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Stronger counterexamples to the topological Tverberg conjecture

S. Avvakumov∗, R. Karasev†and A. Skopenkov‡

Abstract

Denote by ∆M the M -dimensional simplex. A map f : ∆M → R
d is an almost r-

embedding if f(σ1) ∩ . . . ∩ f(σr) = ∅ whenever σ1, . . . , σr are pairwise disjoint faces. A
counterexample to the topological Tverberg conjecture asserts that if r is not a prime power
and d ≥ 2r+1, then there is an almost r-embedding ∆(d+1)(r−1) → R

d. This was improved by
Blagojević–Frick–Ziegler using a simple construction of higher-dimensional counterexamples
by taking k-fold join power of lower-dimensional ones. We improve this further (for d large

compared to r): If r is not a prime power and N = (d+1)r− r
⌈d+ 2

r + 1

⌉

− 2, then there is an

almost r-embedding ∆N → R
d. The improvement follows from our stronger counterexamples

to the r-fold van Kampen–Flores conjecture. Our proof is based on generalizations of the
Mabillard–Wagner theorem on construction of almost r-embeddings from equivariant maps,
and of the Özaydin theorem on existence of equivariant maps.

MSC 2010: 52C35, 55S91, 57S17.
Keywords: The topological Tverberg conjecture, multiple points of maps, equivariant maps,
deleted product obstruction.
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1 Introduction and statement of results

Denote by ∆M the M -dimensional simplex. We omit ‘continuous’ for maps. A map f : K → R
d

of a union K of closed faces of ∆M is an almost r-embedding if f(σ1) ∩ . . . ∩ f(σr) = ∅
whenever σ1, . . . , σr are pairwise disjoint faces of K. We omit ‘for any integers d, r > 0 and
k ≥ 0’ at the beginnings of statements.

Theorem 1.1’. If r is not a prime power and d ≥ 3r + 1, then there is an almost r-embedding
∆(d+1)(r−1) → R

d.

This is a counterexample to the celebrated topological Tverberg conjecture. Theorem 1.1’
follows from Theorem 1.4’ of Özaydin and Mabillard–Wagner, together with Lemma 2.1’ of
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Gromov–Blagojević–Frick–Ziegler. For the history, see the surveys [BBZ, Sk16, BZ16, BS17,
Sh18] and the references therein. In [AMS+] Theorem 1.1’ was improved to d ≥ 2r + 1.

The following result gives stronger counterexamples to the topological Tverberg conjecture.

Theorem 1.1. If r is not a prime power and

N = N(d, r) := (d+ 1)r − r
⌈d+ 2

r + 1

⌉

− 2,

then there is an almost r-embedding ∆N → R
d.

Theorem 1.1 follows from Theorem 1.4 and Lemma 2.1, see the details in §2.

Remark 1.2 (motivation and related work). (a) There naturally appears more general problem:
For which a, d there is an almost r-embedding ∆a → R

d?
This problem was considered in [BFZ, §5], where higher-dimensional counterexamples were

constructed from lower-dimensional ones: If there is an almost r-embedding ∆a → R
d, then for

each k there is an almost r-embedding ∆k(a+1)−1 → R
k(d+1)−1 [BFZ, Lemma 5.2]. The proof

(exposed a bit simpler [Sk16, Remark 1.5.c]) is by taking k-fold join power as follows. For two
maps f : ∆a → R

p and g : ∆b → R
q define the join f ∗g : ∆a+b+1 = ∆a∗∆b → R

p∗Rq ⊂ R
p+q+1

by the formula

(f ∗ g)(λx ⊕ (1− λ)y) := λf(x)⊕ (1− λ)f(y), where λ ∈ [0, 1].

A join of almost r-embeddings is an almost r-embedding. Hence the k-fold join power of an
almost r-embedding ∆a → R

d is an almost r-embedding ∆k(a+1)−1 → R
k(d+1)−1.

According to a private communication by F. Frick this procedure [BFZ, Theorem 5.4] to-
gether with the counterexample in [AMS+, Theorem 1.1] gives an almost r-embedding ∆F → R

d

for r not a prime power, d sufficiently large, and F some integer close to (d+1)r−
r + 1

2

r + 1
(d+1).

