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Abstract

Given a graph H, a balanced subdivision of H is a graph obtained from H by subdividing
every edge the same number of times. In 1984, Thomassen conjectured that for each integer
k ≥ 1, high average degree is sufficient to guarantee a balanced subdivision of Kk. Recently,
Liu and Montgomery resolved this conjecture. We give an optimal estimate up to an absolute
constant factor by showing that there exists c > 0 such that for sufficiently large d, every
graph with average degree at least d contains a balanced subdivision of a clique with at least
cd1/2 vertices. It also confirms a conjecture from Verstraëte: every graph of average degree
cd2, for some absolute constant c > 0, contains a pair of disjoint isomorphic subdivisions of
the complete graph Kd. We also prove that there exists some absolute c > 0 such that for
sufficiently large d, every C4-free graph with average degree at least d contains a balanced
subdivision of the complete graphKcd, which extends a result of Balogh, Liu and Sharifzadeh.

1 Introduction

Given a graph H, a subdivision of H, denote by TH, is a graph obtained from H by subdividing
some or all of its edges by drawing new vertices on those edges. In other words, some edges of
H are replaced by internally vertex-disjoint paths. The original vertices of H are the branch
vertices of the TH, and its new vertices are called subdividing vertices. Subdivision plays a
central role in topological graph theory since Kuratowski [15] showed that a graph is planar if
and only if it does not contain a subdivision of a complete graph on five vertices or a subdivision
of a complete bipartite graph with three vertices in each partition.

In 1967, Mader [18] proved that for each integer k ≥ 1, there exists c > 0 such that every
graph with average degree at least c contains a subdivision of the complete graph Kk. For each
integer k ≥ 1, let d(k) be the smallest number such that each graph with average degree at
least d(k) contains a subdivision of Kk. Mader [18], and independently Erdős and Hajnal [5]
conjectured that d(k) = O(k2). The extremal example, the disjoint union of complete regular
bipartite subgraphs, first observed by Jung [8], gives a lower bound of d(k), which matches the
conjecture. Later, Bollobás and Thomason [3], independently Komlós and Szemerédi [13, 14]
confirmed the conjecture in 1990s.

The extremal example suggests that this bound can be improved when some small subgraphs
are forbidden. Mader [20] conjectured that every C4-free graph contains a subdivision of a clique
with order linear in its average degree. Kühn and Osthus [9, 11] proved that every graph with
sufficiently large girth contains a subdivision of a clique with order linear in its minimum degree.
They [10] also showed that each C4-free graph G with average degree k contains a TKk/ log12 k.
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Balogh, Liu and Sharifzadeh [2] proved when k ≥ 3, each C2k-free graph contains a subdivision
of a clique with order linear in its average degree. In 2016, Liu and Montgomery [16] solved this
conjecture.

A natural question of subdivision is whether we can control the length of paths which replace
the edges. Given an integer z, denoted by TH(z) the subdivision obtained from H by replacing
all edges of H with internally vertex-disjoint paths of length z, and we also call it a balanced
H-subdivision. An old question of Erdős [4] is, for each ε > 0, whether one can find a δ > 0 such

that every graph with n vertices and at least εn2 edges contains a TK
(2)

δ
√
n
. Alon, Krivelevich

and Sudakov [1] showed the existence of δ, and this result was improved to δ = ε by Fox and
Sudakov [7]. Erdős’ question only considers dense graphs. Generally, Thomassen [21, 22, 23]
gave the following conjecture.

Conjecture 1.1 ([23]). For every k ≥ 1, there exists a function f(k), if δ(G) ≥ f(k), then G
contains a balanced subdivision of Kk.

Recently, Liu and Montgomery [17] confirmed Conjecture 1.1. Later, a result of Wang [25]
implies balanced clique subdivision of order dc for any c < 1/2. We give the following theorem,
improving Wang’s result.

Theorem 1.2. There exists an absolute constant c > 0 such that every graph with average

degree at least d contains a TK
(z)

c
√
d

for sufficiently large d and some z ∈ N.

Note that the bound above is asymptotically optimal up to a constant factor by considering
a disjoint union of complete bipartite graphs Kd,d. This theorem also resolves the following
conjecture from Verstraëte [24]: every graph of average degree cd2, for some absolute constant
c > 0, contains a pair of disjoint isomorphic subdivisions of the complete graph Kd. Indeed, we
can divide a balanced subdivision of Kd, which can be found by Theorem 1.2, into two balanced
subdivisions of Kd/2, which are isomorphic.

