A Generalization of the Graph Packing Theorems of Sauer-Spencer and Brandt

Hemanshu Kaul Benjamin Reiniger

Abstract

We prove a common generalization of the celebrated Sauer-Spencer packing theorem and a theorem of Brandt concerning finding a copy of a tree inside a graph. This proof leads to the characterization of the extremal graphs in the case of Brandt's theorem: If G is a graph and F is a forest, both on n vertices, and $3 \Delta(G)+\ell^{*}(F) \leq n$, then G and F pack unless n is even, $G=\frac{n}{2} K_{2}$ and $F=K_{1, n-1}$; where $\ell^{*}(F)$ is the difference between the number of leaves and twice the number of nontrivial components of F.

1 Introduction

Given two graphs G and H both on n vertices, we say that G and H pack if there is a bijection $f: V(G) \rightarrow V(H)$ such that for every $u v \in E(G), f(u) f(v) \notin E(H)$; in other words, edge-disjoint copies of G and H can be found in K_{n}, or equivalently, G is isomorphic to a subgraph of the complement of H. This concept leads to a natural generalization of a number of problems in extremal graph theory, such as existence of a fixed subgraph, equitable colorings, and Turan-type problems. The study of packing of graphs was started in the 1970s by Bollobás and Eldridge [3], Sauer and Spencer [16], and Catlin [6]. See the surveys by Kierstead et al. [15], Wozniak [18], and Yap [19] for later developments in this field. In the following, we will use $\Delta(G)(\delta(G))$ to denote the maximum (resp., minimum) degree of a graph G.

The major conjecture in graph packing is that of Bollobás and Eldridge 3, and independently by Catlin [7], from 1978, that $(\Delta(G)+1)(\Delta(H)+1) \leq n+1$ is sufficient for G and H to pack. Some partial results are known, e.g. [11, 13, 1, 2, 8, 8, 17].

In 1978, Sauer and Spencer proved the following celebrated result.
Theorem 1 (Sauer, Spencer [16). Let G, H be graphs on n vertices such that $2 \Delta(G) \Delta(H)<$ n. Then G and H pack.

[^0]Kaul and Kostochka [12] strengthened the result by characterizing the extremal graphs: if $2 \Delta(G) \Delta(H)=n$ and G and H fail to pack, then n is even, one of the graphs is $\frac{n}{2} K_{2}$, and the other is either $K_{n / 2, n / 2}$ (with $n / 2$ odd) or contains $K_{n / 2+1}$.

Let $\ell(F)$ denote the number of leaves in a forest F. In 1994, Brandt [5] proved that if G is a graph and T is a tree, both on n vertices, and $\ell(T) \leq 3 \delta(G)-2 n+4$, then G contains a copy of T. This can be rephrased in terms of packing.

Theorem 2 (Brandt [5). If G is a graph and T is a tree, both on n vertices, and

$$
3 \Delta(G)+\ell(T)-2<n,
$$

then G and T pack.

We need a generalization of this theorem to a forest F, which is straightforward and motivates the following definition.

Definition. The excess leaves of a forest F, denoted $\ell^{*}(F)$, is $\sum_{v \in V(F)} \max \{d(v)-2,0\}$.
Note that linear forests are precisely the forests with zero excess leaves. We also have that $\ell^{*}(F)$ equals the number of leaves of F minus twice the number of nontrivial components of F (those having at least two vertices), and that for a tree $\left.T, \ell^{*}(T)=\ell(T)-2.\right]$

Corollary 3. If G is a graph and F is a forest, both on n vertices, and $3 \Delta(G)+\ell^{*}(T)<n$, then G and F pack.

Proof. Iteratively add edges joining leaves of distinct nontrivial components of F; each such addition does not change ℓ^{*}. When there is only one nontrivial component left, iteratively add edges from any leaf to the remaining (isolated) vertices; again ℓ^{*} is preserved. Now we have a tree, for which $\ell^{*}=\ell-2$. Brandt's theorem now applies, so that G and the new tree pack, and deleting the added edges gives a packing of G with F.

