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Three early problems on size Ramsey numbers

David Conlon∗ Jacob Fox† Yuval Wigderson‡

Abstract

The size Ramsey number of a graph H is defined as the minimum number of edges in a
graph G such that there is a monochromatic copy of H in every two-coloring of E(G). The
size Ramsey number was introduced by Erdős, Faudree, Rousseau, and Schelp in 1978 and
they ended their foundational paper by asking whether one can determine up to a constant
factor the size Ramsey numbers of three families of graphs: complete bipartite graphs, book
graphs (obtained by adding many common neighbors to the vertices of a clique), and starburst
graphs (obtained by adding many pendant edges to each vertex of a clique). In this paper,
we completely resolve the latter two questions and make substantial progress on the first by
determining the size Ramsey number of Ks,t up to a constant factor for all t = Ω(s log s).

1 Introduction

Given two graphs G and H, we say that G is Ramsey for H if every two-coloring of the edges of G
contains a monochromatic copy of H. Graph Ramsey theory is mainly concerned with determining
which graphs G are Ramsey for a given H. In particular, of central concern is the Ramsey number
r(H) of H, defined as the minimum number of vertices in a graph G which is Ramsey for H.

In this paper, we study the size Ramsey number r̂(H), defined as the minimum number of edges
in a graph G which is Ramsey for H. The size Ramsey number was introduced by Erdős, Faudree,
Rousseau, and Schelp [16] in 1978. They proved several bounds on size Ramsey numbers, noting,
for example, the basic inequality

r̂(H) ≤
(

r(H)

2

)

and presenting a proof, due to Chvátal, that this bound is tight when H is a complete graph. They
ended their paper with four questions, asking for the asymptotic order of r̂(H) as H ranges over
four specific families of graphs. In this paper, we fully resolve two of these questions and make
substantial progress on a third. The fourth question, about the size Ramsey number of paths, was
resolved by Beck [2], who proved the surprising result that r̂(Pn) = Θ(n) for the path Pn with n
vertices. This breakthrough inspired many of the subsequent developments in the field, such as the
classic papers [3, 18, 21, 24, 29] and the more recent results in [4, 5, 6, 12, 13, 14, 15, 19, 20, 23, 26].
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The first question asked by Erdős, Faudree, Rousseau, and Schelp [16] was about r̂(Ks,t) for
s ≤ t. They proved the bounds

Ω(st2s) ≤ r̂(Ks,t) ≤ O(s2t2s),

with the lower bound only holding for t = Ω(s2). However, in a later paper [17], Erdős and
Rousseau proved the lower bound r̂(Ks,t) = Ω(st2s) for all s ≤ t.1 More recently, Pikhurko [28]
found an asymptotic formula for r̂(Ks,t) for all fixed s and t → ∞, which, in particular, implies that
r̂(Ks,t) = Θ(s2t2s) for t sufficiently large in terms of s. However, Pikhurko’s technique provides no
quantitative estimate on how large t must be for such a bound to hold.

Our first main result is an improved lower bound on r̂(Ks,t) which holds for all s ≤ t.

Theorem 1.1. For all s ≤ t,

r̂(Ks,t) = Ω
(

s2−
s
t t2s

)

.

In particular, if t ≥ (1 + δ)s for any fixed δ > 0, then we get a power saving over the earlier
lower bound of Ω(st2s). Moreover, once t = Ω(s log s), the bound is tight up to a constant factor.

Corollary 1.2. If t = Ω(s log s), then

r̂(Ks,t) = Θ(s2t2s).

The second question raised by Erdős, Faudree, Rousseau, and Schelp [16] concerned book

graphs. Given positive integers k and n, the book graph B
(k)
n consists of n copies of Kk+1, glued

along a common Kk. Equivalently, it can be described as the join of a Kk and an independent
set of order n. This Kk is called the spine and the vertices of the independent set are called
pages. Ramsey numbers of book graphs play a central role in Ramsey theory, because all known
techniques for proving upper bounds on the diagonal Ramsey numbers r(Kt) rely on induction

schemes that repeatedly use bounds on r(B
(k)
n ) for appropriately chosen k < t and n. These

Ramsey numbers have received considerable attention of late, beginning with work of the first

author [7], who asymptotically determined r(B
(k)
n ) for k fixed and n → ∞, and continuing with

work of the authors [9, 10] giving alternative proofs and exploring variations of the basic question.
Regarding size Ramsey numbers, Erdős, Faudree, Rousseau, and Schelp [16] proved that

Ω(k2n2) ≤ r̂(B(k)
n ) ≤ O(16kn2)

for n sufficiently large in terms of k. Thus, while they were able to prove that the dependence on
n is quadratic, there was a massive gap between the lower and upper bounds for the dependence

on k. Our second main result closes this gap, determining r̂(B
(k)
n ) up to a constant factor for n

sufficiently large in terms of k.

Theorem 1.3. For every fixed k ≥ 2 and all sufficiently large n,

r̂(B(k)
n ) = Θ(k2kn2).

1They only state their result for s = t, but the proof carries through for all s ≤ t. We present their proof, in this

greater generality, in Section 2.
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The third question raised in [16] concerns graphs which we call starburst graphs (they appear
to have not been previously named in the literature). For positive integers k and n, the starburst

graph S
(k)
n is obtained from Kk by adding n pendant edges to every vertex of Kk; thus, it has kn+k

vertices. Erdős, Faudree, Rousseau, and Schelp [16] proved2 that if k is fixed and n is sufficiently
large, then

Ω(k3n2) ≤ r̂(S(k)
n ) ≤ O(k4n2).

Thus, in this case, there is only a Θ(k) gap between the upper and lower bounds. Our final main
result shows that the lower bound is tight up to the constant factor.

Theorem 1.4. For every fixed k ≥ 2 and all sufficiently large n,

r̂(S(k)
n ) = Θ(k3n2).

The proofs of our main theorems are all relatively short, but they employ a surprising array
of different techniques. In Theorem 1.1, the main new idea is to use a random coloring with
a hypergeometric distribution between certain vertices and their higher degree neighbors, rather
than the uniform distribution that is usually used in Ramsey-theoretic lower bound constructions.
The lower bound in Theorem 1.3 uses a degree-based random coloring, where the probability an
edge is red depends on the degrees of its endpoints, while the upper bound uses some of the
regularity techniques that were recently developed for studying the ordinary Ramsey numbers of
books [7, 9, 10]. Finally, Theorem 1.4 is proved by examining the properties of an appropriate
random graph. We discuss each of these techniques, both at a high level and in detail, in the
relevant sections.

The rest of the paper is organized as follows. We prove Theorem 1.1 in Section 2, Theorem 1.3 in
Section 3, and Theorem 1.4 in Section 4, concluding with some further remarks and open problems.
We use log throughout to denote the base 2 logarithm and ln for the natural logarithm. For the
sake of clarity of presentation, we systematically omit floor and ceiling signs whenever they are
not crucial. For the same reason, we make no serious attempt to optimize any of the constants
appearing in our results.

2 Complete bipartite graphs

In order to obtain some intuition for our proof of Theorem 1.1, it is helpful to briefly review the
proofs of the existing bounds on r̂(Ks,t), namely,

Ω(st2s) ≤ r̂(Ks,t) ≤ O(s2t2s)

for s ≤ t. We first consider the upper bound, due to Erdős, Faudree, Rousseau, and Schelp [16].

Proposition 2.1 ([16]). For all s ≤ t, r̂(Ks,t) ≤ 4es2t2s.

Proof. Let G be a complete bipartite graph with one part A of order 2s2 and the other part B
of order 2et2s. We claim that G is Ramsey for Ks,t, which implies the desired result since G has
4es2t2s edges. Consider a red/blue coloring of E(G). Call a vertex in B red if at least half its

2They only included the proof for the weaker lower bound n2/2, but claimed the bound shown. For completeness,

we include a proof of the lower bound in Section 4.
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incident edges are red and blue otherwise. Without loss of generality, we may assume that there

are at least et2s red vertices in B. Each such vertex contributes at least
(s2

s

)

red stars K1,s whose

central vertex is in B. Since there are exactly
(2s2

s

)

s-tuples in A, one of them must appear as the
set of leaves of such a star at least

et2s
(s2

s

)

(2s2

s

)
≥ et2s · 2−s

(

1 − 1

s2

)

· · ·
(

1 − s− 1

s2

)

≥ et exp

(

−2
s−1
∑

i=1

i

s2

)

≥ t

times, yielding a red Ks,t, where we used the inequality 1 − x ≥ e−2x, valid for x ∈ [0, 12 ].

