any finite system of open

disks to contain the same points of a finite point set.
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translates homothets

triangles
χfat = 2 [25]
mk = O(k) [7]

χfat = 2 [9]
mk = O(k4.09) [5] + [11]

convex

polygons

χfat = 2 [23]
mk = O(k) [7]

2 ≤ χfat ≤ 3 [12]
χfat = 2 for squares [2]

non-convex

polygons∗
3 ≤ χfat [22] 3 ≤ χfat [22]

stabbed

convex

polygons

χfat = 2 [23]
mk = O(k) [7]

χfat = 2 [NEW]
mk = O(k) [NEW]

stabbed

disks

χfat = 2 [NEW]
mk = O(k) [NEW]

χfat ≤ 3 [1]
χfat = 3 [NEW]

disks 3 ≤ χfat ≤ 4 [19] χfat = 4 [NEW]

Table 1: Summary of old and new results related to the topic of this paper. For a family, χfat

denotes the smallest number k for which there is an m such that any finite set of points can
be k-colored such that any member of the family with at least m points will contain at least
two colors. For k colors, mk denotes the smallest number m such that any finite set of points
can be k-colored such that any member of the family with at least m points will contain all k
colors. Results from this paper are marked with ‘[NEW]’.
∗ There are some very special non-convex polygons for which χfat = 2—for the complete
classification, see [23] or [20].

2 A point set that is not two-colorable

Here we prove Theorem 2 by realizing for any m a non-two-colorable m-uniform hypergraph
with disks that all contain some fixed point.

Our main lemma is the following. Combined with Observation 8, this gives us a way to
perturb the points of P with changing only a small part of the hypergraph H(P,D).

Lemma 9. If ε > 0, C is a circle, and a, b1, . . . , bt, c are points on C in this order, then there
is a circle C ′ and points b′

1
, . . . , b′t on C ′ with the following properties.

1. C ′ is ε-close to C.

2. b′i is ε-close to bi for each i ∈ [t].

3. C ′ intersects C between a and b1, and between bt and c.

4. Each b′i is outside of C.

Proof. Choose points A and B between between a and b1, and between bk and c, respectively
(see Figure 1). Choose O on the perpendicular bisector of AB, close to the center of C. C ′

will be the circle centered at O passing through A and B. Project b1, . . . , bt onto C ′ using O
as center. If O is close enough to the center of C, this will clearly satisfy the requirements.
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Figure 1: Lemma 9.

2.1 Hypergraphs based on rooted trees

The following hypergraph construction was used in [21] to create several counterexamples for
coloring problems.

Definition 10. For any rooted tree T , let H(T ) denote the hypergraph on vertex set V (T ),
whose hyperedges are all sets of the following two types.

1. Sibling hyperedges: for each vertex v ∈ V (T ) that is not a leaf, take the set S(v) of all
children of v.

2. Descendent hyperedges: for each leaf v ∈ V (T ), take all vertices along the unique path
Q(v) from the root to v.

It is easy to see that H(T ) is not two-colorable for any T . Either there is a monochromatic
sibling edge, or we can follow the color of the root down to a leaf, finding a monochromatic
descendent edge. We can create an m-uniform hypergraph by choosing T to be the complete
m-ary tree of depth m. The non-two-colorable construction of Pach, Tardos and Tóth is also
based on these hypergraphs.

Theorem 11 (Pach, Tardos and Tóth [21]). For any rooted tree T , the hypergraph H(T )
permits a planar realization (P,D) with disks in general position such that every disk D ∈ D
has a point on its boundary that does not belong to the closure of any other disk D′ ∈ D.

In order to be able to later build a point set that is not three-colorable, we will first extend
Theorem 11 by showing that we can require the points to be close to a prescribed set of
concyclic points, and require the disks to be close to the circle that contains the prescribed
points. (We loose the property that every disk D ∈ D has a point on its boundary that does
not belong to the closure of any other disk D′ ∈ D, so strict speaking Theorem 12 is not a
generalization of Theorem 11.)

Theorem 12. If γ > 0, C is a circle and q1, q2, . . . , qn are distinct points on C, then for any
rooted tree T on n vertices, the hypergraph H(T ) permits a planar realization (P,D) with disks
such that

(I) P = {p1, . . . , pn}, and each pi is γ-close to qi.
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(II) Every D ∈ D is γ-close to C.

