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Abstract

We prove a common generalization of the celebrated Sauer-Spencer packing theorem
and a theorem of Brandt concerning finding a copy of a tree inside a graph. This proof
leads to the characterization of the extremal graphs in the case of Brandt’s theorem: If
G is a graph and F' is a forest, both on n vertices, and 3A(G) + ¢*(F) < n, then G and F'
pack unless n is even, G = § K3 and F' = Kj ,1; where ¢*(F) is the difference between
the number of leaves and twice the number of nontrivial components of F'.

1 Introduction

Given two graphs G and H both on n vertices, we say that G and H pack if there is
a bijection f : V(G) — V(H) such that for every uv € E(G), f(u)f(v) ¢ E(H); in other
words, edge-disjoint copies of G and H can be found in K,, or equivalently, G is isomorphic
to a subgraph of the complement of H. This concept leads to a natural generalization of a
number of problems in extremal graph theory, such as existence of a fixed subgraph, equitable
colorings, and Turan-type problems. The study of packing of graphs was started in the 1970s
by Bollobéds and Eldridge [3], Sauer and Spencer [16], and Catlin [6]. See the surveys by
Kierstead et al. [15], Wozniak [18], and Yap [19] for later developments in this field. In the
following, we will use A(G) (6(G)) to denote the maximum (resp., minimum) degree of a
graph G.

The major conjecture in graph packing is that of Bollobés and Eldridge [3], and indepen-
dently by Catlin [7], from 1978, that (A(G)+ 1)(A(H) + 1) < n+1 is sufficient for G and H

to pack. Some partial results are known, e.g. [I1], 13} [ 2, [8, 9} 17].
In 1978, Sauer and Spencer proved the following celebrated result.

Theorem 1 (Sauer, Spencer [16]). Let G, H be graphs on n vertices such that 2A(G)A(H) <
n. Then G and H pack.
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Kaul and Kostochka [12] strengthened the result by characterizing the extremal graphs:
if 2A(G)A(H) =n and G and H fail to pack, then n is even, one of the graphs is § K, and
the other is either K, 5 ,,/5 (With n/2 odd) or contains K, /5.

Let ¢(F') denote the number of leaves in a forest F. In 1994, Brandt [5] proved that if G
is a graph and T is a tree, both on n vertices, and ¢(T) < 36(G) — 2n + 4, then G contains a
copy of T'. This can be rephrased in terms of packing.

Theorem 2 (Brandt [5]). If G is a graph and T is a tree, both on n vertices, and
3A(G) +4(T) -2 < n,
then G and T pack.

We need a generalization of this theorem to a forest F', which is straightforward and
motivates the following definition.

Definition. The excess leaves of a forest F', denoted {*(F), is 3, cy () max{d(v) — 2,0}.

Note that linear forests are precisely the forests with zero excess leaves. We also have that
0*(F) equals the number of leaves of F' minus twice the number of nontrivial components of
F' (those having at least two vertices), and that for a tree T', *(T) = ¢(T) — 2

Corollary 3. If G is a graph and F is a forest, both on n vertices, and 3A(G) + *(T) < n,
then G and F pack.

Proof. Tteratively add edges joining leaves of distinct nontrivial components of F'; each such
addition does not change ¢*. When there is only one nontrivial component left, iteratively
add edges from any leaf to the remaining (isolated) vertices; again ¢* is preserved. Now we
have a tree, for which ¢* = ¢ — 2. Brandt’s theorem now applies, so that G and the new tree
pack, and deleting the added edges gives a packing of G with F. O

Corollary [Bis sharp when n is even, with G = §K3 and F' = Ky, 1. We will prove that
this is the only pair of extremal graphs, strengthening Brandt’s result as follows.

Theorem 4. If G is a graph and F is a forest, both on n vertices, and
3A(G) +¢*(F) <n,
then G and F pack unless n is even, G = 5Kz, and F' = Ky 5,_1.

To accomplish this, we will first prove the following theorem, which generalizes both the
Sauer-Spencer and Brandt packing theorems.

'For these, consider the sum > is0(t — 2)n,, where n; is the number of vertices with degree 1.



Theorem 5. Let G be a graph and H a c-degenerate graph, both on n vertices. Let dgG) >
dgG) > > dﬁf") be the degree sequence of G, and similarly for H. If

A(G

) c
dZ(H) + Z dé-G) <n,
i=1 j=1

then G and H pack.

