Pure pairs. V. Excluding some long subdivision

Alex Scott ${ }^{1}$
Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK

Paul Seymour ${ }^{2}$
Princeton University, Princeton, NJ 08544
Sophie Spirkl ${ }^{3}$
Princeton University, Princeton, NJ 08544

December 13, 2019; revised September 27, 2022

[^0]
Abstract

A "pure pair" in a graph G is a pair A, B of disjoint subsets of $V(G)$ such that A is complete or anticomplete to B. Jacob Fox showed that for all $\varepsilon>0$, there is a comparability graph G with n vertices, where n is large, in which there is no pure pair A, B with $|A|,|B| \geq \varepsilon n$. He also proved that for all $c>0$ there exists $\varepsilon>0$ such that for every comparability graph G with $n>1$ vertices, there is a pure pair A, B with $|A|,|B| \geq \varepsilon n^{1-c}$; and conjectured that the same holds for every perfect graph G. We prove this conjecture and strengthen it in several ways.

In particular, we show that for all $c>0$, and all $\ell_{1}, \ell_{2} \geq 4 / c+9$, there exists $\varepsilon>0$ such that, if G is an $(n>1)$-vertex graph with no hole of length exactly ℓ_{1} and no antihole of length exactly ℓ_{2}, then there is a pure pair A, B in G with $|A| \geq \varepsilon n$ and $|B| \geq \varepsilon n^{1-c}$. This is further strengthened, replacing excluding a hole by excluding some "long" subdivision of a general graph.

1 Introduction

Graphs in this paper are finite, and without loops or parallel edges. Let $A, B \subseteq V(G)$ be disjoint. We say that A is complete to B, or A, B are complete, if every vertex in A is adjacent to every vertex in B, and similarly A, B are anticomplete if no vertex in A has a neighbour in B. A pure pair in G is a pair A, B of disjoint subsets of $V(G)$ such that A, B are complete or anticomplete, and $|G|$ denotes the number of vertices of a graph G.

Let \mathcal{H} be a set of graphs: we say G is \mathcal{H}-free if no induced subgraph of G is isomorphic to a member of \mathcal{H}. For some choices of \mathcal{H}, every \mathcal{H}-free graph admits a pure pair A, B with both $|A|,|B|$ large in terms of $|G|$. Pure pairs with both $|A|,|B|$ linear in $|G|$ are particularly of interest because of connections with the Erdős-Hajnal conjecture [4, 5], and the following was shown in [2]:

1.1 Let \mathcal{H} be a finite set of graphs.

- If \mathcal{H} contains a forest and the complement of a forest, then there exists $\varepsilon>0$ such that every \mathcal{H}-free graph G with $|G|>1$ admits a pure pair A, B with $|A|,|B| \geq \varepsilon|G|$;
- If \mathcal{H} does not contain both a forest and the complement of a forest, then there exists $c>0$ and arbitrarily large \mathcal{H}-free graphs G in which there is no pure pair A, B with $|A|,|B| \geq|G|^{1-c}$.

But if we allow \mathcal{H} to be infinite, the pretty dichotomy of 1.1 disappears: the first bullet remains true, but the second may be false. For example, it was shown in [3] that:
1.2 Let H be a graph and let \mathcal{H} be the class of all subdivisions of H and their complements; then there exists $\varepsilon>0$ such that every \mathcal{H}-free graph G with $|G|>1$ admits a pure pair A, B with $|A|,|B| \geq \varepsilon|G|$.

And also, there are classes that do not admit linear pure pairs, but for all $c>0$, do admit pure pairs A, B with $|A|,|B|>|G|^{1-c}$. For instance, Jacob Fox [6] proved:
1.3 For every sufficiently large positive integer n :

- for every n-vertex comparability graph G, there is a pure pair A, B in G with $|A|,|B|>\frac{n}{4 \log _{2} n}$;
- there is an n-vertex comparability graph G such that there is no pure pair A, B in G with $|A|,|B| \geq \frac{15 n}{\log _{2} n}$.

There is also a related asymmetric result, by Fox, Pach and Toth [8:
1.4 There exists $\varepsilon>0$ such that for every comparability graph G with $|G|>1$, either there is a complete pair A, B with $|A|,|B| \geq \varepsilon|G|$, or there is an anticomplete pair A, B with $|A|,|B| \geq$ $\varepsilon|G| / \log |G|$.

Comparability graphs are perfect, and Fox [6] (and see also [7]) conjectured that something like 1.3 holds for all perfect graphs; more exactly:
1.5 Conjecture: For every sufficiently large positive integer n and every n-vertex perfect graph G, there is a pure pair A, B in G with $|A|,|B| \geq n^{1-o(1)}$.

We will prove this conjecture, and several strengthenings. To prove 1.5 itself, we will show that
1.6 For all $c>0$, and all sufficiently large n, if G is an n-vertex perfect graph, then there is a pure pair A, B in G with $|A|,|B| \geq n^{1-c}$.

This can be strengthened: we can make one of the two sets of linear size (and replace the "sufficiently large" condition in 1.6 with a multiplicative constant). We will show:
1.7 For all $c>0$ there exists $\varepsilon>0$ such that if G is a perfect graph with $|G|>1$, then there is a pure pair A, B in G with $|A| \geq \varepsilon|G|$ and $|B| \geq \varepsilon|G|^{1-c}$.

The complement graph of G is denoted by \bar{G}. A hole in G is an induced cycle of length at least four, and an antihole in G is an induced subgraph whose complement graph is a hole in \bar{G}. Perfect graphs are the graphs that have have no holes or antiholes of odd length [1], but we will show that it is not necessary to exclude all odd holes and odd antiholes to have the result 1.7 it is enough to exclude one of each, of sufficient length. The next result is a strengthening of 1.7;
1.8 Let $c>0$ with $1 / c$ an integer, and let $\ell_{1}, \ell_{2} \geq 4 / c+5$ be integers. Then there exists $\varepsilon>0$ such that if G is a graph with $|G|>1$, with no hole of length exactly ℓ_{1} and no antihole of length exactly ℓ_{2}, then there is a pure pair A, B in G with $|A| \geq \varepsilon|G|$ and $|B| \geq \varepsilon|G|^{1-c}$.

This can be further strengthened, as follows. Let us say G contains H if some induced subgraph of G is isomorphic to H, and G is H-free otherwise. If $X \subseteq V(G), G[X]$ denotes the subgraph induced on X. We say that a graph H has branch-length at least ℓ if every cycle of H has length at least ℓ, and every two vertices of H with degree at least three have distance at least ℓ in H. Since a cycle of length ℓ has branch-length ℓ, the next result strengthens 1.8 and is the main result of the paper:
1.9 Let $c>0$ with $1 / c$ an integer, and let H_{1}, H_{2} be graphs with branch-length at least $4 / c+5$. Then there exists $\varepsilon>0$ such that if G is a graph with $|G|>1$ that is H_{1}-free and $\overline{H_{2}}$-free, then there is a pure pair A, B in G with $|A| \geq \varepsilon|G|$ and $|B| \geq \varepsilon|G|^{1-c}$.

2 Reduction to the sparse case

Let us say a graph G is ε-sparse if every vertex has degree less than $\varepsilon|G|$. We say G is (α, β)-coherent if there do not exist disjoint subsets A, B of $V(G)$, anticomplete to each other, such that $|A| \geq \alpha$ and $|B| \geq \beta$.

A one-vertex graph does not admit any non-trivial pure pair, but it is ε-sparse for all $\varepsilon>0$, and (α, β)-coherent for all $\alpha, \beta>0$; so our standard hypothesis that G is suitably sparse and suitably coherent does not exclude the case $|G|=1$, and we always need to assume separately that $|G|>1$. But we observe:
2.1 Let $0<\varepsilon \leq 1 / 2$; if G is ε-sparse and $(\varepsilon|G|, \varepsilon|G|)$-coherent, with $|G|>1$, then $|G|>1 / \varepsilon$.

Proof. Suppose that $|G| \leq 1 / \varepsilon$. If some distinct $u, v \in V(G)$ are non-adjacent, $\{u\},\{v\}$ form an anticomplete pair, both of cardinality at least $\varepsilon|G|$, a contradiction. So G is a complete graph; but its maximum degree is less than $\varepsilon|G|$ and $\varepsilon \leq 1 / 2$, which is impossible since $|G|>1$. This proves 2.1

If G is a graph and $v \in V(G)$, a G-neighbour of v means a vertex of G adjacent to v in G. A theorem of Rödl 11 implies the following:
2.2 For every graph H and all $\eta>0$ there exists $\delta>0$ with the following property. Let G be an H-free graph. Then there exists $X \subseteq V(G)$ with $|X| \geq \delta|G|$, such that one of $G[X], \bar{G}[X]$ is η-sparse.

Consequently, in order to prove 1.9 , it suffices to prove the following:
2.3 Let $c>0$ with $1 / c$ an integer, and let H be a graph with branch-length at least $4 / c+5$. Then there exists $\varepsilon>0$ such that every ε-sparse $\left(\varepsilon|G|^{1-c}, \varepsilon|G|\right)$-coherent graph G with $|G|>1$ contains H.

Proof of 1.9, assuming [2.3. Let $c>0$ with $1 / c$ an integer, and let H_{1}, H_{2} have branchlength at least $4 / c+5$. For $i=1,2$, choose ε_{i} such that 2.3 holds with $\varepsilon=\varepsilon_{i}$ and $H=H_{i}$. Let $\eta=\min \left(\varepsilon_{1}, \varepsilon_{2}, 1 / 2\right)$. Choose δ such that 2.2 holds taking $H=H_{1}$. Let $\varepsilon=\eta \delta$. We claim that ε satisfies 1.9 ,

Let G be a graph with $|G|>1$ that is H_{1}-free and $\overline{H_{2}}$-free. We must show that there is a pure pair A, B in G with $|A| \geq \varepsilon|G|$ and $|B| \geq \varepsilon|G|^{1-c}$. From the choice of δ, there exists $X \subseteq V(G)$ with $|X| \geq \delta|G|$, such that one of $G[X], \bar{G}[X]$ is η-sparse; and by 2.1 we may assume that $|G|>1 / \varepsilon \geq 1 / \delta$, and so $|X|>1$. In the first case, since $\eta \leq \varepsilon_{1}, 2.3$ applied to $G[X]$ implies that there is an anticomplete pair A, B in $G[X]$ with $|A| \geq \eta|X|$ and $|B| \geq \eta|X|^{1-c}$. Thus

$$
|A| \geq \eta|X| \geq \eta \delta|G|=\varepsilon|G|
$$

and

$$
|B| \geq \eta|X|^{1-c} \geq \eta \delta^{1-c}|G|^{1-c} \geq \eta \delta|G|^{1-c}=\varepsilon|G|^{1-c},
$$

as required. In the second case we argue similarly, working in $\bar{G}[X]$. This proves 1.9,

The remainder of the paper is devoted to proving 2.3,

3 The pathfinder lemma: finding a path of specified length

In this section we will prove the main technical tool that we need, which we call the "pathfinder". If $A, B \subseteq V(G)$ are disjoint, we say A covers B if every vertex in B has a neighbour in A. A levelling in G is a sequence $\mathcal{L}=\left(L_{0}, L_{1}, \ldots, L_{k}\right)$ of disjoint subsets of $V(G)$ with $k \geq 1$ such that

- $\left|L_{0}\right|=1$;
- L_{i-1} covers L_{i} for $1 \leq i \leq k$; and
- $L_{0} \cup \cdots \cup L_{i-2}$ is anticomplete to L_{i} for all $i \in\{2, \ldots, k\}$.