An important property of rooted trees is that we can order their vertices in a special way.
For a vertex v, let Des(v) denote all descendants of v. Keszegh and Pálvölgyi [13] have shown
that there is an ordering on the vertices of T such that

1. For each vertex v ∈ V (T ) the vertices in S(v) are consecutive and they appear in the
order later than v.

2. Furthermore, suppose S(v) = {r1, . . . , rk} and they are in this order. Then the vertices
r1, . . . , rk−1, rk,Des(rk),Des(rk−1), . . . ,Des(r1) are ordered like this, and the rest of the
vertices of T are not in this interval. (The internal order of each Des(ri) is not specified
by this statement.)

Call an order satisfying these properties a siblings first order [1] of T .

Proof of Theorem 12. In the planar realization of H(T ), the vertices will correspond to the
points qi according to an (arbitrary) fix siblings first order. We start by showing that the sibling
hyperedges can be easily realized and we only need to consider the descendent hyperedges.

Sibling hyperedges

From the properties of the siblings first order we know that for each v the vertices of S(v) are
consecutive, i.e., the points qi corresponding to S(v) are neighbours along the circle C. We
apply Lemma 9 to find a disk that is γ-close to C, and contains exactly the points of S(v).
We can also ensure that no point qi lies on the boundary of this disk. We repeat this for each
v ∈ V (H), until each sibling hyperedge is realized. Let DSib denote the set of these disks. We
apply Observation 8 to ({q1, . . . , qn},DSib) to get εSib. That is, if each point pi is εSib-close to
qi, then (P,DSib) will still represent the sibling hyperedges. Therefore, it is enough to show
that we can realize the descendent hyperedges for any γ.

Descendent hyperedges

It is useful to realize a slightly extended hypergraph. In H(T ), we have a descendent hyperedge
for each leaf. Now we will create a descendent hyperedge for non-leaf vertices too. So let Q(v)
denote the path from the root to v, and for each vertex v, we will realize the hyperedge Q(v).
The disk realizing Q(v) will be denoted by B(v). Let this extended hypergraph be denoted
by H′(T ). We will realize not only H(T ), but H′(T ). See Figure 2 for an example where we
omitted the sibling edges.

We prove the existence of the required point set by describing an algorithm that produces
a solution. Let P = {p1, p2, . . . , pn} denote the vertices of T in a siblings first order. We will
create the planar realization gradually, step by step. The algorithm starts by setting pi = qi
and in each step we will update the position of some of the pi-s. That is, we identify the
vertices of the hypergraph with planar points, and we will update the position of the vertices
until they realize the hypergraph H′(T ).

During the algorithm, we need to change the position of the points many times without
altering the hyperedges that we have already realized. For this reason, we introduce a set of
fixed points, Pfix, and a set of disks, DDes, that corresponds to the descendent hyperedges.
Once a point is in Pfix we will not change its position any more. Every disk that we create
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Figure 2: Disks realizing all paths from the root.

will be immediately added to DDes, and we will never change its position. The unfixed points,
i.e., the points in P \Pfix, will always be kept on the boundary of

⋃

D∈DDes

D. Furthermore, if

we add B(v) to DDes in the k-th step of the algorithm, B(v) ∩ P will remain the same after
we finished the k-th step, i.e., it will contain exactly the points of the path Q(v) in its interior.
Moreover, all descendants of v will be on the boundary of B(v) after the k-th step, but later
they will be moved off.

The structure of the algorithm is the following. We go through the vertices in the siblings
first order and for each we do the following. By when we arrive at vertex pk, the disk B(pk)
representing the path Q(pk) from the root to pk, will be already realized. For each child of
pk we will add a new disk, close to B(pk), that also realizes the same path from the root to
pk. Then we will move the points such that each new disk contains exactly one child of pk.
We have summarised the structure of the algorithm in the following pseudo code, while the
phases of a step are depicted in Figure 3.