Presumably F − (d+ 1)(r − 1) can be arbitrarily large.
Theorem 1.1 provides even stronger counterexamples to the topological Tverberg conjecture:

for d large compared to r we have N > (d+1)(r−1), and even N > F . Theorem 1.1 is a partial
result on [BFZ, Conjecture 5.5] stating that for r < d not a prime power there is an almost
r-embedding ∆(d+1)r−2 → R

d and there are no almost r-embeddings ∆(d+1)r−1 → R
d. (The case

r ≥ d of the conjecture is trivially covered by known results.) Observe that N ≤ dr − 2 for
r < d. The second part of the conjecture is addressed in [FS20].

(b) We think counterexamples of Theorem 1.1 are mostly interesting because their proof
requires non-trivial ideas, see Theorems 1.4, 2.2, and Lemma 3.2 below. Thus we do not spell
out even stronger counterexamples which presumably could be obtained by combining Theorem
1.1 with the procedure of [BFZ, §5] described in (a). Our proof of Theorem 1.1 is independent
of Theorem 1.1, of [AMS+], and of the iterated join construction described in (a).

(c) Let us illustrate Theorem 1.1 by numerical examples. Earlier results gave almost 6-
embeddings ∆280 → R

55 and ∆275 → R
54, and, more generally, almost r-embeddings ∆(d+1)(r−1) →

R
d for d ≥ 2r+1, ∆d(r−1) → R

d−1 for d ≥ 2r+2, and, even more generally, almost r-embeddings

∆(d+1−s)(r−1) → R
d−s for d ≥ 2r + s + 1. Corollary 1.3 below gives an almost 6-embedding

∆280 → R
54, and, more generally, almost r-embeddings ∆(d+1)(r−1) → R

d−s for certain r, d, s.

Corollary 1.3. Assume that r is not a prime power.
(a) For q ≥ r + 2 and d = (r + 1)q − 1 there is an almost r-embedding ∆(d+1)(r−1) → R

d−1.
(b) If d ≥ (s + 2)r2 for some integer s, then there is an almost r-embedding ∆(d+1)(r−1) →

R
d−s.
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Proof. Part (a) follows by Theorem 1.1 because q ≥ r+2, so ((r+1)q−1)r−rq−2 ≥ (r+1)q(r−1).
Part (b) follows by Theorem 1.1 because d ≥ (s+ 2)r2 ≥ (s + 1)r2 + r − 1, hence

(d+ 1)(r − 1) ≤ (d− s+ 1)r − r
d− s+ 2 + r

r + 1
− 2 ≤ (d− s+ 1)r − r

⌈d− s+ 2

r + 1

⌉

− 2.

A complex is a collection of closed faces (=simplices) of some simplex. A k-complex is a
complex containing at most k-dimensional simplices. The body (or geometric realization) |K|
of a complex K is the union of simplices of K. Thus continuous or piecewise-linear (PL) maps
|K| → R

d and continuous maps |K| → Sm are defined. We abbreviate |K| to K; no confusion
should arise.

By general position, any k-complex admits an almost r-embedding in R
k+

⌈
k+1
r−1

⌉

. The follow-
ing counterexample to the r-fold van Kampen–Flores conjecture allows to sometimes decrease
⌈
k+1
r−1

⌉
to k

r−1 (indeed, take k = sr).

Theorem 1.4’. (Özaydin and Mabillard-Wagner) If s ≥ 3 and r is not a prime power, then
any s(r − 1)-complex admits an almost r-embedding in R

sr.

This result follows from the Özaydin and the Mabillard–Wagner Theorems 2.2’ and 2.4’. See
[MW14, §1, Motivation & Future Work, 2nd paragraph] or the survey [Sk16, Theorems 1.7, 3.1
and 3.2, and Remark 1.9.b].

The following result gives stronger counterexamples to the r-fold van Kampen–Flores con-
jecture.

Theorem 1.4. If r is not a prime power, then any k-complex admits an almost r-embedding in

R
k+

⌈
k+3
r

⌉

.