We denote $L_{0} \cup L_{1} \cup \cdots \cup L_{k}$ by $V(\mathcal{L})$. We call L_{k} the base of the levelling $\mathcal{L}=\left(L_{0}, L_{1}, \ldots, L_{k}\right)$, and $V(\mathcal{L}) \backslash L_{k}$ is called the heart of \mathcal{L}. We call k the height of the levelling, and the unique vertex in L_{0} is the apex. We call L_{k-1} the penultimate level of the levelling (for want of a better name). A path P is \mathcal{L}-vertical if $V(P) \subseteq V(\mathcal{L})$ and $\left|V(P) \cap L_{i}\right| \leq 1$ for $0 \leq i \leq k$.

The pathfinder says that if a graph G is suitably sparse and suitably coherent, and we are given two levellings with disjoint vertex sets and with bases of size linear in $|G|$, and there are suitable constraints on the edges between the two levellings, then we can find an induced path between the two apexes of any given length greater than the sum of the two heights. (And there is also a version when the two apexes are equal, and in this case we will find a cycle rather than a path.)

Let us explain how the pathfinder will be used to prove 2.3 and hence 1.9 . We can assume (by extending H if necessary) that the graph H of 2.3 is obtained from some stable set X by adding paths, each of length at least $4 / c+5$, where each path has both ends in X and no other vertices in X, and all these paths are pairwise vertex-disjoint except for their vertices in X. (For numerical reasons, we will also allow the addition of cycles, but let us skip that for now.) We are given a graph G which is suitably sparse and suitably coherent, and we need to show that it has an induced subgraph isomorphic to H. To obtain a copy of H in G, we will choose an appropriate set $X \subseteq V(G)$, and then try to route paths of G of the right length between the correct pairs of vertices of X. We will find each such path by applying the pathfinder to some pair of levellings with apexes the corresponding pair of vertices of X. But we cannot apply the pathfinder twice to the same levelling, because the paths we want to produce need to be pairwise disjoint and anticomplete except for their ends. Thus, if some vertex in X is supposed to be an end of several paths of H, we will need several levellings all with this apex. So we need a way to find a good supply of levellings, each with base of linear size, and pairwise disjoint except for their apexes, grouped into several sets each with a common apex; and we want the edges between them to be under control. And another thing: the pathfinder can only provide paths between the two apexes of length greater than the sum of the two heights of the corresponding levellings, and we need paths which might be as short as $4 / c+5$, so we need the levellings to have height at most something like $2 / c$.

The paper is organized as follows. In this section we prove the pathfinder; and in the next we explain why we can get levellings of height about $1 / c$ (later, when we try to get several levellings with a common apex, this height will double). In section 5 we relax the conditions on levellings, and instead just look for subgraphs of radius about $1 / c$ that have a linear set of neighbours (we call this a "covering", and the subgraph of bounded radius is its "heart"); we find that we can obtain many coverings, with hearts that are disjoint and pairwise anticomplete. What we really want is something slightly more: we want there also to be a vertex with a neighbour in each of the hearts. To prove this, we prove something stronger, that there is a "multicovering", but this is just a tool to get one neighbour in common.

So we have many coverings, with hearts pairwise anticomplete and with a common neighbour a. Add a to each of the hearts; then we get many coverings, with hearts pairwise anticomplete except for one common vertex, which we call its "apex". We call this group of coverings a "spider", and this is the topic of section 6 . By making each of the hearts only just big enough that it has linearly many neighbours, we can find a spider such that most vertices of the graph have no neighbours in any of the hearts of the spider; and so, among them we can do it again, and find another spider. This way we get a "troupe" of spiders, with no edges between their hearts. The next step is to convert the hearts of the coverings in each spider to levellings (so the spiders become "lobsters"); this is also done in section 6 . Then we are ready to apply the pathfinder, which is done in section 7 , and this completes the proof of 2.3.

Let us begin by proving the pathfinder. First we need the following lemma:
3.1 Let $\rho \geq 1$ be some real number, let $K, k>0$ be integers with $K>k$, and let n_{1}, \ldots, n_{K} be nonnegative integers, all less than $\rho^{K / k-2-1 / k}$. Then there exists $i \in\{1, \ldots, K-k\}$ such that $\rho n_{i} \geq n_{j}$ for $j=i+1, \ldots, i+k$.

Proof. Suppose not; then for each $i \in\{1, \ldots, K-k\}$ there exists $f(i)$ such that $i<f(i) \leq i+k$ and $\rho n_{i}<n_{f(i)}$. Define $x_{1}=1$ and $x_{i+1}=f\left(x_{i}\right)$ provided $x_{i} \leq K-k$. Let x_{1}, \ldots, x_{t} be defined by this process; thus $K-k<x_{t} \leq K$. Since $x_{i+1}-x_{i} \leq k$ for each i, it follows that $t k \geq K-1$. Since $n_{x_{2}}>\rho n_{x_{1}}$ and $n_{x_{2}}$ is an integer, it follows that $n_{x_{2}} \geq 1$. Thus for $2 \leq i \leq t, n_{x_{i}} \geq \rho^{i-2}$, and so $n_{x_{t}} \geq \rho^{t-2} \geq \rho^{K / k-2-1 / k}$, contrary to the hypothesis. This proves 3.1.

Next we need:
3.2 Let $c>0$ such that $1 / c c$ is an integer, and define $r=2+1 / c$. Let $\ell \geq 1$ be an integer, and define $K=r^{\ell}-1$, and $k=r^{\ell-1}-1$. Let $\varepsilon>0$, and let G be an ε-sparse $\left(\varepsilon|G|^{1-c}, \varepsilon|G|\right)$-coherent graph. Let $B_{0}, B_{1}, \ldots, B_{K} \subseteq V(G)$ be disjoint, where $B_{0} \neq \emptyset$ and B_{1}, \ldots, B_{K} each have cardinality at least $r^{2 \ell} \varepsilon|G|$. Then either:

- there is an induced path of length ℓ, with vertices $p_{0}, p_{1}, \ldots, p_{\ell}$ in order, and

$$
1 \leq t_{1}<t_{2}<\cdots<t_{\ell} \leq K,
$$

such that $p_{0} \in B_{0}$, and $p_{i} \in B_{t_{i}}$ for $1 \leq i \leq \ell$; or

- $\left|B_{0}\right| \leq K \varepsilon|G|^{1-c}$, and there are sets C_{1}, \ldots, C_{K-k} with union B_{0}, such that for each i with $1 \leq i \leq K-k$, and each j with $i \leq j \leq i+k$, at least $r^{2 \ell-2} \varepsilon|G|$ vertices in B_{j} have no neighbour in C_{i}.

Proof. We proceed by induction on ℓ. Suppose first that $\ell=1$. If there is an edge between B_{0} and $B_{1} \cup \cdots \cup B_{K}$, then the first bullet holds; and if B_{0} is anticomplete to $B_{1} \cup \cdots \cup B_{K}$, then since H is $\left(\varepsilon|G|^{1-c}, \varepsilon|G|\right)$-coherent and $\left|B_{1}\right| \geq r^{2 \ell} \varepsilon|G| \geq \varepsilon|G|$, it follows that $\left|B_{0}\right|<\varepsilon|G|^{1-c}$, and the second bullet holds, taking $C_{1}, \ldots, C_{K-k}=B_{0}$. Thus we may assume that $\ell \geq 2$ and the result holds for $\ell-1$. Define $\rho=|G|^{c}$.

Let $B_{0}=\left\{v_{1}, \ldots, v_{n}\right\}$. For all $i \in\{1, \ldots, K-k\}$ and all $j \in\{i, \ldots, i+k\}$, define $A_{i, j}^{0}=\emptyset$, and $A^{0}=\emptyset$. Inductively for $h=1, \ldots, n$ we will define

- a set $X_{i}^{h} \subseteq B_{i}$ for each $i \in\{1, \ldots, K\}$
- the type of v_{h} (one of the numbers $1, \ldots, K-k$);
- a set $A_{i, j}^{h} \subseteq B_{j}$ for each $i \in\{1, \ldots, K-k\}$ and each $j \in\{i, \ldots, i+k\}$; and
- a set A^{h}, which is the union of $A_{i, j}^{h}$ over all $i \in\{1, \ldots, K-k\}$ and all $j \in\{i, \ldots, i+k\}$
as follows. Suppose that $1 \leq h \leq n$, and A^{h-1} and $A_{i, j}^{h-1}$ are defined for all i, j with $1 \leq i \leq K-k$ and $i \leq j \leq i+k$. For $1 \leq i \leq K$ let X_{i}^{h} be the set of vertices in $B_{i} \backslash A^{h-1}$ adjacent to v_{h}. Since $(K+1) /(k+1)=2+1 / c$, it follows that $K>(2+1 / c) k+1$, and so $1 / c<K / k-2-1 / k$. Hence for $1 \leq i \leq K,\left|X_{i}^{h}\right| \leq|G|<\rho^{K / k-2-1 / k}$. By 3.1 applied to the numbers $\left|X_{1}^{h}\right|, \ldots,\left|X_{K}^{h}\right|$, there exists t with $1 \leq t \leq K-k$ such that $\rho\left|X_{t}^{h}\right| \geq\left|X_{j}^{h}\right|$ for $j=t, \ldots, t+k$. Choose some such t, which we call the
type of v_{h}. For each $j \in\{t, \ldots, t+k\}$ define $A_{t, j}^{h}=A_{i, j}^{h-1} \cup X_{j}^{h}$; and For each $i \in\{1, \ldots, K-k\} \backslash\{t\}$ and each $j \in\{i, \ldots, i+k\}$ define $A_{i, j}^{h}=A_{i, j}^{h-1}$. This completes the inductive definition.
(1) $\rho\left|A_{i, j}^{h}\right| \geq\left|A_{i, i}^{h}\right|$ for all $h \in\{1, \ldots, n\}$ and all $i \in\{1, \ldots, K-k\}$ and all $j \in\{i, \ldots, i+k\}$.
$A_{i, j}^{h}$ is the disjoint union of the sets X_{j}^{h} for all $h \in\{1, \ldots, n\}$ such that v_{h} has type i; and $A_{i, i}^{h}$ is the disjoint union of X_{i}^{h} for the same values of h. Since $\rho\left|X_{i}^{h}\right| \geq\left|X_{j}^{h}\right|$ for each such h, this proves (1).
(2) If v_{h} has type i, then every vertex of B_{j} adjacent to v_{h} belongs to A^{h}, for all $h \in\{1, \ldots, n\}$, all $1 \leq i \leq K-k$, and all $j \in\{i, \ldots, i+k\}$.

Let $x \in B_{j}$ be adjacent to v_{h}. If $x \in A^{h-1}$, then the claim holds since $A^{h-1} \subseteq A^{h}$. If $x \notin A^{h-1}$ then $x \in X_{j}^{h}$ from the definition of X_{j}^{h}, and since v_{h} has type i, it follows that

$$
x \in X_{j}^{h} \subseteq A_{i, j}^{h} \subseteq A^{h} .
$$

This proves (2).
For $1 \leq i \leq K-k$, let C_{i} be the set of vertices in B_{0} that have type i. Thus C_{1}, \ldots, C_{K-k} are pairwise disjoint and have union B_{0}. We note that

$$
r^{2 \ell}-r^{2 \ell-2}=\left(3+4 / c+1 / c^{2}\right)(k+1)^{2} \geq 2(k+1)^{2} .
$$

(3) We may assume that $\left|A_{i, j}^{n}\right|>k \varepsilon|G|$ for some $i \in\{1, \ldots, K-k\}$ and some $j \in\{i, \ldots, i+k\}$.

