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Abstract
A spanning tree T in a graph G is a sub-graph of G with the same vertex set as G which is

a tree. In 1981, McKay proved an asymptotic result regarding the number of spanning trees in
random k-regular graphs. In this paper we prove a high-dimensional generalization of McKay’s
result for random d-dimensional, k-regular simplicial complexes on n vertices, showing that
the weighted number of simplicial spanning trees is of order (ξd,k + o(1))(

n
d) as n → ∞, where

ξd,k is an explicit constant, provided k > 4d2 + d + 2. A key ingredient in our proof is the
local convergence of such random complexes to the d-dimensional, k-regular arboreal complex,
which allows us to generalize McKay’s result regarding the Kesten-McKay distribution.

1 Introduction
Let G = (V,E) be a graph with vertex set V and edge set E and for a vertex v ∈ V , denote
by deg(v) its degree. G is called a k-regular graph, if deg(v) = k for all v ∈ V . A subgraph
T = (V ′, E′) of G is called a spanning tree of G if T is an acyclic, connected graph such that
V ′ = V . For a graph G, denote by κ1(G) the number of spanning trees in it.

A classical model for random k-regular graphs, called the random matching model Gn,k, is
defined for k ≥ 1 and n ∈ N even as the graph with vertex set [n] := {1, 2, . . . , n} and edge set
which is the union of k independent and uniformly distributed perfect matching on the set [n]. In
[McK81], McKay proved the following asymptotic result regarding the number of spanning trees
in random k-regular graphs.

Theorem 1.1 ([McK81]). Fix k ≥ 3. Let (ni)∞i=1 ⊂ N be a strictly increasing sequence of even
numbers and for i ≥ 1, let Gi be a random graph sampled according to Gni,k. Then

ni

√
κ1(Gi) −→

i→∞
ξ1,k

in probability, where

ξ1,k := (k − 1)k−1

(k2 − 2k) k−2
2
. (1.1)

In this paper we generalize Theorem 1.1 to the context of simplicial complexes. We concentrate
on the model of random (d, k, n)-uniform Steiner complexes, which for fixed d, k ∈ N and n a
d-admissible number (see Definition 2.2), is defined as the union of k i.i.d. (n, d)-Steiner systems
chosen uniformly at random from all (n, d)-Steiner systems, see Section 2 for further details and
additional models. Under the assumption k > 4d2 + d+ 2, we prove that the weighted number of
d-dimensional spanning trees κd(Xi) contained in a random (d, k, ni)-Steiner complex Xi satisfies

(nd)
√
κd(Xi) −→

i→∞
ξd,k (1.2)
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in probability, whenever (ni) is a sequence of d-admissible numbers such that limi→∞ ni = ∞,
where ξd,k is an explicit constant and the weights are determined according to the (d−1)-homology
over Z of the d-dimensional spanning trees (see Theorem 5.1 for further details).

In order to establish the generalization of Theorem 1.1, we prove two results regarding the
structure of uniform random Steiner complexes which are of independent interest. Both results
show that in a certain sense, the random complexes (Xi) are close to the (d, k)-arboreal complex
Td,k introduced in [PR17] as a high-dimensional counterpart of the k-regular tree.

The first result shows that the local structure of Xi converges to that of the arboreal complex
Td,k, i.e., that for every r ≥ 0, the r-neighborhood of a fixed (d − 1)-face in Xi is isomorphic to
the r-neighborhood of any of the (d− 1)-faces in Td,k, with probability tending to 1 as i tends to
infinity.

Using the local convergence result together with spectral information on the Laplacian of Td,k
from [Ros14], we prove our second result, showing that the eigenvalues of the Laplacian of Xi

converge to the spectrum of Td,k in the sense of weak convergence of probability measures (see
Section 2 for further details). This result generalizes a classical result by Kesten and McKay
[Kes59, McK83] regarding the limiting spectrum of k-regular graphs.

In order to conclude the proof of (1.2), we use a high-dimensional variant of the matrix tree
theorem, see [Kal83, DKM09], which relates the weighted number of d-dimensional spanning trees
of Xi to the eigenvalues of the Laplacian of Xi. Then, using our result on the limiting behaviour
of the eigenvalues of Xi, we are able to conclude (1.2).

The results in this paper are part of the second author master degree. In particular, the master
thesis [Ten20] contains additional details and further discussion.

Acknowledgements. The authors are grateful to Alex Lubotzky for fruitful discussions that led to
this work. We would also like to thank Antti Knowles, Alan Lew, Zur Luria and Roy Meshulam
for their insightful comments.

2 Results

2.1 Preliminaries
Let V be a non-empty set. A simplicial complex X on a vertex set V , is a collection of finite subsets
of V that is closed under inclusion, namely, if τ ∈ X, then σ ∈ X for all σ ⊆ τ . The elements of a
simplicial complex are called faces or cells. For a face σ ∈ X, define its dimension by dim(σ) :=
|σ| − 1. The dimension of the simplicial complex X is defined as dim(X) := supσ∈X dim(σ). A
simplicial complex of dimension d is abbreviated d-complex and a face of dimension ` is called
an `-face. For a simplicial complex X and ` ≥ −1, the collection of `-faces of X is denoted by
X` = {σ ∈ X : dim(σ) = `}, and the number of `-faces by f` := |X`|. For ` ≥ 0, the `-dimensional
skeleton of X is defined to be X(`) := ∪`j=−1X

j . We say that X has a complete `-skeleton if
X contains all subsets of X0 of dimension at most `, i.e. X(j) =

(
X0

j+1
)
for all j ≤ `, where for

non-empty set A and j ≥ 0, we denote by
(
A
j

)
all subsets of A of size j. The complete complex

of dimension d on n vertices is denoted by K(d)
n . The degree of an `-face σ in a d-complex X is

defined by deg(σ) ≡ degX(σ) := |{τ ∈ Xd : σ ⊂ τ}|. If all the (d − 1)-faces of a d-complex have
degree k, we say that the simplicial complex is k-regular. A d-complex is called pure, if every face
in it is contained in at least one d-face. If the complex has a complete (d − 1)-skeleton, this is
equivalent to saying that deg(σ) ≥ 1 for all σ ∈ Xd−1. Throughout this paper, with the exception
of the arboreal complexes (see Section 2)), we study simplicial complexes, with a finite vertex set
which are pure and have a complete (d − 1)-dimensional skeleton. For future use, for σ ∈ X and
v ∈ X0 \ σ, we introduce the abbreviation vσ := {v} ∪ σ.

Given two complexes X and Y , a map f : X0 → Y 0 is called a simplicial map, if f [σ] is a face in
Y for any σ ∈ X, where f [σ] = {f(v) : v ∈ σ}. In this case the map f induces a map f̂ : X → Y ,
which is a mapping of sets. If f̂ is also a bijection, then f is called a simplicial isomorphism.
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Oriented faces and upper-Laplacian. For ` ≥ 1, every `-face σ = {σ0, . . . , σ`} ∈ X` has two possi-
ble orientations, corresponding to the possible orderings of its vertices, up to an even permutation.
We denote an oriented face by square brackets, and a flip of orientation by an overline. For ex-
ample, one orientation of σ = {x, y, z} is [x, y, z] = [y, z, x] = [z, x, y]. The other orientation of σ
is [x, y, z] = [y, x, z] = [x, z, y] = [z, y, x]. We denote by X`

± the set of oriented `-faces (so that
|X`
±| = 2|X`| for ` ≥ 1). We also define X0

± = X0.
For ` ≥ 0, the space of `-forms on X, denoted by Ω`(X), is the vector space of skew-symmetric

functions on oriented `-faces over R

Ω`(X) :=
{
f : X`

± → R : f(σ) = −f(σ) ∀σ ∈ X`
±
}
.

We endow Ω`(X) with the inner product

〈f, g〉 =
∑
σ∈X`

f(σ)g(σ) .

Note that f(σ)g(σ) is well-defined since its value is independent of the choice of orientation of the
`-face σ. If we denote by X`

+ a set of oriented `-faces, containing exactly one orientation for each
of the `-face, then (1σ)σ∈X`+ is an orthonormal basis for Ω`(X), where for σ ∈ X`

±, we define

1σ(σ′) =


1 σ′ = σ

−1 σ′ = σ

0 otherwise
.

The boundary ∂σ of the (`+ 1)-face σ = {σ0, . . . , σ`+1} ∈ X`+1 is defined as the set of `-faces
{σ0, . . . , σi−1, σi+1, . . . , σ`} for 0 ≤ i ≤ `+1. An oriented (`+1)-face [σ0, . . . , σ`+1] ∈ X`+1

± induces
orientations on the `-faces in its boundary, as follows: the face {σ0, . . . , σi−1, σi+1, . . . , σ`+1} is
oriented as (−1)i[σ0, . . . , σi−1, σi+1, . . . , σ`+1], where we use the notation (−1)τ := τ .

The following neighboring relation for oriented faces was introduced in [PR17]: for σ, σ′ ∈ Xd−1
± ,

define σ and σ′ to be neighbors, denoted σ′ ∼ σ (or σ X∼ σ′) if there exists an oriented d-face τ ∈ Xd
±

such that both σ and σ′ are in the boundary of τ as oriented faces (see Figure 1 for an illustration
in the case d = 2).

Figure 1: Left: an oriented 2-face and the orientation it induces on its boundary. Right: an
oriented 1-face in a 2-face together with its two oriented neighboring 1-faces.

The adjacency operator A = AX of a complex X is a linear operator AX : Ωd−1(X)→ Ωd−1(X)
defined by

Af(σ) :=
∑
σ
X∼σ′

f(σ′), ∀f ∈ Ωd−1(X), σ ∈ Xd−1
± . (2.1)

Similarly, the upper Laplacian ∆+
d−1 = ∆+

d−1(X) : Ωd−1(X)→ Ωd−1(X) is defined by

∆+
d−1f(σ) := deg(σ)f(σ)−

∑
σ′∼σ

f(σ′), ∀f ∈ Ωd−1(X), σ ∈ Xd−1
± , (2.2)

where the degree of an oriented face is defined to be the degree of the corresponding unoriented face.
As in the graph case d = 1, The upper Laplacian is a self-adjoint with non-negative eigenvalues.
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Furthermore, 0 is always one of its eigenvalues, since each function g ∈ Ωd−2(X) defines a 0-
eigenfunction dg ∈ Ωd−1(X) by dg(σ) =

∑
ρ∈∂σ g(ρ). We split the eigenvalues and eigenvectors of

∆+
d−1(X) into two parts, the trivial 0 eigenvalues which are the 0-eigenvalues with eigenvectors of

the form dg for some g ∈ Ωd−2(X) and the remaining eigenvalues which are called non-trivial.
The definitions of the adjacency and upper Laplacian that are given here are rather direct.

An equivalent, and more conceptual way to define the upper Laplacian, originating in the work
of Eckmann [Eck45], is via the boundary and couboundary opertaros which are closely related to
the definition of homology and cohomology over R. For additional information on the connection
between A,∆+

d−1 and the homology and cohomology of the complex c.f. [Hat02, GW16].