Mader’s conjecture states that every C4-free graph has a subdivision of a clique with order
linear in its average degree. Balogh, Liu and Sharifzadeh [2] proved that every n-vertex C4-free

graph with cn3/2 edges contains a TK
(4)

c′
√
n

for some c′ > 0. We extend their result by giving the

following theorem. The bound is also optimal up to a constant factor.

Theorem 1.3. There exists an absolute constant c > 0 such that every C4-free graph with

average degree at least d contains a TK
(z)
cd for sufficiently large d and some z ∈ N.

We shall give a unified approach for Theorem 1.2 and Theorem 1.3. The rest of the paper
will be organized as follows. In Section 2, we introduce some necessary notions and the main
result (Lemma 2.7) in our proofs. Section 3 is devoted to the proof of Lemma 2.7 and in Section
4 we discuss three crucial ingredients used for embedding balanced subdivisions.

2 Preliminaries

2.1 Notation

Given a graph G = (V,E), we write |G| = |V (G)| for the order of the graph G. Let δ(G) and
d(G) be the minimum and average degree of G respectively. For a set of vertices W ⊆ V (G),
denote its external neighbourhood by N(W ) = (∪v∈WN(v))\W . Denote by G[W ] the induced
subgraph of G on W , and we write G−W for the induced subgraph G[V (G)\W ]. Given graphs G
and H, the graph G∪H has vertex set V (G)∪V (H) and edge set E(G)∪E(H). For a collection
P of graphs, denote by |P| the number of graphs in P, and we write V (P) = ∪G∈PV (G).

For a path P , the length of P , denoted by l(P ), is the number of edges in P . Given two
vertices x, y, an x, y-path is a path with endvertices x and y. When we say P is a path from
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a vertex set A to a disjoint vertex set B, we mean that P has one endvertex in A and another
one in B, and has no internal vertices in A ∪B.

Let [n] := {1, 2, · · · , n}. When it is not essential, we omit the floors and ceilings. All
logarithms are natural.

2.2 Komlós-Szemerédi graph expander

Komlós and Szemerédi [13, 14] introduced the following sublinear expander, which forms the
foundation of our proof.

Definition 2.1 (Sublinear expander). For each ε1 > 0 and k > 0, a graph G is an (ε1, k)-
expander if

|N(X)| ≥ ε(|X|, ε1, k) · |X|

for all X ⊆ V (G) of size k/2 ≤ |X| ≤ |V (G)|/2, where

ε(x, ε1, k) :=

{
0 if x < k/5,

ε1/ log2(15x/k) if x ≥ k/5.

Whenever the choices of ε1, k are clear, we omit them and write ε(x) for ε(x, ε1, k). Note
that ε(x, ε1, k) decreases as x increases when x ≥ k/2. Komlós and Szemerédi [14] showed that
every graph G contains a sublinear expander as dense as G.

Theorem 2.2 ([14]). There exists ε1 > 0 such that the following holds for every k > 0. Every
graph G has an (ε1, k)-expander H with d(H) ≥ d(G)/2 and δ(H) ≥ d(H)/2.

Note that, in Theorem 2.2, the sublinear expander H can be much smaller than the original
graph G. Indeed, G could be the disjoint union of many copies of such a graph H.

The following lemma is the key property of sublinear expanders that we will use. It roughly
says that in a sublinear expander, we can connect two sets of vertices using a short path while
avoiding a smaller vertex set.

Lemma 2.3 ([14]). Let ε1, k > 0. If G is an n-vertex (ε1, k)-expander, then any two vertex sets,
each of size at least x ≥ k, are of distance at most 2

ε1
log3(15nk ) apart. This remains true even

after deleting x · ε(x)/4 arbitrary vertices from G.

It is convenient to work on a bipartite graph, so we use the following well known result.

Proposition 2.4. Every graph G contains a bipartite subgraph H with d(H) ≥ d(G)/2.

Combining this proposition with Theorem 2.2, we get the following corollary immediately.