This strengthens Sauer-Spencer, since ¢ < A(H).
This also strengthens Brandt’s theorem: if H is a tree, then ¢ = 1, so the second summa-
tion is just A(G). For the first summation,

A(G) A(G)
d™ =20(G) + Y (d) —2) <2A(G) + o(H) - 2.
i=1 i=1

It is easy to construct examples of graphs G and H for which conditions in the Sauer-
Spencer theorem, Brandt’s theorem, or even the Bollobds, Eldridge, and Catlin conjecture
are not true, but Theorem B does apply.

The proof of Theorem [l generally follows that of Sauer-Spencer. In the special setting of
Brandt’s theorem, the proof can be analyzed more closely to show that the only sharpness
example is the one mentioned above.

Theorem [(lis sharp itself, with several sharpness examples. It retains all the Sauer-Spencer
sharpness examples (with n even) mentioned earlier:

e H=5K;and G 2 K241
e H=75Kand G = Ky, 3,5, with n/2 odd
e HD K,y and G = 5K3
o H=K,n,/ and G = 5K>, with n/2 odd
And it has an additional family of sharpness examples:

o H=K;,;, sand G = 5K3, with n even and s odd
(in particular, H = K1 ,1 and G = 5K>)

We do not know whether these are all the sharpness examples, even if we restrict to the case
that H is a forest.

Question 6. What are the extremal graphs for Theorem [H? Do the above listed families of
graphs include all the extremal graphs for Theorem [ when H is a forest?

Note that Theorem [ shows that the only extremal graphs for that theorem have n even
and A(G) = 1. So, it is natural to ask:



Question 7. By Theorem [} 3A(G) + ¢*(F) < n+ 1 is a sufficient condition for packing of
a graph G and a forest F' on n vertices when n is odd or A(G) > 2. Is this statement sharp?
If yes, what are all its sharpness examples?

Degeneracy versions of the Sauer-Spencer packing theorem have been studied before, in [4]
and [14]. If we think of the condition in Sauer-Spencer as the sum of two terms: A(G)A(H)+
A(H)A(G) < n, then Theorem [B] can be thought of as replacing A(H) by the degeneracy
¢(H) in one the terms (in addition to other degree sequence related improvements). The
result in [4] replaces A(G) by ¢(G) in one term and A(H) by log A(H) in the other. In [14],
A(G) is replaced by (geol(G) — 1) in one term and A(H) by (gcol(H) — 1) in the other,
where gcol denotes the game coloring number and gcol(G) —1 lies in between the degeneracy
and the maximum degree (see [14] for precise definition and details). It is natural to ask
for improvements or extensions of Theorem [G] by considering degree-sum conditions that
interplay between maximum degree degeneracy, and game coloring number. For example,
does Zgwl(c d(H ZQCOl § ) < n suffice for a packing of G and H under the set-

up of Theorem 7 Or, does ¢; ZiﬂzolgA(Gﬂ dZ(H) < n and ¢y Z;g) dg-G) < n for some fixed
constants ¢; and ¢y suffice?

2 Proofs

Throughout, we think of a bijective mapping f : V(G) — V(H) as the multigraph with
vertices V(G) and edges labelled by “G” or “H”. We speak of H- and G-edges, H- and
G-neighbors of vertices, and H-cliques, H-independent sets, etc. A link is a copy of P3 with
one H-edge and one G-edge, and a uv-link is a link with endpoints u and v; a GH -link from
u to v is a link with endpoints u, v whose edge incident to u is from G; similarly we have HG-
links. From a given mapping f, a uv-swap results in a new mapping f' with f'(u) = f(v),
f'(v) = f(u), and f' = f otherwise. A quasipacking of G with H is a mapping f whose
multigraph is simple except for a single pair of vertices joined by both an H-edge and a
G-edge; this pair is called the conflicting edge of the quasipacking.

Consider a pair of graphs (G, H), with H being c-degenerate, each on n vertices, that do
not pack; furthermore assume that H is edge-minimal with this property. Thus for any edge
e in H, G and H — e pack, and so there is a quasipacking of H and GG with conflicting edge e.

Let « be a vertex of minimum positive degree in H, let ' € Ny(u), and consider a
quasipacking f of G' with H with conflicting edge v/z’. Let u = f~'(v/) and = = f~1(z').
We will now consider the set of links from u to each vertex.