By being a little more careful in the proof of Proposition 2.1, one can improve the bound by a
factor of 8 + o(1) to r̂(Ks,t) ≤ (e/2 + o(1))s2t2s, where the o(1) term tends to 0 as s → ∞. This
can be done by picking A of order s2/2, B of order (e + o(1))t2s, using both red and blue stars
out of vertices of B and applying convexity, though we also need to be a little more careful with
the inequalities. This stronger upper bound is also present in [16] and it follows from [28, Theorem
4.6] that it is asymptotically tight, i.e., that

r̂(Ks,t) =
(e

2
+ o(1)

)

s2t2s

as long as t is sufficiently large in terms of s, where the o(1) term tends to 0 as s → ∞.
The lower bound argument, essentially due to Erdős and Rousseau [17], is somewhat more

involved. Since r̂(Ks,t) ≥ r̂(Ks−2,t), it suffices to prove the following statement.

Proposition 2.2 ([17]). For all t ≥ s + 2, r̂(Ks,t) ≥ st2s/100.

Proof. Since the desired result is obvious for s = 1, we will assume throughout that s ≥ 2. Let
G be a graph with q edges. We first give an upper bound for the number of copies of Ks,t in G.
Suppose G has N vertices v1, . . . , vN and let di = deg(vi). Assume, without loss of generality,
that d1 ≥ d2 ≥ · · · ≥ dN . We recall the simple fact that di ≤ 2q/i for all i, which follows by
double-counting the number of edges incident to {v1, . . . , vi}: it is at least idi/2, but at most q,
from which the bound follows. Let Ni denote the number of copies of Ks,t in G where vi is the last
(i.e., maximum index) vertex in the side of order s. Then

Ni ≤
(

i− 1

s− 1

)(

di
t

)

≤
(

ei

s

)s(2eq

it

)t

≤ (2e2q)t

ssttit−s
. (1)

Therefore, the total number of Ks,t in G is at most

N
∑

i=s

Ni ≤
(2e2q)t

sstt

∞
∑

i=s

1

it−s
≤ (2e2q)t

sstt

∫ ∞

s−1

1

xt−s
dx =

(

2e2q

st

)t
s− 1

t− s− 1

(

s

s− 1

)t−s

≤
(

8e2q

st

)t

,

where we may start the sum at i = s as i is the maximum index on an s-set of vertices and we use
our assumptions that t ≥ s + 2 and s ≥ 2 to evaluate the integral. In the final inequality, we use
the bounds s−1

t−s−1 ≤ s ≤ 2s ≤ 2t and s
s−1 ≤ 2, which hold since t ≥ s + 2 and s ≥ 2.

Now, suppose we color the edges of G uniformly at random. Each copy of Ks,t is monochromatic
with probability 21−st, so the expected number of monochromatic Ks,t is at most 2(8e2q/(st2s))t.
If we plug in q = st2s/100, we find that the expected number of monochromatic Ks,t is less than
1, which yields the desired result.

4



Note that in the upper bound argument, the worst case happens when all vertices in B are
incident with the same number of red and blue edges. However, in the lower bound argument,
we colored all the edges uniformly at random, meaning that, for any given b ∈ B, the number of
edges incident to b that are colored red is binomially distributed. Usually, the difference between
a binomial distribution and a hypergeometric distribution (where we condition on having equally
many red and blue edges) is fairly minor, but it can have a significant effect when coloring, for
instance, a complete bipartite graph between vertex sets A and B where A is small. This suggests
using a slightly different procedure for the lower bound, where we randomly color the edges from
low-degree to high-degree vertices hypergeometrically rather than uniformly. This intuition is
indeed at the heart of our proof of Theorem 1.1, although the actual coloring we use is somewhat
more complicated: roughly speaking, we first dyadically partition according to degree and then use
independent hypergeometric variables for each dyadic interval.

In the course of the proof, we will need the following simple analytic lemma.3

Lemma 2.3. Let m and x be positive integers and let x1, . . . , xm be non-negative integers summing
to x. If x ≥ 2m, then

m
∑

k=1

2−k(x2k − xk) ≥ x2

2m+3
.

Proof. Let P ⊆ [m] denote the set of k ∈ [m] with xk ≥ 1. Then we have that

2m+1
m
∑

k=1

2−k(x2k − xk) = 2m+1
∑

k∈P

2−k(x2k − xk)

≥ 2m+1
∑

k∈P

2−k(xk − 1)2 [y2 − y ≥ (y − 1)2 for y ≥ 1]

≥
(

∑

k∈P

2−k(xk − 1)2

)(

∑

k∈P

2k

)

[
∑

k∈P 2k ≤∑m
k=1 2k ≤ 2m+1]

≥
(

∑

k∈P

(xk − 1)

)2

[Cauchy–Schwarz]

≥ (x−m)2 ≥ x2

4
.

Dividing by 2m+1 gives the desired result.

We are now ready to proceed with the proof of Theorem 1.1. Once again, since r̂(Ks,t) ≥
r̂(Ks−2,t), it suffices to prove the following statement.

Theorem 2.4. For all t ≥ s + 2, r̂(Ks,t) ≥ s2−
s
t t2s/10000.

Proof. The desired result already follows from Proposition 2.2 for s < 100, so we henceforth assume
that s ≥ 100.

Let L = log s2t
50(t−s) . We note, for future convenience, that 2L ≤ s3 ≤ t3, since t

t−s ≤ s for
t ≥ s + 2. Additionally, since s ≥ 100, we have that s ≥ 6 log s ≥ 2L.

3We are grateful to Mehtaab Sawhney for a suggestion that greatly simplified the proof of this lemma.
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Let q = s2−
s
t t2s/10000 and let G be a q-edge graph with vertices v1, . . . , vN and degree sequence

d1 ≥ · · · ≥ dN , where di = deg(vi). By adding isolated vertices to G if necessary, we may assume
that L < log(N + 2).

For every 1 ≤ ℓ ≤ L, we define the interval of vertices Iℓ = {vi : 2ℓ − 1 ≤ i ≤ 2ℓ+1 − 2}. Let
A =

⋃L
ℓ=1 Iℓ and B = V (G) \ A. We color all edges inside B uniformly at random. All remaining

edges have at least one endpoint in A and we color these hypergeometrically, as follows. For every
vertex vj ∈ V (G) and every ℓ ≤ min{L, ⌈log(j + 2) − 1⌉}, we pick a set Rj,ℓ ⊂ Iℓ uniformly at
random among all sets with exactly |Iℓ|/2 elements, making these choices independently for all j
and ℓ. Then, for every vi ∈ Iℓ with i < j that is adjacent to vj, we color the edge vivj red if i ∈ Rj,ℓ

and blue otherwise.4

One key observation we use several times is that, for every set F of edges in G, the probability
they are all red is at most 2−|F |. To see this, we first note that it is true if F consists of edges
whose left endpoint lies in some fixed interval Iℓ and whose right endpoint is some fixed vertex
vj . Indeed, in this case, the result follows immediately from the negative correlation property of
the hypergeometric distribution: the probability that such an F is monochromatic red equals the
probability that the set of left endpoints is a subset of Rj,ℓ, which is at most 2−|F |. We can partition
F into subsets of this form, plus some additional edges lying in B. The events that each of these
subsets is monochromatic red are all independent, so the probability that F is monochromatic red
equals the product of the probabilities that each is monochromatic red, which is at most 2−|F |.

Now suppose that S ⊆ A is a set of vertices with |S| = s. Let sℓ = |S ∩ Iℓ|, so that s =
s1 + · · · + sL. Let vi be the rightmost vertex in S (i.e., i is the maximal index appearing in S) and
let L∗ = ⌊log(i + 1)⌋. By the choice of L∗, as vi ∈ S ⊆ A, we have vi ∈ IL∗ . We then have that
sℓ = 0 if ℓ > L∗, since there can be no element in S ∩ Iℓ for ℓ > L∗ by the maximality of i.