Corollary 3 is sharp when n is even, with $G=\frac{n}{2} K_{2}$ and $F=K_{1, n-1}$. We will prove that this is the only pair of extremal graphs, strengthening Brandt's result as follows.

Theorem 4. If G is a graph and F is a forest, both on n vertices, and

$$
3 \Delta(G)+\ell^{*}(F) \leq n,
$$

then G and F pack unless n is even, $G=\frac{n}{2} K_{2}$, and $F=K_{1, n-1}$.
To accomplish this, we will first prove the following theorem, which generalizes both the Sauer-Spencer and Brandt packing theorems.

[^1]Theorem 5. Let G be a graph and H a c-degenerate graph, both on n vertices. Let $d_{1}^{(G)} \geq$ $d_{2}^{(G)} \geq \cdots \geq d_{n}^{(G)}$ be the degree sequence of G, and similarly for H. If

$$
\sum_{i=1}^{\Delta(G)} d_{i}^{(H)}+\sum_{j=1}^{c} d_{j}^{(G)}<n
$$

then G and H pack.
This strengthens Sauer-Spencer, since $c \leq \Delta(H)$.
This also strengthens Brandt's theorem: if H is a tree, then $c=1$, so the second summation is just $\Delta(G)$. For the first summation,

$$
\sum_{i=1}^{\Delta(G)} d_{i}^{(H)}=2 \Delta(G)+\sum_{i=1}^{\Delta(G)}\left(d_{i}^{(H)}-2\right) \leq 2 \Delta(G)+\ell(H)-2
$$

It is easy to construct examples of graphs G and H for which conditions in the SauerSpencer theorem, Brandt's theorem, or even the Bollobás, Eldridge, and Catlin conjecture are not true, but Theorem 5 does apply.

The proof of Theorem 5 generally follows that of Sauer-Spencer. In the special setting of Brandt's theorem, the proof can be analyzed more closely to show that the only sharpness example is the one mentioned above.

Theorem 5 is sharp itself, with several sharpness examples. It retains all the Sauer-Spencer sharpness examples (with n even) mentioned earlier:

- $H=\frac{n}{2} K_{2}$ and $G \supseteq K_{n / 2+1}$
- $H=\frac{n}{2} K_{2}$ and $G=K_{n / 2, n / 2}$, with $n / 2$ odd
- $H \supseteq K_{n / 2+1}$ and $G=\frac{n}{2} K_{2}$
- $H=K_{n / 2, n / 2}$ and $G=\frac{n}{2} K_{2}$, with $n / 2$ odd

And it has an additional family of sharpness examples:

- $H=K_{s, n-s}$ and $G=\frac{n}{2} K_{2}$, with n even and s odd
(in particular, $H=K_{1, n-1}^{2}$ and $G=\frac{n}{2} K_{2}$)
We do not know whether these are all the sharpness examples, even if we restrict to the case that H is a forest.

Question 6. What are the extremal graphs for Theorem [5? Do the above listed families of graphs include all the extremal graphs for Theorem 5 when H is a forest?

Note that Theorem 4 shows that the only extremal graphs for that theorem have n even and $\Delta(G)=1$. So, it is natural to ask:

Question 7. By Theorem 目, $3 \Delta(G)+\ell^{*}(F)<n+1$ is a sufficient condition for packing of a graph G and a forest F on n vertices when n is odd or $\Delta(G) \geq 2$. Is this statement sharp? If yes, what are all its sharpness examples?