Suppose not. Let $1 \leq j \leq K$. Since $A^{n} \cap B_{j}$ is the union of the sets $A_{i, j}^{n}$ for all $i \in\{1, \ldots, K\}$ with $j-i \in\{0, \ldots, k\}$, it follows that $\left|A^{n} \cap B_{j}\right| \leq k(k+1) \varepsilon|G|$. Now let $1 \leq i \leq K-k$; by (2), C_{i} is anticomplete to $B_{j} \backslash A^{n}$, for all $j \in\{i, \ldots, i+k\}$. Since

$$
\left|B_{j} \backslash A^{n}\right|=\left|B_{j}\right|-\left|B_{j} \cap A^{n}\right| \geq r^{2 \ell} \varepsilon|G|-k(k+1) \varepsilon|G| \geq r^{2 \ell-2} \varepsilon|G| \geq \varepsilon|G|
$$

and G is $\left(\varepsilon|G|^{1-c}, \varepsilon|G|\right)$-coherent, it follows that $\left|C_{i}\right|<\varepsilon|G|^{1-c}$. Hence $\left|B_{0}\right| \leq K \varepsilon|G|^{1-c}$; and so the second bullet of the theorem holds. This proves (3).

From (3), we may choose $h \in\{1, \ldots, n\}$ minimum such that $\left|A_{i, j}^{h}\right|>k \varepsilon|G|$ for some $i \in$ $\{1, \ldots, K-k\}$ and some $j \in\{i, \ldots, i+k\}$. Define D to be the set of all $v_{h^{\prime}} \in C_{i}$ with $1 \leq h^{\prime} \leq h$. From the minimality of h, and since G is ε-sparse, it follows that $\left|A_{i, j}^{h}\right| \leq(k+1) \varepsilon|G|$ for all $i \in\{1, \ldots, K-k\}$ and all $j \in\{i, \ldots, i+k\}$. Consequently $\left|A^{h} \cap B_{i}\right| \leq(k+1)^{2} \varepsilon|G|$ for $1 \leq i \leq K$. Now choose $i \in\{1, \ldots, K-k\}$ such that $\left|A_{i, j}^{h}\right|>k \varepsilon|G|$ for some $j \in\{i, \ldots, i+k\}$. By (1), $\left|A_{i, i}^{h}\right|>k \varepsilon|G| / \rho=k \varepsilon|G|^{1-c}$. For $j=i+1, \ldots, i+k$, let D_{j} be the set of all vertices in B_{j} that have no neighbour in D. Thus $B_{j} \backslash A^{h} \subseteq D_{j}$, and so

$$
\left|D_{j}\right| \geq r^{2 \ell} \varepsilon|G|-(k+1)^{2} \varepsilon|G| \geq r^{2 \ell-2} \varepsilon|G|
$$

Since $\left|A_{i, i}^{h}\right|>k \varepsilon|G|^{1-c}$, it follows from the inductive hypothesis (with ℓ replaced by $\ell-1$, and B_{0} replaced by $A_{i, i}^{h}$, and B_{1}, \ldots, B_{K} replaced by D_{i+1}, \ldots, D_{i+k}) that there is an induced path of length $\ell-1$, with vertices p_{1}, \ldots, p_{ℓ} in order, and

$$
i+1 \leq t_{2}<\cdots<t_{\ell} \leq i+k
$$

such that $p_{1} \in A_{i, i}^{h}$, and $p_{i} \in B_{t_{i}}$ for $2 \leq i \leq \ell$. Choose $p_{0} \in D$ adjacent to p_{1}, and define $t_{1}=i$; then the path with vertices $p_{0}, p_{1}, \ldots, p_{\ell}$ is induced and satisfies the first bullet of the theorem. This proves 3.2,

The "pathfinder", the main result of this section, is the following:
3.3 Let $c>0$, such that $1 / c$ is an integer. Let $\ell, s, t>0$ be integers, and let $d>0$. Let $\varepsilon>0$ with $(2+1 / c)^{(t+1)(\ell+t)} \varepsilon<d$. Let G be an ε-sparse $\left(\varepsilon|G|^{1-c}, \varepsilon|G|\right)$-coherent graph, and for $i=1,2$, let \mathcal{L}_{i} be a levelling in G, with heart H_{i}, apex a_{i}, and base B_{i}, satisfying:

- $V\left(\mathcal{L}_{1}\right) \cap V\left(\mathcal{L}_{2}\right)=\left\{a_{1}\right\} \cap\left\{a_{2}\right\} ;$
- $V\left(\mathcal{L}_{2}\right) \backslash\left\{a_{2}\right\}$ is anticomplete to H_{1}, and if $a_{1} \neq a_{2}$ then a_{2} is anticomplete to H_{1};
- $\mathcal{L}_{1}, \mathcal{L}_{2}$ have heights s, t respectively; and
- $\left|B_{i}\right| \geq d|G|$ for $i=1,2$.

Then there is an induced path (or cycle, if $a_{1}=a_{2}$) of length $\ell+s+t$ between a_{1}, a_{2}, with vertex set a subset of $H_{1} \cup B_{1} \cup H_{2} \cup B_{2}$.

Proof. For each integer $i \geq 0$, let $k_{i}=(2+1 / c)^{i}-1$. It follows that $k_{\ell} k_{\ell+1} \ldots k_{\ell+t} \varepsilon<d$. Moreover, since $\varepsilon<d$, it follows that $t \geq 2$ (because $\left|B_{2}\right|>\varepsilon|G|$ and G is ε-sparse), and so $k_{\ell+t}\left(k_{2 \ell+2 t}+2\right) \varepsilon \leq d$. Define $d_{i}=(2+1 / c)^{2 i} \varepsilon$ for each integer $i \geq 0$.

Let $G, \mathcal{L}_{1}, \mathcal{L}_{2}$ and $H_{i}, a_{i}, B_{i}(i=1,2)$ satisfy the hypotheses of the theorem. Let $\mathcal{L}_{1}=\left(L_{0}, \ldots, L_{s}\right)$ and $\mathcal{L}_{2}=\left(M_{0}, \ldots, M_{t}\right)$ say; thus $L_{s}=B_{1}$ and $M_{t}=B_{2}$. Let $Z_{0}=\emptyset$. For $i=1, \ldots, k_{\ell+t}$, we will inductively define $Z_{i} \subseteq L_{s-1}$ with $Z_{i-1} \subseteq Z_{i}$, and $D_{i} \subseteq L_{s}$ with D_{1}, \ldots, D_{i} pairwise disjoint, satisfying

- $d_{\ell+t}|G| \leq\left|D_{i}\right| \leq\left(d_{\ell+t}+\varepsilon\right)|G|$
- D_{i} is the set of all vertices in L_{s} that have a neighbour in Z_{i} and have no neighbour in Z_{i-1} (and so $D_{1} \cup \cdots \cup D_{i}$ is the set of all vertices in L_{s} that have a neighbour in Z_{i}).

Thus, suppose that $1 \leq i<k_{\ell+t}$, and Z_{0}, \ldots, Z_{i-1} and D_{1}, \ldots, D_{i-1} are defined satisfying the conditions above. It follows that

$$
\left|D_{1} \cup \cdots \cup D_{i-1}\right| \leq(i-1)\left(d_{\ell+t}+\varepsilon\right)|G| \leq k_{\ell+t}\left(d_{\ell+t}+\varepsilon\right)|G|-d_{\ell+t}|G| .
$$

But $d_{\ell+t}+\varepsilon=\left(k_{2(\ell+t)}+2\right) \varepsilon$, and $k_{\ell+t}\left(k_{2 \ell+2 t}+2\right) \varepsilon \leq d$, so

$$
\left|D_{1} \cup \cdots \cup D_{i-1}\right| \leq k_{\ell+t}\left(k_{2(\ell+t)}+2\right) \varepsilon|G|-d_{\ell+t}|G| \leq\left(d-d_{\ell+t}\right)|G| .
$$

Hence at least $d_{\ell+t}|G|$ vertices in L_{s} do not belong to $D_{1} \cup \cdots \cup D_{i-1}$. All these vertices have a neighbour in $L_{s-1} \backslash Z_{i-1}$ and have no neighbour in Z_{i-1}; and so there exists Z_{i} with $Z_{i-1} \subseteq Z_{i} \subseteq L_{s-1}$, minimal such that at least $d_{\ell+t}|G|$ vertices in L_{s} have a neighbour in Z_{i} and have none in Z_{i-1}. Let this set of vertices be D_{i}. Since G is ε-sparse, the minimality of Z_{i} implies that $\left|D_{i}\right| \leq\left(d_{\ell+t}+\varepsilon\right)|G|$. This completes the inductive definition.

We will try to construct a path (or cycle) satisfying the theorem that starts from a_{2}, runs down through layers of \mathcal{L}_{2}, jumps to some D_{i}, runs through some of D_{i+1}, D_{i+2}, \ldots, to make it the right length, and then runs up to a_{1} through the layers of \mathcal{L}_{1}. The sets Z_{i} are designed so that when the path has run through enough D_{i} 's to make its length correct, we can exit into the heart of \mathcal{L}_{1} without picking up unwanted chords. Note that the only edges between $V\left(\mathcal{L}_{2}\right)$ and $V\left(\mathcal{L}_{1}\right)$ have an end in the base of \mathcal{L}_{1} (or are incident with a_{1}, if $a_{1}=a_{2}$).

Let $\mathcal{Q}=\left(Q_{0}, \ldots, Q_{t}\right)$ be a levelling in G. We say it is a sub-levelling of \mathcal{L}_{2} if $Q_{i} \subseteq M_{i}$ for $0 \leq i \leq t$. For $0 \leq h \leq t$, we say that such a sub-levelling $\mathcal{Q}=\left(Q_{0}, \ldots, Q_{t}\right)$ is h-good if

- there exists $g \in\left\{1, \ldots, k_{\ell+t}-k_{\ell+t-h}+1\right\}$, and for each $j \in\left\{g, \ldots, g+k_{\ell+t-h}-1\right\}$ there exists $F_{j} \subseteq D_{j}$, such that F_{j} is anticomplete to $Q_{0} \cup Q_{1} \cup \cdots \cup Q_{h-1}$, and $\left|F_{j}\right| \geq d_{\ell+t-h}|G|$; and
- $\left|Q_{t}\right|>k_{\ell} k_{\ell+1} \ldots k_{\ell+t-h} \varepsilon|G|^{1-c}$.

Since $d|G|>k_{\ell} k_{\ell+1} \ldots k_{\ell+t} \varepsilon|G|^{1-c}$ it follows that \mathcal{L}_{2} is 0-good. Choose $h \leq t$ maximum such that some sub-levelling $\mathcal{Q}=\left(Q_{0}, \ldots, Q_{t}\right\}$ of \mathcal{L}_{2} is h-good, and let g and the sets $F_{j}(j \in\{g, \ldots, g+$ $\left.\left.k_{\ell+t-h}-1\right\}\right)$ be as in the definition. Let $K=k_{\ell+t-h}$. Since each $\left|F_{j}\right| \geq d_{\ell+t-h}|G|$, we may apply 3.2, replacing B_{0} by Q_{h}, and replacing ℓ by $\ell+t-h$, and replacing the sequence $B_{1}, \ldots, B_{k_{\ell}}$ by F_{g}, \ldots, F_{g+K-1}. There are two possible outcomes of 3.2,

The first outcome is: there is an induced path P of length $\ell+t-h$, with vertices $p_{0}, p_{1}, \ldots, p_{\ell+t-h}$ in order, and

$$
g \leq t_{1}<t_{2}<\cdots<t_{\ell+t-h} \leq g+K-1,
$$

such that $p_{0} \in Q_{h}$, and $p_{i} \in F_{t_{i}}$ for $1 \leq i \leq \ell+t-h$. In this case, choose a \mathcal{Q}-vertical path Q between a_{2} and p_{0} (therefore of length h); choose a neighbour v of $p_{\ell+t-h}$ in $Z_{t_{\ell+t-h}}$; and choose an \mathcal{L}_{1}-vertical path R between a_{1}, v (therefore of length $s-1$). We claim that

$$
a_{2}-Q-p_{0}-P-p_{\ell+t-h}-v-R-a_{1}
$$

is an induced path or cycle. To show this, we must check that

- $V(P) \cap V(Q)=\left\{p_{0}\right\}$, and $V(P) \backslash\left\{p_{0}\right\}$ is anticomplete to $V(Q) \backslash\left\{p_{0}\right\}$; this is true since Q_{0}, \ldots, Q_{h-1} are anticomplete to F_{g}, \ldots, F_{g+K-1} from the definition of h-good.
- $V(P) \cap V(R)=\emptyset$, and the edge with ends $p_{\ell+t-h}$ and v is the only edge between $V(P)$ and $V(R)$; this is true since L_{0}, \ldots, L_{s-2} are anticomplete to L_{s}, and $v \in Z_{t_{\ell+t-h}}$ is anticomplete to $D_{t_{1}}, \ldots, D_{t_{\ell+t-h-1}}$.
- $V(Q) \cap V(R)=\left\{a_{1}\right\} \cap\left\{a_{2}\right\}$, and every edge between $V(Q)$ and $V(R)$ has an end in $\left\{a_{1}\right\} \cap\left\{a_{2}\right\}$; this is true from the hypothesis.