Consider a y € V(G) \ {u,x}. Perform a uy-swap: since G and H do not pack, there
must be some conflicting edge, and such a conflict must involve an H-edge incident to either
u or y; together with the conflicting G-edge, we have a uy-link in the original quasipacking.
There are two links from u to itself, using the parallel edges uz in each order. Thus there
are at least n links from w in the original quasipacking f.



The number of GH-links from w is at most 3, ¢y (,) degy(f(y)). The number of HG-
links from w is at most }_ ¢y, () dega(f ~1(2')). Hence we have

A(@)
n < # links from u < Z degy (f(y)) + Z degG 1) < Z d(H +Zd
yENG(u) z ENH =1
(1)
This establishes Theorem [l

To prove Theorem M| suppose additionally that H is a forest, henceforth called F, and
that 3A(G) + ¢*(F) = n. (So, we still assume that G and F' do not pack, and that F' is
edge-minimal with this property.)

If A(G) =1, then it is easy to show that n is even, G = § K5, and F' = K1 ,_1. (In fact,
such a G will pack with any bipartite graph that is not complete bipartite.) So we henceforth
assume that A(G) > 1, and seek a contradiction.

Lemma 8. For any leaf v’ of F' and ' its neighbor, and a quasipacking f of G with F with
f(u) =u and f(x) = 2" and conflicting edge uz, we have the following.

1. For everyy € V(G) \ {u,z}, there is a unique link from u to y; there is no link from u to
x; and there are two links from u to itself.

2. degq(z) = degn(u) = A(G).
3. For every w € Ng(u), degp(f(w)) > 2.
4. For every w ¢ Ng(u), degp(f(w)) < 2.

Proof. Note that we now have degp(u') =1, 50 3~/ v, () deg(f~1(2')) = degg(x). In this
case we can expand on (]):

n < # links from u < Z degp(f(y)) + degg(x) (2)
yENG(u)

< Y0 (degp(f(y) —2) +2A(G) + A(G) (3)
yeNG (u)

< Y max{degp(f(y) — 2,0} +3A(G) (4)
yENG(u)

< f: max{d\") — 2,0} + 3A(G) = ¢*(F) + 3A(G) =n,  (5)

i=1

so we have equality throughout. Conclusion i follows from having equality in line (i + 1)
above, for i € [4]. O



For a vertex v in a graph H, we write Ng[v] for the closed neighborhood, i.e. Ny (v)U{v}.
For a set S of vertices, Ng(S) = U,eg Nu(v) = S.

Lemma 9. For any leaf v’ of F' and ' its neighbor, and a quasipacking f of G with F with
f(u) =u and f(x) = 2" and conflicting edge uz, we have the following.

1. Ng[u] = Nglz].
2. Let QQ = Ng[u]. Then G[Q)] is a clique component.

Proof. Proof of part [l

Let A = Ng(u) — Ng[z], B = Ng(u) N Ng(z), C = Ng(x) — Ng[u]. Also, let Ny =
Nr(f(A)), N5 = Np(£(B)), No = Np(£(C)), and N, = Np ().

We will show that A= N4q = N =C =@2.

u/u

~
~ ’ ~ ’ ~ ’ ~
~ 4 ~ ’ ~ 4 ~
e

Figure 1: Left: the quasipacking f, with G-edges dashed and F-edges solid. Right: the result
after the ux-swap.

Note that B U C U {u} is precisely the set of vertices with an FG-link from u. By
Lemma [B([]), there are no F-edges from A to z, else x would have a GF-link; and there are
no F-edges from A to BU C U N,, else such an endpoint in B U C U N, would have two
links. So for each vertex of A to have exactly one link, F[f(A)] must be a perfect matching.
Furthermore, the F-edges incident to A only have endpoints in A U N4. Each vertex of N4
must have exactly one F-edge from A (to have one link). And by Lemma [|[3), each vertex
of A has at least one F-neighbor in N4. Note that we thus have |[N4| > |A|. The vertices
of Ny, Np, N, all have GF-links by definition, and to have exactly one, these sets must be
disjoint. Thus we have that {u,x}, A, B,C, Ny, N, N, is a partition of V(G). See the left
side of Figure [Tl