Degeneracy versions of the Sauer-Spencer packing theorem have been studied before, in 4] and [14. If we think of the condition in Sauer-Spencer as the sum of two terms: $\Delta(G) \Delta(H)+$ $\Delta(H) \Delta(G)<n$, then Theorem 5 can be thought of as replacing $\Delta(H)$ by the degeneracy $c(H)$ in one the terms (in addition to other degree sequence related improvements). The result in [4] replaces $\Delta(G)$ by $c(G)$ in one term and $\Delta(H)$ by $\log \Delta(H)$ in the other. In [14], $\Delta(G)$ is replaced by $(\operatorname{gcol}(G)-1)$ in one term and $\Delta(H)$ by $(\operatorname{gcol}(H)-1)$ in the other, where gcol denotes the game coloring number and $\operatorname{gcol}(G)-1$ lies in between the degeneracy and the maximum degree (see [14] for precise definition and details). It is natural to ask for improvements or extensions of Theorem 5 by considering degree-sum conditions that interplay between maximum degree, degeneracy, and game coloring number. For example, does $\sum_{i=1}^{g c o l(G)-1} d_{i}^{(H)}+\sum_{j=1}^{g c o l(H)-1} d_{j}^{(G)}<n$ suffice for a packing of G and H under the setup of Theorem [5? Or, does $c_{1} \sum_{i=1}^{\lceil\log \Delta(G)\rceil} d_{i}^{(H)}<n$ and $c_{2} \sum_{j=1}^{c(H)} d_{j}^{(G)}<n$ for some fixed constants c_{1} and c_{2} suffice?

2 Proofs

Throughout, we think of a bijective mapping $f: V(G) \rightarrow V(H)$ as the multigraph with vertices $V(G)$ and edges labelled by " G " or " H ". We speak of H - and G-edges, H - and G-neighbors of vertices, and H-cliques, H-independent sets, etc. A link is a copy of P_{3} with one H-edge and one G-edge, and a $u v$-link is a link with endpoints u and v; a $G H$-link from u to v is a link with endpoints u, v whose edge incident to u is from G; similarly we have $H G$ links. From a given mapping f, a uv-swap results in a new mapping f^{\prime} with $f^{\prime}(u)=f(v)$, $f^{\prime}(v)=f(u)$, and $f^{\prime}=f$ otherwise. A quasipacking of G with H is a mapping f whose multigraph is simple except for a single pair of vertices joined by both an H-edge and a G-edge; this pair is called the conflicting edge of the quasipacking.

Consider a pair of graphs (G, H), with H being c-degenerate, each on n vertices, that do not pack; furthermore assume that H is edge-minimal with this property. Thus for any edge e in H, G and $H-e$ pack, and so there is a quasipacking of H and G with conflicting edge e.

Let u^{\prime} be a vertex of minimum positive degree in H, let $x^{\prime} \in N_{H}(u)$, and consider a quasipacking f of G with H with conflicting edge $u^{\prime} x^{\prime}$. Let $u=f^{-1}\left(u^{\prime}\right)$ and $x=f^{-1}\left(x^{\prime}\right)$. We will now consider the set of links from u to each vertex.

Consider a $y \in V(G) \backslash\{u, x\}$. Perform a $u y$-swap: since G and H do not pack, there must be some conflicting edge, and such a conflict must involve an H-edge incident to either u or y; together with the conflicting G-edge, we have a $u y$-link in the original quasipacking. There are two links from u to itself, using the parallel edges $u x$ in each order. Thus there are at least n links from u in the original quasipacking f.

The number of $G H$-links from u is at most $\sum_{y \in N_{G}(u)} \operatorname{deg}_{H}(f(y))$. The number of $H G$ links from u is at most $\sum_{z^{\prime} \in N_{H}\left(u^{\prime}\right)} \operatorname{deg}_{G}\left(f^{-1}\left(z^{\prime}\right)\right)$. Hence we have

$$
\begin{equation*}
n \leq \# \text { links from } u \leq \sum_{y \in N_{G}(u)} \operatorname{deg}_{H}(f(y))+\sum_{z^{\prime} \in N_{H}\left(u^{\prime}\right)} \operatorname{deg}_{G}\left(f^{-1}\left(z^{\prime}\right)\right) \leq \sum_{i=1}^{\Delta(G)} d_{i}^{(H)}+\sum_{j=1}^{c} d_{j}^{(G)} . \tag{1}
\end{equation*}
$$

This establishes Theorem 5 .
To prove Theorem 4, suppose additionally that H is a forest, henceforth called F, and that $3 \Delta(G)+\ell^{*}(F)=n$. (So, we still assume that G and F do not pack, and that F is edge-minimal with this property.)