Algorithm 1: Structure of the algorithm

Set pi = qi, Pfix = ∅,DDes = ∅.
Add the disk of C, B(p1), to DDes.
Move p1 inside B(p1) and add p1 to Pfix.
for k = 1 to n do

for each child ri of pk do

Add a disk B(ri) representing Q(pk) to DDes. /* Using Lemma 9 */

Move the required descendants of pk to the boundary of B(ri).
end

for each child ri of pk do

Move ri inside B(ri). /* now B(ri) represents Q(ri) */

Add ri to Pfix.

end

end

To be able to do these steps we also need a parameter δ that will ensure that the points
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do not move too much and the disks are close to each other. There will be only three kinds
of operations that we do during the algorithm.

a) We update the position of a vertex by moving it at a distance less than the current value
of δ. If it reached its final position, we add it to Pfix.

b) We add a new disk to DDes that is δ-close to one of the disks already in DDes.

c) We decrease the value of δ.

We start with δ = γ/n2. (The reason for this is explained later.) Every time a disk is
added or the position of a vertex is changed, we use Observation 8 for (Pfix,DDes) to update
δ to a smaller value, if needed. After any given update of δ, we only move points at distance
less than δ. This ensures two things. Firstly, the points do not move far from their original
position, and secondly, if we take a new disk that is δ-close to one of the disks, then it contains
the same points of Pfix.

The algorithm makes an initial adjustment on p1, and then there is one step (k-th step)
for each point pk. After each step the following properties will hold.

(i) Each point pi has either reached its final position or it lies on the boundary of the disk
B(w) where w is the lowest ancestor of pi for which B(w) is already defined. Also, in
the second case pi does not belong to the closure of any other disk D′ ∈ DDes.

(ii) Suppose pj is the parent of pi in T . Then in the j-th step the point pi is added to Pfix

and the disk B(pi) is added to DDes.

(iii) Each disk in DDes contains those points of P that correspond to the appropriate hyper-
edge of H′(T ).

During the initial adjustment we update p1 to lie inside C but δ-close to q1. We add the
disk corresponding to the circle C to DDes. We add p1 to Pfix and then we update δ by
applying Observation 8 for (Pfix,DDes). Clearly properties (i), (ii) and (iii) are satisfied.

In the k-th step we update the points in Des(pk). (If pk is a leaf, we continue with the
next step.) The process is depicted in Figure 3; we recommend the reader to consult it before
reading on. From properties (i) and (ii) we know that at the start of the k-th step every
point in Des(pk) lies on the boundary of B(pk), and they do not belong to any disk in DDes.
Suppose S(pk) = {r1, . . . , rl}. To maintain the three properties, we want to add the disks
B(r1), . . . , B(rl), and by the end of the k-th step we want to place the points of Des(ri) on
the boundary of B(ri).

To achieve this, we apply Observation 8 and Lemma 9 for each child in the following way.
First apply Observation 8 for the points in Des(pk) and disks in DDes \ {B(pk)}. Since the
points in Des(pk) do not belong to the boundary of any other disk this is possible. We update
δ to the value of ε obtained from Observation 8 if ε < δ.

Then we apply Lemma 9 for the boundary of the disk B(pk), such that the bi-s are the
points {r1, . . . , rl} ∪Des(rl) ∪ · · · ∪Des(r1) and ε is chosen to be the current value of δ. The
points a and c have to be chosen carefully. We know that the points in {r1, . . . , rl}∪Des(rl)∪
· · · ∪ Des(r1) lie on an arc of B(pk) that is not covered by any disk in DDes. We choose a
and c on the two ends of this arc such that they are also not covered by any disk. Lemma 9
gives us a circle C ′, this defines B(r1), which is added to DDes. The position of the points
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r1

r2
r3

Des(r3)

Des(r2)

Des(r1)
B(pk)

B(r1)

r1

r2

r3 Des(r3)

Des(r2)

Des(r1)

B(r2)

B(pk)

r1

r2

r3 Des(r3)

Des(r2)

Des(r1)
B(pk)

B(r3)

r1

r2

r3 Des(r3)

Des(r2)

Des(r1)

Figure 3: Phases of the k-th step of the algorithm.

in {r1, . . . , rl} ∪Des(rl) ∪ · · · ∪Des(r1) is updated according to the result of Lemma 9. As
usual, δ is also updated.

When we apply Observation 8 for the i-th time (i > 1) we apply it for the points
{ri, . . . , rl} ∪Des(rl) ∪ · · · ∪Des(ri) and disks in DDes \ {B(ri−1)}.