Simplicial spanning trees. The next notion we wish to recall is the generalization of a spanning
tree for simplicial complexes as introduced in the work of Kalai [Kal83] and of Duval, Klivans and
Martin [DKM09]

Definition 2.1 (Simplicial spanning trees). Let X be a finite simplicial complex and let ` ≤
dim(X). An `-dimensional sub-simplicial complex T ⊆ X is called an `-dimensional simplicial
spanning tree of X, abbreviated `-SST, if

• X(`−1) = T (`−1),

• H̃`(T ;Z) = 0,

• |H̃`−1(T ;Z)| <∞,

• f`(T ) = f`(X)− β̃` + β̃`−1,

where H̃`(T ;Z) is the `-th reduced homology group of T with coefficients in Z and β̃` is the `-
th reduced Betti number of X, i.e., β̃` = rank(H̃`(X;Z)), see [Hat02] for additional information
on homology and [Kal83, DKM09] for more information on SSTs and the reasoning behind the
definition.

When ` = dim(X), an `-SST is simply called an SST. Note that we will only use the above
definition in the case where the d-dimensional complex X has a full (d− 1)-skeleton. In this case,
the the co-dimension 1 skeleton is complete and so is the (d− 1)-skeleton of each of its SSTs.

The collection of `-SSTs of X is denoted by T`(X) and the weighted number of `-SSTs of X is
defined by

κ`(X) :=
∑

T∈T`(X)

∣∣H̃`−1(T ;Z)
∣∣2.

Uniform random Steiner complexes. Next, let us discuss the generalization of the matching model
into high-dimensional simplicial complexes.

Let d ∈ N and n ≥ d + 1. An (n, d)-Steiner system is a collection S ⊂ 2[n] of subsets of size
d+ 1 such that each subset of [n] of size d is contained in exactly 1 element of S. In the language
of simplicial complexes, an (n, d)-Steiner system can be thought of as the collection of d-faces in a
1-regular d-complex with n vertices and complete (d− 1)-skeleton. In particular an (n, 1)-Steiner
system is a perfect matching.

Noting that for every 0 ≤ j ≤ d − 1, the number of (d − 1)-faces containing a fixed j-face σ
in the complete (d − 1)-complex on n faces is

(
n−j−1
d−j−1

)
, and that each d-face containing σ covers

exactly d− j of those (d− 1)-faces, it follows that if S is an (n, d)-Steiner system, then d− j must
divide

(
n−j−1
d−j−1

)
for every 0 ≤ j ≤ d− 1. This naturally leads to the following definition.

Definition 2.2 (d-admissible numbers). For a fixed d ∈ N, we say that n ≥ d+ 1 is d-admissible
if d− j divides

(
n−j−1
d−j−1

)
for every 0 ≤ j ≤ d− 1.

Note that for any fixed d ∈ N, there are infinitely many d-admissible natural numbers.
Although being d-admissible is a ncessary condition on n for the existence of an (n, d)-Steiner

system, the fact that for fixed d ∈ N, there are infinitely many d-admissible numbers for which
Steiner systemes exist is a highly non-trivial fact. This and much more has been proved using
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a random construction by Peter Keevash [Kee14, Kee18], who showed that (n, d)-Steiner systems
exist for any large enough d-admissible number n.

The notion of Steiner systems leads us to the following natural generalization of the random
matching model.

Definition 2.3 (Uniform random Steiner complexes). Let d, k ∈ N and n ∈ N a d-admissible
number. We say that X is a (d, k, n)-uniform random Steiner complex if X = K

(d−1)
n−1 ∪

⋃k
j=1 Sj,

where (Sj)kj=1 are i.i.d. (n, d)-Steiner systems sampled uniformly at random from the set of all
(n, d)-Steiner systems on the vertex set [n].

The resulting random complexX, is of dimension d. Furthermore, the degrees of all (d−1)-faces
is bounded k and the complex is k-regular if and only if the sets (Sj)kj=1 are disjoint (see Section
6 for further discussion). This construction also has the property that it induces the matching
model on graphs for links of (d− 2)-faces and in particular that in dimension d = 1 it recovers the
matching model. Finally, note that the distribution of X is invariant under permutations on the
vertex set.

In [LLR19] a slightly different model, named random Steiner complex, was introduced and
studied. There, for d, k ∈ N and n ∈ N which is d-admissible, the (d, k, n)-random Steiner com-
plex is defined as the union of k independent (n, d)-Steiner systems each sampled according to
Keevash’s construction. That is, if S1, . . . , Sk are (n, d)-Steiner systems, each of which is sampled
independently according to Keevash construction, a (d, k, n)-random Steiner complex X is then
defined as X := K

(d−1)
n t

⋃k
j=1 Sj .

In this article, we do not go into the details of Keevash’s construction, but take a few useful
statements about the algorithm used in its definition. First, with high probability, namely with
probability tending to 1 as the number of vertices tends to infinity, the algorithm produces an
(n, d)-Steiner system and in particular does not abort. Second, the distribution of the resulting
subset of

( [n]
d+1
)
is invariant under permutations on the vertex set. Finally, it is worth noting that

the distribution on Steiner systems obtained from Keevash construction is not the uniform one.
We note that at the moment there is no algorithm for sampling an (n, d)-Steiner system uni-

formly at random, however Keevash’s algorithm provides an algorithm for sampling such systems
in a non-uniform way, and it is relatively easy to construct systems which are close to being
(n, d)Steiner systems, in the sense that all (d− 1)-cells except for o(nd) are contained in a unique
d-cell. See further discussion in Section 6.

As it turns out the result stated below for uniform random Steiner complexes union are also
valid for the original model of random Steiner complexes studied in [LLR19]. Furthermore, all of
our results are valid for any distribution on subsets of A ⊂

( [n]
d+1
)
such that

1. Each subset of size d in [n] is contained in at most 1 element in A.

2. The probability that A is an (n, d)-Steiner system converges to 1 as n tends to infinity.

3. The distribution of A is invariant under permutations of the vertex set.

Indeed, an inspection of the proofs shows that those are the only properties of the distribution
that are used in the proofs of the Theorems.

Arboreal complexes. Consider the following construction for an infinite d-dimensional complex.
Start with a d-face τ , and attach to each of its (d − 1)-faces new d-faces, using a new vertex for
each of the new d-faces. Continue by induction, adding new d-faces to each of the (d − 1)-faces
which were added in the last step, using a new vertex for each of them. A complex obtained in
such a way is called an arboreal complex. Similar to what happens in the graph case, i.e. d = 1,
for every natural numbers k and d, the process in which we add exactly (k − 1)-new faces to each
of the (d− 1)-faces in each of the steps defines a unique k-regular d-dimensional arboreal complex,
denoted Td,k. See Figure 2, for an illustration of the first stages in the construction of T2,2.
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Figure 2: The construction of the zeroth, first, second and third layers of X = T2,2.

Empirical spectral distribution. LetW be a r-dimensional vector space over R and let A :W →W
be self-adjoint linear operator on W with eigenvalues {λi(A)}ri=1 including multiplicities. The
empirical spectral distribution of A is the Borel probability measure on R, defined by

µA := 1
r

r∑
i=1

δλi(A) ,

where δx is the Dirac probability measure in x.
Throughout the paper, we only discuss the empirical spectral distributions of the adjacency

operator A and the upper Laplacian ∆+
d−1 associated with a uniform random Steiner complex X,

denoted by µAX and µ∆+
d−1(X) respectively.

2.2 Results
We now state our main results.

Theorem 2.4. Let (Xi)∞i=1 be a sequence of (d, k, ni)-uniform random Steiner complexes with
(ni) a sequence of d-admissible numbers such that limi→∞ ni = ∞, and assume that k > k(d) :=
4d2 + d+ 2. Then

(nid )√κd(Xi) −→
i→∞

ξd,k

in probability, where

ξd,k := (k − 1)k−1

(k − 1− d)
k
d+1−1

k
d(k−1)−1
d+1

.

The proof of Theorem 2.4 is based on the asymptotic behaviour of the eigenvalues of uniform
random Steiner systems. Recall that a sequence of random probability measures µn converges to
a probability measure µ weakly in probability if limn→∞ P(|〈µn, f〉 − 〈µ, f〉| > ε) = 0, for every
ε > 0 and every continuous and bounded function f : R→ R, where 〈µn, f〉 =

∫
R f(x)dµn(x).

Theorem 2.5. Let (Xi)∞i=1 be a sequence of uniform random Steiner complexes with (ni) a se-
quence of d-admissible numbers such that limi→∞ ni = ∞, and assume that k ≥ d + 1. Then
µ∆+

d−1(Xi) converges weakly in probability to νd,k as i → ∞, where νd,k is the unique Borel proba-
bility measure on R such that for every Borel set B ⊂ R

νd,k(B) =
∫
B∩Id,k

k
√

4(k − 1)d− (k − 1 + d− x)2

2πx((d+ 1)k − x) dx ,

and
Id,k =

[
(
√
k − 1−

√
d)2, (

√
k − 1 +

√
d)2] .

Similarly, µAXi converges weakly in probability to the probability measure µd,k obtained from
νd,k via the transformation x 7→ k − x on R, i.e., for every Borel set B ⊂ R

µd,k(B) =
∫
B∩Jd,k

k
√

4(k − 1)d− (x− 1 + d)2

2π(k − x)(dk + x) dx ,

where Jd,k = [−d+ 1− 2
√

(k − 1)d,−d+ 1 + 2
√

(k − 1)d].
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The limiting probability measure µd,k from Theorem 2.5 is a high-dimensional variant of the
Kesten-McKay distribution µ1,k, which is known to be the spectral measure of the Laplacian of the
k-regular tree T1,k = Tk, c.f. [Kes59]. Similarly, it was shown in [Ros14] that µd,k is the spectral
measure of the upper Laplacian of the arboreal complex Td,k.

Finally, the main ingredient in the proof of Theorem 2.5 is a local type convergence result for
random (d, k, n)-Steiner complexes to Td,k.

Theorem 2.6. Let (Xi)∞i=1 be a sequence of random (d, k, ni)-Steiner, with (ni) a sequence of
d-admissible numbers such that limi→∞ ni = ∞. Then for every r > 0 the following holds with
high probability: The r-neighboring complex of a fixed (d − 1)-face in Xi (see Definition 3.1 and
Theorem 3.9 for precise statements) is isomorphic to the r-neighboring complex of any (d−1)-face
in Td,k.

Conventions. We use C to denote a generic large positive and finite constant, which may depend
on some fixed parameters, and whose value may change from one expression to the next. If C
depends on some parameter k, we sometimes emphasize this dependence by writing Ck instead of
C. The letters d, i, j, k, l,m, n, r, ` are always used to denote an element in N = {1, 2, . . .} or in
N0 = {0, 1, 2, . . .} with d being used to denote the dimension of a complex, k the maximal degree
of a (d− 1)-face in it and n a d-admissible number.

3 Local convergence of uniform random Steiner systems

3.1 r-neighboring complex and local convergence
In this section we define a local structure for simplicial complexes and prove that the local structure
of uniform random Steiner complex converges in probability to that of the arboreal complex. The
locality is defined with respect to a metric on the (d− 1)-faces of the complex. Given a d-complex
X, define its line-graph Gd(X) to be the graph whose vertex set is Xd−1 and its edge set Ed(X)
is defined as {σ, σ′} ∈ Xd−1 × Xd−1 such that σ ∪ σ′ ∈ Xd. We denote by distGd(X) the graph
distance in Gd(X) and for r ≥ 0 and σ0 ∈ Xd−1, define Br(σ0, X) to be the ball of radius r in
Gd(X) around σ0, namely

Br(σ0, X) = {σ ∈ Xd−1 : distGd(X)(σ0, σ) ≤ r} .