Corollary 2.5. There exists ε1 > 0 such that the following holds for every k > 0 and d ∈ N.
Every graph G with d(G) ≥ 8d has a bipartite (ε1, k)-expander H with δ(H) ≥ d.

The following proposition shows that every Ks,t-free (ε1, ε2d
s/(s−1))-expander is an (ε1, ε2d)-

expander.

Proposition 2.6 (Proposition 5.2 in [16]). Let 0 < ε1 < 1, 0 < ε2 < 1/105t, and let t ≥ s ≥ 2
be integers. If G is a Ks,t-free, (ε1, ε2d

s/(s−1))-expander with δ(G) ≥ d/16, then G is also an
(ε1, ε2d)-expander.
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2.3 Main results

The following is a rough proof strategy for Theorem 1.2 and Theorem 1.3. By Corollary 2.5, G
contains a bipartite subgraph which has some expansion properties. Then depending on whether
the subgraph is dense or not, we divide the proof into two cases. The dense case is handled in
Lemma 2.7, and the sparse case is covered in Lemma 2.8 [25].

Lemma 2.7. There exists ε1 > 0 such that, for every 0 < ε2 < 1/5 and s ≥ 240, there exist d0
and some constant c > 0 such that the following holds for each n ≥ d ≥ d0 and d ≥ logs n.

(i) If G is a bipartite n-vertex (ε1, ε2d)-expander with δ(G) ≥ d, then G contains a TK
(z)

c
√
d

for

some z ∈ N;
(ii) If G is a C4-free bipartite n-vertex (ε1, ε2d

2)-expander with δ(G) ≥ d, then G contains a

TK
(z)
cd for some z ∈ N.

Lemma 2.8 (Lemma 1.3 in [25]). There exists ε1 > 0 such that for any 0 < ε2 < 1/5 and s ≥ 20,
there exist d0 and some constant c > 0 such that the following holds for each n ≥ d ≥ d0 and

d < logs n. Suppose that G is a TK
(2)
d/2-free bipartite n-vertex (ε1, ε2d)-expander with δ(G) ≥ d.

Then G contains a TK
(z)
cd for some z ∈ N.

We will show that Theorem 1.2 and Theorem 1.3 follow from Lemma 2.7 and Lemma 2.8.

Proof of Theorem 1.2. Given ε2 = 1/10 and s = 240, we have constants ε1 and d0 such that the
properties in Corollary 2.5, Lemma 2.7 and Lemma 2.8 hold. Let G be a graph with average
degree d(G) = d for some d ≥ d0. Write d1 = d/8. By Corollary 2.5 with d = d1, G has a
bipartite (ε1, ε2d1)-expander H with δ(H) ≥ d1. Let n = |H|. If d1 ≥ logs n, then by Lemma

2.7, G contains a TK
(z)

c1
√
d1

for some constant c1 > 0 and some z ∈ N. Otherwise, by Lemma 2.8,

G contains either a TK
(2)
d1/2

or a TK
(z)
c2d1

for some constant c2 > 0 and some z ∈ N. This finishes

the proof by taking c = min{1/16,
√

2c1/4, c2/8}.

Proof of Theorem 1.3. Fix ε2 = 1/106 and s = 240, there exist constants ε1 and d0 such that
the conclusions of Corollary 2.5, Lemma 2.7 and Lemma 2.8 hold. Let G be a C4-free graph with
average degree at least d for some d ≥ d0. Write d1 = d/8. By Corollary 2.5 with d = d1, G has
a bipartite (ε1, ε2d

2
1)-expander H with δ(H) ≥ d1. Let n = |H|. If d1 ≥ logs n, then by Lemma

2.7, G contains a TK
(z)
c1d1

for some constant c1 > 0 and some z ∈ N. Otherwise, by Proposition
2.6 with s = t = 2, H is also an (ε1, ε2d1)-expander. Then by Lemma 2.8, G contains either a

TK
(2)
d1/2

or a TK
(z)
c2d1

for some constant c2 > 0 and some z ∈ N. This finishes the proof by taking

c = min{1/16, c1/8, c2/8}.

3 Proof of Lemma 2.7

In this section we prove Lemma 2.7. To achieve this, we first introduce some structures from
Liu and Montgomery [16, 17].