When we apply Lemma 9 for the i-th time (i > 1), we apply it for the boundary of B(ri−1),
such that the bi-s are the points in {ri, . . . , rl} ∪Des(rl) ∪ · · · ∪Des(ri) and ε is the current
value of δ. The point a is chosen between ri−1 and ri. The point c is chosen after the points
of {ri, . . . , rl} ∪ Des(rl) ∪ · · · ∪ Des(ri) but before the points of Des(ri−1) ∪ · · · ∪ D(r1). If
Des(ri−1) ∪ · · · ∪ D(r1) is empty, c is chosen before the arc of B(ri−1) reaches any other
disk. In the i-th case we get B(ri), which is added to DDes, and new positions for the points
{ri, . . . , rl} ∪Des(rl) ∪ · · · ∪Des(ri) on B(ri). We update δ after each application of Lemma
9.

Finally, we finish the k-th step by moving r1, r2, . . . , rl inside B(r1), B(r2), . . . , B(rl) re-
spectively, but at most δ far. Since ri was lying on the boundary of B(r1), we can also ensure
that they are not moved into any other disk. Then we add r1, . . . , rl to Pfix. We update δ
again by applying Observation 8 to (Pfix,DDes).

Let us see why properties (i), (ii), (iii) remain true during the run of the algorithm. Sup-
pose they are true after the (k − 1)-th step.

The first part of property (i) and property (ii) are maintained since we have created
the disks B(r1), . . . , B(rl), and by the end of the k-th step the points of Des(ri) are on the
boundary of B(ri). Points r1, . . . , rl were added to Pfix.

The second part of property (i) could be violated in two ways. It could be that one of
the new disks covers a point it should not. We have always chosen a and c such that this is
avoided. The other possible violation is that we move a point into a disk. This is avoided,
since if a point lies on the boundary of disk D before moving it, then we have updated δ for
the disks in DDes \ {D} right before moving the point. Also the movement is done by Lemma
9 so v cannot move into D.

As for property (iii), note that the only new disks in DDes are B(r1), . . . , B(rl). Since
(iii) was true before the step, B(pk) contains the vertices of Q(pk) and each of those are in
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Pfix. When we add B(r1), it is δ-close to B(pk), so it contains exactly the points in Q(pk).
Similarly, when B(ri) is added, it is δ-close to B(ri−1), so each of B(r1), . . . , B(rl) contains the
vertices of Q(pk). When finally we move the points r1, r2, . . . , rl inside B(r1), B(r2), . . . , B(rl),
respectively, we achieve that B(ri) contains the vertices of Q(ri).

We also need to check property (iii) for the disks that were already in DDes. Consider a
disk D ∈ DDes. No point inside D was moved, since they are in Pfix. The points in P \ Pfix

remain outside of D, since ri only moves into one of the new disks and the rest of the points
remain on the boundary of

⋃

D∈DDes

D. Hence property (iii) remains true.

Finally, we need to show that we get a solution for Theorem 1. Let D contain the disks in
DSib and those disks in DDes that correspond to descendent edges that end at a leaf. Property
(iii) and the argument for the sibling edges tells us that (P,D) is a planar representation of
H(T ).

For property (I), note that each point moves less than n2 times since in the k-th step they
move less than n times. We started with δ = γ/n2, so each point is at most n2 γ

n2 = γ far
from their original position. The first disk was given by C and each disk was taken δ-close to
a previous disk, in at most n steps reaching back to the first disk. Hence, all disks are γ/n
close to C, implying (II).

3 A point set that is not three-colorable

Here we prove Theorem 1 by realizing for any m a non-three-colorable m-uniform hypergraph
with disks.

We introduce a general operation for constructing hypergraphs that are not c-colorable,
which is similar to prolonging H(T ) with the children of a leaf. Essentially the same construc-
tion was used in [1].

Definition 13. Suppose we have a hypergraph A, a hypergraph B and let F be an edge of A.
Then we define “A extended by B through F ” as follows. Take |V (B)| copies of the edge F
and add a new vertex to each copy. Then we have |V (B)| new vertices. Add a set of edges such
that they form the hypergraph B on these new vertices. The resulting hypergraph is denoted by
A+F B.