Definition 3.1 (r-neighboring complex). Let X be a d-dimensional simplicial complex, σ0 ∈
Xd−1 and r ≥ 0. The r-neighborhood complex of σ0 in X, denoted X(σ0, r), is defined to be the
subcomplex Y ⊆ X satisfying

1. Y d−1 = Br(σ0, X).

2. Y d =
{
τ ∈ Xd : ∂τ ⊂ Y d−1}.

3. Y ` =
{
η ∈ X` : η ⊆ σ for some σ ∈ Y d−1}, for every ` < d− 1.

Note that X(σ0, 0) is the complex whose faces are subsets of σ0, and it contains no d-faces.
Hence X(σ0, 0) is a (d− 1)-dimensional complex. If deg(σ0) = 0, then X(σ0, r) = X(σ0, 0) for all
r > 0. On the other hand, if deg(σ0) > 0, then X(σ0, r) is d-dimensional for all r > 0.

For −1 ≤ ` ≤ dim(X(σ0, r)) and r ≥ 0, we denote by X`(σ0, r) the `-dimensional faces of
X(σ0, r) and by

∂X`(σ0, r) = X`(σ0, r) \X`(σ0, r − 1)

the `-faces of X(σ0, r) which are not in X(σ0, r − 1), where we define X`(σ0,−1) = ∅. The latter
can be heuristically thought of as the number of `-faces at distance r from σ0.

Claim 3.2. Let X be a d-complex and σ0 ∈ Xd−1 such that deg(σ0) ≥ 1. Then

1. X(σ0, r) is pure for all r ≥ 0.

2. If σ ∈ Xd−1 satisfies degX(σ) = k, then degX(σ0,r)(σ) = k for all r > distGd(X)(σ0, σ).
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3. If v ∈ ∂X0(σ0, r), then there exists σ ∈ Xd−1(σ0, r − 1) such that vσ ∈ ∂Xd(σ0, r).

4. If v /∈ X0(σ0, r), then τ /∈ X(σ0, r) for any τ ∈ X satisfying v ∈ τ .

5. For every r > 0, it holds that |∂X0(σ0, r)| ≤ |∂Xd(σ0, r)|. Furthermore, if |∂X0(σ0, r)| =
|∂Xd(σ0, r)|, then each of the d-faces in ∂Xd(σ0, r) contains exactly one vertex from ∂X0(σ0, r).

Proof.

1. Note that X(σ0, 0) = {σ : σ ⊆ σ0}, and hence it is a pure (d − 1)-dimensional simplicial
complex. Assume next that r > 0. Since degX(σ0) ≥ 1, by definition σ0 is contained
in at least one d-face in X which is also contained in X(σ0, r). Furthermore, for every σ ∈
Xd−1(σ0, r)\σ0, there exists a sequence {σi}ri=1 such that σr = σ and distGd(X)(σi−1, σi) = 1
for all 1 ≤ i ≤ d. In particular σ is contained in the d-face σ∪σr−1. Since all faces of X(σ0, r)
of dimension strictly less than d− 1 are contained is at least one (d− 1)-faces by definition,
we conclude that X(σ0, r) is pure.

2. Since X(σ0, r) is a sub-complex of X, it is enough to show that every d-face containing σ in
X is also in X(σ0, r). Let τ be such a d-face, and let σ 6= σ′ ∈ Xd−1 be a different (d − 1)
face of τ . Then distGd(X)(σ, σ′) = 1 and we can conclude by the triangle inequality that
distGd(X)(σ0, σ

′) ≤ r and hence σ′ ∈ X(σ0, r). Since this is true for all (d− 1)-faces of τ , it
follows that τ ∈ X(σ0, r) as required.

3. From the definition of ∂X0(σ0, r), we know that there exist σ ∈ ∂Xd−1(σ0, r) and σ′ ∈
∂Xd−1(σ0, r − 1) such that v ∈ σ, v /∈ σ′ and σ ∪ σ′ ∈ Xd. In particular τ ≡ σ ∪ σ′ =
σ′ ∪ {v} ∈ Xd. Since σ ∈ ∂Xd−1(σ0, r), it follows that σ /∈ Xd−1(σ0, r − 1) and hence
that τ /∈ Xd(σ0, r − 1). In order to show that τ ∈ ∂Xd(σ0, r), it remains to show that
each of its (d − 1)-faces is in Xd−1(σ0, r). Given a (d − 1)-face σ′′ ⊂ τ distinct from σ, it
follows that τ = σ ∪ σ′′ = σ′ ∪ {v} ∈ Xd and therefore, by the triangle inequality, that
distGd(x)(σ′′, σ0) ≤ r. Hence σ′′ ∈ Xd−1(σ0, r), as required.

4. This follows from the fact that X(σ0, r) is always a simplicial complex.

5. The first inequality follows from (3.) and the fact that two d-faces containing a single vertex
in ∂X0(σ0, r) and a (d − 1)-face in Xd−1(σ0, r − 1) are distinct if and only if the 0-face in
∂X0(σ0, r) are distinct. If equality holds, then by (3.) we obtain that each of the d-faces in
∂Xd(σ0, r) contains a unique vertex from ∂X0(σ0, r).

Next, we turn to define the notion of local convergence.

Definition 3.3. A pair (X,σ), where X is a d-complex and σ ∈ Xd−1 is called a pointed d-complex.

1. A sequence of pointed d-complexes {(Xi, σi)} is said to locally converge to a pointed d-complex
(X0, σ0) if for all r > 0, there exists Nr ∈ N, such that Xi(σi, r) ∼= X0(σ0, r) for all i > Nr.

2. A sequence of random pointed d-complexes {(Xi, σi)} is said to converge locally in probability
to a random pointed simplicial complex (X0, σ0), if for all r > 0,

lim
i→∞

P
(
Xi(σi, r) 6∼= X0(σ0, r)

)
= 0 .

3. A sequence of random d-complexes {Xi} is said to converge locally in probability to a de-
terministic pointed d-complex (X,σ0) if the random sequence (Xi, σi) converges locally to
(X,σ0), where given Xi, σi is chosen uniformly at random from Xd−1

i . In other words, local
convergence of unpointed simplicial complexes is always defined with respect to the uniform
distribution on the (d− 1)-faces.
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3.2 Simplicial isomorphism with balls in the arboreal complex
Let X and Y be two complexes and recall the definition of simplicial maps and simplicial iso-
morphisms from Subsection 2.1. The following lemma provides simpler conditions for a map to
be simplicial using the notion of a maximal face, namely a maximal element of the complex with
respect to inclusion.

Lemma 3.4. Let X,Y be d-dimensional simplicial complexes and let f : X0 → Y 0 be a bijection
such that f [τ ] is a face in Y for every maximal face τ ∈ X. Then f is a simplicial map and
f̂ : X → Y is injective. Furthermore, if f−1 : Y 0 → X0 also satisfies that f−1[τ ′] ∈ X for every
maximal face τ ′ ∈ Y , then f̂ : X → Y is a simplicial isomorphism.

Proof. To show that f̂ is a simplicial map, we need to show that f [σ] is a face in Y for every face
σ ∈ X. Since X is finite dimensional, every such face σ is contained in some maximal face τ . By
our assumption f [τ ] is a face in Y , with f [σ] as its subset. Since Y is a simplicial complex, we
conclude that f [σ] ∈ Y . Hence f is simplicial. Also, f̂ is injective since f is injective.

Assume next that f−1 : Y 0 → X0 satisfies the additional condition. Due to the first part, all
that remains to show is that f̂ is surjective. Let σ′ ∈ Y , and denote its pre-image under f by
σ := f−1[σ′]. since Y is finite dimensional, there exists some τ ′ which contains σ′. By assumption
we know that τ := f−1[τ ′] is a face in X with σ as its subset. Since X is a simplicial complex, we
know that σ is a face in Y . Thus, we have shown that there exists σ ∈ X such that f̂(σ) = σ′, i.e.,
that f̂ is surjective.

We are interested in proving local convergence of uniform random Steiner systems to the ap-
propriate arboreal complex. Since the arboreal complex is transitive, i.e., for every σ1, σ2 ∈ Td,k
there exists a simplicial automorphism of Td,k taking σ1 into σ2, it follows that Td,k(σ1, r) and
Td,k(σ2, r) are isomorphic for all r ≥ 0. Hence, we use the abbreviation Td,k(r) to denote any of
the above r-neighboring complexes in Td,k.

Claim 3.5. Let X be a finite, pure d-complex, σ0 ∈ Xd−1 and r0 ≥ 0. Then X(σ0, r0) ∼= Td,k(r0)
if and only if the following conditions hold

(1) |X0(σ0, r)| = |T 0
d,k(r)| for all r ≤ r0.

(2) |∂Xd(σ0, r)| = |∂T dd,k(r)| for all r ≤ r0.

(3) degX(σ) = k for all σ ∈ Xd−1 satisfying distGd(X)(σ, σ0) ≤ r0 − 1.

Proof. Since proving that X(σ0, r0) ∼= Td,k(r0) implies the above conditions is more easily shown,
and we only use the other direction, we restrict ourselves to proving that the conditions imply the
isomorphism of the complexes.

We wish to find a bijective simplicial map f̂r0 : X(σ0, r0)→ Td,k(r0) and since both X(σ0, r0)
and Td,k(r0) are finite d-dimensional simplicial complexes, by Lemma 3.4, it is enough to construct
a bijective map fr0 : X0(σ0, r0) → T 0

d,k(r0) such that fr0 and f−1
r0

preserve maximal faces. We
construct such a sequence of maps by induction on r from 0 to r0. For r = 0, since both X(σ0, 0)
and Td,k(0) are composed of a unique (d − 1)-face and its subsets, i.e. they are both isomorphic
to the complete (d − 1)-dimensional complex K

(d−1)
d , by transitivity they are isomorphic. In

particular, we can fix an arbitrary choice of a simplicial isomorphism f0 : X0(σ0, 0)→ T 0
d,k(0).

Turning to the induction step, assume that for some 0 < r ≤ r0, there exists a simplicial
isomorphism fr−1 : X0(σ0, r − 1) → T 0

d,k(r − 1). From the definition of Td,k, each d-face in
∂T dd,k(σ0, r) is composed of a (d−1)-face in ∂T d−1

d,k (r−1) and a vertex in ∂T 0
d,k(r), using a different

vertex for each of the d-faces. Since the degree of each (d− 1)-face in Td,k is k, we conclude that
|∂T dd,k(r)| = (k − 1)|∂T d−1

d,k (r − 1)| = |∂T 0
d,k(r)|. By assumptions (1) and (2) together with the

previous equality, we get that |∂Xd(σ0, r)| = |∂X0(σ0, r)| and hence, using Claim 3.2(5), that
each of the d-faces in ∂Xd(σ0, r) is composed of a (d − 1)-face in ∂Xd−1(σ0, r − 1) and a vertex
in ∂X0(σ0, r). Consequently, for each vertex v ∈ ∂X(σ0, r), there exists a unique (d − 1)-face
σ, in ∂Xd−1(σ0, r − 1) such that vσ ∈ ∂Xd(σ0, r). Furthermore, from assumption (3), for each
(d−1)-face σ ∈ ∂Xd−1(σ0, r−1), the number of vertices v ∈ ∂Xk(σ0, r) such that vσ ∈ ∂Xd(σ0, r)
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is exactly k − 1 for r > 1 (and k for r = 1). For every v ∈ ∂T 0
d,k(r) denote by σv the unique

(d − 1)-face in ∂T d−1
d,k (r − 1) such that vσv ∈ ∂T dd,k(r). Combining all of the above we conclude

that fr−1 : T 0
d,k(r−1)→ X0(σ0, r−1) can be extended to a function fr : T 0

d,k(r)→ X0(σ0, r) such
that

• fr|T 0
d,k

(r−1) = fr−1

• fr is a bijection.