3.1 Gadgets

Definition 3.1 (Hub [16]). Given integers h1, h2 > 0, an (h1, h2)-hub is a graph consisting of a
center vertex u, a set S1(u) ⊆ N(u) of size h1, and pairwise disjoint sets S1(z) ⊆ N(z)\{u} of size
h2 for each z ∈ S1(u). Denote by H(u) a hub with center vertex u and write B1(u) = {u}∪S1(u)
and S2(u) =

⋃
z∈S1(u)

S1(z). For any z ∈ S1(u), write B1(z) = {z} ∪ S1(z).

Definition 3.2 (Unit [16]). Given integers h0, h1, h2, h3 > 0, an (h0, h1, h2, h3)-unit F is a graph
consisting of a core vertex v, h0 vertex-disjoint (h1, h2)-hubs H(u1), · · · , H(uh0) and pairwise
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disjoint v, uj-paths of length at most h3. By the exterior of the unit, denoted by Ext(F ), we

mean
⋃h0
j=1 S2(uj). Denote by Int(F ):=V (F )\Ext(F ) the interior of the unit.

Figure 1: (h0, h1, h2, h3)-unit

Definition 3.3 (Expansion [17]). Given a vertex v in a graph F , F is a (D,m)-expansion of v
if |F | = D and v is at distance at most m in F from any other vertex of F .

By the definition of expansion, we have the following property.

Proposition 3.4 ([17]). Let D,m ∈ N and 1 ≤ D′ ≤ D. Then, any graph F which is a
(D,m)-expansion of v contains a subgraph which is a (D′,m)-expansion of v.

Liu and Montgomery [17] introduced a structure called adjuster which contains a collection
of paths whose lengths form a long arithmetic progression of difference 2. We shall use this
structure to adjust a path to a desired length.

Definition 3.5 (Adjuster [17]). A (D,m, k)-adjuster A = (v1, F1, v2, F2, A) in a graph G con-
sists of core vertices v1, v2 ∈ V (G), graphs F1, F2 ⊆ G and a center vertex set A ⊆ V (G) such
that the following hold for some l ∈ N.

A1 A, V (F1) and V (F2) are pairwise disjoint.

A2 For each i ∈ [2], Fi is a (D,m)-expansion of vi.

A3 |A| ≤ 10mk.

A4 For each i ∈ {0, 1, · · · , k}, there is a v1, v2-path in G[A ∪ {v1, v2}] of length l + 2i.

We refer to the subgraphs F1 and F2 as the ends of the adjuster, and note that V (A) =
V (F1)∪V (F2)∪A. We denote by l(A) the smallest such l for which A4 hold. Then it immediately
follows that l(A) ≤ |A|+ 1 ≤ 10mk + 1. We call a (D,m, 1)-adjuster a simple adjuster.

3.2 Proof of Lemma 2.7

Throughout the paper, we always choose m to be the smallest even integer which is larger than
80 log4 nd (or 80 log4 n

d2
for the C4-free case) in which δ(G) ≥ d. We first introduce the following

two lemmas. The first one is from Fox and Sudakov [7], which states the existence of a balanced
clique subdivision in a dense graph.

Lemma 3.6 (Theorem 8.1 in [7]). For every ε > 0, if G is a graph with n vertices and εn2

edges, then G contains a TK
(2)

ε
√
n

.
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The second lemma is from Balogh, Liu and Sharifzadeh [2] on large balanced clique subdi-
visions in dense C4-free graphs.

Lemma 3.7 (Theorem 1.4 in [2]). For every c > 0 there is a c′ > 0 such that the following

holds. If G is a C4-free graph with n vertices and cn3/2 edges, then G contains a TK
(4)

c′
√
n

.

Then based on the two lemmas above, it remains to consider the case when d is much less than
n. An outline of the proof of Lemma 2.7 is as follows. We construct a collection of units whose
interiors are pairwise disjoint (see Lemma 3.8), and the core vertices of those units would serve
as the branch vertices of a balanced clique subdivision. In order to connect a pair of core vertices
of two units, v1, v2 say, by a path of fixed length z, we first construct an adjuster. Adapting
an approach in Liu and Montgomery [17], we also need to robustly build a desired adjuster by
linking simple adjusters. Unlike in [17] and [25] where the simple adjuster is relatively small, we
need a large-sized one for our purpose (see Lemma 3.9). To be more precise, we construct an
adjuster of order roughly dmO(1). To achieve this, we shall introduce a specific structure (see
Definition 4.8). Then we find two paths connecting the exteriors of two units to two expansions
of the adjuster. By extending those two paths to v1, v2 within two units respectively, we can
get two paths P and Q such that the sum of their length is close to z. Finally, by the property
of the adjuster, we obtain an intermediate path R of length z− l(P )− l(Q), and thus P ∪R∪Q
is a path as desired.