If $\Delta(G)=1$, then it is easy to show that n is even, $G=\frac{n}{2} K_{2}$, and $F=K_{1, n-1}$. (In fact, such a G will pack with any bipartite graph that is not complete bipartite.) So we henceforth assume that $\Delta(G)>1$, and seek a contradiction.

Lemma 8. For any leaf u^{\prime} of F and x^{\prime} its neighbor, and a quasipacking f of G with F with $f(u)=u^{\prime}$ and $f(x)=x^{\prime}$ and conflicting edge $u x$, we have the following.

1. For every $y \in V(G) \backslash\{u, x\}$, there is a unique link from u to y; there is no link from u to x; and there are two links from u to itself.
2. $\operatorname{deg}_{G}(x)=\operatorname{deg}_{G}(u)=\Delta(G)$.
3. For every $w \in N_{G}(u), \operatorname{deg}_{F}(f(w)) \geq 2$.
4. For every $w \notin N_{G}(u), \operatorname{deg}_{F}(f(w)) \leq 2$.

Proof. Note that we now have $\operatorname{deg}_{F}\left(u^{\prime}\right)=1$, so $\sum_{z^{\prime} \in N_{F}\left(u^{\prime}\right)} \operatorname{deg}_{G}\left(f^{-1}\left(z^{\prime}\right)\right)=\operatorname{deg}_{G}(x)$. In this case we can expand on (1):

$$
\begin{align*}
n \leq \# \text { links from } u & \leq \sum_{y \in N_{G}(u)} \operatorname{deg}_{F}(f(y))+\operatorname{deg}_{G}(x) \tag{2}\\
& \leq \sum_{y \in N_{G}(u)}\left(\operatorname{deg}_{F}(f(y))-2\right)+2 \Delta(G)+\Delta(G) \tag{3}\\
& \leq \sum_{y \in N_{G}(u)} \max \left\{\operatorname{deg}_{F}(f(y))-2,0\right\}+3 \Delta(G) \tag{4}\\
& \leq \sum_{i=1}^{n} \max \left\{d_{i}^{(F)}-2,0\right\}+3 \Delta(G)=\ell^{*}(F)+3 \Delta(G)=n, \tag{5}
\end{align*}
$$

so we have equality throughout. Conclusion i follows from having equality in line $(i+1)$ above, for $i \in[4]$.

For a vertex v in a graph H, we write $N_{H}[v]$ for the closed neighborhood, i.e. $N_{H}(v) \cup\{v\}$. For a set S of vertices, $N_{H}(S)=\bigcup_{v \in S} N_{H}(v)-S$.

Lemma 9. For any leaf u^{\prime} of F and x^{\prime} its neighbor, and a quasipacking f of G with F with $f(u)=u^{\prime}$ and $f(x)=x^{\prime}$ and conflicting edge $u x$, we have the following.

1. $N_{G}[u]=N_{G}[x]$.
2. Let $Q=N_{G}[u]$. Then $G[Q]$ is a clique component.

Proof. Proof of part 1 .
Let $A=N_{G}(u)-N_{G}[x], B=N_{G}(u) \cap N_{G}(x), C=N_{G}(x)-N_{G}[u]$. Also, let $N_{A}=$ $N_{F}(f(A)), N_{B}=N_{F}(f(B)), N_{C}=N_{F}(f(C))$, and $N_{x}=N_{F}\left(x^{\prime}\right)$.

We will show that $A=N_{A}=N_{C}=C=\varnothing$.