• For every v ∈ ∂T 0
d,k(r), the vertex f(v) ∈ X0 is one of the k − 1 (k if r = 0) vertices in

∂X0(σ0, r) which belong to a d-face in ∂Xd(σ0, r) together with f [σv].

From the construction fr is bijective and maps d-faces in ∂T dd,k(r) to d-faces in ∂Xd(σ0, r).
Since we also assumed that fr−1 is a simplicial isomorphism of Td,k(r − 1) and X(σ0, r − 1) by
Lemma 3.4, this proves that fr is a simplicial isomorphism of Td,k(r) and X(σ0, r), as required.

Before turning to the proof of Theorem 2.6, we state a short claim regarding the number of
vertices, (d− 1)-faces and d-faces in Td,k and in each of its layers, as defined by the r-neighboring
complexes.

Claim 3.6. Let r > 1, then

1. |T 0
d,k(0)| = d, |T d−1

d,k (0)| = 1 and |T dd,k(0)| = 0.

2. |∂T 0
d,k(1)| = k, |∂T d−1

d,k (1)| = dk and |∂T dd,k(1)| = k.

3. |T 0
d,k(r)| = |T 0

d,k(r − 1)|+ |∂T dd,k(r)|.

4. |∂T dd,k(r)| = (k − 1)|∂T d−1
d,k (r − 1)|.

5. |∂T d−1
d,k (r)| = d|∂T dd,k(r)|.

As a result, for all r ≥ 1

|∂T d−1
d,k (r)| = k(k − 1)r−1dr , |∂T dd,k(r)| = k(k − 1)r−1dr−1

and

|T 0
d,k(r)| = d+ k ·

(
d(k − 1)

)r − 1
d(k − 1)− 1

The claim follows directly from the definition of Td,k and its proof is left to the reader.

3.3 Probabilistic estimations for uniform random Steiner complexes
Claim 3.5 can be used to determine whether a sequence of uniform random Steiner complexes
converges locally in probability to the arboreal complex Td,k. To this end, we wish to accumulate
some probabilistic results regarding uniform random Steiner complexes.

Proposition 3.7. Let S be an (n, d)-Steiner system chosen uniformly at random from the set
of all (n, d)-Steiner systems. Let A ⊂

( [n]
d+1
)
and τ ∈

( [n]
d+1
)
such that τ ( A0 :=

⋃
τ ′∈A τ

′ and
|A0| ≤ n

2 . Then

P(A ⊂ S, τ ∈ S) ≤ 2
n
P(A ⊂ S) .

Proof. Denote ρ = τ ∩ A0 and note that by assumption 0 ≤ |ρ| ≤ d. Since S is a random
(n, d)-Steiner system sampled uniformly at random for all sufficiently large n

P(A ⊂ S) ≥ P
(
∃σ ∈

(
[n] \A0

d+ 1− |ρ|

)
: A ∪ {ρσ} ⊂ S

)
=

∑
σ∈( [n]\A0

d+1−|ρ|)
P(A ⊂ S, ρσ ∈ S) =

(
n− |A0|
d+ 1− |ρ|

)
P (A ⊂ S, τ ∈ S) .
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Using the fact that |ρ| ≤ d and |A0| ≤ n
2 , gives

(
n−|A0|
d+1−|ρ|

)
≥ n − |A0| ≥ n

2 , thus concluding the
proof.

Proposition 3.8. Let S be an (n, d)-Steiner system chosen uniformly at random from the set of
all (n, d)-Steiner systems. Let A ⊂

( [n]
d+1
)
be a family of d-cells such that |A0| ≤ n

2 − 2d− 1, where
A0 =

⋃
τ∈A τ . Furthermore, let σ, σ′ ∈

([n]
d

)
be two distinct (d− 1)-cells and v ∈ [n] \ (A0 ∪ σ ∪ σ′)

a vertex. Then, there exists Cd ∈ (0,∞) such that

P(A ∪ {vσ, vσ′} ⊂ S) ≤ Cd
n2 P(A ⊂ S) .

Proof. Denote θ = σ ∩ A0, θ′ = σ′ ∩ A0, ρ = σ \ A0 and ρ′ = σ′ \ A0. Throughout the proof we
will consider permutation on the vertices which fix A0 and so θ and θ′ remain fixed while ρ and
ρ′ varies. Let j = |ρ ∩ ρ′|, which by assumption satisfies 0 ≤ j < d. Due to the symmetry of the
model under permutation of the vertex set and the fact that the number of triplets (ρ1, ρ2, u) ∈([n]\A0

|ρ|
)
×
([n]\A0

|ρ′|
)
× [n] \A0 so that |ρ1 ∩ ρ2| = j and u ∈ [n] \ (A0 ∪ ρ1 ∪ ρ2) is

Mn ≡Mn(A0, ρ, ρ′) :=
(
n− |A0|
|ρ|

)(
|ρ|
j

)(
n− |A0| − |ρ|
|ρ′| − j

)
(n− |A0| − |ρ| − |ρ′|+ j).

The invariance of the law of S under permutation on the vertices implies that

P(A ∪ {vσ, vσ′} ⊂ S) = 1
Mn

∑
ρ1∈([n]\A0

|ρ| ),ρ2∈([n]\A0

|ρ′| ), |ρ1∩ρ2|=j
u∈[n]\(A0∪ρ1∪ρ2)

P(A ∪ {θuρ1, θ
′uρ2} ⊂ S)

= 1
Mn

E
[ ∑
ρ1∈([n]\A0

|ρ| ),ρ2∈([n]\A0

|ρ′| ), |ρ1∩ρ2|=j
u∈[n]\(A0∪ρ1∪ρ2)

1(A∪{θuρ1,θ′uρ2}⊂S

]
.

Rewriting the sum over ρ1, ρ2 and u as the number of ways to sample a j-cell η (that includes the
vertex u) and two d-faces whose intersection is η, we obtain

P(A ∪ {vσ, vσ′} ⊂ S)

=j + 1
Mn

E
[ ∑
η∈([n]\A0

j+1 )

∑
%1∈([n]\(A0∪η)

|ρ|−j )

∑
%2∈([n]\(A0∪η∪%1)

|ρ′|−j )
1A∪{θη%1,θ′η%2}⊂S

]

=j + 1
Mn

E
[
1A⊂S

∑
η∈([n]\A0

j+1 )

( ∑
%1∈([n]\(A0∪η)

|ρ|−j )
1θη%1∈S ·

( ∑
%2∈([n]\(A0∪η∪%1)

|ρ′|−j )
1θ′η%2∈S

))]
.

Since the number of (d−1)-faces in the complex K(d−1)
m containing a fixed cell σ̂ is 1

d+1−|σ̂|
(
m−|σ̂|
d−|σ̂|

)
,

see the discussion leading the the notion of d-admissible numbers, by taking σ̂ = θ′η and m =
n− |A0| we obtain

∑
%2∈([n]\(A0∪η∪%1)

|ρ′|−j )
1θ′η%2∈S ≤

∑
%2∈([n]\A0

|ρ′|−j)
1θ′η%2∈S ≤

1
d− j − |θ′|

(
n− |A0| − j − 1− |θ′|

d− j − 1− |θ′|

)

using the last bound together with the bound on the number of (d − 1)-cells containing σ̂ = θη
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and m = n− |A0| gives∑
%1∈([n]\(A0∪η)

|ρ|−j )
1θη%1∈S ·

( ∑
%2∈([n]\(A0∪η∪%1)

|ρ′|−j )
1θ′η%2∈S

)

≤
∑

%1∈([n]\(A0∪η)
|ρ|−j )

1θη%1∈S ·
1

d− j − |θ′|

(
n− |A0| − j − 1− |θ′|

d− j − 1− |θ′|

)

≤ 1
d− j − |θ|

(
n− |A0| − j − 1− |θ|

d− j − 1− |θ|

)
· 1
d− j − |θ′|

(
n− |A0| − j − 1− |θ′|

d− j − 1− |θ′|

)
≤
(

n− |A0|
d− j − 1− |θ|

)(
n− |A0|

d− j − 1− |θ′|

)
,

where in the last step we used the fact that σ and σ′ are distinct and thus |θη| = |η| + j + 1 ≤ d
and |θη′| ≤ |θ|+ j + 1 ≤ d.

Summing over the choices for η and using E[1A⊂S ] = P(A ⊂ S), gives

P(A ∪ {vσ, vσ′} ⊂ S) ≤ j + 1
Mn

(
n− |A0|

d− j − 1− |θ|

)(
n− |A0|

d− j − 1− |θ′|

)(
n− |A0|
j + 1

)
P(A ⊂ S)

≤ j + 1
Mn

(n− |A0|)2d−j−1−|θ|−|θ′|P(A ⊂ S) .

Using the explicit expression for Mn, the bounds
(
m
l

)
≥ ml

l! and |ρ|, |ρ′|, j ≤ d, and the assumption
n− |A0| ≥ 2d+ 1, we conclude that there exists Cd,j ∈ (0,∞) such that

Mn ≥
1
Cd,j

(n− |A0|)|ρ|+|ρ
′|−j+1 .

Combining both estimations and using the fact that |ρ|+ |θ| = |ρ′|+ |θ′| = d and n− |A0| ≥ n
2 , we

conclude that
P(A ∪ {vσ, vσ′} ⊂ S) ≤ 4(j + 1)Cd,j

n2 P(A ⊂ S) .

Defining Cd = 4 max{(j + 1)Cd,j : 0 ≤ j < d} the result follows.

3.4 Proof of Theorem 2.6
Using the estimations from the previous subsection we turn to the proof of Theorem 2.6. The main
step in the proof is stated next.

Theorem 3.9 (Restatement of Theorem 2.6). Let X be a random (d, k, n)-Steiner complexes and
σ ∈ Xd−1. Then for every r ≥ 0, there exists Cr,d,k ∈ (0,∞) such that

P
(
X(σ, r) ∼= Td,k(r)

)
≥ 1− Cr,d,k

n
.

Proof. We prove the statement by induction on r. Denote by S1, S2, . . . , Sk the k independent
(n, d)-Steiner systems used to define X. We use the abbreviations

Er = {X(σ, r) ∼= Td,k(r)} .

The case r = 1. Since X(σ, 0) is composed of σ and its subsets, by Claim 3.5

Ec1 = {deg(σ) < k} .

Since X is composed of k independent (n, d)-Steiner systems, each of which contains a unique
d-face that contain σ, it follows that degree of σ is k if and only if those d-faces are distinct. Hence

Ec1 = {deg(σ) < k} =
⋃

1≤`<m≤k

⋃
σ⊂τ∈( [n]

d+1)
{τ ∈ S` ∩ Sm} .
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Using a union bound and the fact that the processes are i.i.d. gives

P(Ec1) ≤
∑

1≤`<m≤k

∑
σ⊂τ∈( [n]

d+1)
P(τ ∈ S` ∩ Sm)

=
∑

1≤`<m≤k

∑
σ⊂τ∈( [n]

d+1)
P(τ ∈ S`) · P(τ ∈ Sm)

=
(
k

2

) ∑
σ⊂τ∈( [n]

d+1)
P(τ ∈ S1)2 .

