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A Generalization of the Graph Packing Theorems of

Sauer-Spencer and Brandt

Hemanshu Kaul Benjamin Reiniger

Abstract

We prove a common generalization of the celebrated Sauer-Spencer packing theorem
and a theorem of Brandt concerning finding a copy of a tree inside a graph. This proof
leads to the characterization of the extremal graphs in the case of Brandt’s theorem: If
G is a graph and F is a forest, both on n vertices, and 3∆(G)+ ℓ∗(F ) ≤ n, then G and F
pack unless n is even, G = n

2
K2 and F = K1,n−1; where ℓ∗(F ) is the difference between

the number of leaves and twice the number of nontrivial components of F .

1 Introduction

Given two graphs G and H both on n vertices, we say that G and H pack if there is
a bijection f : V (G) → V (H) such that for every uv ∈ E(G), f(u)f(v) /∈ E(H); in other
words, edge-disjoint copies of G and H can be found in Kn, or equivalently, G is isomorphic
to a subgraph of the complement of H. This concept leads to a natural generalization of a
number of problems in extremal graph theory, such as existence of a fixed subgraph, equitable
colorings, and Turan-type problems. The study of packing of graphs was started in the 1970s
by Bollobás and Eldridge [3], Sauer and Spencer [16], and Catlin [6]. See the surveys by
Kierstead et al. [15], Wozniak [18], and Yap [19] for later developments in this field. In the
following, we will use ∆(G) (δ(G)) to denote the maximum (resp., minimum) degree of a
graph G.

The major conjecture in graph packing is that of Bollobás and Eldridge [3], and indepen-
dently by Catlin [7], from 1978, that (∆(G)+ 1)(∆(H) + 1) ≤ n+1 is sufficient for G and H
to pack. Some partial results are known, e.g. [11, 13, 1, 2, 8, 9, 17].

In 1978, Sauer and Spencer proved the following celebrated result.

Theorem 1 (Sauer, Spencer [16]). Let G,H be graphs on n vertices such that 2∆(G)∆(H) <
n. Then G and H pack.

Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616. Email:
kaul@iit.edu, ben.reiniger-math@yahoo.com.

1

http://arxiv.org/abs/2111.12762v1


Kaul and Kostochka [12] strengthened the result by characterizing the extremal graphs:
if 2∆(G)∆(H) = n and G and H fail to pack, then n is even, one of the graphs is n

2K2, and
the other is either Kn/2,n/2 (with n/2 odd) or contains Kn/2+1.

Let ℓ(F ) denote the number of leaves in a forest F . In 1994, Brandt [5] proved that if G
is a graph and T is a tree, both on n vertices, and ℓ(T ) ≤ 3δ(G)− 2n+4, then G contains a
copy of T . This can be rephrased in terms of packing.

Theorem 2 (Brandt [5]). If G is a graph and T is a tree, both on n vertices, and

3∆(G) + ℓ(T )− 2 < n,

then G and T pack.

We need a generalization of this theorem to a forest F , which is straightforward and
motivates the following definition.

Definition. The excess leaves of a forest F , denoted ℓ∗(F ), is
∑

v∈V (F )max{d(v) − 2, 0}.

Note that linear forests are precisely the forests with zero excess leaves. We also have that
ℓ∗(F ) equals the number of leaves of F minus twice the number of nontrivial components of
F (those having at least two vertices), and that for a tree T , ℓ∗(T ) = ℓ(T )− 2.1

Corollary 3. If G is a graph and F is a forest, both on n vertices, and 3∆(G) + ℓ∗(T ) < n,
then G and F pack.

Proof. Iteratively add edges joining leaves of distinct nontrivial components of F ; each such
addition does not change ℓ∗. When there is only one nontrivial component left, iteratively
add edges from any leaf to the remaining (isolated) vertices; again ℓ∗ is preserved. Now we
have a tree, for which ℓ∗ = ℓ− 2. Brandt’s theorem now applies, so that G and the new tree
pack, and deleting the added edges gives a packing of G with F .