Figure 1: Left: the quasipacking f, with G-edges dashed and F-edges solid. Right: the result after the $u x$-swap.

Note that $B \cup C \cup\{u\}$ is precisely the set of vertices with an $F G$-link from u. By Lemma 8(1), there are no F-edges from A to x, else x would have a $G F$-link; and there are no F-edges from A to $B \cup C \cup N_{x}$, else such an endpoint in $B \cup C \cup N_{x}$ would have two links. So for each vertex of A to have exactly one link, $F[f(A)]$ must be a perfect matching. Furthermore, the F-edges incident to A only have endpoints in $A \cup N_{A}$. Each vertex of N_{A} must have exactly one F-edge from A (to have one link). And by Lemma 8(3), each vertex of A has at least one F-neighbor in N_{A}. Note that we thus have $\left|N_{A}\right| \geq|A|$. The vertices of N_{A}, N_{B}, N_{x} all have $G F$-links by definition, and to have exactly one, these sets must be disjoint. Thus we have that $\{u, x\}, A, B, C, N_{A}, N_{B}, N_{x}$ is a partition of $V(G)$. See the left side of Figure 1 .

Now perform a $u x$-swap. In Figure 1, we visualize with $V(G)$ fixed, so just the F-edges adjacent to u^{\prime} and x^{\prime} move; roughly speaking, we just interchange the roles of u and x and those of A and C. The result is again a quasipacking with $u x$ the only conflicting edge. The F-neighbors of u are precisely N_{x}. Repeating the arguments of the last paragraph, for each vertex of N_{C} to have exactly one link, we must have $\left|N_{C}\right| \geq|C|$. Suppose that $A \neq \varnothing$. Then since $\left|N_{A}\right| \geq|A|, N_{A} \neq \varnothing$ as well. Now, the only possible links (from x) to vertices in N_{A} are $G F$-links through C; hence $N_{C}=N_{A}$, and the F-edges incident to C have endpoints in $C \cup N_{A}$. Furthermore, since $N_{C}=N_{A} \neq \varnothing, C \neq \varnothing$ as well; so each vertex of N_{A} has
F-degree at least 2 (one edge from A and one from C). But also, by Lemma 8(3) applied to the original and also this new quasipacking, every vertex of A and C has F-degree at least 2, with F-edges entirely in $A \cup C \cup N_{A}$. So $F\left[f\left(A \cup C \cup N_{A}\right)\right]$ has minimum degree at least 2 , contradicting that it is a forest, unless $A=C=N_{A}=\varnothing$. Note that this implies that $N_{G}[u]=N_{G}[x]=\{u, x\} \cup B$.

Proof of part 2 .
This time perform a $u y$-swap for some vertex $y \in Q \backslash\{u, x\}$ to get \tilde{f}. The result is again a quasipacking with $y x$ the only conflicting edge, with $\tilde{f}(y)=u^{\prime}$. By part $\mathbb{1}, N_{G}[y]=$ $N_{G}[x]=Q$. Since this holds for every $y \in Q \backslash\{u, x\}$, we have that Q is a clique; and since $\operatorname{deg}_{G}(x)=\Delta(G)$ by Lemma $8(2), G[Q]$ is a clique component of G.

Let u^{\prime} be a leaf in F, and let x^{\prime} be its neighbor. Consider a quasipacking f of G with F with $f(u)=u^{\prime}$ and $f(x)=x^{\prime}$ and conflicting edge $u x$. (Such exists by the extremal choice of F, as in the proof of Theorem 5.

Let $G[Q]$ be the clique component of G given in Lemma (9(2). Let z be a vertex of Q with smallest F-degree larger than 1 (such a choice is possible, as $\operatorname{deg}_{F}\left(x^{\prime}\right) \geq 2$ by Lemma 8(3)), and let $z^{\prime}=f(z)$. Let $z_{1}, z_{2} \in V(G)$ be two F-neighbors of z.