This proves the path or cycle is indeed induced, and since it has length ℓ, the theorem holds.

The second outcome of 3.2 is: $\ell+t-h>0$, and $\left|Q_{h}\right| \leq K \varepsilon|G|^{1-c}$, and, writing $k=k_{\ell+t-h-1}$, there are sets $C_{g}, \ldots, C_{g+K-k-1}$ with union Q_{h}, such that for each i with $g \leq i \leq g+K-k-1$, and each j with $i \leq j \leq i+k$, at least $d_{\ell+t-h-1}|G|$ vertices in F_{j} have no neighbour in C_{i}. Since

$$
\left|Q_{h}\right| \leq K \varepsilon|G|^{1-c}<k_{\ell} k_{\ell+1} \ldots k_{\ell+t-h} \varepsilon|G|^{1-c}<\left|Q_{t}\right|
$$

it follows that $h<t$. For $g \leq i \leq g+K-k-1$, let X_{i} be the set of vertices in Q_{t} that are joined to a vertex in C_{i} by a \mathcal{Q}-vertical path. Since \mathcal{Q} is a levelling and $C_{g}, \ldots, C_{g+K-k-1}$ have union Q_{h}, it follows that $X_{g}, \ldots, X_{g+K-k-1}$ have union Q_{t}; and since $\left|Q_{t}\right|>k_{\ell} k_{\ell+1} \ldots k_{\ell+t-h} \varepsilon|G|^{1-c}$, there exists i with $g \leq i \leq g+K-k-1$ such that

$$
\left|X_{i}\right| \geq\left|Q_{t}\right| / K>k_{\ell} k_{\ell+1} \ldots k_{\ell+t-h-1} \varepsilon|G|^{1-c} .
$$

For $h \leq h^{\prime} \leq t$ let $Q_{h^{\prime}}^{\prime}$, be the set of vertices in $Q_{h^{\prime}}$ that are joined to a vertex in C_{i} by a \mathcal{Q}-vertical path. Thus $Q_{h}^{\prime}=C_{i}$, and

$$
\left(Q_{0}, \ldots, Q_{h-1}, Q_{h}^{\prime}, Q_{h+1}^{\prime}, \ldots, Q_{t}^{\prime}\right)
$$

is an $(h+1)$-good sub-levelling of \mathcal{L}_{2}, a contradiction. This proves 3.3,

The next result is a form of 3.3 with similar hypotheses except that the bases of the two levellings need not be disjoint, and we weaken slightly the condition about edges between the heart of \mathcal{L}_{1} and $V\left(\mathcal{L}_{2}\right)$.
3.4 Let $c>0$, such that $1 / c$ is an integer. Let $\ell, s, t>0$ be integers, and let $d>0$. Let $\varepsilon>0$ with $(2+1 / c)^{(t+1)(\ell+t)} \varepsilon<d / 3$. Let G be an ε-sparse $\left(\varepsilon|G|^{1-c}, \varepsilon|G|\right)$-coherent graph. For $i=1,2$, let \mathcal{L}_{i} be a levelling in G, with heart H_{i}, apex a_{i}, and base B_{i}. Suppose that:

- for $i=1,2,\left|B_{i}\right| \geq d|G|$;
- $V\left(\mathcal{L}_{1}\right) \cap V\left(\mathcal{L}_{2}\right)=\left(\left\{a_{1}\right\} \cap\left\{a_{2}\right\}\right) \cup\left(B_{1} \cap B_{2}\right)$; and
- every edge between H_{1} and $V\left(\mathcal{L}_{2}\right)$ has one end in the penultimate level of \mathcal{L}_{1} and the other end in B_{2}.

Let $\mathcal{L}_{1}, \mathcal{L}_{2}$ have heights s, t respectively. Then there is an induced path (or cycle, if $a_{1}=a_{2}$) of length $\ell+s+t$ between a_{1}, a_{2}, with vertex set a subset of $H_{1} \cup B_{1} \cup H_{2} \cup B_{2}$.

Proof. Let $d^{\prime}=d / 3$, and let $G, \mathcal{L}_{1}, \mathcal{L}_{2}$ and $H_{i}, a_{i}, B_{i}(i=1,2)$ satisfy the hypotheses of the theorem. Let $\mathcal{L}_{1}=\left(L_{0}, \ldots, L_{s}\right)$; thus $L_{s}=B_{1}$. Choose $L_{s-1}^{\prime} \subseteq L_{s-1}$ minimal such that at least $d^{\prime}|G|$ vertices in $B_{1} \cup B_{2}$ have a neighbour in L_{s-1}^{\prime}. Let L_{s}^{\prime} be the set of vertices in $B_{1} \cup B_{2}$ that have a neighbour in L_{s-1}^{\prime}. Thus

$$
d^{\prime}|G| \leq\left|L_{s}^{\prime}\right| \leq\left(d^{\prime}+\varepsilon\right)|G| \leq 2 d^{\prime}|G| .
$$

Let \mathcal{L}_{1}^{\prime} be the levelling $\left(L_{0}, \ldots, L_{s-1}, L_{s-1}^{\prime}, L_{s}^{\prime}\right)$. Let \mathcal{L}_{2}^{\prime} be the levelling obtained from \mathcal{L}_{2} by replacing its base by $B_{2} \backslash L_{s}^{\prime}$. Then $\left|L_{s}^{\prime}\right| \geq d^{\prime}|G|$, and

$$
\left|B_{2} \backslash L_{s}^{\prime}\right| \geq d|G|-2 d^{\prime}|G| \geq d^{\prime}|G| .
$$

Hence $\mathcal{L}_{1}^{\prime}, \mathcal{L}_{2}^{\prime}$ satisfy the hypotheses of 3.3, and the result follows. This proves 3.4.

When we apply 3.4 , in the final section, it will be to levellings $\mathcal{L}_{1}, \mathcal{L}_{2}$ such that every edge between $V\left(\mathcal{L}_{1}\right), V\left(\mathcal{L}_{2}\right)$ either is incident with the common apex (when there is one) or is between the base of one of the levellings and one of the last two terms of the other levelling; so 3.4 is stronger than we need.

4 Expansion

If $X \subseteq V(G), N(X)$ denotes the set of vertices in $V(G) \backslash X$ with a neighbour in X, and $N[X]=$ $N(X) \cup X$. A graph G is τ-expanding if $|N[X]| \geq \min (\tau|X|,|G| / 2)$ for every subset $X \subseteq V(G)$.
4.1 Let $c>0$, and let G be a $\left(|G|^{1-c} / 4,|G| / 4\right)$-coherent graph. Then there exists $Y \subseteq V(G)$ with $|Y| \leq|G|^{1-c} / 4$ such that $G \backslash Y$ is $|G|^{c}$-expanding.

Proof. Let $\alpha=|G|^{1-c} / 4$ and $\tau=|G|^{c}$. Choose $Y \subseteq V(G)$ maximal such that $|Y| \leq \alpha$ and $|N[Y]| \leq \tau|Y|$ (possibly $Y=\emptyset$). Let $W=V(G) \backslash Y$. If $G[W]$ is τ-expanding then the theorem holds, so we assume not. Thus there exists $X \subseteq W$ such that $|N[X] \cap W|<\min (\tau|X|,|W| / 2)$. Consequently $X \neq \emptyset$. But

$$
|N[X \cup Y]| \leq|N[Y]|+|N[X] \cap W| \leq \tau|Y|+\tau|X|,
$$

and so from the maximality of Y, it follows that $|X \cup Y|>\alpha$. Now $|N[Y]| \leq \tau|Y| \leq \tau \alpha=|G| / 4$, and $|N[X] \cap W| \leq|W| / 2 \leq|G| / 2$; so

$$
|N[X \cup Y]| \leq|N[Y]|+|N[X] \cap W| \leq 3|G| / 4 .
$$

Let $U=V(G) \backslash N[X \cup Y]$; then $|U| \geq|G| / 4$. But $X \cup Y$ is anticomplete to U, contradicting that G is $\left(|G|^{1-c} / 4,|G| / 4\right)$-coherent. This proves 4.1.

If u, v are vertices of a graph G, it is sometimes convenient to call the distance between u, v in G the G-distance between u, v. We deduce:
4.2 Let $c>0$, and let G be a $\left(|G|^{1-c} / 4,|G| / 4\right)$-coherent graph. Then there exist $u \in V(G)$ and an integer $k<1+1 / c$, such that:

- at most $|G| / 2$ vertices have G-distance less than k from u; and
- at least $|G| / 4$ vertices have G-distance exactly k from u.

Proof. By 4.1, there exists $Y \subseteq V(G)$ with $|Y| \leq|G|^{1-c} / 4$ such that $G \backslash Y$ is τ-expanding, where $\tau=|G|^{c}$. Choose $u \in V(G) \backslash Y$, and for each integer $i \geq 0$ let M_{i} be the set of vertices of G that have G-distance at most i from u. Since $G \backslash Y$ is τ-expanding, it follows that for all $i \geq 0$, $\left|M_{i+1} \backslash Y\right| \geq \min \left(\tau\left|M_{i} \backslash Y\right|,|G \backslash Y| / 2\right)$. For each $i \geq 1$, let $L_{i}=M_{i} \backslash M_{i-1}$.
(1) There exists $k \leq 1+1 / c$ such that $\left|L_{k}\right| \geq|G| / 4$.

Since $G \backslash Y$ is τ-expanding, it is connected, and so there exists ℓ such that $V(G) \backslash Y \subseteq M_{\ell}$. Since
$|V(G) \backslash Y| \geq 3|G| / 4$, we may choose $j \geq 0$ minimum such that $\left|M_{j}\right| \geq|G|^{1-c} / 4$. Hence for each $i \in\{1, \ldots, j-1\},\left|M_{i}\right|<|G|^{1-c} / 4<|V(G) \backslash Y| / 2$, and so $\left|M_{i} \backslash Y\right| \geq \tau\left|M_{i-1} \backslash Y\right|$ since $G \backslash Y$ is τ-expanding. Since $\left|M_{0} \backslash Y\right|=1$, it follows that $\left|M_{j-1} \backslash Y\right| \geq \tau^{j-1}$. Hence

$$
|G|^{(j-1) c}=\tau^{j-1} \leq\left|M_{j-1} \backslash Y\right| \leq\left|M_{j-1}\right|<|G|^{1-c} / 4,
$$

and so $(j-1) c<1-c$, that is, $j<1 / c$.
Since G is $\left(|G|^{1-c} / 4,|G| / 4\right)$-coherent, and M_{j} is anticomplete to $V(G) \backslash N\left[M_{j}\right]$, it follows that $\left|V(G) \backslash N\left[M_{j}\right]\right|<|G| / 4$. But also $\left|M_{j-1}\right|<|G|^{1-c} / 4$ (or $j=0$), and so $\left|L_{j} \cup L_{j+1}\right| \geq|G|-|G| / 4-$ $|G|^{1-c} / 4 \geq|G| / 2$. Thus some $k \in\{j, j+1\}$ satisfies the claim. This proves (1).