For 1 ≤ ℓ ≤ L∗ and for a vertex vj with j > i, the probability that vj is monochromatic red to
S ∩ Iℓ is exactly

|Iℓ|/2

|Iℓ|
|Iℓ|/2 − 1

|Iℓ| − 1
· · · |Iℓ|/2 − (sℓ − 1)

|Iℓ| − (sℓ − 1)
≤ 2−sℓ

(

1 − 1

|Iℓ|

)(

1 − 2

|Iℓ|

)

· · ·
(

1 − sℓ − 1

|Iℓ|

)

≤ 2−sℓ exp

(

−2−ℓ

(

sℓ
2

))

= 2−sℓe−2−ℓ−1(s2ℓ−sℓ).

Therefore, the probability that vj is monochromatic red to S is at most

2−s exp

(

−1

2

L∗

∑

ℓ=1

2−ℓ(s2ℓ − sℓ)

)

.

We now apply Lemma 2.3 with x = s and m = L∗, which we may do since s ≥ 2L ≥ 2L∗, to
conclude that the probability vj is monochromatic red to S is at most

2−s exp

(

−1

2

s2

2L∗+3

)

≤ 2−s exp

(

− s2

32i

)

.

4Note that, as described, the neighborhood of vj in Iℓ isn’t exactly hypergeometrically distributed, since we first

pick a set of “possible” red neighbors hypergeometrically, but then only color red those “possible” neighbors which

are truly neighbors in G. Though it doesn’t really matter, this choice makes the analysis slightly simpler.

There is also a slight subtlety when vj ∈ A, in that, if vj ∈ Iℓ for some interval Iℓ, we only wish to describe the

color of the edges from vj to the previous vertices vi ∈ Iℓ; this is why we add the condition i < j.
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As in the proof of Proposition 2.2, we let Ni denote the number of copies of Ks,t whose last
vertex from the side of order s is vi. Similarly, for vi ∈ A and 0 ≤ x ≤ t, let Ni,x be the number of
copies of Ks,t whose last vertex from the side of order s is i and where exactly x vertices from the
side of order t have index greater than i. Let y = t− x. Then

Ni,x ≤
(

i− 1

s− 1

)(

i− s

y

)(

di
x

)

≤
(

ei

s

)s(ei

y

)y (2eq

ix

)x

≤ (2e2)tqx

ssyyxxix−y−s
,

where we take 00 = 1 so that the bound also holds when x = 0 or x = t. For each of the x vertices
to the right of vi, they have probability at most 2−se−s2/32i of being monochromatic red to all s
chosen vertices. Additionally, by the negative correlation property mentioned earlier, the remaining
y vertices each have probability at most 2−s of being monochromatic red to all s chosen vertices.

Therefore, the probability that some Ks,t counted by Ni,x is monochromatic red is at most

(2e2)tqx · 2−ste−s2x/32i

ssyyxxix−y−s
=

(2e2)tis

ss2st
exp

(

x ln q −
(

y ln y + x lnx + (x− y) ln i +
s2x

32i

))

, (2)

where we let 0 ln 0 = 0, agreeing with our earlier convention that 00 = 1. We claim that this
probability is maximized when x = t. To see this, let

f(x) = x ln q −
(

(t− x) ln(t− x) + x lnx + (2x− t) ln i +
s2x

32i

)

.

For x ≤ t− 1, we can compute that

f ′(x) = ln q −
(

− ln(t− x) + lnx + 2 ln i +
s2

32i

)

≥ ln q −
(

ln
xi2

t− x
+

s

32

)

≥ ln q − ln
(

4ts6es/32
)

,

since we have s ≤ i ≤ 2L+1 ≤ 2s3 and t− x ≥ 1. Note that for s ≥ 100, we have that 2se−s/32 ≥
(10s)5. Therefore, by our choice of q, we see that

q

4ts6es/32
=

s2−
s
t t2s/10000

4ts6es/32
>

2se−s/32

(10s)5
≥ 1

and thus f ′(x) > 0 for all x ∈ [0, t − 1].
This shows that f is maximized on this interval at x = t− 1. Additionally, we have that

f(t) − f(t− 1) = ln q −
(

t ln t− (t− 1) ln(t− 1) + 2 ln i +
s2

32i

)

≥ ln q − ln
(

4ets6es/32
)

≥ 0,

again by our choice of q, where we use the fact that

t ln t− (t− 1) ln(t− 1) =

∫ t

t−1
(1 + lnx) dx ≤ 1 + ln t = ln(et).

This implies that f(x) ≤ f(t) for all 0 ≤ x ≤ t, which shows that, as claimed, the probability in
(2) is maximized for x = t. Therefore, for vi ∈ A, the probability that some Ks,t counted by Ni is
monochromatic red is at most

t
∑

x=0

(2e2)tqx · 2−ste−s2x/32i

ssyyxxix−y−s
≤ (t + 1)

(2e2q)t2−ste−s2t/32i

ssttit−s
≤ (4e2q)t

2stsstt
exp

(

−
(

s2t

32i
+ (t− s) ln i

))

.
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Let g(i) = s2t
32i + (t− s) ln i and note that

g′(i) =
t− s

i
− s2t

32i2
.

This shows that g(i) is minimized when i = s2t
32(t−s) and, therefore, the minimum value of g is

(t− s) ln es2t
32(t−s) . Plugging this in, the probability that some Ks,t counted by Ni is monochromatic

red is at most
(4e2q)t

2stsstt

(

32(t − s)

es2t

)t−s

≤
(

4e2q

st2s

)t(
50(t − s)

st

)t−s

.

Summing this up, the probability that some Ks,t whose side of order s lies in A is monochromatic
red is at most

2L+1
∑

i=s

(

4e2q

st2s

)t(
50(t− s)

st

)t−s

≤ 2t3
(

4e2q

st2s

)t(
50(t− s)

st

)t−s

≤
(

100q

st2s

)t(50(t− s)

st

)t−s

,

since 2L+1 ≤ 2t3 ≤ 3t for t ≥ 6. For all the remaining Ks,t, we use the negative correlation property
to see that each one is monochromatic red with probability at most 2−st. Adding this up over all

i > 2L and using our bound Ni ≤ (2e2q)t

ssttit−s from (1), we find that the probability any of these copies
is monochromatic red is at most

N
∑

i=2L+1

(2e2q)t

ssttit−s
2−st ≤ (2e2q)t

sstt2st

∫ ∞

2L

1

xt−s
dx =

(

2e2q

st2s

)t
2L

t− s− 1

( s

2L

)t−s
≤
(

100q

st2s

)t
( s

2L

)t−s
,

using our assumption t ≥ s + 2 to evaluate the integral and again using the bound 2L ≤ t3 ≤ 3t.
In total, the probability that any Ks,t is monochromatic red is at most

(

100q

st2s

)t
(

(

50
t− s

st

)t−s

+
( s

2L

)t−s
)

.

We now recall our choice of 2L = s2t
50(t−s) , so that both terms in parentheses are equal. Therefore,

in total, we find that the probability of a monochromatic red Ks,t is at most

(

100q

st2s

)t

2

(

50
t− s

st

)t−s

<

(

100q

st2s

)t(100

s

)t−s

= 100−s <
1

2
,

by plugging in q = s2−
s
t t2s/10000. By symmetry, the same estimate holds for the probability of a

blue Ks,t, which yields the desired conclusion.

3 Book graphs

We prove the lower and upper bounds in Theorem 1.3 separately. We begin with the lower bound,
which is somewhat simpler.
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3.1 The lower bound

In this section, we use the Chernoff bound in the following form.

Lemma 3.1. Let X1, . . . ,Xt be independent random variables taking values in {0, 1} and let X =
∑

Xi. If E[X] ≤ n/2, then
Pr(X ≥ n) ≤ e−n/6.

Proof. It follows from Corollary 2.4 and Theorem 2.8 in [22] that if x ≥ cE[X] for some c > 1,
then Pr(X ≥ x) ≤ e−c′x, where c′ = ln c − 1 + 1

c . Plugging in c = 2 (so that x = n), we find that
c′ = ln 2 − 1

2 > 1
6 , which yields the claimed bound.

We also need the following simple analytic result, estimating a certain integral that arises in
the proof.

Lemma 3.2. For every integer k ≥ 1,

∫ 1

0
ln

(

1 − y1/k

2

)

dy ≤ 1

k
− ln 2.

Proof. Denote the integral by I. We begin by changing variables to u = y1/k, so that du =
1
ky

(1−k)/kdy = 1
ku

1−kdy or, equivalently, dy = kuk−1du. We get that

I =

∫ 1

0
kuk−1 ln

(

1 − u

2

)

du.