The following lemma enables us to build a unit whilst avoiding any medium-sized vertex set.
This helps us construct many units whose interiors are pairwise disjoint.

Lemma 3.8. For any 0 < ε1, ε2 < 1, s ≥ 240 and let c = 1/200, there exists K such that the
following holds for sufficiently large n and d with d ≥ logs n.

(i) Let G be a TK
(2)√
d
-free bipartite n-vertex (ε1, ε2d)-expander with δ(G) ≥ d and n ≥ Kd. Given

any set W ⊆ V (G) with size at most 2cdm4, we have that G−W contains a (c
√
d,m4, c

√
d, 2m)-

unit.
(ii) Let G be a C4-free bipartite n-vertex (ε1, ε2d

2)-expander with δ(G) ≥ d and n ≥ Kd2. Given
any set W ⊆ V (G) with size at most 2cd2m4, we have that G−W contains a (cd,m4, cd, 2m)-
unit.

We shall make use of the following result to build a desired adjuster robustly.

Lemma 3.9. There exists some ε1 > 0 such that, for every 0 < ε2 < 1/5 and integer s ≥ 240,
there exists d0 and K such that the following holds for each n ≥ d ≥ d0 and d ≥ logs n.

(i) Let G be a TK
(2)√
d
-free n-vertex (ε1, ε2d)-expander with δ(G) ≥ d and n ≥ Kd. Let D =

dm4/107. Let W ⊆ G satisfy |W | ≤ D/ log3 nd . Then G −W contains a (D,m, r)-adjuster for
any r ≤ 1

10dm
2.

(ii) Let G be a C4-free n-vertex (ε1, ε2d
2)-expander with δ(G) ≥ d and n ≥ Kd2. Let D =

d2m4/107. Let W ⊆ G satisfy |W | ≤ D/ log3 n
d2

. Then G−W contains a (D,m, r)-adjuster for
any r ≤ 1

10d
2m2.

The following lemma helps us find two paths respectively connecting two pairs of vertex sets
whilst avoiding a smaller vertex set.

Lemma 3.10. For any 0 < ε1, ε2 < 1, there exists d0 and K such that the following holds for
each n ≥ d ≥ d0 and d ≥ logs n.

(i) Let G be a TK
(2)√
d
-free n-vertex (ε1, ε2d)-expander with δ(G) ≥ d and n ≥ Kd. Let D =

dm4/107, l ≤ dm3. Let W ⊆ V (G) satisfy |W | ≤ D/ log3 nd , or
(ii) Let G be a C4-free n-vertex (ε1, ε2d

2)-expander with δ(G) ≥ d and n ≥ Kd2. Let D =
d2m4/107, l ≤ d2m3. Let W ⊆ V (G) satisfy |W | ≤ D/ log3 n

d2
.

Let Ui ⊆ V (G)−W be disjoint vertex sets of size at least D, i ∈ {1, 2}, and Fj ⊆ G−W−U1−U2
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be vertex-disjoint (D,m)-expansion of vj, j ∈ {3, 4}. Then, G−W contains vertex-disjoint paths
P and Q with l ≤ l(P ) + l(Q) ≤ l+ 13m such that both P and Q connect {v1, v2} to {v3, v4} for
some vi ∈ Ui with i ∈ {1, 2}.

Throughout the rest of this paper, we always choose

κ =
√
d (or d for C4-free case) (1)

and recall that m is the smallest even integer which is larger than 80 log4 n
κ2

. As n/κ2 ≥ K,
when K is sufficiently large, we obtain that n/κ2 and also m are sufficiently large, and

n/κ2 ≥ ma (2)

for any given constant a. Recall that ε(x) is decreasing, and since n/κ2 ≥ K is sufficiently large,

ε(n) =
ε1

log2(15n/ε2κ2)
≥ 105

log3(n/κ2)
≥ 105

m
. (3)

Now we are ready to prove Lemma 2.7.