Choose k as in (1), minimum. Thus $\left|L_{k-1}\right|<|G| / 4$, and $\left|M_{k-2}\right|<|G|^{1-c} / 4$ since G is $\left(|G|^{1-c} / 4,|G| / 4\right)$-coherent. Thus $\left|M_{k-1}\right| \leq|G| / 2$. This proves 4.2,

5 Covering sequences

Let us say a covering \mathcal{L} in G is a triple (a, H, B) where H, B are disjoint subsets of $V(G), a \in H, H$ covers B, and $G[H]$ is connected. We call a the apex, H the heart, and B the base of the covering, and define $V(\mathcal{L})=H \cup B$. If for every vertex $v \in H$ there is a path of $G[H]$ between a, v of length at most $r-1$, we say that (a, H, B) has height at most r, and the least such r is the height of (a, H, B). For instance, if $\left(L_{0}, \ldots, L_{k}\right)$ is a levelling with $k>0$, and $L_{0}=\{a\}$, then $\left(a, L_{0} \cup \cdots \cup L_{k-1}, L_{k}\right)$ is a covering of height k.

A covering sequence in G is a sequence $\left(\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}\right)$ of coverings in G, with hearts H_{1}, \ldots, H_{n} say, such that H_{1}, \ldots, H_{n} are pairwise disjoint and pairwise anticomplete. We call n its length. We say such a sequence has height at most r if each term has height at most r. If $\mathcal{M}=\left(\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}\right)$ is a covering sequence, we define $V(\mathcal{M})$ to be the union of the sets $V\left(\mathcal{L}_{i}\right)$ for $1 \leq i \leq n$.

Figure 1: A covering sequence of length three. H_{1}, H_{2}, H_{3} are disjoint and anticomplete, but B_{1}, B_{2}, B_{3} need not be; and there may be edges between H_{i} and $B_{j} \backslash B_{i}$.

A covering sequence $\left(\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}\right)$ is a multicovering if $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$ all have the same base, and then this common base is called the base of the multicovering. The main result of this section says that a graph with the usual properties (suitably coherent, suitably sparse) contains a multicovering of length any specified constant, with height at most about $1 / c$ and with base of linear cardinality. We prove this in several steps. We begin with:
5.1 Let $n \geq 0$ be an integer. Let $c>0$ such that $1 / c$ is an integer; let $\varepsilon>0$ with $\varepsilon \leq 2^{-n-2}$; and let G be an ε-sparse $\left(\varepsilon|G|^{1-c}, \varepsilon|G|\right)$-coherent graph. Then there is a covering sequence $\left(\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}\right)$ in G, where $\mathcal{L}_{i}=\left(a_{i}, H_{i}, B_{i}\right)$ for $1 \leq i \leq n$, such that:

- for $1 \leq i<j \leq n, H_{i}$ is anticomplete to B_{j};
- for $1 \leq i \leq n, \mathcal{L}_{i}$ has height at most $1 / c$; and
- for $1 \leq i \leq n,\left|B_{i}\right| \geq 2^{-i-1}|G|$.

Proof. We proceed by induction on n. If $n=0$ the result is trivial, so we assume that $n \geq 1$ and the result holds for $n-1$. By 4.2, there exists $u \in V(G)$ and an integer $k<1+1 / c$ (and hence $k \leq 1 / c$, since $1 / c$ is an integer), such that:

- at most $|G| / 2$ vertices of G have distance less than k from u; and
- at least $|G| / 4$ vertices of G have distance exactly k from u.

For $0 \leq i \leq k$ let L_{i} be the set of all vertices of G with distance exactly i from u. Then $\left(L_{0}, \ldots, L_{k}\right)$ is a levelling, with height at most $1 / c$; and $\left|L_{k}\right| \geq|G| / 4$, so the theorem holds for $n=1$. Choose $L_{k-1}^{\prime} \subseteq L_{k-1}$ minimal such that at least $|G| / 4$ vertices in L_{k} have a neighbour in L_{k-1}^{\prime}, and let L_{k}^{\prime} be the set of vertices in L_{k} that have a neighbour in L_{k-1}^{\prime}. Thus $\left|L_{k}^{\prime}\right| \leq(1 / 4+\varepsilon)|G|$ since G is ε-sparse. Let \mathcal{L}_{1} be the levelling $\left(L_{0}, \ldots, L_{k-2}, L_{k-1}^{\prime}, L_{k}^{\prime}\right)$, and let H_{1} be its heart. Thus $\left|V\left(\mathcal{L}_{1}\right)\right| \leq(3 / 4+\varepsilon)|G|$. Let W be the set of vertices of G not in $V\left(\mathcal{L}_{1}\right)$; so $|W| \geq(1 / 4-\varepsilon)|G|$. Since W is anticomplete to H_{1}, and $1 / 4-\varepsilon \geq \varepsilon$ and G is $\left(\varepsilon|G|^{1-c}, \varepsilon|G|\right)$-coherent, it follows that $\left|H_{1}\right| \leq \varepsilon|G|^{1-c}$, and so $|W| \geq(3 / 4-\varepsilon)|G|-\varepsilon|G|^{1-c} \geq|G| / 2$. Hence $G[W]$ is (2ε)-sparse and $\left((2 \varepsilon)|W|^{1-c},(2 \varepsilon)|W|\right)$-coherent. From the inductive hypothesis applied to $G[W]$, there is a covering sequence $\left(\mathcal{L}_{2}, \ldots, \mathcal{L}_{n}\right)$ in $G[W]$, where $\mathcal{L}_{i}=\left(a_{i}, H_{i}, B_{i}\right)$ for $2 \leq i \leq n$, such that:

- for $2 \leq i<j \leq n, H_{i}$ is anticomplete to B_{j};
- for $2 \leq i \leq n, \mathcal{L}_{i}$ has height at most $1 / c$; and
- for $2 \leq i \leq n,\left|B_{i}\right| \geq 2^{-i}|W| \geq 2^{-i-1}|G|$.

But then $\left(\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}\right)$ satisfies the theorem. This proves 5.1 .
5.2 Let $n \geq 0$ be an integer, let $m=(n-1)^{2}+1$ and let $\varepsilon=2^{-m-2}=2^{-n^{2}+2 n-4}$. Let $c>0$ such that $1 / c$ is an integer, and let G be an ε-sparse $\left(\varepsilon|G|^{1-c}, \varepsilon|G|\right)$-coherent graph. Then there is a covering sequence $\left(\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}\right)$ in G, where $\mathcal{L}_{i}=\left(a_{i}, H_{i}, B_{i}\right)$ for $1 \leq i \leq n$, such that:

- for $1 \leq i \leq n, \mathcal{L}_{i}$ has height at most $1 / c$;
- for $1 \leq i \leq n,\left|B_{i}\right| \geq 2^{-m-1}|G|$;
- either B_{1}, \ldots, B_{n} are pairwise disjoint and H_{i} is anticomplete to B_{j} for all distinct $i, j \in$ $\{1, \ldots, n\}$, or $B_{1}=B_{2}=\cdots=B_{n}$.

Proof. Choose $\mathcal{L}_{1}, \ldots, \mathcal{L}_{m}$ as in 5.1, such that each \mathcal{L}_{i} has base of cardinality at least $2^{-i-1}|G|$ and height at most $1 / c$. Let $\mathcal{L}_{i}=\left(a_{i}, H_{i}, B_{i}\right)$ for $1 \leq i \leq m$. For $1 \leq i \leq m, H_{1}, \ldots, H_{i-1}$ are anticomplete to B_{i}, but H_{i+1}, \ldots, H_{m} might have neighbours in B_{i}. Choose $B_{i}^{\prime} \subseteq B_{i}$ of cardinality at least $\left|B_{i}\right| / 2^{m-i} \geq|G| / 2^{m+1}$, such that for each $j \in\{i+1, \ldots, m\}$, either every vertex in B_{i}^{\prime} has a neighbour in H_{j}, or none do. Let \mathcal{L}_{i}^{\prime} be the covering obtained from \mathcal{L}_{i} by replacing its base by B_{i}^{\prime}. Then $\left(\mathcal{L}_{1}^{\prime}, \ldots, \mathcal{L}_{m}^{\prime}\right)$ is a covering sequence, and for $1 \leq i<j \leq m, H_{i}$ is anticomplete to B_{j}, and either H_{j} is anticomplete to B_{i} or H_{j} covers B_{i}. If some B_{i} is covered by H_{j} for at least n values of j, the theorem holds, so we assume not. Let $i_{1}=1$, and inductively for $2 \leq k \leq n$, let $i_{k} \in\{1, \ldots, m\}$ be minimum such that $H_{i_{k}}$ is anticomplete to each of $B_{i_{1}}^{\prime}, \ldots, B_{i_{k-1}}^{\prime}$. This is possible since each of $B_{i_{1}}^{\prime}, \ldots, B_{i_{k-1}}^{\prime}$ is covered by H_{j} for at most $n-1$ values of j, and $m>(n-1)(k-1)$. It follows that $B_{i_{1}}^{\prime}, \ldots, B_{i_{n}}^{\prime}$ are pairwise disjoint. Moreover, $i_{1}<\cdots<i_{n}$, and so the second outcome holds. This proves 5.2.

Now we prove the main result of this section. Its proof is closely related to the proof of the main theorem of [10].
5.3 Let $c>0$ such that $1 / c$ is an integer, and let $n \geq 0$ be an integer. Let $\varepsilon=2^{-2^{2 n}}$. If G is an ε-sparse $\left(\varepsilon|G|^{1-c}, \varepsilon|G|\right)$-coherent graph, then G contains a multicovering of length n and height at most $1+1 / c$, and with base of cardinality at least $3 \varepsilon|G|$.

Proof. Define $q=2^{n}, p=(q-1)^{2}+1$, and $x=2^{-p-1}$. It follows that $\varepsilon \leq x 3^{-n}$ and $\varepsilon \leq 2^{-p-2}$. From 5.2 (with m, n replaced by p, q), we may assume that there is a covering sequence $\left(\mathcal{L}_{1}, \ldots, \mathcal{L}_{q}\right)$ in G, such that:

- $V\left(\mathcal{L}_{1}\right), \ldots, V\left(\mathcal{L}_{q}\right)$ are pairwise disjoint;
- for $1 \leq i \leq q, \mathcal{L}_{i}$ has height at most $1 / c$;
- for $1 \leq i \leq q$, the base of \mathcal{L}_{i} has cardinality at least $x|G|$; and
- for all distinct $i, j \in\{1, \ldots, q\}$, every edge between $V\left(\mathcal{L}_{i}\right)$ and $V\left(\mathcal{L}_{j}\right)$ is between the base of $V\left(\mathcal{L}_{i}\right)$ and the base of $V\left(\mathcal{L}_{j}\right)$.

Let $t, d_{1}, \ldots, d_{t}>0$ be integers, where $d_{1}, \ldots, d_{t} \leq n$. Let us say a battery with length t of type $\left(d_{1}, \ldots, d_{t}\right)$ is a sequence of t multicoverings $\left(\mathcal{M}_{1}, \ldots, \mathcal{M}_{t}\right)$ in G, such that:

- $V\left(\mathcal{M}_{1}\right), \ldots, V\left(\mathcal{M}_{t}\right)$ are pairwise disjoint;
- for $1 \leq i \leq t, \mathcal{M}_{i}$ has length d_{i}, and height at most $1+1 / c$, and the first term of \mathcal{M}_{i} has height at most $1 / c$;
- for $1 \leq i \leq t$, the base of \mathcal{M}_{i} has cardinality at least $x 3^{1-d_{i}}|G|$;
- for all distinct $i, j \in\{1, \ldots, q\}$, every edge between $V\left(\mathcal{M}_{i}\right)$ and $V\left(\mathcal{M}_{j}\right)$ is between the base of $V\left(\mathcal{M}_{i}\right)$ and the base of $V\left(\mathcal{M}_{j}\right)$.