Suppose A is m-uniform and B is (m + 1)-uniform. Then, if we extend A by B through
each edge of A, we get a hypergraph that is (m+ 1)-uniform.

Claim 14. Suppose A is not c-colorable and B is not (c − 1)-colorable. Then any extension
of A by B is not c-colorable.

Proof. Since any coloring of A using c-colors has a monochromatic edge, and we have only
“lost” the edge F , our only chance is to color the extended hypergraph such that the vertices
of F are monochromatic. These are contained in each new edge, implying that none of the
new vertices have the same color as the vertices of F . But then the copy of B is (c−1)-colored,
and thus one of its edges is monochromatic.

Let Gi denote the hypergraph that has i vertices and only one edge that contains all the
vertices. Clearly, G1 is not c-colorable for any c and Gi is not 1-colorable. Hence, we can build
non-c-colorable hypergraphs starting from these trivial ones and using them in the extensions.
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Observation 15. For any rooted tree T the hypergraph H(T ) can be built with a series of
extensions starting from G1, where each extending hypergraph is one of the Gi-s.

Now we are ready to define the non-three-colorable hypergraphs that we will realize with
points and disks. For each m let H2(m) = H(T ) where T is the m-ary tree of depth m.
Clearly, H2(m) is m-uniform and not two-colorable. We define non-three-colorable m-uniform
hypergraphs H3(m) based on them inductively.

First we create a sequence of hypergraphs. Let F1(m) = G1 and let v denote the single
vertex of it. For for i > 1, let Fi(m) be the hypergraph that we get if we extend each edge
of Fi−1(m) that contains v by H2(m). Note that Fi(m) has only two types of edges. The
first type are the ones that contain v, each of these contains exactly i vertices. (They are
like the descendent edges.) The second type are those that were added in a copy of H2(m),
these contain exactly m vertices. (They are a bit like the sibling edges.) Therefore, Fm(m) is
m-uniform. Also, by Claim 14 and induction, no Fi(m) is three-colorable.

Let H3(m) = Fm(m). For example, F1(2) is G1 and H2(2) is a triangle graph. Extending
G1 through its single edge by a triangle gives us the complete graph on 4 vertices, so H3(2) is
just K4.

3.1 Realizing H3(m)

Since H3(m) was built by a series of extensions, it is enough to show that we can do each
extension geometrically. This step is essentially the same as in [21].

Lemma 16. Suppose a hypergraph A is realized with (P,D) such that every disk D ∈ B ⊂ D
has a point on its boundary that does not belong to the closure of any other disk D′ ∈ D. Then
we can also realize A+F H(T ) for any rooted tree T and any edge F ∈ B, with a pair (P ′,D′),
such that any disk D ∈ B and every new copy of F has a point on its boundary that does not
belong to the closure of any other disk D′ ∈ D′.

Figure 4: Realizing an extension.

Proof. Suppose DF ∈ D is the disk realizing the edge F . Then DF has a point p on its
boundary that does not belong to the closure of any other disk D′ ∈ D. Take a small circle
C that is tangent to D at p. If we chose the radius of C to be small enough, then C will not
intersect any of the disks. Now take n = |V (T )| copies of DF and rotate them slightly around
the center of C. If all the rotations are small, the resulting disks will be ε-close to DF and by
Observation 8 they will contain the same points as DF . Also, if the angles of the rotations are
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different, then each new disk has a point on its boundary that does not belong to the closure
of any other disk.

Then we enlarge each copy of DF slightly, so that they intersect C but some part of their
boundary remains uncovered by other disks. Place the points q1, . . . , qn in the intersections
and use Theorem 12 to realize H(T ). Since each disk in the realization of H(T ) is close to C,
they do not contain any point of P.

4 Stabbed unit disks

Here we prove Theorem 4, that given a fixed origin o, any point set P can be k-colored such
that every unit disk that contains the origin and at least 8k − 7 points of P, contains all k
colors.

We call unit disks containing o stabbed unit disks. Take a representative disk for every
P ′ ⊂ P that can be obtained as the intersection of a stabbed unit disk and P. Since P is
finite, the collection of these representative disks, D, is also finite. We divide the plane into
four quarters by two perpendicular lines through o.

Lemma 17. The boundaries of two stabbed unit disks intersect at most once in each quarter.