Corollary 3 is sharp when n is even, with G = n
2K2 and F = K1,n−1. We will prove that

this is the only pair of extremal graphs, strengthening Brandt’s result as follows.

Theorem 4. If G is a graph and F is a forest, both on n vertices, and

3∆(G) + ℓ∗(F ) ≤ n,

then G and F pack unless n is even, G = n
2K2, and F = K1,n−1.

To accomplish this, we will first prove the following theorem, which generalizes both the
Sauer-Spencer and Brandt packing theorems.

1For these, consider the sum
∑

i≥0
(i− 2)ni, where ni is the number of vertices with degree i.
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Theorem 5. Let G be a graph and H a c-degenerate graph, both on n vertices. Let d
(G)
1 ≥

d
(G)
2 ≥ · · · ≥ d

(G)
n be the degree sequence of G, and similarly for H. If

∆(G)
∑

i=1

d
(H)
i +

c
∑

j=1

d
(G)
j < n,

then G and H pack.

This strengthens Sauer-Spencer, since c ≤ ∆(H).
This also strengthens Brandt’s theorem: if H is a tree, then c = 1, so the second summa-

tion is just ∆(G). For the first summation,

∆(G)
∑

i=1

d
(H)
i = 2∆(G) +

∆(G)
∑

i=1

(

d
(H)
i − 2

)

≤ 2∆(G) + ℓ(H)− 2.

It is easy to construct examples of graphs G and H for which conditions in the Sauer-
Spencer theorem, Brandt’s theorem, or even the Bollobás, Eldridge, and Catlin conjecture
are not true, but Theorem 5 does apply.

The proof of Theorem 5 generally follows that of Sauer-Spencer. In the special setting of
Brandt’s theorem, the proof can be analyzed more closely to show that the only sharpness
example is the one mentioned above.

Theorem 5 is sharp itself, with several sharpness examples. It retains all the Sauer-Spencer
sharpness examples (with n even) mentioned earlier:

• H = n
2K2 and G ⊇ Kn/2+1

• H = n
2K2 and G = Kn/2,n/2, with n/2 odd

• H ⊇ Kn/2+1 and G = n
2K2

• H = Kn/2,n/2 and G = n
2K2, with n/2 odd

And it has an additional family of sharpness examples:

• H = Ks,n−s and G = n
2K2, with n even and s odd

(in particular, H = K1,n−1 and G = n
2K2)

We do not know whether these are all the sharpness examples, even if we restrict to the case
that H is a forest.

Question 6. What are the extremal graphs for Theorem 5? Do the above listed families of
graphs include all the extremal graphs for Theorem 5 when H is a forest?

Note that Theorem 4 shows that the only extremal graphs for that theorem have n even
and ∆(G) = 1. So, it is natural to ask:
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Question 7. By Theorem 4, 3∆(G) + ℓ∗(F ) < n+ 1 is a sufficient condition for packing of
a graph G and a forest F on n vertices when n is odd or ∆(G) ≥ 2. Is this statement sharp?
If yes, what are all its sharpness examples?

Degeneracy versions of the Sauer-Spencer packing theorem have been studied before, in [4]
and [14]. If we think of the condition in Sauer-Spencer as the sum of two terms: ∆(G)∆(H)+
∆(H)∆(G) < n, then Theorem 5 can be thought of as replacing ∆(H) by the degeneracy
c(H) in one the terms (in addition to other degree sequence related improvements). The
result in [4] replaces ∆(G) by c(G) in one term and ∆(H) by log∆(H) in the other. In [14],
∆(G) is replaced by (gcol(G) − 1) in one term and ∆(H) by (gcol(H) − 1) in the other,
where gcol denotes the game coloring number and gcol(G)−1 lies in between the degeneracy
and the maximum degree (see [14] for precise definition and details). It is natural to ask
for improvements or extensions of Theorem 5 by considering degree-sum conditions that
interplay between maximum degree, degeneracy, and game coloring number. For example,

does
∑gcol(G)−1

i=1 d
(H)
i +

∑gcol(H)−1
j=1 d

(G)
j < n suffice for a packing of G and H under the set-

up of Theorem 5? Or, does c1
∑⌈log∆(G)⌉

i=1 d
(H)
i < n and c2

∑c(H)
j=1 d

(G)
j < n for some fixed

constants c1 and c2 suffice?