Proof of Lemma 2.7. The proof ideas of (i) and (ii) are similar, and we choose κ as in (1). Note

that we shall assume that G is TK
(2)
κ -free for (i), otherwise the proof is done. Let c′ = 1/200

and z = m3. We choose K and d0 to be sufficiently large.
For (i), if n < Kκ2, then by Lemma 3.6 with ε = 1/K, G contains a balanced subdivision of

a clique of size ε
√
n. For (ii), if n < Kκ2, then by Lemma 3.7 with c1 = 1/K, there exists c′1 > 0

such that G contains a balanced subdivision of a clique of size c′1
√
n. Now it remains to consider

the case n/κ2 ≥ K. Since n/κ2 ≥ K, we have m ≥ 80 log4K. We claim that we can greedily
pick in G a collection {M1, · · · ,Mc′κ} of (c′κ,m4, c′κ, 2m)-units with disjoint interiors. Indeed,
this is possible by applying Lemma 3.8 on G with W being the interiors of (c′κ,m4, c′κ, 2m)-
units we have constructed in each stage of the process, and by the fact that the size of interiors
of c′κ such units is at most c′κ(2m+ 1 +m4) · c′κ ≤ 2c′2κ2m4. By the pigeonhole principle, we
can find c′κ/2 such units among them such that their core vertices are in the same part of the
bipartition for G. Without loss of generality, these units are M1, · · · ,Mc′κ/2 with core vertices
w1, · · · , wc′κ/2 and denote by ui,j the center of the j-th hub in Mi, where 1 ≤ i ≤ c′κ/2 and
1 ≤ j ≤ c′κ. Let W be the union of the vertices in the wi, ui,j-paths in all the units, including

their endvertices. Then |W | ≤ c′κ · (2m+ 1) · c′κ/2 ≤ 2c′2κ2m. We will construct a TK
(z)
c′κ/4 as

follows. Let P be a maximum collection of paths under the following rules.

B1 Each path connects one pair of center vertices of hubs from different units, such that it
can be extended to a path of length z connecting the core vertices of those two units.

B2 All paths in P are pairwise disjoint, and the internal vertices of those paths are disjoint
from W .

B3 For each pair of units, there is at most one path in P between their respective hubs.

Let W1 be the set of vertices of P. Then by B1 and B3, |W1| ≤ (m3 + 1)
(
c′κ/2
2

)
≤ c′2κ2m3.

Let us call a unit bad if more than κm3 vertices in the interior of this unit have been used
in P, and good otherwise. Thus, as the interior of the units are disjoint, there are at most
c′2κ2m3

κm3 ≤ c′κ/4 bad units.

Claim 3.11. For every pair of good units, there is a path in P between two of their respective
hubs.

7



Proof. Without loss of generality, we may assume for contradiction that M1 and M2 are a pair
of good units for which there is no desired path in P. Let B be the union of the interiors of
M1 and M2. Then we have |B| ≤ 2 · 2c′κm4. Set W ′ = W ∪ W1 ∪ B. Note that |W ′| ≤
2c′2κ2m + c′2κ2m3 + 4c′κm4 ≤ 3c′2κ2m3. By B3, M1 (or M2) has at least c′κ/2 hubs whose
center vertices are not used in P. Denote these hubs by H(u1,k), k ∈ I for some index set I with
|I| ≥ c′κ/2. Let A1 be the set of vertices in ∪k∈IS1(u1,k) not used in P. Similarly, we define A2

for M2. As M1 is good, we have

|A1| ≥ ∪k∈IS1(u1,k)− κm3 ≥ c′κ

2
m4 − κm3 ≥ c′κm4

4
.

The last inequality holds as m ≥ 4/c′ for sufficiently large K. As the hubs in M1 are disjoint,
we have

|NM1(A1)\W ′| ≥
c′κm4

4
c′κ− 3c′2κ2m3 ≥ c′2κ2m4

8
.