Thus G contains a battery of type $(1, \ldots, 1)$, and of length q. Choose a battery \mathcal{B} of type $\left(d_{1}, \ldots, d_{t}\right)$ with t minimum such that $2^{d_{1}}+\cdots+2^{d_{t}} \geq q$. Let $\mathcal{B}=\left(\mathcal{M}_{1}, \ldots, \mathcal{M}_{t}\right)$. For $1 \leq i \leq t$, let the base of \mathcal{M}_{i} be B_{i}. For each $i,\left|B_{i}\right| \geq x 3^{1-n}|G| \geq 3 \varepsilon|G|$. If some $d_{i}=n$, then the i th term of \mathcal{B} is

Figure 2: A battery of type $\left(d_{1}, \ldots, d_{t}\right)$
a multicovering satisfying the theorem; so we assume that $d_{1}, \ldots, d_{t}<n$. In particular, $2^{d_{1}}<2^{n}=q$, and so $t \geq 2$. By reordering the terms of the battery, we may assume that $d_{t} \leq d_{1}, \ldots, d_{t-1}$. Since G is $\left(\varepsilon|G|^{1-c}, \varepsilon|G|\right)$-coherent, and $\left|B_{t}\right| \geq \varepsilon|G|$, for $1 \leq i<t$ there are fewer than $\varepsilon|G|^{1-c} \leq 2\left|B_{i}\right| / 3$ vertices in B_{i} that have no neighbour in B_{t}. Hence we may choose $X \subseteq B_{t}$ minimal such that for some $i \in\{1, \ldots, t-1\}$, at least $\left|B_{i}\right| / 3$ vertices in B_{i} have a neighbour in X. For $1 \leq i<t$, let Y_{i} be the set of vertices in B_{i} that have a neighbour in X, and $Z_{i}=B_{i} \backslash Y_{i}$. By reordering, we may assume that $\left|Y_{1}\right| \geq\left|B_{1}\right| / 3$. From the minimality of $X,\left|Y_{i}\right| \leq\left|B_{i}\right| / 3+\varepsilon|G|$ for $2 \leq i \leq t-1$, and so $\left|Z_{i}\right| \geq 2\left|B_{i}\right| / 3-\varepsilon|G| \geq\left|B_{i}\right| / 3$. Let $\mathcal{M}_{1}=\left(\mathcal{L}_{1}, \ldots, \mathcal{L}_{d_{1}}\right)$, and let the first term of \mathcal{M}_{t} be $\mathcal{L}=\left(a, H, B_{t}\right)$. Let \mathcal{L}_{1}^{\prime} be the covering $\left(a, H \cup X, Y_{1}\right)$, which therefore has height at most $1+1 / c$. Let \mathcal{M}_{1}^{\prime} be obtained from \mathcal{M}_{1} by replacing its base by Y_{1} and adding a new final term \mathcal{L}_{1}^{\prime}; so \mathcal{M}_{1}^{\prime} has length $d_{1}+1$. For $2 \leq i \leq t-1$, let \mathcal{M}_{i}^{\prime} be obtained from \mathcal{M}_{i} by replacing its base by Z_{i}. Then $\left(\mathcal{M}_{1}^{\prime}, \ldots, \mathcal{M}_{t-1}^{\prime}\right)$ is a battery of type $\left(d_{1}+1, d_{2}, \ldots, d_{t-1}\right)$. Since $d_{1} \geq d_{t}$, it follows that

$$
2^{d_{1}+1}+\cdots+2^{d_{t-1}} \geq 2^{d_{1}}+\cdots+2^{d_{t}} \geq 2^{q}
$$

a contradiction to the choice of \mathcal{B}. This proves 5.3.

6 Making spiders

Let $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$ be coverings in G, such that

- $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$ all have the same apex a;
- for $1 \leq i \leq n$ let \mathcal{L}_{i} have heart H_{i}; then for $1 \leq i<j \leq n, H_{i} \backslash\{a\}$ is disjoint from and anticomplete to $H_{j} \backslash\{a\}$.

We call $\left(a, \mathcal{L}_{1}, \ldots, \mathcal{L}_{n}\right)$ a spider in G, and a is its apex. Its height is the maximum of the heights of $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$, and its length is n. It has mass b where b is the minimum cardinality of the bases of $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$. The union of the hearts of $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$ is called the heart of the spider. We call $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$ the members of the spider.

Figure 3: A spider of length three.
6.1 Let $c>0$ such that $1 / c$ is an integer, let $n \geq 1$ be an integer, and let $\varepsilon=2^{-2^{2 n}}$. If G is an ε-sparse $\left(\varepsilon|G|^{1-c}, \varepsilon|G|\right)$-coherent graph with $|G| \geq 2$, then G contains a spider of length n and height at most $2+2 / c$, and with mass at least $\varepsilon|G|$.

Proof. 5.3 implies that G contains a multicovering $\left(\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}\right)$ of length n and height at most $1+1 / c$, and with base B of cardinality at least $3 \varepsilon|G|$. Choose $a \in B$. Let $1 \leq i \leq n$, and let H_{i} be the heart of \mathcal{L}_{i}. Then every vertex of $H_{i} \cup\{a\}$ can be joined to a by a path of $G\left[H_{i} \cup\{a\}\right]$ with length at most $1+2 / c$. Hence ($a, H_{i} \cup\{a\}, B \backslash\{a\}$) is a covering of height at most $2+2 / c$, say \mathcal{L}_{i}^{\prime}. Consequently $\left(\{a\}, \mathcal{L}_{1}^{\prime}, \ldots, \mathcal{L}_{n}^{\prime}\right)$ is a spider of length n and height at most $2+2 / c$, and mass $|B|-1 \geq 3 \varepsilon|G|-1 \geq \varepsilon|G|$, since $|G| \geq 1 / \varepsilon$ by 2.1. This proves 6.1.

A troupe of spiders is a set of spiders such that their hearts are pairwise disjoint and anticomplete.
6.2 Let $c>0$ such that $1 / c$ is an integer, and let $m, n \geq 1$ be integers. Let let $\varepsilon^{-1}=2^{2^{2 n}}+3(m-1) n$. If G is an ε-sparse $\left(\varepsilon|G|^{1-c}, \varepsilon|G|\right)$-coherent graph, then G contains a troupe of m spiders, each of length n and height at most $2+2 / c$, and with mass at least $\varepsilon|G|$.

Proof. We proceed by induction on m. The result is true if $m=1$, from 6.1; so we assume that $m \geq 2$, and the result holds for $m-1$. From 6.1 it follows that G contains a spider of length n and height at most $2+2 / c$, and with mass at least $\varepsilon|G| ;$ say $\mathcal{S}_{1}=\left(a_{1}, \mathcal{L}_{1}, \ldots, \mathcal{L}_{n}\right)$. For $1 \leq i \leq n$, let H_{i} be the heart of \mathcal{L}_{i}. Thus every vertex of H_{i} has $G\left[H_{i}\right]$-distance from a_{1} at most $1+2 / c$, and there are at least $\varepsilon|G|$ vertices in $V(G) \backslash H_{i}$ with a neighbour in H_{i}. Let us choose \mathcal{S}_{1} such that each H_{i} is minimal with these two properties (that is, there are at least $\varepsilon|G|$ vertices in $V(G) \backslash H_{i}$ with a neighbour in H_{i}, and every vertex of H_{i} can be joined to a_{1} by a path of $G\left[H_{i}\right]$ with length at most $1+2 / c$.) Let B_{i} be the set of vertices in $V(G) \backslash H_{i}$ with a neighbour in H_{i}.
(1) For $1 \leq i \leq n,\left|H_{i}\right|<\varepsilon|G|^{1-c}$, and $\left|B_{i}\right|<2 \varepsilon|G|$.

Let $H_{i}=\left\{v_{1}, \ldots, v_{t}\right\}$, ordered with increasing $G\left[H_{i}\right]$-distance from a_{1} (and hence $v_{1}=a_{1}$). Every vertex in B_{i} either has a neighbour in $H_{i} \backslash\left\{v_{t}\right\}$ or is adjacent to v_{t}; there are fewer than $\varepsilon|G|$ vertices in B_{i} with a neighbour in $H_{i} \backslash\left\{v_{t}\right\}$, from the minimality of H_{i}, and there are fewer than $\varepsilon|G|$ vertices in B_{i} that are adjacent to v_{t}, since G is ε-sparse. Thus $\left|B_{i}\right|<2 \varepsilon|G|$. Let $j=\left\lceil\varepsilon|G|^{1-c}\right\rceil$,
and suppose that $t \geq j$. Let $J=\left\{v_{1}, \ldots, v_{j}\right\}$. Thus $|J| \leq \varepsilon|G|+1 \leq 2 \varepsilon|G|$ by 2.1, and so $|V(G) \backslash J| \geq(1-2 \varepsilon)|G|$. Since G is $\left(\varepsilon|G|^{1-c}, \varepsilon|G|\right)$-coherent, there are fewer than $\varepsilon|G|$ vertices in $V(G) \backslash J$ that have no neighbour in J, and so there are at least $(1-3 \varepsilon)|G| \geq 2 \varepsilon|G|$ vertices in $V(G) \backslash J$ that have a neighbour in J. Thus $t=j$ and $H_{i}=J$, from the minimality of H_{i}; but this is impossible since $\left|B_{i}\right|<2 \varepsilon|G|$. This proves that $t<j$, and so proves (1).

From (1),

$$
\left|H_{1} \cup \cdots \cup H_{n} \cup B_{1} \cup \cdots \cup B_{n}\right| \leq 3 \varepsilon n|G| .
$$

Let X be the complement in $V(G)$ of this set; thus $|X| \geq(1-3 \varepsilon n)|G|$. Let

$$
\left(\varepsilon^{\prime}\right)^{-1}=2^{2^{2 n}}+3(m-2) n=\varepsilon^{-1}-3 n .
$$

Thus $\varepsilon^{\prime}(1-3 n \varepsilon)=\varepsilon$, and so $\varepsilon^{\prime}|X| \geq \varepsilon|G|$. It follows that $G[X]$ is ε^{\prime}-sparse and $\left(\varepsilon^{\prime}|X|^{1-c}, \varepsilon^{\prime}|X|\right)$ coherent. From the inductive hypothesis applied to $G[X]$, we deduce that there is a troupe of $m-1$ spiders in $G[X]$, each of length n and height at most $2+2 / c$, and with mass at least $\varepsilon^{\prime}|X| \geq \varepsilon|G|$. But then adding \mathcal{S}_{1} to this troupe gives a troupe of m spiders satisfying the theorem. This proves 6.2

So, our graph contains a troupe of spiders, of arbitrarily large cardinality, and each with arbitrarily large length, all of height at most $2+2 / c$, and with bases of linear cardinality. The next result converts the members of these spiders to levellings, but we need to be careful exactly what we mean. In a levelling, all edges from heart to base start from the penultimate level of the levelling. We need more than this: we need that for every two levellings that are members of spiders in the troupe, every edge from the heart of one to the base of the other starts from the penultimate level of the first, and this is more tricky to arrange.

Let us first state the definition formally. Let $n \geq 1$ and let $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$ be levellings in a graph G, all with the same apex a, such that

- for $1 \leq i \leq n$, let H_{i} be the heart of \mathcal{L}_{i}; then $H_{1} \backslash\{a\}, \ldots, H_{n} \backslash\{a\}$ are pairwise disjoint (the bases of $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$ may intersect);
- for all distinct $i, j \in\{1, \ldots, n\}$, every edge of G between $H_{i} \backslash\{a\}$ and $V\left(\mathcal{L}_{j}\right) \backslash\{a\}$ has one end in the penultimate level of \mathcal{L}_{i} and the other in the base of \mathcal{L}_{j}.