By Proposition 3.7 (applied with A = ∅)

P(τ ∈ S1) ≤ Cd
n
,

and therefore
P(Ec1) ≤

(
k

2

) ∑
σ⊂τ∈( [n]

d+1)

Cd
n
· P(τ ∈ S1) =

(
k

2

)
Cd
n

= Cd,k
n

,

where in the equality before last we used the fact that the events {τ ∈ S1} for σ ⊂ τ ∈
( [n]
d+1
)
are

disjoint and their union has probability 1. This completes the proof for r = 1.

General r. We proceed by induction over r. Assume that for some r ≥ 1, there exists Cr,d,k ∈
(0,∞) such that P(Ecr) ≤ Cr,d,kn−1 and let us turn to prove the result for r + 1.

By Claim 3.5, for every r ≥ 1

Er+1 = Er ∩
{
|X0(σ, r + 1)| = |T 0

d,k(r + 1)|
}

∩
{
|∂Xd(σ, r + 1)| = |∂T dd,k(r + 1)|

}
∩
{

deg(σ′) = k ∀σ′ ∈ ∂Xd−1(σ, r)
}
,

(3.1)

and by the induction assumption

P(Ecr+1) = P(Er ∩ Ecr+1) + P(Ecr ∩ Ecr+1) ≤ P(Er ∩ Ecr+1) + P(Ecr) ≤ P(Er ∩ Ecr+1) + Cr,d,k
n

.

Hence, it suffices to estimate the probability of the event Er ∩ Ecr+1.
Let Yr be the set of all rooted d-complexes on the vertex set [n] isomorphic to Td,k(r) whose

root is σ. Then by the law of total probability

P(Er ∩ Ecr+1) =
∑
Y ∈Yr

P(Ecr+1|X(σ, r) = Y ) · P(X(σ, r) = Y ) . (3.2)

If Y ∈ Yr, then we can use any of the simplicial isomorphism between Y and Td,k(r) to identify
the set of (d − 1)-faces in Y corresponding to ∂T d−1

d,k (r), which we denote by ∂Y . Note that by
(3.1) and Claim 3.5, conditioned on the event X(σ, r) = Y , if the event Ecr+1 does not hold, then
one of the following must happen:

1. There exists σ′ ∈ ∂Y such that deg(σ′) < k.

2. There exist σ′ ∈ ∂Y and v ∈ Y 0 \ σ′ such that vσ′ ∈ ∂Xd(σ, r + 1).

3. There exist σ′, σ′′ ∈ ∂Y distinct and v ∈ [n] \ Y 0 such that vσ′, vσ′′ ∈ ∂Xd(σ, r + 1).

Indeed, if none of the above conditions hold, then the degree of each of the (d− 1)-faces in ∂Y is
k, and each of them must be connected to k-faces generated by new and distinct vertices. Hence,
by Claim 3.5, the event Er+1 holds.
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Denoting by Fr+1,Y (σ′), Gr+1,Y (σ′, v) andHr+1,Y (σ′, σ′′, v) the three events above respectively,
we conclude via a union bound that

P(Ecr+1|X(σ, r) = Y )

≤
∑
σ′∈∂Y

P(Fr+1,Y (σ′)|X(σ, r) = Y ) +
∑
σ′∈∂Y
v∈Y 0\σ′

P(Gr+1,Y (σ′, v)|X(σ, r) = Y )

+
∑

σ′,σ′′∈∂Y, σ′ 6=σ′′
v∈[n]\Y 0

P(Hr+1,Y (σ′, σ′′, v)|X(σ, r) = Y ) .
(3.3)

We turn to estimate each of the sums separately. For the first sum, note that by repeating the
argument we used for r = 1 with σ replaced by σ′ and A = Y , we conclude that∑

σ′∈∂Y

P(Fr+1,Y (σ′)|X(σ, r) = Y )

≤ |∂Y | ·
(
k

2

)
Cd
n

= |∂T d−1
d,k (r)|

(
k

2

)
Cd
n

= k(k − 1)r−1dr
(
k

2

)
Cd
n
≤ Cr,d,k

n
,

where in the last equality we used Claim 3.6.
Turning to the second sum, note that by Proposition 3.7, applied with A = Y d, for every

σ′ ∈ ∂Y and v ∈ Y 0 \ σ′

P(Gr+1,Y (σ′, v)|X(σ, r) = Y ) ≤
k∑

m=1
P(vσ′ ∈ Sm) ≤ k · Cd

n
= Cd,k

n
,

and thus∑
σ′∈∂Y
v∈Y 0\σ′

P(Gr+1,Y (σ′, v)|X(σ, r) = Y ) ≤ |∂Y |(|Y 0|−d)Cd,k
n

= |∂T d−1
d,k (r)|·(|T 0

d,k(r)|−d)Cd,k
n
≤ Cr,d,k

n
,

where in the last step we used Claim 3.6.
Finally, turning to estimate the third sum, note that∑

σ′,σ′′∈∂Y
v∈[n]\Y 0

P(Hr+1,Y (σ′, σ′′, v)|X(σ, r) = Y ) ≤
∑

σ′,σ′′∈∂Y
v∈[n]\Y 0

∑
1≤`,m≤k

P(vσ′ ∈ S`, vσ′′ ∈ Sm|X(σ, r) = Y ) .

We split the sum over ` and m into the cases ` = m and ` 6= m. Starting with the former, i.e.,
with the sum ∑

σ′,σ′′∈∂Y, σ′ 6=σ′′
v∈[n]\Y 0

∑
1≤`≤k

P(vσ′ ∈ S`, vσ′′ ∈ S`|X(σ, r) = Y ) , (3.4)

by Proposition 3.8,applied with A = Y d, we have the bound

P(vσ′ ∈ S`, vσ′′ ∈ S`|X(σ, r) = Y ) ≤ Cd,k
n2 .

Since the sum in (3.4) over σ′, σ′′ contains at most |∂Y |2 terms and the sum over v contains at
most n terms, we conclude that there exists Cr,d,k ∈ (0,∞) such that∑

σ′,σ′′∈∂Y, σ′ 6=σ′′
v∈[n]\Y 0

∑
1≤`≤k

P(vσ′ ∈ S`, vσ′′ ∈ S`|X(σ, r) = Y ) ≤ Cr,d,k
n

.

Turning to the latter, i.e., to the sum∑
σ′,σ′′∈∂Y
v∈[n]\Y 0

∑
1≤` 6=m≤k

P(vσ′ ∈ S`, vσ′′ ∈ Sm|X(σ, r) = Y ) ,
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we note that by Proposition 3.7 for every choice of σ′, σ′′, ` and m as above

P(vσ′ ∈ S`, vσ′′ ∈ Sm|X(σ, r) = Y )

= 1
P (X(σ, r) = Y )

∑
A1]A2]...Ak=Y d

P(vσ′ ∈ S`, vσ′′ ∈ Sm, Ai ⊂ Si ∀1 ≤ i ≤ k)

= 1
P (X(σ, r) = Y )

∑
A1]A2]...Ak=Y d

P(A` ∪ {vσ′} ∈ S`)P(Am ∪ {vσ′′} ⊂ Sm)
∏

1≤i≤k
i6=`,m

P(Ai ⊂ Si)

≤ 1
P (X(σ, r) = Y )

∑
A1]A2]...Ak=Y d

Cd
n2

∏
1≤i≤k

P(Ai ⊂ Si) = Cd
n2 ,

and thus by repeating the counting argument in the former case we get∑
σ′,σ′′∈∂Y
v∈[n]\Y 0

P(Hr+1,Y (σ′, σ′′, v)|X(σ, r) = Y ) ≤ Cr,d,k
n

.

Combining the estimation for the three sums in (3.3), we conclude that

P(Ecr+1|X(σ, r) = Y ) ≤ Cr+1,d,k

n
,

which together with (3.2) gives

P(Er ∩ Ecr+1) ≤ Cr+1,d,k

n

∑
Y ∈Yr

P(X(σ, r) = Y ) ≤ Cr+1,d,k

n
,

thus completing the proof.

Using Theorem 3.9 we immediately obtain the following corollary

Corollary 3.10. Let (Xi) be a sequence of random (d, k, ni)-Steiner complexes with (ni) a sequence
of d-admissible numbers such that limi→∞ ni = ∞. Then Xi converges locally in probability to
(Td,k, σ0) for every choice of σ0 ∈ T d−1

d,k .

Proof. Denote by σi a random element in Xd−1
i sampled uniformly at random. Then, by Theorem

3.9, for every r ≥ 0

P(Xi(σi, r) ∼= Td,k(r)) = 1
|Xd−1

i |

∑
σ∈Xd−1

i

P(Xi(σ, r) ∼= Td,k(r)) ≥ 1− Cr,d,k
ni

,

and thus limi→∞ P(Xi(σi, r) ∼= Td,k(r)) = 1.

4 Weak convergence of the empirical spectral distributions
The goal of this section is to prove Theorem 2.5. We start by recalling the definition of weak
convergence in probability and state a sufficient and simpler condition for proving it in our setting.
Let (µn) be a sequence of random Borel probability measures, recall that µn are said to converges
weakly in probability to a Borel probability measure µ on R if

lim
n→∞

P
(
|〈µn, f〉 − 〈µ, f〉| > ε

)
= 0 ,

for every continuous and bounded function f : R→ R and every ε > 0, where for every probability
measure ν and every ν-integrable function f : R→ R, we abbreviate 〈ν, f〉 :=

∫
R f(x)dµ(x).
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Note that when µn is the empirical spectral distribution of a random self-adjoint operator A with
eigenvalues λ1 ≤ ... ≤ λn, the term 〈µn, f〉 is simply the random variable 〈µn, f〉 = 1

n

∑n
j=1 f(λj).

In particular, the moments of µn are given by

〈µn, x`〉 = 1
n

n∑
j=1

λ`j = 1
n

tr(A`), ∀` ≥ 0 . (4.1)

We have the following useful result providing a sufficient condition for weak convergence in
probability.
Proposition 4.1 ([AGZ10] (2.1.8)). Let (µn) be a sequence of random Borel probability measures
on R and µ a Borel probability measure on R such that 〈µn, x`〉

n→∞−→ 〈µ, x`〉 in probability for all
` ≥ 0. If there exists K > 0 such that µ([−K,K]) = 1, then µn converges weakly in probability to
µ.

Since the probability measures νd,k and µd,k from Theorem 2.5 are compactly supported, by
Proposition 4.1, it suffices to show that 〈µ∆+

d−1(Xi), x
`〉 i→∞−→ 〈νd,k, x`〉 in probability for all ` ≥ 0

and similarly 〈µAXi , x
`〉 i→∞−→ 〈µd,k, x`〉. In order to prove the weak convergence in probability

of the above sequences, we first need a simpler way to describe the limiting values 〈νd,k, x`〉 and
〈µd,k, x`〉.
Theorem 4.2 ([Ros14]). νd,k and µd,k are the spectral measures of the upper Laplacian ∆+

d−1(Td,k)
and the adjacency matrix ATd,k of the arboreal complex Td,k respectively. In particular they are the
unique probability measures such that for every σ0 ∈ T d−1

d,k and every ` ≥ 0

〈∆+
d−1(Td,k)`1σ0 ,1σ0〉 = 〈νd,k, x`〉, ∀` ≥ 0

and
〈A`Td,k1σ0 ,1σ0〉 = 〈µd,k, x`〉, ∀` ≥ 0

respectively.