We now integrate by parts, letting dg = kuk−1du and f = ln(1 − u
2 ). Then g = uk and df =

du/(u− 2), so that

I =
[

uk ln
(

1 − u

2

)]1

0
−
∫ 1

0

uk

u− 2
du = − ln 2 +

∫ 1

0

uk

2 − u
du.

This integral can be explicitly evaluated in terms of the beta function, but for our purposes it
suffices to bound it: we note that 1/(2 − u) ≤ 1 since u ≤ 1 and, therefore,

∫ 1

0

uk

2 − u
du ≤

∫ 1

0
uk du =

1

k + 1
≤ 1

k
.

Thus, I ≤ 1
k − ln 2, as claimed.

We now prove our lower bound on r̂(B
(k)
n ). We only state the result for k ≥ 25, which implies the

lower bound in Theorem 1.3 by picking the implicit constant appropriately to deal with 2 ≤ k ≤ 24.

Theorem 3.3. For every k ≥ 25 and every n ≥ 300k2, r̂(B
(k)
n ) ≥ k2kn2/1200.

Proof. Let G be a graph with at most q = k2kn2/1200 edges, with vertices v1, . . . , vN . We order
the vertices so that deg(v1) ≥ · · · ≥ deg(vN ). We may assume that G has no isolated vertices, so
that N ≤ 2q.

9



We fix s = k/3. For 0 ≤ i ≤ s, let Vi = {vin/10+1, . . . , v(i+1)n/10}. Thus, V0 consists of the n/10
vertices of G of highest degree, V1 consists of the next n/10 vertices of highest degree, and so on.
For every 1 ≤ i ≤ s, every vertex in Vi has degree at most

deg(vin/10) ≤ 2q

in/10
=

20q

in
=

k2kn

60i
=

s2kn

20i
=: Di.

Let U = V (G) \ (V0 ∪ · · · ∪ Vs). On V0 ∪ · · · ∪ Vs, we use a Turán coloring: we color all edges inside
each Vi red and all edges between Vi and Vj blue for all 0 ≤ i < j ≤ s. All remaining edges are
colored randomly, as follows. First, every edge inside U is colored red or blue with probability 1

2 .

Second, every edge between Vi and U is colored red with probability pi = 1
2(i/s)1/k and blue with

probability 1 − pi. All these random choices are made independently. Note that since p0 = 0, the
edges between V0 and U are actually colored blue deterministically.

If Q is a copy of Kk in G, let ext(Q) denote the number of extensions of Q to a monochromatic
Kk+1; equivalently, ext(Q) is the number of pages in the largest monochromatic book whose spine
is Q. Note that ext(Q) = 0 if Q is not itself monochromatic. We next argue that E[ext(Q)] ≤ n/2
for every choice of Q. We then use the Chernoff bound and the union bound to conclude that with

positive probability there is no monochromatic B
(k)
n (and, thus, that there is a coloring with no

monochromatic B
(k)
n ).

First, we deal with red books. Let Q be a copy of Kk in G, which we think of as a potential

spine of a red book. Suppose first that Q∩ V0 6= ∅. Since B
(k)
n/2 is connected and all edges between

V0 and V (G) \ V0 are blue, any red copy of B
(k)
n/2 with a vertex in V0 must actually be entirely

contained within V0. But |V0| = n/10 < n/2, so any red B
(k)
n/2 cannot intersect V0.

Next, suppose that Q ∩ Vi 6= ∅ for some i ∈ [s]. Since all edges between Vi and Vj are blue for
i 6= j, any red book whose spine is Q must lie in Vi ∪U . Let r = |Vi ∩Q| be the number of vertices
in the spine which lie in Vi. For a vertex v ∈ Vi \Q which is adjacent in G to every vertex of Q,
the probability that v forms a red extension of Q equals pk−r

i . Similarly, for u ∈ U \ Q adjacent
to all vertices of Q, the probability that u forms a red extension of Q is pri · (12 )k−r = 2−k(2pi)

r.
If r < k, then the number of choices for such a vertex u ∈ U \ Q is at most Ds, since any such
vertex must be a common neighbor of the non-empty set U ∩ Q and so, in particular, must lie in
the neighborhood of some fixed vertex in U . Therefore, by the definitions of pi and Di,

E[ext(Q)] ≤ pk−r
i |Vi| + 2−k(2pi)

rDs ≤
n

10
+

(

i

s

)r/k

· n

20
≤
(

1

10
+

1

20

)

n ≤ n

2
.

If, instead, r = k, then there are most Di choices for a vertex which is joined to every vertex of Q,
so that

E[ext(Q)] ≤ |Vi| + pkiDi ≤
n

10
+

i

s
· sn

20i
=

(

1

10
+

1

20

)

n ≤ n

2
.

Finally, we consider the case where Q ⊆ U . Since every vertex of U has degree at most Ds,
there are at most Ds common neighbors of Q in U , each of which forms a red extension of Q with
probability 2−k. Moreover, for all i ∈ [s], each common neighbor of Q in Vi forms a red extension
of Q with probability pki . Therefore,

E[ext(Q)] ≤ 2−kDs +

s
∑

i=1

pki |Vi| =
n

20
+

n

10

s
∑

i=1

2−k i

s
≤
(

1

20
+

s

10 · 2k

)

n ≤ n

2
,
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since s ≤ k ≤ 2k. This shows that for every choice of Q the expected number of red extensions of
Q is at most n/2.

Next, we deal with blue books, so let Q be a potential spine of a blue book. Since each Vi

is colored monochromatically in red, Q contains at most one vertex from each Vi. Let R = {0 ≤
i ≤ s : Vi ∩ Q 6= ∅} be the set of i such that Q contains a vertex from Vi and let r = |R|. Then
all the pages of a blue book whose spine is Q must lie in U ∪ ⋃j /∈R Vj. Since r ≤ s + 1 < k, at
least one vertex of Q must be in U , so the number of common neighbors of Q in U is at most Ds.
Each of these common neighbors forms a blue extension of Q with probability 2r−k

∏

i∈R(1 − pi).
Additionally, for j /∈ R, the probability that a common neighbor of Q in Vj yields a blue extension
of Q equals (1 − pj)

k−r. Therefore,

E[ext(Q)] ≤ Ds2
r−k

∏

i∈R

(1 − pi) +
∑

j /∈R

(1 − pj)
k−r|Vj | =

n

20

∏

i∈R

(2 − 2pi) +
n

10

∑

j /∈R

(1 − pj)
k−r. (3)

By definition, we see that 0 ≤ pi ≤ 1
2 for all i. Moreover, for j ≥ 1, we have that

pj ≥
1

2

(

1

s

)1/k

≥ 1

2

(

1

2k

)1/k

=
1

4
,

since s ≤ k ≤ 2k. Additionally, r ≤ s + 1 ≤ k/2, so k − r ≥ k/2. Therefore,

∑

j /∈R

(1 − pj)
k−r ≤

∑

j /∈R

(1 − pj)
k/2 ≤ 1 +

s
∑

j=1

(1 − pj)
k/2 ≤ 1 +

s
∑

j=1

(

3

4

)k/2

≤ 1 + k ·
(

3

4

)k/2

≤ 2,

since k(3/4)k/2 ≤ 1 for k ≥ 25. This shows that the second term in (3) is at most n/5. For the first
term, we recall that since pi ≤ 1

2 , every term in the product is at least 1. Therefore, this product
is maximized when R = {0, 1, . . . , s}. In that case, we have

s
∏

i=0

(2 − 2pi) = 2s+1 exp

(

s
∑

i=0

ln(1 − pi)

)

= 2s+1 exp

(

s
∑

i=0

ln

(

1 − 1

2

(

i

s

)1/k
))

.

To estimate this sum, we use the fact that the function f(x) = ln(1 − 1
2(xs )1/k) is decreasing to

write
s
∑

i=0

f(i) =

s
∑

i=1

f(i) =

s
∑

i=1

∫ i

i−1
f(i) dx ≤

s
∑

i=1

∫ i

i−1
f(x) dx =

∫ s

0
f(x) dx.