We call $\left(a, \mathcal{L}_{1}, \ldots, \mathcal{L}_{n}\right)$ a lobster in G, and a is its apex. Its height is the maximum height of $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$, and its length is n. It has mass b where b is the minimum cardinality of the bases of $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$. Its heart is the union of the hearts of $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$. We call $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$ the members of the lobster.

A troupe of lobsters is a set $\left\{\mathcal{T}_{1}, \ldots, \mathcal{T}_{m}\right\}$ of lobsters, such that for all $i, j \in\{1, \ldots, m\}$:

- for $1 \leq i<j \leq m$, the heart of \mathcal{T}_{i} is disjoint from and anticomplete to the heart of \mathcal{T}_{j};
- let \mathcal{L}, \mathcal{M} each be a member of one of $\mathcal{T}_{1}, \ldots, \mathcal{T}_{m}$, with $\mathcal{L} \neq \mathcal{M}$, and let $\mathcal{L}=\left(L_{0}, \ldots, L_{k}\right)$; then there is no edge between $L_{0} \cup \cdots \cup L_{k-2}$ and the base of \mathcal{M}.

Figure 4: A lobster of length three.
6.3 Let $c>0$ such that $1 / c$ is an integer, and let $m, n \geq 1$ be integers. Let

$$
\varepsilon^{-1}=\left(2^{2^{2 n}}+3(m-1) n\right)(2+2 / c)^{m n}
$$

If G is an ε-sparse $\left(\varepsilon|G|^{1-c}, \varepsilon|G|\right)$-coherent graph, then G contains a troupe of m lobsters, each of length n and height at most $2+2 / c$, and with mass at least $\varepsilon|G|$.

Proof. Let G be an ε-sparse $\left(\varepsilon|G|^{1-c}, \varepsilon|G|\right)$-coherent graph. By 6.2 with ε replaced by $(2+2 / c)^{m n} \varepsilon$, there is a troupe of spiders $\left\{\mathcal{S}_{1}, \ldots, \mathcal{S}_{m}\right\}$ in G, each of length n and height at most $2+2 / c$, and with mass at least $(2+2 / c)^{m n} \varepsilon|G|$. Let the members of these spiders (in some order) be $\mathcal{L}_{1}, \ldots, \mathcal{L}_{m n}$, and for $1 \leq i \leq m n$ let $\mathcal{L}_{i}=\left(a_{i}, H_{i}, B_{i}\right)$. (Thus, some of $a_{1}, \ldots, a_{m n}$ may be equal.) We shall convert these members one by one to levellings, at each step shrinking all the bases.

Let $X^{0}=B_{1} \cup \cdots \cup B_{m n}$, and for $1 \leq i \leq m n$ let X_{i}^{0} be the set of all vertices in X^{0} with a neighbour in H_{i} (thus $B_{i} \subseteq X_{i}^{0}$). Inductively, let $1 \leq h \leq m n$, and suppose that we have defined X^{h-1} and $\mathcal{L}_{1}^{\prime}, \ldots, \mathcal{L}_{h-1}^{\prime}$, and X_{i}^{h-1} for $1 \leq i \leq m n$, satisfying:

- for $1 \leq i \leq h-1, \mathcal{L}_{i}^{\prime}$ is a levelling; its heart is a subset of H_{i}, and a_{i} is its apex; its height is at most $2+2 / c$;
- for $1 \leq i \leq h-1, X_{i}^{h-1}$ is the set of all vertices in X^{h-1} with a neighbour in the heart of \mathcal{L}_{i}^{\prime}, and for $h \leq i \leq m n, X_{i}^{h-1}$ is the set of all vertices in X^{h-1} with a neighbour in the heart of $\mathcal{L}_{i} ;$
- for $1 \leq i \leq h-1$, every edge between the heart of \mathcal{L}_{i}^{\prime} and X^{h-1} has an end in the penultimate level of \mathcal{L}_{i}^{\prime}; and
- for $1 \leq i \leq m n,\left|X_{i}^{h-1}\right| \geq(2+2 / c)^{m n+1-h} \varepsilon|G|$.

For $0 \leq j \leq 1+2 / c$, let L_{j} be the set of vertices in H_{h} with $G\left[H_{h}\right]$-distance to a_{h} exactly j. Thus every vertex $v \in X_{h}^{h-1}$ has a neighbour in some L_{j} where $j \in\{0, \ldots, 1+2 / c\}$, and the smallest such j is called the type of v. There are only $2+2 / c$ possible types, and so there exists $k \in\{0, \ldots, 1+2 / c\}$ such that at least $\left|X_{h}^{h-1}\right| /(2+2 / c)$ vertices in X_{h}^{h-1} have type k. Consequently, since

$$
\left|X_{h}^{h-1}\right| /(2+2 / c) \geq(2+2 / c)^{m n+1-h} \varepsilon|G| /(2+2 / c)=(2+2 / c)^{m n-h} \varepsilon|G|
$$

there exists $k \in\{0, \ldots, 1+2 / c\}$ minimum such that at least $(2+2 / c)^{m n-h} \varepsilon|G|$ vertices in X_{h}^{h-1} have type k. Let X_{h}^{h} be the set of all vertices in X_{h}^{h-1} that have type k, and let $\mathcal{L}_{h}^{\prime}=\left(L_{0}, \ldots, L_{k}, X_{h}^{h}\right)$. Thus \mathcal{L}_{h}^{\prime} is a levelling with height $k+1 \leq 2+2 / c$.

Let Z^{h} be the set of vertices in X_{h}^{h-1} with type less than k. Thus

$$
\left|Z^{h}\right| \leq(1+2 / c)(2+2 / c)^{m n-h} \varepsilon|G| .
$$

For $1 \leq i \leq m n$ with $i \neq h$, define $X_{i}^{h}=X_{i}^{h-1} \backslash Z^{h}$. Thus $\left|X_{i}^{h}\right| \geq\left|X_{i}^{h-1}\right|-\left|Z^{h}\right|$, and so

$$
\left|X_{i}^{h}\right| \geq(2+2 / c)^{m n+1-h} \varepsilon|G|-(1+2 / c)(2+2 / c)^{m n-h} \varepsilon|G|=(2+2 / c)^{m n-h} \varepsilon|G| \text {. }
$$

Let X^{h} be the union of the sets $X_{i}^{h}(1 \leq i \leq n)$. This completes the inductive definition.
For $1 \leq i \leq m$, let \mathcal{T}_{i} be the lobster obtained from \mathcal{S}_{i} by replacing each of its members \mathcal{L}_{j} by \mathcal{L}_{j}^{\prime}. This makes a troupe of lobsters satisfying the theorem, and so proves 6.3,

7 Part assembly

Now we put these several pieces together to prove 1.9, which we restate:
7.1 Let $c>0$ with $1 / c$ an integer, and let H_{1}, H_{2} be graphs with branch-length at least $4 / c+5$. Then there exists $\varepsilon>0$ such that if G is a graph with $|G|>1$ that is H_{1}-free and $\overline{H_{2}}$-free, then there is a pure pair A, B in G with $|A| \geq \varepsilon|G|$ and $|B| \geq \varepsilon|G|^{1-c}$.

As we saw in section 2, to prove 7.1, it suffices to prove the following:
7.2 Let $c>0$ with $1 / c$ an integer, and let H be a graph with branch-length at least $4 / c+5$. Then there exists $\varepsilon>0$ such that if G is an ε-sparse $\left(\varepsilon|G|^{1-c}, \varepsilon|G|\right)$-coherent graph, then G contains H.

Proof. By adding more vertices to H, we may assume that if X denotes the set of vertices of H that have degree different from two, then every cycle of H contains at least one vertex in X, and every path in H with both ends in X has length at least $4 / c+5$, and every cycle of H has length at least $4 / c+5$. Let $X=\left\{x_{1}, \ldots, x_{m}\right\}$. Consequently H can be obtained from the set X of m isolated vertices by adding

- paths with ends in X and each of length at least $4 / c+5$, and
- cycles with exactly one vertex in X, of length at least $4 / c+5$
where every vertex of $V(H) \backslash X$ belongs to exactly one of these paths and cycles, and has degree exactly two in H. Let the paths be $R_{i}\left(i \in I_{1}\right)$, and let the cycles be $R_{i}\left(i \in I_{2}\right)$, where $I_{1} \cap I_{2}=\emptyset$. For $i \in I_{1}$, let R_{i} have ends (u_{i}, v_{i}) (ordered arbitrarily) and have length ℓ_{i}, and for $i \in I_{2}$, let $u_{i}=v_{i}$ be the unique vertex of R_{i} in X, and let R_{i} have length ℓ_{i}. Thus H is determined up to isomorphism by a knowledge of X, the pairs $\left(u_{i}, v_{i}\right)\left(i \in I_{1} \cup I_{2}\right)$, and the numbers $\ell_{i}\left(i \in I_{1} \cup I_{2}\right)$. Let $I=I_{1} \cup I_{2}$, and for each $i \in I$ let $\alpha_{i}, \beta_{i} \in\{1, \ldots, m\}$ such that $x_{\alpha_{i}}=u_{i}$ and $x_{\beta_{i}}=v_{i}$. Let $I=\{1, \ldots, p\}$.

Let n be the maximum degree of H, and let $d^{-1}=\left(2^{2^{2 n}}+3(m-1) n\right)(2+2 / c)^{m n}$. Choose $\varepsilon>0$ with $3(2+1 / c)^{|H|^{2}}(4 p)^{p} \varepsilon<d$. We claim that ε satisfies the theorem. Let G be an ε-sparse
$\left(\varepsilon|G|^{1-c}, \varepsilon|G|\right)$-coherent graph. We must show that G contains H. By 6.3, G contains a troupe $\left\{\mathcal{S}_{1}, \ldots, \mathcal{S}_{m}\right\}$ of m lobsters, each of length n and height at most $2+2 / c$, and with mass at least $d|G|$. For $1 \leq i \leq p$, choose a member $\mathcal{L}_{2 i-1}$ of $\mathcal{S}_{\alpha_{i}}$ and a member $\mathcal{L}_{2 i}$ of $\mathcal{S}_{\beta_{i}}$, in such a way that the levellings $\mathcal{L}_{i}, \mathcal{M}_{i}(i \in I)$ are all different. (This is possible from the definition of n).

We will prove that for all $h \in I$, there is a path P_{h} (or cycle, if the two apexes are equal) between the apex of $\mathcal{L}_{2 h-1}$ and the apex of $\mathcal{L}_{2 h}$ of length ℓ_{h}, such that the union of P_{1}, \ldots, P_{p} makes an induced subgraph of G isomorphic to H. We will choose these paths and cycles in order. Also for $1 \leq h \leq p$ we need to choose a subset X_{k}^{h} of the base of each \mathcal{L}_{k} for $2 h<k \leq 2 p$, and a subset Y_{k}^{h} of the penultimate level of \mathcal{L}_{k}, with properties that we will describe below. We denote by P_{h}^{*} the set of vertices of P_{h} different from its ends (if it is a path) or different from the apex of A_{h} (if it is a cycle). In either case $\left|P_{h}^{*}\right|=\ell_{h}-1$.