Combining (4.1), together with Proposition 4.1 and Theorem 4.2, we conclude that in order to
prove Theorem 2.5 it suffices to show that the following converges in probability for all ` ≥ 0(

ni
d

)−1
tr(∆+

d−1(Xi)`) −→
i→∞
〈∆+

d−1(Td,k)`1σ0 ,1σ0〉 (4.2)

and (
ni
d

)−1
tr(A`Xi) −→i→∞ 〈A

`
Td,k

1σ0 ,1σ0〉 . (4.3)

4.1 The oriented line-graph
Definition 4.3. Let X be a d-dimensional simplicial complex. The oriented line-graph of X,
denoted −→Gd(X) = (Xd−1

± ,
−→
E d(X)), is the graph whose vertex set Xd−1

± is composed of all oriented
(d− 1)-faces in X and its edge set −→E d(X) is defined to be the set of pairs {σ, σ′} from Xd−1

± such
that σ is a neighbor of σ′ in X (see Figure 1 for an illustration of the neighboring relation).

The oriented line-graph allows us to rewrite the left hand-side of (4.3) in a form which is similar
to the term on the right and is thus useful for proving Theorem 2.5.
Proposition 4.4. Let X be a pure, d-complex such that deg(σ) <∞ for all σ ∈ Xd−1. For ` ≥ 0
and σ, σ′ ∈ Xd−1

± denote by φ`(X;σ, σ′) the number of paths of length ` in −→Gd(X) from σ to σ′.
Then

〈A`X1σ,1σ′〉 = φ`(X;σ, σ′)− φ`(X;σ, σ′), ∀σ, σ′ ∈ Xd−1
± .

In particular, for every choice of orientation Xd−1
+ for each of the (d− 1)-faces

1
|Xd−1

+ |
tr(A`Xi) = 1

|Xd−1
+ |

∑
σ∈Xd−1

+

〈A`X1σ,1σ〉 = 1
|Xd−1

+ |

∑
σ∈Xd−1

+

(
φ`(X;σ, σ)− φ`(X;σ, σ)

)
.
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Proof. The proof follows by induction on `. For ` = 0, A0
X = IdΩd−1(X) and thus

〈A0
X1σ,1σ′〉 =


1 σ = σ′

−1 σ = σ′

0 otherwise
.

On the other hand, from the definition of φr, we have that

φ0(X;σ, σ′) =
{

1 σ = σ′

0 otherwise
,

and thus

φ0(X;σ, σ′)− φ0(X;σ, σ′) =


1 σ = σ′

−1 σ = σ′

0 otherwise
,

which proves the result for ` = 0.
Turning to the induction step, assume the result holds for ` and observe 〈A`+1

X 1σ,1σ′〉. By
definition 〈A`+1

X 1σ,1σ′〉 = 〈A`X(AX1σ),1σ′〉 and since

AX1σ(σ′′) =
∑
ρ∼σ′′

1σ(ρ) =


1 σ′′ ∼ σ
−1 σ′′ ∼ σ
0 otherwise

,

namely
AX1σ =

∑
ρ∼σ

1ρ ,

we conclude that
〈A`+1

X 1σ,1σ′〉 =
〈
A`X
(∑
ρ∼σ

1ρ
)
,1σ′

〉
=
∑
ρ∼σ
〈A`X1ρ,1σ′〉 .

Thus by induction

〈A`+1
X 1σ,1σ′〉 =

∑
ρ∼σ

(
φ`(X; ρ, σ′)− φ`(X; ρ, σ′)

)
= φ`+1(X;σ, σ′)− φ`+1(X;σ, σ′) ,

where in the last step we used the fact that any path of length `+ 1 from σ to σ′ is composed of
one step from σ to a neighbor ρ of σ in −→Gd(X) followed by a path of length ` from ρ to σ′.

The formula for 〈µAX , x`〉 follows from the fact that (1σ)σ∈Xd−1
+

is an orthonormal basis for
Ωd−1(X).

4.2 Proof of Theorem 2.5
We start by proving the results for the adjacency matrices. By Proposition 4.1 and the fact that
µd,k is compactly supported it is enough to show that for all ` ≥ 0

〈µAXi , x
`〉 i→∞−→ 〈µd,k, x`〉 ,

where the convergence is in probability. Furthermore, by Theorem 4.2, this is equivalent to proving
(4.3), i.e., that for every ` ≥ 0(

ni
d

)−1
tr(A`Xi) −→i→∞ 〈A

`
Td,k

1σ,1σ〉, in probability .

Finally, by Proposition 4.4 this is equivalent to proving that for every l ≥ 0
1

|Xd−1
i,+ |

∑
σ∈Xd−1

i,+

(
φ`(Xi;σ, σ)− φ`(Xi;σ, σ)

)
−→
i→∞

φ`(Td,k, σ0, σ0)− φ`(Td,k;σ0, σ0) ,
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where the convergence is in probability and σ0 is some arbitrary choice of an oriented (d− 1)-face
in Td,k.

Abbreviate
Φi,` :=

∑
σ∈Xd−1

i,+

(
φ`(Xi;σ, σ)− φ`(Xi;σ, σ)

)
.

For i ≥ 1 and ` ≥ 0, denote by Ni,` the number of (d−1)-faces in Xd−1
i whose d`/2e-neighboring

complex is isomorphic to Td,k(d`/2e), i.e.,

Ni,`/2 = |{σ ∈ Xd−1
i : Xi(σ, d`/2e) ∼= Td,k(d`/2e)}| . (4.4)

Since any closed path of length ` in −→Gd(Xi) starting from σ ∈ Xd−1
± uses only vertices which

are at distance at most d`/2e from σ in −→Gd(Xi), it follows that on the event Ei,d`/2e(σ) =
{Xi(σ, d`/2e) ∼= Td,k(d`/2e)}, it holds that

φ`(Xi;σ, σ)− φ`(Xi;σ, σ) = φ`(Td,k;σ0, σ0)− φ`(Td,k;σ0, σ0) .

Furthermore, since the degree of each of the (d − 1)-faces in Xi is bounded by k, it follows that
the degree of each edge in −→Gd(Xi) is bounded by dk and hence that for every ` ≥ 0 and every
σ ∈ Xd−1

i,±
|φ`(Xi;σ, σ)− φ`(Xi;σ, σ)| ≤ (dk)` .

Hence
Φi,` ≥ Ni,`/2 ·

(
φ`(Td,k;σ0, σ0)− φ`(Td,k;σ0, σ0)

)
− (|Xd−1

i,± | −Ni,`/2) · (dk)` . (4.5)
and

Φi,` ≤ Ni,`/2 ·
(
φ`(Td,k;σ0, σ0)− φ`(Td,k;σ0, σ0)

)
+ (|Xd−1

i,± | −Ni,`/2) · (dk)` (4.6)
Combining (4.5) and (4.6), we conclude that∣∣∣∣ Φi,`
|Xd−1

i,+ |
−
(
φ`(Td,k;σ0, σ0)− φ`(Td,k;σ0, σ0)

)∣∣∣∣
≤
|Xd−1

i,+ | −Ni,`/2
|Xd−1

i,+ |
·
(∣∣φ`(Td,k;σ0, σ0)− φ`(Td,k;σ0, σ0)

∣∣+ (dk)`
)
≡
Cd,k,`(|Xd−1

i,+ | −Ni,`/2)
|Xd−1

i,+ |
.

(4.7)
Let ε > 0, by (4.8), Markov’s inequality and the linearity of expectation

P
(∣∣∣∣ Φi,`
|Xd−1

i,+ |
−
(
φ`(Td,k;σ0, σ0)− φ`(Td,k;σ0, σ0)

)∣∣∣∣ > ε

)

≤P
(
Cd,k,`(|Xd−1

i,+ | −Ni,`/2)
|Xd−1

i,+ |
> ε

)
≤ Cd,k,`

|Xd−1
i,+ |ε

· E[|Xd−1
i,+ | −Ni,`/2]

= Cd,k,`

|Xd−1
i,+ |ε

·
∑

σ∈Xd−1
i

P
(
Xi(σ, d`/2e) 6∼= Td,k(d`/2e)

)
.

Using Theorem 3.10, we conclude that

lim
i→∞

P
(∣∣∣∣ Φi,`
|Xd−1

i,+ |
−
(
φ`(Td,k;σ0, σ0)− φ`(Td,k;σ0, σ0)

)∣∣∣∣ > ε

)
= 0 ,

thus proving the convergence in probability.
Next, we turn to deal with the convergence for the Laplacians. As for the adjacency matrices,

it suffices by (4.2) to prove that for every ` ≥ 0(
ni
d

)−1
tr(∆+

d−1(Xi)`) −→
i→∞
〈∆+

d−1(Td,k)`1σ0 ,1σ0〉, in probability ,
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or equivalently

1
|Xd−1

+ |

∑
σ∈Xd−1

+

[
〈∆+

d−1(Xi)`1σ,1σ〉 − 〈∆+
d−1(Td,k)`1σ0 ,1σ0〉

]
−→
i→∞

0, in probability .

Note that Td,k is k-regular and hence that ∆+
d−1(Td,k) = k · Id − ATd,k . Furthermore, since

∆+
d−1(Xi) = DXi−AXi , whereDXi is the diagonal operator of the degrees, DXif(σ) = deg(σ)f(σ),

it follows that on the event Ei,`+1(σ) = {Xi(σ, `+ 1) ∼= Td,k(`+ 1)}

∆+
d−1(Xi) = DXi −AXi = k · Id−AXi ,

and hence by the same argument used in the adjacency matrix case

〈∆+
d−1(Xi)`1σ,1σ〉 − 〈∆+

d−1(Td,k)`1σ0 ,1σ0〉 = 0 .

In addition, since the degree of each of the (d− 1)-faces in Xi is bounded by k, it follows that
(see [PR17, Proposition 2.7(ii)] for a similar argument)

|〈∆+
d−1(Xi)`1σ,1σ〉 − 〈∆+

d−1(Td,k)`1σ0 ,1σ0〉| ≤ 2((d+ 1)k)` .

Consequently

1
|Xd−1

+ |

∑
σ∈Xd−1

+

∣∣∣〈∆+
d−1(Xi)`1σ,1σ〉 − 〈∆+

d−1(Td,k)`1σ0 ,1σ0〉
∣∣∣ ≤ (1− Ni,`+1

|Xd−1
i,± |

)
· 2((d+ 1)k)` , (4.8)

where Ni,`+1 is defined in (4.4). The rest of the proof is similar to the proof for the adjacency
operator.

5 The asymptotic number of simplicial spanning trees

5.1 Proof of Theorem 2.4
Let X be a d-complex on n vertices with a complete (d− 1)-skeleton, and recall that the weighted
number of j-dimensional SSTs is given by

κj(X) =
∑

T∈Tj(X)

∣∣H̃j−1(T ;Z)
∣∣2 .

We use the following version of the simplicial matrix tree theorem.

Theorem 5.1 ([DKM09]). Let X be a d-dimensional simplicial complex. Denote by πd(x) the
product of the non-trivial eigenvalues of the (d− 1)-upper Laplacian. Then

πd(X) = κd(X) · κd−1(X)
|H̃d−2(X;Z)|2

.

Furthermore, we recall Kalai’s generalization of Cayley’s formula, see [Kal83], which states

κd−1(K(d−1)
n ) = n(n−2

d−1) .