Theorem 1.4 is easily deduced below from Theorems 2.2 and 2.4. The main new ingredient
in the proof of Theorems 1.1 and 1.4 is the following Theorem 2.2.

Acknowledgments. We are grateful to M. Berezovik, F. Frick, A. Magazinov, and the
anonymous referees for helpful suggestions.

2 Deduction of Theorems 1.1 and 1.4 from Theorem 2.2

Lemma 2.1’. (Constraint) For M = (sr + 2)(r − 1) if there is an almost r-embedding of the
union of s(r − 1)-faces of ∆M in R

sr, then there is an almost r-embedding ∆M → R
sr+1.

Lemma 2.1’ is due to Gromov [Gr10, 2.9.c] and Blagojević–Frick–Ziegler [BFZ14, Lemma
4.1.iii and 4.2], [Fr15’, proof of Theorem 4]. Lemma 2.1’ has a simple proof (see e.g. the survey
[Sk16, Lemma 1.8]). The proof shows that

• R
sr and R

sr+1 can be replaced by R
d−1 and R

d, respectively.
• s(r − 1) and (sr + 2)(r − 1) can be replaced by k and (k + 2)r − 2, respectively.

Lemma 2.1 (Constraint). For M = (k+2)r− 2 if there is an almost r-embedding of the union
of k-faces of ∆M in R

d−1, then there is an almost r-embedding ∆M → R
d.

Proof of Theorem 1.1 modulo Theorem 1.4. Theorem 1.1 holds for d = 1 because then N =
r − 2, so ∆N does not have r non-empty pairwise disjoint faces. Assume further that d ≥ 2.

Denote k := d − 1 −
⌈d+ 2

r + 1

⌉

. Then N = (k + 2)r − 2. Since d ≥ 2 and r ≥ 6, we have k ≥ 0.

We have

d+ 2

r + 1
=
d+ 2− d+2

r+1

r
≥
k + 3

r
⇒ d− 1 = k +

⌈d+ 2

r + 1

⌉

≥ k +
⌈k + 3

r

⌉

.
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Since r is not a prime power, by Theorem 1.4 there is an almost r-embedding of the union of
k-faces of ∆N to R

d−1. Then by the Constraint Lemma 2.1 there is an almost r-embedding
∆N → R

d.

Denote by Σr the permutation group of r elements. Let R
d×r := (Rd)r be the set of real

d× r-matrices. The group Σr acts on R
d×r by permuting the columns. Denote

δr = δr,d := {(x, x, . . . , x) ∈ R
d×r | x ∈ R

d}.

Theorem 2.2’. (Özaydin) If r is not a prime power and dimX = d(r − 1), then there is a
Σr-equivariant map X → R

d×r − δr.

This is proved in [Oz], see R. Karasev’s short proof in the survey [Sk16, §3.2].
The following result improves the Özaydin Theorem 2.2’.

Theorem 2.2. If r is not a prime power and X is a complex with a free action of Σr, then
there is a Σr-equivariant map X → R

2×r − δr.

Remark 2.3 (Relations to other papers). Let X be a complex with a free action of Σr, Observe
that if dimX < d(r − 1), then the existence of an equivariant map X → R

d×r − δr follows
by general position. The statements [AK19, Theorem 5.1], [AKu19, Theorem 1.1] of other
improvements of Theorem 2.2’ are obtained from Theorem 2.2 replacing 2 by 1 and imposing
stronger restrictions on r.1

Our proof of Theorem 2.2 is analogous to the argument in [AK19, AKu19]: Theorem 2.2
follows from the known Lemma 3.1 and the new Lemma 3.2 below (see also the paragraph after
Lemma 3.2). This is different from the Özaydin idea [Oz] and from the short proof in [Sk16,
§3.2]. So our argument gives a simple proof of the Özaydin Theorem 2.2’.

For a complex K let K×r
∆ be the associated r-fold deleted product:

K×r
∆ :=

⋃

{σ1 × · · · × σr : σi a simplex of K, σi ∩ σj = ∅ for every i 6= j}.