For this integral, we change variables to y = x/s and dy = dx/s to find that

∫ s

0
f(x) dx =

∫ s

0
ln

(

1 − 1

2

(x

s

)1/k
)

dx = s

∫ 1

0
ln

(

1 − y1/k

2

)

dy ≤ s

(

1

k
− ln 2

)

,

where the inequality is from Lemma 3.2. Putting all this together, we see that

∏

i∈R

(2 − 2pi) ≤
s
∏

i=0

(2 − 2pi) ≤ 2s+1 exp

(

s

(

1

k
− ln 2

))

= 2e1/3.
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Thus, the first term in (3) is at most e1/3

10 n < n
5 . Plugging all this into (3), we conclude that for

every choice of a potential blue spine Q,

E[ext(Q)] ≤ n

5
+

n

5
≤ n

2
.

Thus, for every k-tuple Q of vertices, the expected number of pages in a monochromatic book
whose spine is Q is at most n/2. The random variable ext(Q) can be expressed as the sum of
independent {0, 1}-valued random variables. Therefore, Lemma 3.1 implies that, for any fixed Q,
we have Pr(ext(Q) ≥ n) ≤ e−n/6. Recalling that the number of vertices in G is N ≤ 2q, we see
that the total number of choices for Q is at most

(

N

k

)

≤ Nk ≤ (k2kn2)k ≤ exp(k2 + 2k lnn),

since k2k < ek for k ≥ 25. If n ≥ 300k2, then n
6 − k2 ≥ n

8 and lnn ≤ √
n, so

k2 + 2k lnn− n

6
≤ 2k

√
n− n

8
< 0,

since
√
n > 16k. Therefore, taking a union bound over all choices of Q, we see that, with positive

probability, none of them will have at least n monochromatic extensions, showing that there is a

coloring of G with no monochromatic B
(k)
n .

By being slightly more careful in the proof of Theorem 3.3, we can show that the bound already
holds when n ≥ Ck log k for an appropriate constant C. To accomplish this, we count the expected

number of k-cliques Q in G that extend to a monochromatic B
(k)
n as

∑

Q

Pr(Q is monochromatic) Pr(ext(Q) ≥ n | Q is monochromatic).

We then split this sum according to how many vertices of Q are in U . Indeed, if we let t be the
number of vertices in Q ∩ U , then Lovász’s version of the Kruskal–Katona theorem [27, Exercise
13.31] tells us that, provided t ≥ 2, the number of ways of choosing the t vertices of Q in U is at most
(2q)t/2/t!. By using this bound and carefully estimating the probability that Q is monochromatic,
one can obtain the claimed result.

However, such effort may be for naught, because this bound may not be optimal in this regime.

Indeed, r̂(B
(k)
n ) ≥ r̂(Kk) =

(r(Kk)
2

)

. If the Ramsey number r(k) is at least (
√

2 + ε)k for some fixed

ε > 0, as some have conjectured, then the lower bound in Theorem 3.3 is not sharp for n = 2o(k).
This lower bound argument points towards which host graph to use for the upper bound.

Namely, it should have roughly kn vertices of very high degree, each around 2kn, while all other
vertices should have substantially lower degree. This suggests taking the host graph to be a large
book, with a spine of order around kn and about 2kn pages, which is indeed what we do. However,

the proof that such a large book is indeed Ramsey for B
(k)
n is quite involved, requiring substantial

input from recent work on Ramsey numbers of books [7, 9, 10]. This proof is the content of the
next subsection.
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3.2 The upper bound

For the upper bound in Theorem 1.3, we need to recall some facts related to Szemerédi’s regularity
lemma. Given vertex subsets X,Y in a graph G, we denote by e(X,Y ) the number of pairs in
X × Y that are edges of G and define the edge density by d(X,Y ) = e(X,Y )/(|X||Y |). We write
d(X) if X = Y and d(x, Y ) if X = {x} is a singleton. A pair (X,Y ) is called ε-regular if, for
all X ′ ⊆ X,Y ′ ⊆ Y with |X ′| ≥ ε|X|, |Y ′| ≥ ε|Y |, we have |d(X ′, Y ′) − d(X,Y )| ≤ ε. Similarly,
we say that a set X is ε-regular if the pair (X,X) is ε-regular. A partition of the vertex set of a
graph is called equitable if all the parts have orders that differ by at most 1. We use the following
strengthened version of Szemerédi’s regularity lemma, proved in [9, Lemma 2.1].

Lemma 3.4. For every ε > 0 and M0 ∈ N, there is some M = M(ε,M0) ≥ M0 such that, for
every graph G, there is an equitable partition V (G) = V1 ⊔ · · · ⊔ Vm into M0 ≤ m ≤ M parts such
that the following hold:

1. Each part Vi is ε-regular and

2. For every 1 ≤ i ≤ m, there are at most εm values 1 ≤ j ≤ m such that the pair (Vi, Vj) is
not ε-regular.

To complement the regularity lemma, we have the following consequence of the counting lemma,
proved in [9, Corollary 2.6]. It is designed to count monochromatic extensions of cliques and thus
estimate the size of monochromatic books. Given a copy Q of Kk in some graph G, we say that
u ∈ V (G) extends Q if u is a common neighbor of all k vertices of Q.

Lemma 3.5. Fix k ≥ 2 and let ε, δ ∈ (0, 12 ) be parameters with ε ≤ δ3k
2

. Let X be a set of vertices
in a graph G and suppose that X is ε-regular with edge density at least δ. Then X contains at least
one Kk. Moreover, if Q is a randomly chosen copy of Kk in X, then, for any u ∈ V (G),

Pr(u extends Q) ≥ d(u,X)k − δ.

The final tool we need concerns good configurations, which we now define.

Definition 3.6. Let k ≥ 2 and ε, δ ∈ (0, 1) be parameters and let C1, . . . , Ck be disjoint vertex
subsets in a graph G whose edges have been two-colored. We say that C1, . . . , Ck form a (k, ε, δ)-
good configuration if the following conditions hold:

• C1 ∪ · · · ∪Ck induces a complete subgraph of G, meaning that there is an edge of G between
any two vertices of C1 ∪ · · · ∪ Ck.

• Each Ci is ε-regular in red and has internal red density at least δ.

• Each pair (Ci, Cj) for i 6= j is ε-regular in blue and has blue density at least δ.

The following lemma, which shows that colorings which contain good configurations also contain
large monochromatic books, was arguably the main idea in [7], but was first stated explicitly in [9].
The statement differs slightly from that in [9, Lemma 3.3], but it is easy to check that the proof
carries through.

Lemma 3.7. Fix k ≥ 2, 0 < δ ≤ 2−k−1, and 0 < ε ≤ δ3k
2

. Suppose that the edges of a graph G
have been two-colored and let C1, . . . , Ck be a (k, ε, δ)-good configuration in G. If the vertices in

C1 ∪ · · · ∪Ck have t common neighbors in G, then the coloring contains a monochromatic B
(k)

2−k−1t
.
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With these preliminaries, we are ready to prove the upper bound in Theorem 1.3.

Theorem 3.8. For every k ≥ 2 and every sufficiently large n, r̂(B
(k)
n ) ≤ k2k+3n2.

Proof. Let G = B
(K)
N , where K = 2kn and N = 2k+1n, so that G has

(K
2

)

+ NK ≤ 2k2n2 +

k2k+2n2 ≤ k2k+3n2 edges. We claim that G is Ramsey for B
(k)
n if n is sufficiently large with respect

to k. To prove this, fix a red/blue coloring of E(G). Let δ = min{2−k−1, 1/(10k3)} and ε = δ3k
2

.
We apply Lemma 3.4 to the red graph on the subgraph of G induced by the spine, with ε

as above and M0 = 10k2. We obtain an equitable partition V1 ⊔ · · · ⊔ Vm of the spine with
M0 ≤ m ≤ M = M(ε,M0) parts, where each Vi is ε-regular and, for every i, at most εm of the
pairs (Vi, Vj) are not ε-regular. Note that, since the colors are complementary, if a pair is ε-regular
in red, then it is also ε-regular in blue.5 Call a part Vi red if at least half its internal edges are
red and blue otherwise. Without loss of generality, suppose that m′ ≥ m/2 of the parts are red
and reindex so that these red parts are V1, . . . , Vm′ . We form a reduced graph F with vertices
v1, . . . , vm′ , connecting vi to vj in F if (Vi, Vj) is ε-regular and has blue density at least δ.