In f, z_{1} and z_{2} each have exactly one F-edge into Q and at most one other F-edge, by Lemma 8(114). So z_{1}, z_{2} have no F-neighbors inside Q except z. From this and that Q is a G-clique in the quasipacking, the set $Q \cup\left\{z_{1}, z_{2}\right\} \backslash\{z\}$ is F-independent (whether $z=x$ or not) except perhaps the conflicting edge $u x$. So $Q \cup\left\{z_{1}, z_{2}\right\} \backslash\{u, z\}$ is F-independent. Let $X=f\left(Q \cup\left\{z_{1}, z_{2}\right\} \backslash\{u, z\}\right)$.

Let $g: V(G) \rightarrow V(F)$ be a bijection such that $g(Q)=X$. Since $G[Q]$ is a clique component and X is independent, g is a packing if and only if $\left.g\right|_{G-Q}$ is a packing of $G-Q$ with $F-X$.
Claim: $\operatorname{deg}_{F}\left(z^{\prime}\right) \geq 4$.
Suppose to the contrary that $\operatorname{deg}_{F}\left(z^{\prime}\right) \leq 3$. We have taken two of the neighbors of z into X, so $\operatorname{deg}_{F-X}\left(z^{\prime}\right) \leq 1$. And z^{\prime} is the only vertex of $F-X$ that may have degree larger than 2 , by Lemma 8(4). That is, $F-X$ is a linear forest. We have that $\Delta(G-Q) \leq \Delta(G) \leq \frac{n}{3}$, so

$$
\begin{aligned}
\delta(\overline{G-Q}) & =|V(G-Q)|-1-\Delta(G-Q) \\
& =n-(\Delta(G)+1)-1-\Delta(G-Q) \\
& \geq n-\frac{3}{2} \Delta(G)-\frac{1}{2} \Delta(G)-2 \\
& \geq \frac{1}{2} n-\frac{1}{2} \Delta(G)-2 \\
& =\frac{1}{2}|V(G-Q)|,
\end{aligned}
$$

and so Dirac's condition for Hamiltonicity applies (10). Since $\overline{G-Q}$ contains a Hamiltonian cycle, it also contains the linear forest $F-X$, i.e. $F-X$ and $G-Q$ pack, a contradiction. This completes the proof of the Claim.

This Claim, together with having $z^{\prime} \notin X$ but its two neighbors $z_{1}, z_{2} \in X$, gives us the inequality

$$
\begin{aligned}
\ell^{*}(F-X) & =\sum_{v \in V(F-X)} \max \left\{\operatorname{deg}_{F-X}(v)-2,0\right\} \\
& \leq-2+\sum_{v \in V(F-X)} \max \left\{\operatorname{deg}_{F}(v)-2,0\right\} \\
& =-2+\sum_{v \in V(F)} \max \left\{\operatorname{deg}_{F}(v)-2,0\right\}-\sum_{v \in X} \max \left\{\operatorname{deg}_{F}(v)-2,0\right\} \\
& =-2+\ell^{*}(F)-\sum_{v \in X} \max \left\{\operatorname{deg}_{F}(v)-2,0\right\}
\end{aligned}
$$

From Lemma $8(3)$, every vertex of $f(Q-u)$ has F-degree at least two; and since z^{\prime} was chosen to have smallest F-degree among the non-leaves of $f(Q)$, the Claim gives that they must in fact have degree at least four. All these vertices except z^{\prime} are in X, so we have at least $\Delta(G)-1$ vertices of X with degree at least 4. Hence $2+\sum_{v \in X} \max \left\{\operatorname{deg}_{F}(v)-2,0\right\} \geq$ $2 \Delta(G)>\Delta(G)+1$, so

$$
\begin{aligned}
3 \Delta(G-Q)+\ell^{*}(F-X) & \leq 3 \Delta(G)+\ell^{*}(F)-2-\sum_{v \in X} \max \left\{\operatorname{deg}_{F}(v)-2,0\right\} \\
& =n-2-\sum_{v \in X} \max \left\{\operatorname{deg}_{F}(v)-2,0\right\} \\
& <n-\Delta(G)-1 \\
& =|V(G-Q)|
\end{aligned}
$$

Thus, by Theorem [5, $G-Q$ and $F-X$ pack, a contradiction. This completes the proof of Theorem 4

Acknowledgment. The authors thank the anonymous referees for their helpful suggestions for improving the exposition.