The group Σr has a natural action on the setK×r
∆ , permuting the points in an r-tuple (p1, . . . , pr).

This action is evidently free and PL, i.e. compatible with some structure of a complex on K×r
∆ .

Theorem 2.4’. (Mabillard-Wagner) Assume that K is a s(r − 1)-complex and s ≥ 3. There
exist an almost r-embedding K → R

sr if and if there is a Σr-equivariant map K×r
∆ → R

sr×r−δr.

Theorem 2.4 (Mabillard-Wagner). Assume that K is a k-complex and rd ≥ (r + 1)k + 3.
There exists an almost r-embedding f : K → R

d if and only if there exists a Σr-equivariant map
K×r

∆ → R
d×r − δr.

See the proofs in [MW15], [Sk16, §3], and in [MW16, MW16’, Sk17], respectively.2

Proof of Theorem 1.4 modulo Theorems 2.2 and 2.4. Let K be any k-complex and d := k +
⌈k + 3

r

⌉

. If d = 1, then k = 0, so Theorem 1.4 is obvious. Now assume that d ≥ 2. Since r

is not a prime power, by Theorem 2.2 there is a Σr-equivariant map K×r
∆ → R

2×r − δr. The
composition of this map with the r-th power of the inclusion R

2 → R
d gives a Σr-equivariant

map K×r
∆ → R

d×r − δr. We have rd ≥ (r + 1)k + 3. Hence by Theorem 2.4 there is an almost
r-embedding K → R

d.
1For a finite cyclic or dihedral group G, and a certain representation space V of G, G-equivariant maps from

the classifying space EG to V − 0 were constructed in [BG17]. Theorem 2.2 should also be compared to [Ba93,
Theorem 3.6 and the paragraph afterwards]. That reference takes a group G from a certain class and proves
that there exists some representation W of G, for which there exist G-equivariant maps X → S(W ) for certain
G-spaces X. However, G = Σr does not belong to that class, and the Σr-space S(W ) described in [Ba93, Theorem
3.6 and the paragraph afterwards] need not coincide with the Σr-space R

2×r
− δr given by Theorem 2.2.

2For a criticism of the proof of Theorem 2.4 in [MW16, MW16’] see [Sk17, §5]; this footnote is not present in
the published version of this paper.
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3 Proof of Theorem 2.2

Lemma 3.1. Let G be a finite group acting on Sn. If there exists a degree zero G-equivariant
self-map of Sn, then any complex X with a free action of G has a G-equivariant map X → Sn.

See the historical remarks and a proof in [AK19, §5]. In particular, this lemma follows from
[Ba93, Lemma 3.9]; see [AK19, §5] for a simpler direct proof.3

Denote by S
d(r−1)−1
Σr

⊂ R
d×r − δr the set formed by all d × r-matrices in which the sum of

the elements in each row is zero, and the sum of the squares of all the matrix elements is 1. This
set is invariant under the action of Σr. This set is homeomorphic to Sd(r−1)−1.

Lemma 3.2. If r is not a prime power, then there is a degree zero Σr-equivariant self-map of

S := S2r−3
Σr

= S
2(r−1)−1
Σr

.

Lemma 3.2 is analogous to [AK19, Theorem 4.2] and [AKu19, Theorem 1.4.c,d]. Those
theorems are stated in a different language, but can be obtained from Lemma 3.2 by replacing
2r − 3 by r − 2, and adding stronger restrictions on r. The proofs follow the same plan via
Proposition 3.3 (although this proposition is not explicitly stated in [AK19, AKu19]). The
binomial coefficients appear in the same way. However, the procedure of obtaining the prescribed
sign in front of the binomial coefficient requires additional work. The procedure is easier in
[AK19], is intermediate here, and is more complicated in [AKu19] (the proof of [AKu19] also
uses additional ideas).