First suppose that some vertex in F , say v1, has degree at most (1 − 1
k−1)m′. This means that

there are at least m′

k−1 − 1 parts Vj with 2 ≤ j ≤ m′ such that (V1, Vj) is either irregular or has blue
density less than δ. By the second condition in Lemma 3.4, the number of irregular pairs (V1, Vj)
is at most εm ≤ 2εm′. Therefore, if we let J be the set of those 2 ≤ j ≤ m′ such that (V1, Vj) is
ε-regular and has blue density less than δ, we find that

|J | ≥ m′

k − 1
− 1 − 2εm′ =

(

1

k − 1
− 1

m′
− 2ε

)

m′ ≥
(

1

k − 1
− 2

5k2

)

m′ ≥
(

1

k
+ 3kδ

)

m′,

using the facts that m′ ≥ m/2 ≥ M0/2 = 5k2 and ε ≤ δ ≤ 1/(10k3), as well as 1
k−1 − 1

k2 ≥ 1
k .

Let U =
⋃

j∈J Vj . Since the partition is equitable,

|U | ≥ |J |
m

K −m ≥
(

1

k
+ 3kδ

)

K

2
−M =

(

1

k
+ 3kδ − 2

M

K

)

K

2
≥
(

1

k
+ 2kδ

)

K

2
,

where we used that m ≤ M and 2M/K ≤ kδ for n (and thus K) sufficiently large.
Recall that V1 is ε-regular and has red density at least 1

2 ≥ δ. Thus, by Lemma 3.5, if Q is a
random red Kk in V1, then, for any u ∈ U , the probability that u extends Q is at least dR(u, V1)k−δ,
where dR denotes edge density in the red graph. Adding this up over all u ∈ U , we find that the
expected number of red extensions of Q is at least

∑

u∈U

(

dR(u, V1)k − δ
)

≥
(

1

|U |
∑

u∈U

dR(u, V1)

)k

|U | − δ|U | ≥
(

(1 − δ)k − δ
)

|U | ≥ (1 − 2kδ)|U |,

where the first inequality follows from convexity of the function x 7→ xk and the second uses the
fact that dR(V1, Vj) ≥ 1 − δ for every j ∈ J . Plugging in our lower bound for |U |, we find that the
expected number of red extensions of Q is at least

(1 − 2kδ)

(

1

k
+ 2kδ

)

K

2
≥
(

1

k
+ 2kδ − 2kδ

)

2kn

2
= n.

5This is true if the parts in the pair are disjoint. If not, one can choose a smaller ε to guarantee the same end.

14



Thus, there exists a red Kk in V1 with at least n red extensions, that is, a red B
(k)
n .

Thus, we may assume that every vertex in F has degree greater than (1 − 1
k−1)m′. By Turán’s

theorem, this implies that F contains a Kk. Let the vertices of this Kk be vi1 , . . . , vik and let
C1 = Vi1 , . . . , Ck = Vik . Then C1, . . . , Ck form a (k, ε, δ)-good configuration, since each Ci is ε-
regular with red density at least 1

2 ≥ δ and all pairs (Ci, Cj) with i 6= j correspond to edges of F
and so are ε-regular with blue density at least δ. Moreover, the vertices of C1 ∪ · · · ∪ Ck all lie in
the spine of G and, hence, they have N = 2k+1n common neighbors. Thus, by Lemma 3.7, our

coloring must contain a monochromatic B
(k)
n .

4 Starburst graphs

4.1 The lower bound

Recall that the starburst graph S
(k)
n is obtained from Kk by adding n pendant edges to every vertex

of Kk. As mentioned in the introduction, although Erdős, Faudree, Rousseau, and Schelp [16]

asserted the lower bound r̂(S
(k)
n ) = Ω(k3n2) for sufficiently large n, they did not include a proof, so

we begin with this lower bound. In fact, we record the following more general lower bound, where
r̂(H1,H2) denotes the minimum number of edges in a graph G such that every red/blue coloring
of E(G) contains a red copy of H1 or a blue copy of H2.

Proposition 4.1. Let H1 be a connected graph with n+ 1 vertices and maximum degree ∆ and let
H2 be a graph with chromatic number k + 1. Then r̂(H1,H2) ≥

(k
2

)

∆n.

Since the graph S
(k)
n has kn+ k vertices, maximum degree n+ k− 1, and chromatic number k,

we immediately get the following corollary, which clearly implies the lower bound in Theorem 1.4
for k ≥ 3 (see [16, Fact A] for the k = 2 case).

Corollary 4.2. For every k ≥ 2 and n ≥ 1,

r̂(S(k)
n ) ≥

(

k − 1

2

)

(n + k − 1)(kn + k − 1).

In particular, r̂(S
(k)
n ) ≥ (12 − o(1))k3n2, where the o(1) term tends to 0 as k → ∞.

Proof of Proposition 4.1. Let G be an N -vertex graph with fewer than
(k
2

)

∆n edges. By iteratively
deleting vertices of maximum degree, we may order the vertices of G as v1, . . . , vN , where vi is a
maximum-degree vertex in the induced subgraph Gi = G[vi, . . . , vN ] for every i. For 1 ≤ i ≤ N , let
D(i) be the degree of vi in Gi and declare D(i) = 0 if i > N . By our choice of ordering, we have
that D(1) ≥ D(2) ≥ · · · .

Suppose for the moment that D(jn) ≥ (k − j)∆ for all 1 ≤ j ≤ k − 1. Then the number of
edges in G is

N
∑

i=1

D(i) ≥
k−1
∑

j=1

jn
∑

i=(j−1)n+1

D(i) ≥
k−1
∑

j=1

nD(jn) ≥ ∆n

k−1
∑

j=1

(k − j) =

(

k

2

)

∆n,

where the second inequality uses that D(i) ≥ D(jn) for all i ≤ jn. This contradicts our assumption
that the number of edges in G is less than

(k
2

)

∆n. So we may set j∗ ≤ k − 1 to be the smallest
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positive integer such that D(j∗n) < (k−j∗)∆. We now create a partition of V (G) into V1⊔· · ·⊔Vk,
as follows.

For 1 ≤ j ≤ j∗, let Vi = {v(j−1)n+1, . . . , vjn} and let G′ = G \ (V1 ∪ · · · ∪ Vj∗). We consider a
max (k− j∗)-cut of G′, that is, a partition of V (G′) into k− j∗ parts which maximizes the number
of edges between the parts. Let this partition of G′ be Vj∗+1, . . . , Vk. Note that G′ = Gj∗n+1,
which implies that every vertex in G′ has degree at most D(j∗n) < (k − j∗)∆. Moreover, in the
max (k − j∗)-cut, every vertex has at least as many neighbors in every other part as in its own
part, for otherwise we could increase the number of edges going between parts by moving some
vertex to a different part. Thus, for every j∗ + 1 ≤ j ≤ k, every vertex in Vj has fewer than
(k − j∗)∆/(k − j∗) = ∆ neighbors in its own part Vj.

In summary, each part Vj for 1 ≤ j ≤ j∗ has exactly n vertices and each part Vj for j∗+1 ≤ j ≤ k
induces a subgraph of G with maximum degree less than ∆. We color the edges inside each part
red and all edges between parts blue. Then the blue graph is k-partite and so cannot contain a
copy of H2. On the other hand, the red graph is the disjoint union of G[V1], . . . , G[Vk], so, since
H1 is connected, any red H1 must appear in G[Vj ] for some j. But it cannot appear in G[Vj ] for
j ≤ j∗ since H1 has more than n vertices and it cannot appear in G[Vj ] for j > j∗ since H1 has
maximum degree ∆ and G[Vj ] has maximum degree less than ∆. Therefore, G is not Ramsey for
H.

4.2 The upper bound

To prove the upper bound on r̂(S
(k)
n ), we need to recollect some facts about random graphs. We

use G(N, p) to denote the Erdős–Rényi random graph with N vertices where each edge is chosen
independently with probability p, saying that an event happens with high probability (w.h.p.) if the
probability it holds in G(N, p) tends to 1 as N tends to ∞.

The first result we need is a version of Turán’s theorem relative to random graphs. This is a
well-studied topic, culminating in works by Conlon–Gowers [11] and Schacht [31], who determined
the threshold for Turán’s theorem to hold in this setting (see also [1, 30] for subsequent proofs
using the method of hypergraph containers). However, we only need a rather weak version, so the
following earlier result of Szabó and Vu [32], with explicit bounds on the error probability, more
than suffices for our purposes. For a graph G, we use ex(G,Kk) to denote the maximum number
of edges in a Kk-free subgraph of G.