2 Proofs

Throughout, we think of a bijective mapping f : V (G) → V (H) as the multigraph with
vertices V (G) and edges labelled by “G” or “H”. We speak of H- and G-edges, H- and
G-neighbors of vertices, and H-cliques, H-independent sets, etc. A link is a copy of P3 with
one H-edge and one G-edge, and a uv-link is a link with endpoints u and v; a GH-link from
u to v is a link with endpoints u, v whose edge incident to u is from G; similarly we have HG-
links. From a given mapping f , a uv-swap results in a new mapping f ′ with f ′(u) = f(v),
f ′(v) = f(u), and f ′ = f otherwise. A quasipacking of G with H is a mapping f whose
multigraph is simple except for a single pair of vertices joined by both an H-edge and a
G-edge; this pair is called the conflicting edge of the quasipacking.

Consider a pair of graphs (G,H), with H being c-degenerate, each on n vertices, that do
not pack; furthermore assume that H is edge-minimal with this property. Thus for any edge
e in H, G and H − e pack, and so there is a quasipacking of H and G with conflicting edge e.

Let u′ be a vertex of minimum positive degree in H, let x′ ∈ NH(u), and consider a
quasipacking f of G with H with conflicting edge u′x′. Let u = f−1(u′) and x = f−1(x′).
We will now consider the set of links from u to each vertex.

Consider a y ∈ V (G) \ {u, x}. Perform a uy-swap: since G and H do not pack, there
must be some conflicting edge, and such a conflict must involve an H-edge incident to either
u or y; together with the conflicting G-edge, we have a uy-link in the original quasipacking.
There are two links from u to itself, using the parallel edges ux in each order. Thus there
are at least n links from u in the original quasipacking f .
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The number of GH-links from u is at most
∑

y∈NG(u) degH(f(y)). The number of HG-

links from u is at most
∑

z′∈NH(u′) degG(f
−1(z′)). Hence we have

n ≤ # links from u ≤
∑

y∈NG(u)

degH(f(y)) +
∑

z′∈NH (u′)

degG(f
−1(z′)) ≤

∆(G)
∑

i=1

d
(H)
i +

c
∑

j=1

d
(G)
j .

(1)
This establishes Theorem 5.

To prove Theorem 4, suppose additionally that H is a forest, henceforth called F , and
that 3∆(G) + ℓ∗(F ) = n. (So, we still assume that G and F do not pack, and that F is
edge-minimal with this property.)

If ∆(G) = 1, then it is easy to show that n is even, G = n
2K2, and F = K1,n−1. (In fact,

such a G will pack with any bipartite graph that is not complete bipartite.) So we henceforth
assume that ∆(G) > 1, and seek a contradiction.

Lemma 8. For any leaf u′ of F and x′ its neighbor, and a quasipacking f of G with F with
f(u) = u′ and f(x) = x′ and conflicting edge ux, we have the following.

1. For every y ∈ V (G) \ {u, x}, there is a unique link from u to y; there is no link from u to
x; and there are two links from u to itself.

2. degG(x) = degG(u) = ∆(G).