Proof of Lemma 3.2. Since r is not a prime power, the greatest common divisor of the binomial
coefficients

(r
k

)
, k = 1, . . . , r − 1 is 1 [Lu78]. Hence −1 is an integer linear combination of the

binomial coefficients. Denote by C ⊂ S the set of (2× r)-matrices whose second row is zero, and
the entries of the first row involve only two numbers. A special map is a Σr-equivariant self-map
f of S which is a local homeomorphism in some neighborhood of C. The identity map of S is a
special map of degree 1. Thus the lemma is implied by the following assertion

For any r, any k = 1, . . . , r − 1, and any special map f there are special maps f+, f− such
that deg f± = deg f ±

(r
k

)
.

This is implied by the following proposition.

Proposition 3.3. For any r, any k = 1, . . . , r − 1, and any special map f there are a point
c ∈ C and Σr-equivariant homotopies h+, h− : S × I → R

2r−2
Σr

such that
(1±) h±,0 = f , and h±,1 : S → S is special,
(2±) h is a local homeomorphism over a neighborhood of 0, and

degh±,1 − deg f = deg0 h = ±

(
r

k

)

sign cf.

Here deg0 h is the degree of h over 0, and signc f ∈ {+1,−1} is the sign of the preimage c of
f(c) under the map f (since c ∈ C and f is special, f is a homeomorphism in a neighborhood
of c; we have signc f = sign det df(c) if f is smooth and det df(c) 6= 0).

Informally, we construct h± by ‘pushing’ a certain point c ∈ C and its orbit towards the
origin in R

2×r. See [AK19, Figures 1 and 2]. For h+ such a pushing is ‘twisted along the
reflection with respect to a certain hyperplane’.

3Note that to read the direct proof in [AK19, §5] is simpler than to find the notation required for the statement
[Ba93, Lemma 3.9] and deduce Lemma 3.1 from that statement; this footnote is not present in the published version
of this paper.
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Proof of Proposition 3.3. Definitions of c,G,U and ρ. The objects we construct depend on r, k
but we suppress r, k from their notation. Define the vector

M := (k − r, . . . , k − r
︸ ︷︷ ︸

k

, k, . . . , k
︸ ︷︷ ︸

r−k

).

Define the (2 × r)-matrix c :=

(
M/|M |

0

)

∈ C. The orbit Σrc of c contains
(r
k

)
points. The

stabilizer of c is G := Σk × Σr−k ⊂ Σr.
The standard metric on the sphere is Σr-invariant. Hence there is a small ball U centered

at c such that U ∩ σU = ∅ for any σ ∈ Σr − G, and σU = U for any σ ∈ G. Take a smooth
function ρ′ : S → [0, 1] which is zero outside U , and is one in a neighborhood of c. Define a
smooth function ρ : S → [0, 1] by ρ(x) := 1

r!

∑

σ∈Σr
ρ′(σx). Then ρ is zero outside ΣrU , is one

in a neighborhood of Σrc, and is invariant with respect to the Σr-action.

Construction of h−. For t ∈ [0, 1/2] define

h−(x, t) = h−,t(x) :=

{

f(x) x 6∈ ΣrU

f(x)− 4tρ(x)f(σc) x ∈ σU, σ ∈ Σr.

Clearly, h− is well-defined, is continuous, and is Σr-equivariant.
In this paragraph we prove that

h−1
− (0) = (Σrc)× 1/4

for the constructed homotopy h− : S × [0, 1/2] → R
2r−2
Σr

. If t ∈ [0, 1/2] and h−,t(x) = 0, then
x ∈ ΣrU . Since f is a local homeomorphism and |f(x)| = 1, we have 4tρ(x) = 1 and x = σc for
some σ ∈ Σr. Then t = 1/4.

Since h−1
− (0) = (Σrc) × 1/4, we have 0 6∈ h−,1/2(S). Hence there is a homotopy4 h− :

S × [1/2, 1] → R
2r−2
Σr

− {0} between h−,1/2 and a map h−,1 defined by h−,1(x) :=
h−,1/2(x)

|h−,1/2(x)|
.

Then h−1
− (0) = (Σrc)× 1/4 for the constructed homotopy h− : S × [0, 1] → R

2r−2
Σr

.