Theorem 4.3 ([32, Theorem 1.2]). For every k ≥ 4 and ε > 0, there exist constants C, c > 0 such
that the following holds for all sufficiently large N . If p ≥ CN−2/(2k−3) and G ∼ G(N, p), then

Pr

(

ex(G,Kk) ≤
(

1 − 1

k − 1
+ ε

)

p

(

N

2

))

≥ 1 − 2−cpN2

.

The following lemma records the facts about G(N, p) used in our proof of the upper bound on

r̂(S
(k)
n ). We use the notation x = y ± z to mean that x lies in the interval [y − z, y + z]. Recall too

that d(X,Y ) denotes the edge density between vertex sets X,Y .

Lemma 4.4. Fix k ∈ N and p, δ ∈ (0, 1). The following facts all hold w.h.p. in G ∼ G(N, p):

(a) Every vertex v ∈ V (G) has degree (p± δ)N .

(b) For any two (not necessarily distinct or disjoint) sets X,Y ⊆ V (G) with |X|, |Y | ≥ p8kN ,
d(X,Y ) = p± δ.
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(c) For every S ⊆ V (G) with |S| ≥ p8kN , the number of v ∈ V (G) with fewer than (p − δ)|S|
neighbors in S is at most p8kN . Similarly, the number of v ∈ V (G) with more than (p+ δ)|S|
neighbors in S is at most p8kN .

(d) For every S ⊆ V (G) with |S| ≥ N/3, every Kk-free subgraph of G[S] has at most (1− 1
2k )p

(|S|
2

)

edges.

Proof. It suffices to prove that each property holds w.h.p., since a simple application of the union
bound then implies that they all hold w.h.p. simultaneously.

(a) The expected degree of each vertex is p(N −1), so, by the Chernoff bound (e.g., [22, equation
(2.12)]), for any fixed v ∈ V (G),

Pr(deg(v) 6= (p± δ)N) ≤ Pr

(

|deg(v) − E[deg(v)]| ≥ δ

2
N

)

≤ 2 exp

(

−2

(

δ

2

)2

N

)

,

where we use that N is sufficiently large in terms of p and δ to write p(N − 1) = pN ± δ
2N .

We now take a union bound over all N choices of v.

(b) This also follows easily from an application of the Chernoff bound and the union bound. For
details, see, e.g., [25, Corollary 2.3].

(c) This follows immediately from part (b). Indeed, suppose we let X consist of all vertices with
fewer than (p − δ)|S| neighbors in S. Then d(X,S) < p − δ, which contradicts part (b) if
|X| ≥ p8kN . The second statement follows identically.

(d) For any fixed S ⊆ V (G) with |S| ≥ N/3, we can apply Theorem 4.3 with ε = 1
2k to conclude

that the probability there is a Kk-free subgraph of G[S] with more than (1 − 1
2k )p

(|S|
2

)

edges

is at most 2−cp(N/3)2 = 2−Ωp,k(N
2). Taking a union bound over the fewer than 2N choices for

S, we see that the required conclusion holds provided N is sufficiently large with respect to
p and k.

The following result completes the proof of Theorem 1.4. Note that we can assume k ≥ 4, since
the required result for k ∈ {2, 3} follows from the k = 4 case.

Theorem 4.5. For every k ≥ 4 and all sufficiently large n, r̂(S
(k)
n ) ≤ 105k3n2.

Proof. Fix p = 1/(10k), δ = p2, and N = 1000k2n. Then, for n sufficiently large, G ∼ G(N, p)
satisfies all the properties in Lemma 4.4 w.h.p., so we may fix an N -vertex graph G with these
properties. In particular, by Lemma 4.4(a), G has at most pN2 = 105k3n2 edges, so it suffices to

show that G is Ramsey for S
(k)
n .

Suppose, then, that the edges of G have been red/blue colored. Let VR denote the set of vertices
of G whose blue degree is less than 3n, let VB denote the set of vertices of G whose red degree is
less than 3n, and let V0 consist of all vertices with red and blue degree at least 3n. At least one of
VR, VB , and V0 has at least N/3 vertices.

Suppose first that |VR| ≥ N/3. By Lemma 4.4(b), the number of edges in VR is at least

(p − δ) |VR|2

2 . Moreover, each vertex in VR has blue degree at most 3n, which means that the
number of blue edges in VR is at most

3

2
n|VR| =

3

2
· N

1000k2
|VR| ≤

9

2000k2
|VR|2 ≤ δ

|VR|2
2

.
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Therefore, the red graph on VR has at least (p−2δ) |VR |2

2 ≥ (1−2p)p
(

|VR|
2

)

edges. Since 2p = 1
5k < 1

2k ,
Lemma 4.4(d) implies that VR contains a red Kk. Let the vertices of this red Kk be v1, . . . , vk.
Each vi has at least (p− δ)N incident edges, of which at most 3n are colored blue. Let Xi be the
set of red neighbors of vi, apart from vj for j 6= i, so that

|Xi| ≥ (p − δ)N − 3n− k ≥ p

2
N = 50kn.

Now, we let Y1 be an arbitrary subset of X1 with |Y1| = n. Inductively, we let Yi be an arbitrary
subset of Xi \ (Y1 ∪ · · · ∪ Yi−1) of order n, which we can do since |Xi \ (Y1 ∪ · · · ∪ Yi−1)| ≥
50kn − (i − 1)n ≥ n. By doing this for every i, we find disjoint sets Y1, . . . , Yk of red neighbors of

v1, . . . , vk, respectively, which yields a red S
(k)
n . By interchanging the roles of the colors, the same

argument yields a blue S
(k)
n if |VB | ≥ N/3.

So we may now suppose that |V0| ≥ N/3. Our goal is to apply the Erdős–Szekeres neighborhood-
chasing argument to build a monochromatic Kk inside V0, while also maintaining large sets of red
and blue neighbors for each vertex of this Kk, so that we can complete it to a monochromatic copy

of S
(k)
n . Formally, we inductively construct three sequences: a sequence v1, . . . , v2k of vertices in V0,

a sequence C1, . . . , C2k ∈ {R,B} of colors, and a sequence Z1, . . . , Z2k of disjoint vertex sets, with
the property that each Zi consists of 3

2n red and 3
2n blue neighbors of vi. Additionally, we consider

the sequence N1 ⊇ N2 ⊇ . . . , where Ni = V0 ∩ NC1
(v1) ∩ NC2

(v2) ∩ · · · ∩ NCi(vi) consists of the
common neighborhoods in V0 of the i vertices v1, . . . , vi in the colors C1, . . . , Ci. We inductively
maintain the properties that |Ni| ≥ p2i|V0| and vi+1 ∈ Ni for all 1 ≤ i < 2k.

To begin, by Lemma 4.4(c), at most p8kN < |V0| vertices in V0 have fewer than (p − δ)|V0|
neighbors in V0, so let v1 ∈ V0 be an arbitrary vertex with at least (p − δ)|V0| neighbors in V0.
Among the edges between v1 and V0, let C1 be the majority color. Finally, since v1 ∈ V0, it has at
least 3n red neighbors and at least 3n blue neighbors, so we let Z1 be an arbitrary set of 3

2n red
and 3

2n blue neighbors of v1. As indicated above, let N1 = V0 ∩NC1
(v1) be the set of neighbors of

v1 in V0 in the color C1. By construction,

|N1| ≥
p− δ

2
|V0| ≥

p

4
|V0| ≥ p2|V0|,

since v1 has at least (p − δ)|V0| neighbors in V0, of which at least half have color C1. This sets up
the base case of our induction.

Inductively, suppose that for some i < 2k we have defined v1, . . . , vi, C1, . . . , Ci, and Z1, . . . , Zi

and we wish to construct vi+1, Ci+1, and Zi+1. As above, let Ni = V0 ∩ NC1
(v1) ∩ · · · ∩ NCi(vi),

where the induction hypothesis and i < 2k implies that |Ni| ≥ p2i|V0| ≥ p4kN . By Lemma 4.4(c),
the number of vertices with fewer than (p− δ)|Ni| neighbors in Ni is at most p8kN . Similarly, if we
let Z = Z1 ∪ · · · ∪ Zi, then |Z| = 3in ≥ p8kN , so the number of vertices with more than (p + δ)|Z|
neighbors in Z is at most p8kN . Since 2p8kN < p4kN ≤ |Ni|, we may pick some vi+1 in Ni with at
least (p− δ)|Ni| neighbors in Ni and at most (p + δ)|Z| neighbors in Z. Let Ci+1 be the majority
color among all edges between vi+1 and Ni, so that

|Ni+1| = |Ni ∩NCi+1
(vi+1)| ≥ p− δ

2
|Ni| ≥ p2|Ni| ≥ p2(i+1)|V0|,

maintaining the inductive hypothesis. Finally, to define Zi+1, we recall that the number of neighbors
of vi+1 in Z is at most

(p + δ)|Z| ≤ 2p|Z| =
6in

10k
<

12kn

10k
<

3

2
n.
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Since vi+1 ∈ V0, it has at least 3n blue neighbors and at least 3n red neighbors. Hence, avoiding
the neighbors of vi+1 that are in Z, we can still find a set Zi+1 of 3

2n red and 3
2n blue neighbors of

vi+1 which is disjoint from Z1, . . . , Zi.
To conclude, we assume, without loss of generality, that at least half of C1, . . . , C2k are red.