Similarly, |NM2(A2)\W ′| ≥ c′2κ2m4/8.
Set D = κ2m4/107. Recall that n ≥ Kκ2 and m is the smallest even integer which is larger

than 80 log4 n
κ2

. As d ≥ logs n ≥ m60, for sufficiently large K, we have |W ′| ≤ 3c′2κ2m3 ≤
D/2 log3 n

κ2
. By Lemma 3.9 with W = W ′, there is a (D,m, 21m)-adjuster in G −W ′, which

is denoted by A = (v1, F1, v2, F2, A). By the definitions of expansion and adjuster, we have
|A| ≤ 210m2, l(A) ≤ |A| + 1 ≤ 220m2 and |V (F1)| = |V (F2)| = D. Let l′ = z − 21m − l(A).
We have 0 ≤ l′ ≤ κ2m3. Let U ′1 = NM1(A1)\(W ′ ∪ V (F1) ∪ V (F2)) and U ′2 = NM2(A2)\(W ′ ∪
V (F1) ∪ V (F2)). As the size of U ′1 (or U ′2) is at least c′2κ2m4/8 − 2D ≥ 2D, there are disjoint
vertex sets U1 ⊆ U ′1 and U2 ⊆ U ′2 such that |Ui| ≥ D, i ∈ {1, 2}. As d ≥ logs n ≥ m60,
|A ∪W ′| ≤ 210m2 +D/2 log3 n

κ2
≤ D/ log3 n

κ2
. By Lemma 3.10, there are vertex-disjoint paths

P1 and Q1 in G − A − W ′ connecting {u1, u2} to {v1, v2} for some ui ∈ Ui, i ∈ {1, 2}, and
l′ ≤ l(P1) + l(Q1) ≤ l′+ 13m. Without loss of generality, we can assume that P1 is a u1, v1-path
and Q1 is a u2, v2-path.

As U1 is a subset of the exterior of M1, there exists a path P2 from w1 to u1 of length at
most 2m + 2 ≤ 4m in M1. Similarly, there exists a path Q2 from w2 to u2 of length at most
2m + 2 ≤ 4m in M2. Let P = P1 ∪ P2 and Q = Q1 ∪ Q2. Thus, P is a w1, v1-path and Q is a
w2, v2-path, with l′ ≤ l(P ) + l(Q) ≤ l′ + 21m.

Now, l(A) ≤ z − l(P ) − l(Q) ≤ l(A) + 21m. As G is a bipartite graph and w1, w2 are in
the same part, l(A) and z − l(P ) − l(Q) have the same parity. Thus there is a v1, v2-path in
G[A ∪ {v1, v2}] of length z − l(P )− l(Q), R say, such that P ∪R ∪Q is a w1, w2-path of length
z which satisfies B1-B3, contradicting the maximality of P.

Finally, for every pair of good units Mi,Mj , there exists a wi, wj-path of length z, and by
B2 these paths are disjoint outside of their endvertices. As there are at least c′κ/4 units are

good, we have a TK
(z)
c′κ/4. This finishes the proof by taking c = min{c′/4, ε, c′1}.

4 Proof of main tools

4.1 Constructing units

In this section, we find a collection of units whose interiors are pairwise disjoint, and we prove
this by iteratively constructing a unit whilst avoiding the interiors of previous units. To achieve

this, we first prove that every TK
(2)√
d
-free (or C4-free) graph maintains its average degree while

deleting a vertex set in Lemma 4.1 (or in Corollary 4.3). Then by applying Lemma 4.4 (or Lemma
4.5), we can greedily pick a collection of vertex-disjoint hubs of certain types, and connect them
with internally vertex-disjoint short paths such that one of the hubs would be linked to many
others (see Claim 4.6), forming the desired unit.
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We first show that a TK
(2)√
d
-free graph keeps its average degree while deleting a medium-sized

vertex set.

Lemma 4.1. Let s ≥ 8x > 0. There exists K = K(s, x) such that the following holds for each

n and d satisfying n ≥ Kd and d ≥ logs n. If G is a TK
(2)√
d
-free n-vertex graph with δ(G) ≥ d,

then for any vertex set W ⊆ V (G) of size at most dmx, we have d(G−W ) ≥ d
2 .

Proof. It is easy to see this lemma holds when |W | ≤ d
2 . Suppose to the contrary that there

exists some W such that d(G −W ) < d
2 when |W | > d

2 . By (2), we have |W | ≤ dmx ≤ n/2,
then

e(V (G−W ),W ) =
∑

v∈V (G−W )

dG(v)− 2e(G−W ) ≥ d

2
|G−W |.