Proof of (1−). Clearly, h−,0 = f . Since f is a local homeomorphism in some neighborhood
of C, the map h−,1 is such in a neighborhood of C−Σrc. In a neighborhood of σc the map h−,1

is a shift by −2f(σc) composed with the central projection back to the sphere. This is clearly
a homeomorphism in a neighborhood of σc.

Proof of (2−). Take a sufficiently small neighborhood W of c such that ρ(W ) = 1 and f(W )
is contained in the hemisphere centered at f(c). Then h−,t(x) = f(x) − 4tf(c) for any x ∈ W
and t ∈ [0, 1/2]. Let f(c)⊥ be the hyperplane tangent to S at f(c). Let π : R2r−2

Σr
→ f(c)⊥ be

the orthogonal projection. Let 〈f(c)〉 be the line passing through f(c) and the origin (and so
orthogonal to f(c)⊥). Then N := π−1(π(f(W ))) is a neighborhood of this line. Observe that
π|f(W ) is a homeomorphism. Denote by π−1 its inverse. Define a map

τ : N → N by τ(y) := y + π(y)− π−1(π(y)).

Then τ shifts every line in N parallel to 〈f(c)〉 by the vector π(y)− π−1(π(y)) ∈ 〈f(c)〉. Hence
τ is a self-homeomorphism of N preserving the orientation. The origin is fixed under τ because
τ(0) = 0 + π(0)− π−1(π(0)) = c− c = 0. For t ∈ [0, 1/2] we have

τ(h−,t(x)) = τ(f(x)− 4tf(c)) = f(x)− 4tf(c) + π(f(x))− π−1(π(f(x))) = π(f(x))− 4tf(c).

Hence for the decomposition R
2r−2
Σr

= 〈f(c)〉 × f(c)⊥ the map τ ◦ h−|W×[0,1/2] is the Cartesian
product of the maps

π ◦ f :W → f(c)⊥ and a : [0, 1/2] → 〈f(c)〉 , where a(t) := −4tf(c).

4E.g. take h−,t(x) =
h
−,1/2(x)

2−2t+(2t−1)|h
−,1/2(x)|

.
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Both π◦f and a are embeddings. Hence τ ◦h−|W×[0,1/2] is a homeomorphisms in a neighborhood
of (c, 1/4). Hence h−|W×[0,1/2] and h−|W×[0,1] are also such. Since h− is Σr-equivariant and

h−1
− (0) = (Σrc)× 1/4, we see that h− is a local homeomorphism over a neighborhood of 0.
Denote D := ∂(S × [0, 1]) = S × {0, 1}. Then

deg h−,1 − deg f = deg h−,1 − deg h−,0 = deg(h−|D : D → S) = deg0 h−.

We also have

deg0 h−
(r
k

) = sign (c,1/4)h− = sign 0τ
−1 · sign (c,1/4)(τ ◦ h−) = sign (c,1/4)(τ ◦ h−) =

= sign 1/4a · sign c(π ◦ f) = − sign f(c)π · sign cf = − sign cf.

Construction of h+. Define the (2 × r)-matrix c1 :=

(
0

M/|M |

)

∈ S. Take the hyperplane

c⊥1 ⊂ R
2r−2
Σr

orthogonal to c1 and passing through the origin. Then c ∈ c⊥1 . We may assume that
V := U∩ρ−1[1/3, 1] is a ball by assuming that ρ is radially symmetric in U . Let q : V → V [g] be
the restriction to V of the reflection with respect to the hyperplane c⊥1 . Then q is G-equivariant,
signc q = −1 and q−1(c) = c.

Define a G-equivariant map φ′ : U × {0} ∪ (∂U ∪ V )× [0, 1] → U
• on U × {0} as the natural homeomorphism;
• on ∂U × [0, 1] as the composition of the projection and the inclusion ∂U → U ;
• on V × [1/3, 1] as the composition of the projection, q, and the inclusion V → U ;
• on V × [0, 1/3] as a G-equivariant homotopy between the identity map φ′0 and q = φ′1/3.