That is, there are distinct j1, . . . , jk ∈ [2k] such that Cj1 , . . . , Cjk are all red. Then vj1 , . . . , vjk form
a red Kk, since, for any j > i, vj ∈ Nj−1 ⊆ NCi(vi). Moreover, the sets Zj1 , . . . , Zjk are disjoint
and each contains 3

2n red neighbors of vj1 , . . . , vjk , respectively. By deleting at most k < n
2 vertices

from each Zji , we can ensure that each Zji is also disjoint from {vj1 , . . . , vjk}, while still containing

at least n red neighbors of vji for each i. This yields a red copy of S
(k)
n , as desired.

Observe that Theorem 1.4, which states that r̂(S
(k)
n ) = Θ(k3n2) for n sufficiently large, actually

requires that n is at least exponential in k. This is because

r̂(S(k)
n ) ≥ r̂(Kk) =

(

r(Kk)

2

)

≥ 2k.

A careful analysis of the proof of Theorem 4.5 shows that the upper bound r̂(S
(k)
n ) = O(k3n2)

holds when n ≥ kCk for an appropriate constant C. This particular proof, using an Erdős–Rényi
random graph, cannot give a better bound on n. However, a different random graph model can be

used to show that r̂(S
(k)
n ) = O(k3n2) holds already when n ≥ 2Ck. Indeed, consider the random

graph model G(N, p, ω) obtained by iteratively picking a uniformly random subset of [N ] of order
ω, adding a complete subgraph on those vertices, and repeating this process until the edge density
is at least p. The global structure of G(N, p, ω) is rather close to that of G(N, p) for an appropriate
range of parameters, but the two models differ because G(N, p, ω) has larger cliques than G(N, p).
In order to prove the desired result, we again take N = Θ(k2n) and p = Θ(1/k) and let ω = N1/8.
One can then follow the same proof technique as in Theorem 4.5, partitioning the vertex set of an
edge-colored G(N, p, ω) into VR, VB , V0 as before. The main difference from the proof of Theorem 4.5
is that one must apply Turán’s theorem and the Erdős–Szekeres argument inside the intersection
of one of these sets with an appropriately chosen clique of order ω.

5 Concluding remarks

Although we have made substantial progress on the three questions asked by Erdős, Faudree,
Rousseau, and Schelp, several interesting open problems remain. First, for complete bipartite
graphs Ks,t, though we have shown that r̂(Ks,t) = Θ(s2t2s) for t = Ω(s log s), we suspect that a
similar bound may hold whenever s ≤ t. That is, we have the following conjecture.

Conjecture 5.1. For all s ≤ t, r̂(Ks,t) = Θ(s2t2s). In particular, r̂(Kt,t) = Θ(t32t).

Secondly, for book graphs B
(k)
n , where we determined r̂(B

(k)
n ) up to a constant factor once n

is sufficiently large in terms of k, it would be interesting to understand how large is sufficient. As
discussed near the end of Section 3.1, our lower bound can be made to work once n ≥ Ck log k, but
the upper bound relies on an application of Szemerédi’s regularity lemma, resulting in tower-type
bounds. In our earlier paper [9], we were able to avoid applying the regularity lemma when looking
at the ordinary Ramsey number of books and it is possible that a similar technique could yield

the upper bound r̂(B
(k)
n ) = O(k2kn2) for n bounded by a constant-height tower function of k.
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However, it would be interesting to determine whether the same bound holds for n bounded by a
single-exponential function of k, say.

Thirdly, our determination of the asymptotic order of r̂(S
(k)
n ) for starburst graphs S

(k)
n raises

the question of when the general lower bound r̂(H) = Ω(χ(H)2∆(H)|V (H)|) in Proposition 4.1,
which holds for any connected graph H, is asymptotically tight.

Question 5.2. For which families of graphs H does one have r̂(H) = Θ(χ(H)2∆(H)|V (H)|)?

The reason this question may be interesting is that the proof of Proposition 4.1 uses a version
of the Turán coloring. Indeed, we find an appropriate partition of the host graph G into χ(H) − 1
parts and then color all internal edges red and all edges between parts blue. The number of parts
guarantees that there is no blue copy of H, while the choice of partition ensures that no copy of
H is contained in any of the red parts. One can therefore view Question 5.2 as a size Ramsey
variant of the so-called Ramsey goodness problem (see, e.g., [8, Section 2.5]), which asks when the
Turán coloring is extremal for ordinary Ramsey numbers. While it is not completely clear that
Question 5.2 is the correct size Ramsey analogue of this problem, it may be a good first step.

It is also natural to consider multicolor size Ramsey numbers. Formally, given a graph H and
an integer q ≥ 2, let r̂(H; q) denote the minimum number of edges in a graph G with the property
that no matter how the edges of G are colored in q colors, there is always a monochromatic copy
of H. Most of the results and proofs in this paper can be adapted to deal with the multicolor case.
For example, one can show that if q ≥ 2 is fixed and t = Ω(s log s), then

r̂(Ks,t; q) = Θ(s2tqs),

with the upper bound again following from a simple averaging argument in an unbalanced complete
bipartite graph and the lower bound from a hypergeometric random coloring. Note that here and
below all implicit constants may depend on the number of colors q.

For starburst graphs, one can show that if q ≥ 3 is fixed and n is sufficiently large in terms of
k, then

r̂(S(k)
n ; q) = Θ

(

k · n2 · r(Kk; q − 1)2
)

,

where r(Kk; q− 1) is the (q− 1)-color (ordinary) Ramsey number of Kk. Although it may not look
like it at first, this is a natural generalization of the two-color case, since the one-color Ramsey
number of Kk is simply k. Here, the lower bound is proved analogously to Proposition 4.1, except
that rather than the Turán coloring, one uses a blowup of a coloring on r(Kk; q−1)−1 vertices with
no monochromatic Kk. For the upper bound, one again uses G ∼ G(N, p), but with p = Θ(1/k)
and N = Θ(k · n · r(Kk; q − 1)). We partition the vertices of G according to which of the q color
classes they have degree at least 3n in and then pass to the largest of these 2q sets. If every vertex
in this set has at least 3n neighbors in all colors, we can again use the Erdős–Szekeres argument

to build a monochromatic S
(k)
n . If not, then there is at least one sparse color in this large set. One

applies Szemerédi’s regularity lemma inside this set, followed by Turán’s theorem and Ramsey’s
theorem on the reduced graph to find a non-sparse color and k parts which are pairwise dense
and regular in this color. Finally, one can greedily pick out one vertex from each part, inductively

maintaining the ability to extend this to a monochromatic copy of S
(k)
n .

However, it is not clear how to extend our results on book graphs to more than two colors. A
natural conjecture is the following.
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Conjecture 5.3. Fix q ≥ 3. For every k ≥ 2 and all sufficiently large n,

r̂(B(k)
n ; q) = Θ

(

qk · n2 · r(Kk; q − 1)
)

.

We feel that this is a natural conjecture, because, in the two-color case, both the lower and upper
bounds are fundamentally determined by a “Turán part” of order Θ(kn) and a “random part” of
order Θ(2kn) and the natural multicolor analogues of these would have orders Θ(r(Kk; q − 1)n)
and Θ(qkn), respectively. However, we are not confident of Conjecture 5.3 even in the case q = 3
and can prove neither the upper nor the lower bound.
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[12] D. Conlon, R. Nenadov, and M. Trujić, The size-Ramsey number of cubic graphs, Bull. London
Math. Soc. 54 (2022), 2135–2150.
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