(See Figure 5.)

o

o

o

Figure 5: From stabbed disks to pseudolines.

Proof. Denote the two intersection points of the boundary of the two disks, D1 and D2, by
x1 and x2. Since D1 and D2 have equal radii, the length of the arc they contain from each
other is less than half of their perimeter. Thus, using Thales’s theorem, for any inner point p
of D1 ∩D2 the angle x1px2 is at least 90◦. This proves the statement as o ∈ D1 ∩D2.

This means that in each quarter the boundaries of the disks behave as pseudolines. Let
us partition our point set P into four parts, P1,P2,P3,P4, depending on which quarter the
points are in. We will color each Pi separately.

Denote the quarter that contains the points of Pi by Qi. Prolong the section of the
boundaries falling into this quarter, i.e., D ∩ Qi for each D ∈ D, such that they do not
intersect outside Qi and all of them stretches from “left infinity” to “right infinity”. Without
loss of generality, we can suppose that o is above all these curves. The (upward) regions
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that are bounded by such curves form (upward) pseudohalfplanes. Generalizing a theorem of
Smorodinsky and Yuditsky [24], the following polychromatic coloring result is known about
them.

Theorem 18 (Keszegh-Pálvölgyi [13]). Given a finite collection of points and pseudohalf-
planes, the points can be k-colored such that every pseudohalfplane that contains at least 2k−1
points will contain all k colors.

We can apply this theorem to Pi (ignoring P \Pi) and our regions. From this we get that
any stabbed disk that contains at least 2k − 1 points of P from the quarter Qi will contain
all k colors. Repeating this for all four Pi, we obtain by the pigeonhole principle that any
stabbed disk containing at least 4(2k − 2) + 1 = 8k − 7 points of P contains all k colors.

For k = 2, this gives that 9 points per disk are enough, though this is probably far from
being tight. From below, we could only find a construction showing that 3 points per disk are
not enough.

5 Generalizations to other shapes and connection to clustering

Theorem 3: Generalizing Theorem 1

Let (P,S) be a range space where S contains homothets of a given convex sets C. Theorem 1
shows that if C is a disk, then the hypergraph H(P,S) might not be three-colorable. For which
other C convex sets can we generalize this statement? Theorem 3 shows that the answer to
this question is a surprisingly wide family. We omit the detailed proof of Theorem 3, the main
ideas are the following.

It is not hard to see, that to achieve an appropriate version of Theorem 9, it is enough
to assume that C is closed and strictly convex. Furthermore, since we can restrict ourselves
to an arbitrarily small portion of the boundary of C, the non-two-colorable construction of
Theorem 12 can be achieved by any closed C that is strictly convex in the neighbourhood of
a point on the boundary.

The geometric extension in Lemma 16 requires a bit more. Let C be any closed convex
set in the plane, that has two parallel supporting lines such that C is strictly convex in some
neighbourhood of the two points of tangencies. When we extend through an edge, we can use
one of these neighbourhoods to correctly place the new points and the other neighbourhood
to create the extending hypergraph on the new points.

Theorems 6 and 7: Generalizing Theorem 4

The proofs of Theorems 6 and 7 follow the same steps as of Theorem 4. We divide the plane
into regions using rays starting at o and then we show that in each region the boundaries of
the sets behave as pseudolines. Here we provide the sketch of the proof of Theorem 6, but
leave the details to the interested reader.

Sketch of the proof of Theorem 6. The proof of Theorem 4 relied on the fact that if p is a
point in the intersection of two unit disks, then it sees the two intersection points x1, x2 in an
angle that is at least π

2
. For a general convex set C this angle might be arbitrarily small if the

set is thin enough.
To avoid this problem, we can apply an affine transformation to C to make its width more

even from different directions. An affine transformation does not change the conclusion of
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Figure 6: Angle x1px2 is at least π
6
.

Threom 6, so it is indeed enough to argue for the affine copy. One way to achieve this is via
the John ellipsoid of the set, i.e., the largest volume ellipsoid contained in the set. Take the
affine transformation that changes the John ellipsoid to be the unit circle. It is well known
that in this case the set is contained in the circle whose radius is 2 and shares the center with
the John ellipsoid.