By the Borsuk homotopy extension theorem [FF89, §5.5] φ′ extends to a homotopy ψ :
U × [0, 1] → U . Define a homotopy φ : U × [0, 1] → U by considering the average of ψ with
respect to G:

φ(x, t) =
1

|G|

∑

g∈G

gψ(g−1x, t) ∈ U.

We have φ = φ′ = ψ on U × {0} ∪ (∂U ∪ V )× [0, 1] because φ′ is G-equivariant. The homotopy
φ is G-equivariant, since for any m ∈ G from the linearity of the action of G on U one obtains

mφ(x, t) =
1

|G|

∑

g∈G

mgψ(g−1x, t) =
1

|G|

∑

k=mg∈G

kψ(k−1mx, t) = φ(mx, t).

Extend φ to ΣrU × [0, 1] in a Σr-equivariant way. Define for t ∈ [0, 1/2]

h+(x, t) = h+,t(x) :=

{

f(x) x 6∈ ΣrU

f(φ(x, 2t)) − 4tρ(x)f(σc) x ∈ σU, σ ∈ Σr.

Clearly, h+ is well-defined (since φ is G-equivariant), is continuous, and is Σr-equivariant.
In this paragraph we prove that

h−1
+ (0) = (Σrc)× 1/4

for the constructed homotopy h+ : S × [0, 1/2] → R
2r−2
Σr

. If ht(x) = 0 and t ∈ [0, 1/2], then
x ∈ ΣrU . Since f is a local homeomorphism and |f(x)| = 1, we have 4tρ(x) = 1 and φ(x, 2t) = σc
for some σ ∈ Σr. Therefore ρ(x) ≥ 1

4 , t ≥ 1/4, and x ∈ σV . Hence φ(x, 2t) = σq(σ−1x). Since
q−1(c) = c, we have x = σc, ρ(x) = 1, and t = 1/4.

Then analogously to the construction of h− we extend h+ to S × [0, 1], and check the prop-
erties (1+) and (2+). In the proof of (2+) we have deg0 h+ = −

(r
k

)
signc q signc f =

(r
k

)
signc f

Here signc q appears because for t ≥ 1/6 and x ∈ V we have φ(x, 2t) = q(x).

7



References

[AMS+] S. Avvakumov, I. Mabillard, A. Skopenkov and U. Wagner. Eliminating Higher-
Multiplicity Intersections, III. Codimension 2, Israel J. Math. 245 (2021) 501–534.
arxiv:1511.03501.

[AK19] S. Avvakumov, R. Karasev. Envy-free division using mapping degree, Mathematika,
67:1 (2020), 36–53. arXiv:1907.11183.

[AKu19] S. Avvakumov, S. Kudrya. Vanishing of all equivariant obstructions and the mapping
degree. Discr. Comp. Geom., 66:3 (2021) 1202–1216. arXiv:1910.12628.

[Ba93] T. Bartsch. Topological methods for variational problems with symmetries, Lecture
Notes in Mathematics, 1560, Springer-Verlag, Berlin, 1993.
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[Lu78] E. Lucas. Théorie des fonctions numériques simplement périodiques. Part II. Amer. J.
Math., 1(3) (1878), 197–240.

[MW14] I. Mabillard and U. Wagner. Eliminating Tverberg Points, I. An Analogue of the
Whitney Trick, Proc. of the 30th Annual Symp. on Comp. Geom. (SoCG’14), ACM, New
York, 2014, pp. 171–180.

[MW15] I. Mabillard and U. Wagner. Eliminating Higher-Multiplicity Intersections, I. A Whit-
ney Trick for Tverberg-Type Problems. arXiv:1508.02349.

8

http://arxiv.org/abs/1712.06119
http://arxiv.org/abs/1605.07321


[MW16] I. Mabillard and U. Wagner. Eliminating Higher-Multiplicity Intersections, II. The
Deleted Product Criterion in the r-Metastable Range. arXiv:1601.00876v2.

[MW16’] I. Mabillard and U. Wagner. Eliminating Higher-Multiplicity Intersections, II. The
Deleted Product Criterion in the r-Metastable Range, Proceedings of the 32nd Annual
Symposium on Computational Geometry (SoCG’16).
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