For $0 \leq h \leq p$ let $w_{h}=(4 p)^{-h} d$. Let B be the union of the bases of $\mathcal{L}_{1}, \ldots, \mathcal{L}_{2 \rho}$. For $1 \leq i \leq 2 p$, let Y_{i}^{0} be the penultimate level of \mathcal{L}_{i}, let X_{i}^{0} be the set of vertices in B with a neighbour in Y_{i}^{0}, and let a_{i} be the apex of \mathcal{L}_{i}. Thus, $\left|X_{i}^{0}\right| \geq w_{0}|G|$. Now inductively, suppose we have chosen the first $h-1$ paths or cycles, say P_{1}, \ldots, P_{h-1}, where $1 \leq h \leq p$, satisfying:

- for $1 \leq g \leq h-1$, if $a_{2 g-1} \neq a_{2 g}$, then P_{g} is an induced path joining these apexes, of length ℓ_{g}; and if the apexes are equal then P_{g} is a cycle of length ℓ_{g} containing this apex;
- for $1 \leq g \leq h-1$, and $2 h+1 \leq i \leq 2 p$, every vertex of the heart of \mathcal{L}_{i} with a neighbour in P_{g}^{*} belongs to the penultimate level of \mathcal{L}_{i}.
Suppose moreover that for $2 h-1 \leq i \leq 2 p$ we have chosen $X_{i}^{h-1} \subseteq X_{i}^{0}$ and $Y_{i}^{h-1} \subseteq Y_{i}^{0}$, such that for all $i \in\{2 h-1, \ldots, 2 p\}$:
- X_{i}^{h-1} is the set of all vertices in B with a neighbour in Y_{i}^{h-1};
- $X_{i}^{h-1} \cup Y_{i}^{h-1}$ is anticomplete to $P_{1}^{*}, \ldots, P_{h-1}^{*}$; and
- $\left|X_{i}^{h-1}\right| \geq w_{h-1}|G|$.

We choose P_{h} as follows. For $2 h+1 \leq i \leq 2 p$, choose $Y_{i}^{h} \subseteq Y_{i}^{h-1}$ minimal such that at least $\left(w_{h}+\varepsilon(|H|-1)\right)|G|$ vertices in B (necessarily all in X_{i}^{h-1}) have a neighbour in Y_{i}, and let X_{i} be the set of vertices in B with a neighbour in Y_{i}. From the minimality of Y_{i},

$$
\left(w_{h}+\varepsilon(|H|-1)\right)|G| \leq\left|X_{i}\right| \leq\left(w_{h}+\varepsilon|H|\right)|G| .
$$

Now $\varepsilon|H| \leq w_{h}$, so $\left|X_{i}\right| \leq 2 w_{h}$. Let $Z=X_{2 h+1} \cup \cdots \cup X_{2 p}$; thus $|Z| \leq 2(2 p-2) w_{h}|G|$. For $i=2 h-1,2 h$ let $X_{i}=X_{i}^{h-1} \backslash Z$. Thus

$$
\left|X_{i}\right| \geq\left|X_{i}^{h-1}\right|-|Z| \geq\left(w_{h-1}-4(p-1) w_{h}\right)|G| \geq w_{h}|G| \geq(4 p)^{-p} d|G|=3(2+1 / c)^{|H|^{2}} \varepsilon|G|
$$

for $i=2 h-1,2 h$.
For $i=2 h-1,2 h$ let \mathcal{L}_{i}^{\prime} be the levelling obtained from \mathcal{L}_{i} by replacing its base by X_{i}. Now $\mathcal{L}_{2 h-1}^{\prime}$, $\mathcal{L}_{2 h}^{\prime}$ both have height at most $2+2 / c$, and $\ell_{h} \geq 5+4 / c$. By 3.4 applied to the levellings $\mathcal{L}_{2 h-1}^{\prime}, \mathcal{L}_{2 h}^{\prime}$, there is an induced path P_{h} of length ℓ_{h} between $a_{2 h-1}, a_{2 h}$ (or a cycle, if $a_{2 h-1}=a_{2 h}$), with vertex set included in $V\left(\mathcal{L}_{2 h-1}^{\prime}\right) \cup V\left(\mathcal{L}_{2 h}^{\prime}\right)$. Consequently P_{h}^{*} is anticomplete to Y_{i} for $2 h+1 \leq i \leq 2 p$, and to $P_{1}^{*}, \ldots, P_{h-1}^{*}$. It might have neighbours in X_{i} for $2 h+1 \leq i \leq 2 p$, but since $\left|P_{h}^{*}\right| \leq|H|-1$, there
are at most $\varepsilon(|H|-1)|G|$ such vertices. For $2 h+1 \leq i \leq 2 p$, let X_{i}^{h} be the set of vertices in X_{i} with no neighbour in P_{h}^{*}. Thus $\left|X_{i}^{h}\right| \geq\left|X_{i}\right|-\varepsilon(|H|-1)|G| \geq w_{h}|G|$. This completes the inductive definition.

But then the union of P_{1}, \ldots, P_{p} forms an induced subgraph isomorphic to H. This proves 7.2, and hence completes the proof of 1.9 ,

One might wonder how ε in 1.9 depends on c, H_{1}, H_{2}. For simplicity let us assume that if X denotes the set of vertices of H_{1} that have degree different from two, then every cycle of H_{1} contains at least one vertex in X, and every path in H_{1} with both ends in X has length at least $4 / c+5$, and every cycle of H_{1} has length at least $4 / c+5$; and the same for H_{2}. Let $r=\max \left(\left|H_{1}\right|,\left|H_{2}\right|\right)$. Then one can check that (with $H=H_{1}, H_{2}$) defining d, ε as in the proof of 7.2 yields a value of ε that satisfies 7.2, with $\log \log (1 / \varepsilon)=O(r)$. Next we need a version of 2.2 with an explicit dependence of δ on η, and for this we can use the proof of 2.2 due to Fox and Sudakov [9; this can be used to show that 2.2 holds where $\log 1 / \delta=O\left(|H|(\log 1 / \eta)^{2}\right)$. The argument given in section 2 that 2.3 implies 1.9 shows that if ε satisfies [7.2, and δ satisfies [2.2, then $\varepsilon^{\prime}=\varepsilon \delta$ satisfies 1.9, Putting these pieces together, we deduce that there exists ε with $\log \log (1 / \varepsilon)=O(r)$ that satisfies 1.9,

8 Further extension

We have found a kind of strengthening of [1.9, that we state without proof. For $\ell \geq 2$, let us say a graph H is ℓ-handled if there are induced subgraphs P_{0}, \ldots, P_{k} of H, for some $k \geq 1$, such that:

- P_{0} is a forest;
- every path of P_{0} has length at most ℓ;
- P_{1}, \ldots, P_{k} are pairwise vertex-disjoint paths, each of length at least ℓ;
- for $1 \leq i \leq k, V\left(P_{i} \cap P_{0}\right)$ consists exactly of the two ends of P_{i}; and
- $H=P_{0} \cup P_{1} \cup \cdots \cup P_{k}$.

Then:
8.1 There exists $\gamma>0$ with the following property. Let $c>0$ with $1 / c$ an integer, and let H_{1}, H_{2} be $\gamma /$ c-handled graphs. Then there exists $\varepsilon>0$ such that if G is a graph with $|G|>1$ that is H_{1}-free and $\overline{H_{2}}$-free, then there is a pure pair A, B in G with $|A| \geq \varepsilon|G|$ and $|B| \geq \varepsilon|G|^{1-c}$.

Then the essentials of 1.9 follow from 8.1 by taking P_{0} to be the subgraph of H induced on the set of all vertices of degree at least three and their neighbours. But we feel that 8.1 is not very satisfactory, because if the forest P_{0} has long paths, the hypothesis requires the paths P_{1}, \ldots, P_{k} to be long too. We would prefer a version of 8.1 where we omit the second bullet from the definition of ℓ-handled, but so far we cannot prove it.

A weaker form of 1.9 will be proved for a wider class of graphs in [12]. Let H be a graph. If $E(H) \neq \emptyset$, we define the congestion of H to be the maximum of $1-(|J|-1) /|E(J)|$, taken over all subgraphs J of H with at least one edge; and if $E(H)=\emptyset$, we define the congestion of H to be zero. Thus the congestion of H is always non-negative, and equals zero if and only if H is a forest; and, for instance, long cycles have smaller congestion than short cycles.

In [12] we will prove:
8.2 Let $c>0$, and let H_{1}, H_{2} be graphs with congestion at most $c /(9+15 c)$. Then there exists $\varepsilon>0$ such that if G is a graph with $|G|>1$ that is H_{1}-free and $\overline{H_{2}}$-free, then there is a pure pair A, B in G with $|A|,|B| \geq \varepsilon|G|^{1-c}$.

This is pleasing because of the following weak converse (easily proved with a random graph argument that we omit):
8.3 Let $c>0$, and let H_{1}, H_{2} be graphs both with congestion more than c. There is no $\varepsilon>0$ such that for every graph G with $|G|>1$ that is H_{1}-free and $\overline{H_{2}}$-free, there is a pure pair A, B in G with $|A|,|B| \geq \varepsilon|G|^{1-c}$.

The result 8.2 does not contain 1.9, because in 8.2 neither of A, B have to have linear cardinality. What if we ask for a strengthened version of 8.2 that would contain 1.9 (by requiring one of $|A|,|B|$ to be linear)? We pose that as a conjecture:
8.4 Conjecture: For all $c>0$, there exists $\sigma>0$ with the following property. Let H_{1}, H_{2} be graphs with congestion at most σ. There exists $\varepsilon>0$ such that if G is a graph with $|G|>1$ that is H_{1}-free and $\overline{H_{2}}$-free, then there is a pure pair A, B in G with $|A| \geq \varepsilon|G|$ and $|B| \geq \varepsilon|G|^{1-c}$.

Acknowledgement

The referee reports were very thorough and very hepful, and we would like to express our thanks.

References

[1] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, "The strong perfect graph theorem", Annals of Math. 164 (2006), 51-229.
[2] M. Chudnovsky, A. Scott, P. Seymour and S. Spirkl, "Pure pairs. I. Trees and linear anticomplete pairs", Advances in Math., 375 (2020), 107396, arXiv:1809.00919,
[3] M. Chudnovsky, A. Scott, P. Seymour and S. Spirkl, "Pure pairs. II. Excluding all subdivisions of a graph", Combinatorica 41 (2021), 279-405, arXiv:1804.01060,
[4] P. Erdős and A. Hajnal, "On spanned subgraphs of graphs", Graphentheorie und Ihre Anwendungen (Oberhof, 1977), www.renyi.hu/~p_erdos/1977-19.pdf.
[5] P. Erdős and A. Hajnal, "Ramsey-type theorems", Discrete Applied Math. 25 (1989), 37-52.
[6] J. Fox, "A bipartite analogue of Dilworth's theorem", Order 23 (2006), 197-209.
[7] J. Fox and J. Pach, "Erdős-Hajnal-type results on intersection patterns of geometric objects", in Horizons of Combinatorics, Bolyai Soc. Math. Stud. 17, Springer, Berlin (2008), 79-103.
[8] J. Fox, J. Pach and C. Tóth, "Turán-type results for partial orders and intersection graphs of convex sets", Israel J. Math. 178 (2010), 29-50.
[9] J. Fox and B. Sudakov, "Induced Ramsey-type theorems", Advances in Math. 219 (2008), 1771-1800.
[10] A. Liebenau, M. Pilipczuk, P. Seymour and S. Spirkl, "Caterpillars in Erdős-Hajnal", J. Combinatorial Theory, Ser. B, 136 (2019), 33-43, arXiv:1810.00811.
[11] V. Rödl, "On universality of graphs with uniformly distributed edges", Discrete Math. 59 (1986), 125-134.
[12] A. Scott, P. Seymour and S. Spirkl, "Pure pairs. VIII. Excluding a sparse graph", submitted for publication, arXiv:2201.04062.

[^0]: ${ }^{1}$ Research supported by EPSRC grant EP/V007327/1.
 ${ }^{2}$ Supported by AFOSR grant A9550-19-1-0187 and NSF grant DMS-1800053.
 ${ }^{3}$ This material is based upon work supported by the National Science Foundation under Award No. DMS1802201. We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) (funding reference number RGPIN-2020-03912). Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG) (numéro de référence RGPIN-2020-03912).