3. For every w ∈ NG(u), degF (f(w)) ≥ 2.

4. For every w /∈ NG(u), degF (f(w)) ≤ 2.

Proof. Note that we now have degF (u
′) = 1, so

∑

z′∈NF (u′) degG(f
−1(z′)) = degG(x). In this

case we can expand on (1):

n ≤ # links from u ≤
∑

y∈NG(u)

degF (f(y)) + degG(x) (2)

≤
∑

y∈NG(u)

(

degF (f(y))− 2
)

+ 2∆(G) + ∆(G) (3)

≤
∑

y∈NG(u)

max{degF (f(y))− 2, 0} + 3∆(G) (4)

≤

n
∑

i=1

max{d
(F )
i − 2, 0} + 3∆(G) = ℓ∗(F ) + 3∆(G) = n, (5)

so we have equality throughout. Conclusion i follows from having equality in line (i + 1)
above, for i ∈ [4].
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For a vertex v in a graph H, we write NH [v] for the closed neighborhood, i.e. NH(v)∪{v}.
For a set S of vertices, NH(S) =

⋃

v∈S NH(v)− S.

Lemma 9. For any leaf u′ of F and x′ its neighbor, and a quasipacking f of G with F with
f(u) = u′ and f(x) = x′ and conflicting edge ux, we have the following.

1. NG[u] = NG[x].

2. Let Q = NG[u]. Then G[Q] is a clique component.

Proof. Proof of part 1.
Let A = NG(u) − NG[x], B = NG(u) ∩ NG(x), C = NG(x) − NG[u]. Also, let NA =

NF (f(A)), NB = NF (f(B)), NC = NF (f(C)), and Nx = NF (x
′).

We will show that A = NA = NC = C = ∅.

A

NA

B

NB

C

Nx
u/u′ x/x′

ux-swap
−−−−−→ A

NA

B

NB

C

Nx
u/x′ x/u′

Figure 1: Left: the quasipacking f , with G-edges dashed and F -edges solid. Right: the result
after the ux-swap.

Note that B ∪ C ∪ {u} is precisely the set of vertices with an FG-link from u. By
Lemma 8(1), there are no F -edges from A to x, else x would have a GF -link; and there are
no F -edges from A to B ∪ C ∪ Nx, else such an endpoint in B ∪ C ∪ Nx would have two
links. So for each vertex of A to have exactly one link, F [f(A)] must be a perfect matching.
Furthermore, the F -edges incident to A only have endpoints in A ∪NA. Each vertex of NA

must have exactly one F -edge from A (to have one link). And by Lemma 8(3), each vertex
of A has at least one F -neighbor in NA. Note that we thus have |NA| ≥ |A|. The vertices
of NA, NB , Nx all have GF -links by definition, and to have exactly one, these sets must be
disjoint. Thus we have that {u, x}, A,B,C,NA, NB , Nx is a partition of V (G). See the left
side of Figure 1.

Now perform a ux-swap. In Figure 1, we visualize with V (G) fixed, so just the F -edges
adjacent to u′ and x′ move; roughly speaking, we just interchange the roles of u and x and
those of A and C. The result is again a quasipacking with ux the only conflicting edge. The
F -neighbors of u are precisely Nx. Repeating the arguments of the last paragraph, for each
vertex of NC to have exactly one link, we must have |NC | ≥ |C|. Suppose that A 6= ∅. Then
since |NA| ≥ |A|, NA 6= ∅ as well. Now, the only possible links (from x) to vertices in NA

are GF -links through C; hence NC = NA, and the F -edges incident to C have endpoints
in C ∪ NA. Furthermore, since NC = NA 6= ∅, C 6= ∅ as well; so each vertex of NA has
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F -degree at least 2 (one edge from A and one from C). But also, by Lemma 8(3) applied to
the original and also this new quasipacking, every vertex of A and C has F -degree at least
2, with F -edges entirely in A ∪ C ∪NA. So F [f(A ∪ C ∪NA)] has minimum degree at least
2, contradicting that it is a forest, unless A = C = NA = ∅. Note that this implies that
NG[u] = NG[x] = {u, x} ∪B.

Proof of part 2.
This time perform a uy-swap for some vertex y ∈ Q \ {u, x} to get f̃ . The result is

again a quasipacking with yx the only conflicting edge, with f̃(y) = u′. By part 1, NG[y] =
NG[x] = Q. Since this holds for every y ∈ Q \ {u, x}, we have that Q is a clique; and since
degG(x) = ∆(G) by Lemma 8(2), G[Q] is a clique component of G.