Turning back to our setting, sinceX has a complete (d−1)-skeleton, it follows that |H̃d−2(X;Z)| =
1. Furthermore we can apply Kalai’s theorem to X(d−1) = K

(d−1)
n , thus obtaining κd−1(X) =

n(n−2
d−1). Hence,

πd(X) = κd(X) · κd−1(X)
|H̃d−2(X;Z)|2

= n(n−2
d−1) · κd(X) .
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In particular, if πd(X) > 0, i.e., all zero-eigenvalues of ∆+
d−1 are trivial, by taking logarithm on

both sides and dividing by
(
n
d

)
, the last equality can be rewritten as

log
(

(nd)
√
κd(X)

)
=
(
n

d

)−1 ∑
λ∈spec(∆+

d−1)∩(0,∞)

log(λ)− d(n− d) log(n)
n(n− 1)

=
∫

(0,∞)

log(t)dµ∆+
d−1(X)(t)−Θ

(
logn
n

)
.

(5.1)

Assume next that (Xi) is a sequence of d-complexes with a complete (d− 1)-skeleton such that
πd(Xi) > 0 for every i ≥ 1 and |X0

i | = ni with limi→∞ ni =∞. If we were to know that∫
(0,∞)

log(t)dµ∆+
d−1(Xi)(t)

i→∞−→
∫

(0,∞)

log(t)dνd,k(t) =: ξd,k, (5.2)

in probability, then (5.1) would imply that

log
(

(nid )√κd(Xi)
)
−→
i→∞

ξd,k ,

in probability and hence that
(nid )√κd(Xi) −→

i→∞
eξd,k

in probability. Consequently, in order to complete the proof of Theorem 2.4 is suffices to prove the
following propositions.
Proposition 5.2. Let (Xi)∞i=1 be a sequence of d-dimensional k-regular uniform random Steiner
complexes on ni vertices, with (ni) a sequence of d-admissible numbers satisfying ni

i→∞−→ ∞. Then
P-almost surely πd(Xi) > 0 for all sufficiently large i and (5.2) holds.
Proposition 5.3.

eξd,k = ξd,k := (k − 1)k−1

(k − 1− d)
k
d+1−1

k
d(k−1)−1
d+1

.

5.2 Proof of Proposition 5.2
Recall that the spectrum of ∆+

d−1(X) is contained in [0, (d+1)k] for every d-complex whose degrees
are uniformly bounded by k, c.f. [PR17, Proposition 2.7(2)]. Hence, for every C ∈ (0, (d+ 1)k)∫

[C,∞)
log(t)dµ∆+

d−1(Xi)(t) =
∫

[C,(d+1)k]
log(t)dµ∆+

d−1(Xi)(t) . (5.3)

If we assume in addition that C ∈ (0, (
√
k − 1 −

√
d)2), then the function log t is continuous

and bounded in [C, (d+ 1)k] and in addition, by Theorem 4.2,

supp(µTd,k) ⊂ [(
√
k − 1−

√
d)2, (

√
k − 1 +

√
d)2] ⊂ [C, k(d+ 1)] .

Hence by Theorem 2.5∫
[C,(d+1)k]

log(t)dµ∆+
d−1(Xi)(t)

i→∞−→
∫

[C,(d+1)k]
log(t)dνd,k(t) =

∫
(0,∞)

log(t)dνd,k(t) = ξd,k , (5.4)

in probability.
Consequently, if we can find C ∈ (0, (

√
k − 1 −

√
d)2) such that all non-trivial eigenvalues of

∆+
d−1(Xi) are within [C,∞) for all sufficiently large i P-almost surely, then (5.3) and (5.4) would

give ∫
(0,∞)

log(t)dνXi(t)
i→∞−→

∫
(0,∞)

log(t)dνTd,k(t) = ξd,k ,

and in addition we would get πd(Xi) > 0 for all sufficiently large i, thus completing the proof of
Proposition 5.2.

In order to prove the above, we first recall the following result by Abu-Fraiha and Meshulam.
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Theorem 5.4 ([AF16]). Let (Xi)∞i=1 be a sequence of d-dimensional, k-regular uniform random
Steiner complexes on ni vertices, with (ni) a sequence of d-admissible numbers satisfying ni

i→∞−→ ∞.
For ε > 0, define the event

Eεi :=
{
all non-trivial eigenvalues of AXi are contained in (−∞, 2d

√
k − 1 + ε]

}c
.

If k > (d+ 1)2 + 1, then P
(
Eεi eventually

)
= 1.

Since the statement provided above for Abu-Fraiha’s result is slightly different than the one
stated in [AF16], we provide a revised proof in the Appendix.

Theorem 5.4 provides us with an upper bound on the eigenvalues of the adjacency matrix of Xi

for all sufficiently large i, while we are interested in a lower bound on the eigenvalues of ∆+
d−1(Xi).

These operators are related to one another via the relation ∆+
d−1(Xi) = DXi −AXi , where DXi is

the degree operator defined by DXif(σ) = degXi(σ)f(σ) for all f ∈ Ωd−1(Xi). If we were to know
that Xi is k-regular, then DXi = kId and the relation between the eigenvalues would have been
trivial. However, in general it is not true that the resulting complex Xi is k-regular. That being
said, the following claim shows that with high probability the degrees are between k−d− 1 and k.

Claim 5.5. Let X be a (d, k, n)-uniform random Steiner complex composed of the independent
random (n, d)-Steiner systems S1, . . . , Sk and assume that k ≥ d + 1. Then there exists Cd,k ∈
(0,∞) such that for every 1 ≤ j ≤ k − 1

P
(
∃σ ∈ Xd−1 such that deg(σ) ≤ k − j

)
≤ Cd,k
nj−d

.

Note that the inequality yields a trivial bound whenever j ≤ d.

Proof. By a union bound, it suffices to prove that P(deg(σ) ≤ k−j) ≤ Cd,kn−j for any (d−1)-face
σ. To this end fix σ ∈ Xd−1 and for 1 ≤ i ≤ k denote by τσi the unique d-face in Si containing σ.
Then

P(deg(σ) ≤ k − j) = P(|{τσ1 , . . . , τσk }| ≤ k − j) =
k−j∑
i=1

P(|{τσ1 , . . . , τσk }| = i) .

For each 1 ≤ i ≤ k − j, the probability P(|{τσ1 , . . . , τσk }| = i), can be written more explicitly as

P(|{τσ1 , . . . , τσk }| = i) =
∑

B1,...,Bi⊂[k]
]im=1Bm=[k]
Bm 6=∅ ∀1≤m≤i

∑
v1,...,vi∈[n]\σ

distinct

P(τσj = vmσ ∀1 ≤ m ≤ i ∀j ∈ Bm) .

Noting that from the independence of the Steiner systems and Proposition 3.7, for every partition
(B1, . . . , Bi) of [k] into non-empty sets and every choice of v1, v2, . . . , vi ∈ [n] \ σ

P(τσj = vmσ ∀1 ≤ m ≤ i ∀j ∈ Bm) =
i∏

m=1

∏
j∈Bm

P(τσj = vmσ) ≤
i∏

m=1

∏
j∈Bm

(Cd
n

)
=
(Cd
n

)k
,

it follows that

P(|{τσ1 , . . . , τσk }| = i)

=
∑

B1,...,Bi⊂[k]
]im=1Bm=[k]
Bm 6=∅ ∀1≤m≤i

∑
v1,...,vi∈[n]\σ

distinct

P(τj = vmσ ∀1 ≤ m ≤ i ∀j ∈ Bm) ≤ ik(n− d)i
(Cd
n

)k
.

Summing over i from 1 to k − j gives

P(|{τσ1 , . . . , τσk }| ≤ k − j) ≤
k−j∑
i=1

ik(n− d)i
(Cd
n

)k
≤ kk+1nk−j

(Cd
n

)k
= Cd,k

nj
,

as required.
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The last claim together with Borel-Cantelli, immediately gives

Corollary 5.6. Let (Xi)i≥1 be a sequence of (d, k, ni)-uniform random Steiner complexes with
(ni) a sequence of d-admissible numbers such that limi→∞ ni =∞. Then

P(∃σ ∈ Xd−1
i deg(σ) < k − d− 1 for infinitely many i) = 0 .

Combining Theorem 5.4 and Corollary 5.6 we conclude that for every ε > 0, the event

Bε =
{

For sufficiently large i all non-trivial eigenvalues of the adjacency operatorAXi are
within (−∞, 2d

√
k − 1 + ε] and deg(σ) is between k − d− 1 and k for all σ ∈ Xd−1

i

}
,

has probability 1 provided k > (d+ 1)2 + 1.
Finally, note that on the event Bε, all the eigenvalues of the operator kId − AXi are within

(k − 2d
√
k − 1− ε,∞). Furthermore, the norm of the difference between the operators kId−AXi

and ∆+
d−1(Xi), i.e. the norm of the operator kId−DXi is bounded by d+ 1, since kId−DXi is a

diagonal operator with entries in {0, 1, 2, . . . , d + 1}. Hence, by Weyl’s inequalities (c.f. [Tao10]),
we conclude that for all large enough i all non-trivial eigenvalues of ∆+

d−1(Xi) are within [k −
2d
√
k − 1− d− 1− ε,∞). Finally, since k − 2d

√
k − 1− d− 1 > 0, whenever

k > 2d2
(

1 +
√

1 + 1
d

)
+ d+ 1 ≥ 4d2 + d+ 2 ,

the result follows by taking C ∈ (0, k − 2d
√
k − 1− d− 1).

5.3 Chebyshev polynomials
The proof of Proposition 5.3 is based on Chebyshev’s polynomials, whose definition and helpful
properties are summarized in this subsection.

Definition 5.7. Chebyshev polynomials of the first kind are defined as the unique sequence of
polynomials (Tn)∞n=0 satisfying deg(Tn) = n for all n ∈ N0 and Tn ◦ cos(x) = cos(nx) for all
n ∈ N0.

Chebyshev’s polynomials are classical and well-studied, c.f. [MH03]. Below we collect several
useful properties they possess.

Orthogonality ∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx =


0 if n 6= m

π if n,m = 0
π
2 if n = m 6= 0

. (5.5)

Logarithmic generating function For all |t| < 1 and x ∈ R

log(1− 2xt+ t2) = −2
∞∑
n=1

Tn(x) · t
n

n
. (5.6)

Expansion of powers via Chebyshev’s polynomials For every n ≥ 0

x2n+1 = 2−2n
n∑

m=0

(
2n+ 1
n−m

)
T2m+1(x) (5.7)

and
x2n = 21−2n

n∑
m=1

(
2n

n−m

)
T2m(x) + 2−2n

(
2n
n

)
. (5.8)
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Hence for every converging power series
∞∑
n=0

cnx
n =

( ∞∑
n=0

c2n
22n

(
2n
n

))
T0(x)

+
∞∑
m=0

( ∞∑
n=m

c2n+1

22n

(
2n+ 1
n−m

))
T2m+1(x) +

∞∑
m=1

2
( ∞∑
n=m

c2n
22n

(
2n

n−m

))
T2m(x) .

(5.9)

Let g : [−1, 1]→ R be a continuous function. Denoting h(x) = g(x)
√

1− x2, the orthogonality
property (5.5) with respect to the function (1− x2)−1/2, enables us to develop h as a power series
in Chebyshev polynomials

h(x) =
∞∑
n=0

αnTn(x) ,

where αn is given by

αn =


1
π

∫ 1
−1 T0(x)g(x) , if n = 0

2
π

∫ 1
−1 Tn(x)g(x)dx , if n ≥ 1

.