Now perform a uz-swap. In Figure [l we visualize with V(G) fixed, so just the F-edges
adjacent to v/ and 2’ move; roughly speaking, we just interchange the roles of u and z and
those of A and C. The result is again a quasipacking with ux the only conflicting edge. The
F-neighbors of u are precisely IV,. Repeating the arguments of the last paragraph, for each
vertex of N¢ to have exactly one link, we must have |[N¢| > |C|. Suppose that A # &. Then
since |[N4g| > |A]l, Ng # @ as well. Now, the only possible links (from ) to vertices in Ny
are GF-links through C; hence No = N4, and the F-edges incident to C' have endpoints
in C' U N4. Furthermore, since No = Ny # @&, C # & as well; so each vertex of N4 has



F-degree at least 2 (one edge from A and one from C). But also, by Lemma [BI[3]) applied to
the original and also this new quasipacking, every vertex of A and C has F-degree at least
2, with F-edges entirely in AUC U N4. So F[f(AUC U N4)] has minimum degree at least
2, contradicting that it is a forest, unless A = C' = Ny = @&. Note that this implies that
N¢glu] = Nglz] = {u,x} U B.

Proof of part 2.

This time perform a uy-swap for some vertex y € Q \ {u,z} to get f. The result is
again a quasipacking with yz the only conflicting edge, with f(y) = «/. By part @l Ng[y] =
N¢g[z] = Q. Since this holds for every y € @ \ {u,z}, we have that @ is a clique; and since
degq(x) = A(G) by Lemma Ri[2), G[Q)] is a clique component of G. O

Let v/ be a leaf in F', and let 2’ be its neighbor. Consider a quasipacking f of G with F
with f(u) = and f(z) = 2’ and conflicting edge ux. (Such exists by the extremal choice of
F, as in the proof of Theorem [0l )

Let G[Q)] be the clique component of G given in Lemma[0i[2). Let z be a vertex of @ with
smallest F-degree larger than 1 (such a choice is possible, as degp(z') > 2 by Lemma [R|[3)),
and let 2’ = f(2). Let 21,29 € V(G) be two F-neighbors of z.

In f, z1 and 2z each have exactly one F-edge into () and at most one other F-edge, by
Lemma [S([IH]). So 21, 22 have no F-neighbors inside @) except z. From this and that @ is a
G-clique in the quasipacking, the set Q U {z1,22} \ {z} is F-independent (whether z = x or
not) except perhaps the conflicting edge ux. So Q U {z1, 22} \ {u, 2} is F-independent. Let
X = f(QU{z1, 22} \ {u, 2}).

Let g : V(G) — V(F) be a bijection such that ¢g(Q) = X. Since G[Q] is a clique
component and X is independent, g is a packing if and only if g|g_¢ is a packing of G — Q
with F' — X.

Claim: degp(z') > 4.

Suppose to the contrary that degp(z’) < 3. We have taken two of the neighbors of z into X,
so degp_x(7') < 1. And 2’ is the only vertex of F' — X that may have degree larger than 2,
by Lemma B#]). That is, F' — X is a linear forest. We have that A(G — Q) < A(G) < §, so

(G -Q)=V(G-Q)-1-A(G-Q)
=n—(AG)+1)—1—AG - Q)

>n— gA(G) - %A(G) )
1 1
1

- 1vie-0l

and so Dirac’s condition for Hamiltonicity applies ([10]). Since G — @) contains a Hamiltonian
cycle, it also contains the linear forest F' — X, i.e. F'— X and G — @) pack, a contradiction.
This completes the proof of the Claim.



This Claim, together with having 2z’ ¢ X but its two neighbors 21,20 € X, gives us the
inequality

(F—-X) = Z max{degr_x(v) — 2,0}

veV (F—X)
< -2+ Z max{degp(v) — 2,0}
veV(F-X)
=-2+4 Z max{degp(v) — 2,0} — Z max{degp(v) — 2,0}
veV (F) veX
=24+ 0(F) — Z max{degp(v) — 2,0}.

veX

From Lemma B[3), every vertex of f(Q — u) has F-degree at least two; and since 2’ was
chosen to have smallest F-degree among the non-leaves of f(Q), the Claim gives that they
must in fact have degree at least four. All these vertices except 2z’ are in X, so we have at
least A(G) — 1 vertices of X with degree at least 4. Hence 2 + Z max{degp(v) — 2,0} >

veX
2A(G) > A(G) + 1, s0

BA(G — Q)+ *(F — X) <3A(G) + £*(F) —2— Y max{degp(v) — 2,0}

veX
=n—-2- Z max{degp(v) — 2,0}
veX
<n—A(G) -1
=[V(G-Q)|.
Thus, by Theorem B, G — Q and F — X pack, a contradiction. This completes the proof of
Theorem [41 O
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