Let u′ be a leaf in F , and let x′ be its neighbor. Consider a quasipacking f of G with F
with f(u) = u′ and f(x) = x′ and conflicting edge ux. (Such exists by the extremal choice of
F , as in the proof of Theorem 5.)

Let G[Q] be the clique component of G given in Lemma 9(2). Let z be a vertex of Q with
smallest F -degree larger than 1 (such a choice is possible, as degF (x

′) ≥ 2 by Lemma 8(3)),
and let z′ = f(z). Let z1, z2 ∈ V (G) be two F -neighbors of z.

In f , z1 and z2 each have exactly one F -edge into Q and at most one other F -edge, by
Lemma 8(1,4). So z1, z2 have no F -neighbors inside Q except z. From this and that Q is a
G-clique in the quasipacking, the set Q ∪ {z1, z2} \ {z} is F -independent (whether z = x or
not) except perhaps the conflicting edge ux. So Q ∪ {z1, z2} \ {u, z} is F -independent. Let
X = f(Q ∪ {z1, z2} \ {u, z}).

Let g : V (G) → V (F ) be a bijection such that g(Q) = X. Since G[Q] is a clique
component and X is independent, g is a packing if and only if g|G−Q is a packing of G −Q
with F −X.

Claim: degF (z
′) ≥ 4.

Suppose to the contrary that degF (z
′) ≤ 3. We have taken two of the neighbors of z into X,

so degF−X(z′) ≤ 1. And z′ is the only vertex of F −X that may have degree larger than 2,
by Lemma 8(4). That is, F −X is a linear forest. We have that ∆(G−Q) ≤ ∆(G) ≤ n

3 , so

δ(G −Q) = |V (G−Q)| − 1−∆(G−Q)

= n− (∆(G) + 1)− 1−∆(G−Q)

≥ n−
3

2
∆(G)−

1

2
∆(G)− 2

≥
1

2
n−

1

2
∆(G)− 2

=
1

2
|V (G−Q)|,

and so Dirac’s condition for Hamiltonicity applies ([10]). Since G−Q contains a Hamiltonian
cycle, it also contains the linear forest F −X, i.e. F −X and G − Q pack, a contradiction.
This completes the proof of the Claim.
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This Claim, together with having z′ /∈ X but its two neighbors z1, z2 ∈ X, gives us the
inequality

ℓ∗(F −X) =
∑

v∈V (F−X)

max{degF−X(v) − 2, 0}

≤ −2 +
∑

v∈V (F−X)

max{degF (v) − 2, 0}

= −2 +
∑

v∈V (F )

max{degF (v) − 2, 0} −
∑

v∈X

max{degF (v) − 2, 0}

= −2 + ℓ∗(F )−
∑

v∈X

max{degF (v)− 2, 0}.

From Lemma 8(3), every vertex of f(Q− u) has F -degree at least two; and since z′ was
chosen to have smallest F -degree among the non-leaves of f(Q), the Claim gives that they
must in fact have degree at least four. All these vertices except z′ are in X, so we have at

least ∆(G) − 1 vertices of X with degree at least 4. Hence 2 +
∑

v∈X

max{degF (v) − 2, 0} ≥

2∆(G) > ∆(G) + 1, so

3∆(G−Q) + ℓ∗(F −X) ≤ 3∆(G) + ℓ∗(F )− 2−
∑

v∈X

max{degF (v)− 2, 0}

= n− 2−
∑

v∈X

max{degF (v)− 2, 0}

< n−∆(G)− 1

= |V (G−Q)|.

Thus, by Theorem 5, G −Q and F −X pack, a contradiction. This completes the proof of
Theorem 4.

Acknowledgment. The authors thank the anonymous referees for their helpful sugges-
tions for improving the exposition.
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