In particular, if the Chebyshev power series of h converges uniformly on (−1, 1) we get from
(5.6) and integration term by term that∫ 1

−1
log(1− 2xt+ t2) · g(x)dx =

∫ 1

−1

(
−2

∞∑
n=1

Tn(x) t
n

n

)
· h(x)√

1− x2
dx

= −2
∞∑
n=1

tn

n

∫ 1

−1

Tn(x)h(x)√
1− x2

dx = −π
∞∑
n=1

αn
n
tn.

(5.10)

5.4 Proof of Proposition 5.3
Recall that

ξd,k =
∫

(0,∞)
log(t)dνd,k(t) .

By Theorem 4.2, for k ≥ d+ 1, we can rewrite the last expression as

ξd,k =
∫
Id,k

log(t)k
√

4(k − 1)d− (k − 1 + d− t)2

2πt((d+ 1)k − t) dt ,

where
Id,k =

[
(
√
k − 1−

√
d)2, (

√
k − 1 +

√
d)2] .

Denoting ω := 2
√
d(k − 1) and using the change of variables x = (k − 1 + d− t)/ω gives

ξd,k =
∫ 1

−1
log(k − 1 + d− ωx) kω2√1− x2

2π(k − 1 + d− ωx)(d(k − 1) + 1 + ωx)dx .

Defining gd,k : [−1, 1]→ R by

gd,k(x) = kω2√1− x2

2π(k − 1 + d− ωx)(d(k − 1) + 1 + ωx) ,

and noting that
∫ 1
−1 gd,k(x)dx = 1, for k ≥ d+ 1, we can write

ξd,k =
∫ 1

−1
log(k − 1 + d− ωx)gd,k(x)dx

=
∫ 1

−1

[
log(k − 1 + d) + log

(
1− ωx

k − 1 + d

)]
gd,k(x)dx

= log(k − 1 + d) +
∫ 1

−1
log
(

1− ωx

k − 1 + d

)
gd,k(x)dx .

(5.11)
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The remaining integral is computed using Chebyshev polynomials. Denoting hd,k(x) = gd,k(x) ·√
1− x2 and assuming that hd,k(x) =

∑∞
n=0 αnTn(x), we conclude from (5.10) that for all |t| < 1∫ 1

−1
log(1− 2xt+ t2) · gd,k(x)dx = −π

∞∑
n=1

αn
n
tn . (5.12)

Furthermore, since

log(1− 2xt+ t2) = log(1 + t2) + log
(

1− 2t
1 + t2

x
)
,

and recalling that in our case
∫ 1
−1 gd,k(x)dx = 1, we conclude that∫ 1

−1
log(1− 2xt+ t2) · gd,k(x)dx = log(1 + t2) +

∫ 1

−1
log
(

1− 2t
1 + t2

x
)
· gd,k(x)dx . (5.13)

Combining (5.12) and (5.13) and taking |t| < 1 such that ω
k−1+d = 2t

1+t2 , namely

t =
1−

√
1− ( ω

k−1+d )2

ω
k−1+d

, (5.14)

we conclude that
ξd,k = log(k − 1 + d)− log(1 + t2)− π

∞∑
n=1

αn
n
tn . (5.15)

Hence, all that remains is to find the coefficients αn in the Chebyshev expansion of hd,k. To this
end, note that partial fractions and Taylor expansion for the function 1

1+αx for α ∈ R, gives for all
|x| < max{k−1+d

ω , d(k−1)+1
ω }

hd,k(x) = kω2(1− x2)
2π(k − 1 + d− ωx)(d(k − 1) + 1 + ωx)

= 1
2π(d+ 1) ·

1
e1e2

+ 1
2π(d+ 1) ·

ω(e2 − e1)
e21e

2
2

x

+ 1
2π(d+ 1)

∞∑
n=2

(
ω2 − e21

e21

(
ω

e1

)n
+ (−1)nω

2 − e22
e2

(
ω

e2

)n)
xn ,

where we introduced the notation

e1 := k − 1 + d and e2 := d(k − 1) + 1 . (5.16)

Also, note that for k, d ∈ N such that k ≥ d+ 1, we have max{k−1+d
ω , d(k−1)+1

ω } > 1 and thus the
expansion is valid for all x ∈ [−1, 1].

Using (5.9) to transform the power series into a Chebyshev series, we conclude that for m ≥ 0

α2m+1 = 1
2π(d+ 1)

∞∑
n=m

(
ω2 − e21

e1
·
( ω

2e1

)2n+1
− ω2 − e22

e2
·
( ω

2e2

)2n+1
)(

2n+ 1
n−m

)
,

and for m ≥ 1

α2m = 1
2π(d+ 1)

∞∑
n=m

(
ω2 − e21

e1
·
( ω

2e1

)2n
+ ω2 − e22

e2
·
( ω

2e2

)2n
)(

2n
n−m

)
.

Next, using the identity, c.f. [Wil06, Chapter 2.5],

1√
1− 4z

(1−
√

1− 4z
2z

)k
=
∞∑
n=0

(
2n+ k

n

)
zn ,
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and the abbreviation

r1 = e1 −
√
e21 − ω2

ω
= 2d

ω
and r2 = e2 −

√
e22 − ω2

ω
= 2
ω
,

we conclude that for m ≥ 0,

α2m+1 = −
√
e21 − ω2

π(d+ 1) r
2m+1
1 +

√
e22 − ω2

π(d+ 1) r
2m+1
2 , (5.17)

and for m ≥ 1,

α2m = −
√

e21 − ω2

π(d+ 1) r
2m
1 −

√
e22 − ω2

π(d+ 1) r
2m
2 . (5.18)

Combining (5.15), (5.17) and (5.18) together with the fact that
∑∞
n=1

x2n

2n = − 1
2 log(1 − x2)

and
∑∞
n=0

x2n+1

2n+1 = 1
2 log

( 1+x
1−x

)
for |x| < 1, we conclude that as long as |r1|, |r2| < 1 (which is the

case whenever k ≥ d+ 1)

ξd,k = log(k − 1 + d)− log(1 + t2)− π
∞∑
n=1

αn
n
tn

= log(k − 1 + d)− log(1 + t2)−
√
e21 − ω2

d+ 1 log(1− r1t)−
√
e22 − ω2

d+ 1 log(1 + r2t)

Plugging in the values

e1 = k − 1 + d, e2 = d(k − 1) + 1, t = r1 = 2d
ω
, r2 = 2

ω
, ω = 2

√
(k − 1)d ,

gives

ξd,k = log
(

(k − 1)k−1

(k − 1− d)
k−1−d
d+1 k

d(k−1)−1
d+1

)
,

as required.

6 Open problems and conjectures

6.1 Sampling of (n, d)-Steiner complexes
Following the discussion in Section 2 we suggest the following:

Problem 6.1. Find an (efficient) algorithm for sampling (n, d)-Steiner systems uniformly at ran-
dom.

6.2 Uniform random Steiner complexes and the matching model
When sampling k independent random matchings uniformly at random on n vertices, it is known
(see [BC78]) that the probability for obtaining a simple graph converges to something as n tends
to infinity, and that conditioned on obtaining a simple graph, the resulting distribution is uniform
over all such graphs.

Question 6.2. Is there an analogue of the above result in higher-dimensions?

6.3 Improving the regularity threshold
The regularity condition in Theorem 2.4 requires that k > k(d) ≡ 4d2 + d + 2, however this
condition only arises from Theorem 5.4 which in turn follows from applying Garland’s method.
Except for the restriction arising from Theorem 5.4, the only requirement is that k > d + 1. A
natural question arises as to whether the threshold on k is indeed strict, or whether a finer analysis
would yield a better threshold.
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Since the number of d-faces in a k-regular d-complex X on n vertices is
(
k
d+1
)(
n
d

)
, it follows that

for k < d+ 1, the number of d-faces is strictly smaller than the number of (d−1)-faces
(
n
d

)
. Hence,

∆+
d+1(X) always have a non-trivial 0 eigenvalue, and thus by the simplicial matrix tree theorem

κd(X) = 0. Consequently, the least lower bound on k for Theorem 2.4 is d. A similar, yet slightly
more evolved argument would show that in fact the least lower bound is k = d+ 1. This leads us
to the following conjecture.

Conjecture 6.3. The condition on k in Theorem 2.4 can be improved to k > d+ 1.

6.4 Unweighted asymptotic number of simplicial spanning trees
Our result deals with a weighted number of simplicial spanning trees. One would hope to generalize
Mckay’s results for the number of spanning trees in a graph by proving an unweighted version of
Theorem 2.4. See [LP19] for partial results in this direction in the case of the complete d-complex.

6.5 Finer asymptotic for the number of SSTs

In Theorem 2.4, it is shown that (nid )√κd(Xi)
i→∞−→ ξd,k, namely, κd(Xi) = ξ

(nid )(1+o(1))
d,k as i → ∞.

It would be interesting to obtain better bounds on κd(Xi). For example can one say something
about the next order of κd(Xi) by studying the sequence κd(Xi)ξ

−(nid )
d,k ?

6.6 Asymptotic number of SSTs in other random sampling models
In this work we studied the asymptotic weighted number of SST’s in simplicial complexes sampled
from uniform random Steiner complexes. One can hope that similar methods can be used to study
other models.

Appendices
A Proof of Theorem 5.4
Let us start by stating a result of Friedmann regarding the spectral gap in the matching model.

Theorem A.1 ([Fri08]). Fix k ∈ N and ε > 0. Then there exists a constant Ck,ε ∈ (0,∞) such
that a random graph G on n vertices sampled according to the matching model satisfies

P
(
|λi(G)| ≤ 2

√
k − 1 + ε

)
≥ 1− Ck,ε

nτ(k) , ∀2 ≤ i ≤ n , (A.1)

where λ1(G) ≥ ... ≥ λn(G) are the eigenvalues of A(G), the adjacency matrix of G, and τ(k) =
d
√
k − 1e − 1. Furthermore, there exists a constant Ck > 0, such that

P
(
λ2(G) > 2

√
k − 1

)
≥ Ck
ns(k) ,

where s(k) = b
√
k − 1c.

Let ε > 0. As stated before in Theorem A.1, a random graph G on n vertices sampled according
to the matching model satisfies (A.1). Recall that for every σ ∈ Xd−2

i , the link of σ, denoted
lk(Xi, σ) is a random graph on ni − d + 1 vertices, distributed according to the matching model
with parameter k and therefore, the event

Ei,σ,ε = {λ2(lk(Xi, σ)) > 2
√
k − 1 + ε}

satisfies
P(Ei,σ,ε) ≤ Ck,ε(ni − d+ 1)−(d

√
k−1e−1) .
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A union bound, thus gives

P
( ⋃
σ∈Xd−2

i

Ei,σ,ε

)
≤ |Xd−2

i | · Ck,ε(ni − d+ 1)−(d
√
k−1e−1) ≤ Ck,εnd−d

√
k−1e

i ,

where in the last bound we used the fact that |Xd−2
i | =

(
ni
d−1
)
.

By Garland’s method (c.f. [GW16]), on the event
⋃
σ∈Xd−2

i
Ei,σ,ε, all non-trivial eigenvalues of

the adjacency matrix of Xi are within (−∞, 2d
√
k − 1 + ε).

Hence, whenever d
√
k − 1e > d + 1, by the Borel-Cantelli lemma, only finitely many of the

random complexes Xi do not satisfy

spec(AXi) ⊂ (−∞, 2d
√
k − 1 + ε) .

Since d
√
k − 1e > d+ 1 whenever k > (d+ 1)2 + 1, the result follows.
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