References

[1] M. Aigner and S. Brandt. Embedding arbitrary graphs of maximum degree two. J. London Math. Soc. (2), 48(1):39-51, 1993.
[2] N. Alon and E. Fischer. 2-factors in dense graphs. Discrete Math., 152(1-3):13-23, 1996.
[3] B. Bollobás and S. E. Eldridge. Packings of graphs and applications to computational complexity. J. Combin. Theory Ser. B, 25(2):105-124, 1978.
[4] B. Bollobás, A. Kostochka, and K. Nakprasit. Packing d-degenerate graphs. J. Combin. Theory Ser. B, 98(1):85-94, 2008.
[5] S. Brandt. Subtrees and subforests of graphs. J. Combin. Theory Ser. B, 61(1):63-70, 1994.
[6] P. A. Catlin. Subgraphs of graphs. I. Discrete Math., 10:225-233, 1974.
[7] P. A. Catlin. Embedding subgraphs and coloring graphs under extremal degree conditions. ProQuest LLC, Ann Arbor, MI, 1976. Thesis (Ph.D.)-The Ohio State University.
[8] B. Csaba. On the Bollobás-Eldridge conjecture for bipartite graphs. Combinatorics, Probability and Computing, 16(5):661-691, 2007.
[9] B. Csaba, A. Shokoufandeh, and E. Szemerédi. Proof of a conjecture of Bollobás and Eldridge for graphs of maximum degree three. Combinatorica, 23(1):35-72, 2003. Paul Erdős and his mathematics (Budapest, 1999).
[10] G. A. Dirac. Some theorems on abstract graphs. Proceedings of the London Mathematical Society, s3-2(1):69-81, 1952.
[11] N. Eaton. A near packing of two graphs. J. Combin. Theory Ser. B, 80(1):98-103, 2000.
[12] H. Kaul and A. Kostochka. Extremal graphs for a graph packing theorem of Sauer and Spencer. Combin. Probab. Comput., 16(3):409-416, 2007.
[13] H. Kaul, A. Kostochka, and G. Yu. On a graph packing conjecture by Bollobás, Eldridge and Catlin. Combinatorica, 28(4):469-485, 2008.
[14] H. A. Kierstead and A. V. Kostochka. Efficient graph packing via game colouring. Combin. Probab. Comput., 18(5):765-774, 2009.
[15] H. A. Kierstead, A. V. Kostochka, and G. Yu. Extremal graph packing problems: Ore-type versus Dirac-type. In Surveys in combinatorics 2009, volume 365 of London Math. Soc. Lecture Note Ser., pages 113-135. Cambridge Univ. Press, Cambridge, 2009.
[16] N. Sauer and J. Spencer. Edge disjoint placement of graphs. J. Combin. Theory Ser. B, 25(3):295302, 1978.
[17] W. C. van Batenburg and R. J. Kang. Packing graphs of bounded codegree. Combin. Probab. Comput., 27(5):725-740, 2018.
[18] M. Woźniak. Packing of graphs. Dissertationes Math. (Rozprawy Mat.), 362:78, 1997.
[19] H. P. Yap. Packing of graphs-a survey. In Proceedings of the First Japan Conference on Graph Theory and Applications (Hakone, 1986), volume 72, pages 395-404, 1988.

[^0]: Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616. Email: kaul@iit.edu, ben.reiniger-math@yahoo.com.

[^1]: ${ }^{1}$ For these, consider the sum $\sum_{i \geq 0}(i-2) n_{i}$, where n_{i} is the number of vertices with degree i.