Just like in the proof of Lemma 17, we can show that the angle x1px2 is at least π
6
. Let

C1 and C2 be two translates of C. C1 and C2 have two common tangent lines, let t1, t2 be
the tangent points to these lines on C2. Let t′

1
, t′

2
be the projections of t1, t2 to the circle of

radius 2 around C2. Now x1px2 is bigger than angle t1xt2. Clearly the distance of t′
1

and t′
2

is at least 2, since they are separated by the common tangent lines. Hence, t′
1
xt′

2
is at least

as big as the inscribed angle corresponding to a chord of length 2, which is π
6
. Therefore, we

can divide the plane into 12 regions and in each region the boundaries of the sets behave as
pseudolines and from here the proof is the same, giving 12(2k − 2) + 1 = 12k − 23.

We could not rule out the possibility that with a suitable affine transformation the x1px2
angle would be always at least π

2
, just like for disks. This is a nice geometric question.

Proof of Theorem 7. Let P be a fixed polygon and let v1, v2, . . . , vn be the vertices of P . Let
αij = inf{∠viqvj | i ∈ {1, . . . , n}, q ∈ P \ vivj}. It is not hard to see that this angle αij is
minimized for a vertex v. This also implies αij > 0. Let α = mini,j αij .

Divide the plane into regions around o such that each region is a cone whose angle is less
than α. A homothet of P that contains o can have at most one vertex in each region, otherwise
they would be visible from an angle α from o. Let P ′ and P ′′ be homotethic copies of P that
contain o. We will show that P ′ and P ′′ intersects at most once in each region.

Suppose there is a region R where they intersect twice. The boundary of R intersects at
most two sides of each polygon, since they are convex and contain o. There are essentially
two ways P ′ and P ′′ can intersect (see Figure 7). Either the two intersection points of P ′ and
P ′′ fall on the same side of one of the polygons, or not.

We will show that these are not possible for two homothets. In the first case let s be the
side that contains the two intersections. In the second case let s be one of the sides that ends
at the vertex in R that is closer to o. Let n be the normal vector of the side s and let us look
at the extremal points of P ′ and P ′′ in the direction of n. Since they are homothets of each
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Figure 7: The two ways P ′ and P ′′ can intersect each other twice in a region.

other, the extremal points should form a side of the polygon in both P ′ and P ′′. But for one
of them we get only a vertex as an extremal point. Therefore two homothets meet at most
once in each region. The rest of the proof follows the same way as for Theorem 4.

Connection to clustering for planar graphs

We say that a graph G is c-colorable with clustering m if each vertex can be assigned one
of c colors so that each monochromatic component has at most m vertices. For example,
planar graphs are four-colorable with clustering 1 due to the Four Color Theorem. Clustering
questions gained popularity recently, see [3, 6, 16, 17]. It has been shown [14] that for each
m there exists a planar graph that is not three-colorable with clustering m. We reprove this
result using Theorem 1.

Theorem 19 (Kleinberg et al. [14]). For each m > 0 there exists a planar graph that is not
three-colorable with clustering m.

Proof. Take the point set P that realizes the non-three-colorable hypergraph H3(m), and
perturb the points so that no four lie on a circle. Consider the Delaunay graph of this point
set, that is, we connect two points if they can be separated from the rest with a circle. From
Theorem 1 we know that any three-coloring of this graph contains m monochromatic points
that can be separated from the rest by a circle and it is well-known that m such points always
form a connected component in the Delaunay graph, thus a monochromatic cluster in our
case.

6 Open questions

One of the most interesting questions left open is about unit disks. Is there an m such that
every point set in the plane can be three-colored such that every unit disk containing exactly
m points contains at least two colors?

In fact, this conjecture has a strengthening in the dual, cover-decomposition problem. Is
there an m such that every m-fold covering of P by disks can be partitioned into three parts
such that any two parts cover P?

If there is a counterexample to these questions, then it has to be quite different from ours,
as already the two-color version [19] needed the realization of a different hypergraph.
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Coloring questions are also interesting in higher dimensions. Suppose we have a set of
points and a family of balls in R

d. How many colors are needed to color the points such
that none of the balls that contain at least m points are monochromatic? Theorem 1 can be
extended to show that in some cases we need d+2 colors. On the other hand, no upper bound
is known already for d = 3 that would not depend on m.
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