By Lemma A.1 with (V1, V2, a, c, r) = (W,G−W,
√
d, d, 2) and

α =
e(V (G−W ),W )

|G−W ||W |
≥

d
2 |G−W |

|G−W | · dmx
=

1

2mx
,

if there exists some t such that(
1

2mx

)t
· d

2
−
(
dmx

2

)(
d

n/2

)t
≥
√
d,

then G contains a TK
(2)√
d
, which is a contradiction. We take t = log8mx

√
d. Note that t ≥ 1 as

s ≥ 8x. Then we have (
1

2mx

)t
· d

2
≥ 4

(8mx)t
· d

2
= 2
√
d, (4)

and (
dmx

2

)(
d

n/2

)t
≤ d2m2x

( n2d)t
≤ d2m2x

(8mx)8t
≤ log8x n

log2s n
≤ 1. (5)

The second inequality in (5) holds by (2). By (4) and (5), we have(
1

2mx

)t
· d

2
−
(
dmx

2

)(
d

n/2

)t
>
√
d.

The proof is complete.

Then we show that a C4-free graph maintains its average degree while deleting a vertex set
of moderate size through the following result of Kővári, Sós and Turán [12].

Lemma 4.2 ([12]). Let G = (A,B) be a bipartite graph that does not contain a copy of Ks,t

with t vertices in A and s vertices in B. Then

|A|
(
d(A)

s

)
≤ t
(
|B|
s

)
,

where d(A) =
∑

v∈A
d(v)
|A| is the average degree in G of the vertices in A.

Thus we can get the following corollary.

Corollary 4.3. Let s > 0 and x > 0. There exists K such that the following holds for each n
and d satisfying n ≥ Kd2 and d ≥ logs n. If G is a C4-free n-vertex graph with δ(G) ≥ d, then
for any vertex set W ⊆ V (G) of size at most d2mx, we have d(G−W ) ≥ d

2 .
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Proof. Let H = (V (G−W ),W,E) be a bipartite subgraph of G, and E be the set of all edges
between V (G−W ) and W in G. By Lemma 4.2 with (G,A,B, s, t) = (H,V (G−W ),W, 2, 2),
we have

|G−W |
(
d(V (G)−W )

2

)
≤ 2

(
|W |

2

)
.

Therefore

d(V (G)−W ) ≤
√

2 |W |√
|G−W |

+ 1 ≤ 2d2mx

√
n
≤ d

2
,

where the third inequality follows from (2) and the choice of K. Thus we have d(G−W ) ≥ d
2 .

In order to construct units, we will find many vertex-disjoint hubs, and we use the following

lemma to show the existence of these hubs in a TK
(2)√
d
-free graph.

Lemma 4.4. Let s ≥ 8x > 0. There exists K such that the following holds for each n ≥ Kd,

d ≥ logs n and any h1, h2 ≤
√
d/100. If G is a TK

(2)√
d
-free n-vertex graph with δ(G) ≥ d, then

for any set W ⊆ V (G) with size at most dmx, we have that G−W contains an (h1, h2)-hub.

Proof. Let K be sufficiently large. By Lemma 4.1, we have d(G −W ) ≥ d/2, so there exists a
subgraph H ⊆ G−W with δ(H) ≥ d/4. We choose an arbitrary vertex v in H. As the size of
the vertex set of (h1, h2)-hub is 1 +h1 +h1 ·h2 ≤ 2h1 ·h2 ≤ d/4, we can greedily find a hub with
center vertex v as desired.

We can also robustly find hubs in a C4-free graph.

Lemma 4.5. Let s > 0 and x > 0. There exists K such that the following holds for each
n ≥ Kd2, d ≥ logs n and any h1, h2 ≤ d/100. If G is a C4-free n-vertex graph with δ(G) ≥ d,
then for any set W ⊆ V (G) with size at most d2mx, we have that G−W contains an (h1, h2)-hub.

Proof. Let K be sufficiently large. By Corollary 4.3, we have d(G−W ) ≥ d/2, so there exists a
subgraph H ⊆ G−W with δ(H) ≥ d/4. We arbitrarily pick a vertex v in H. As H is C4-free,
for any vertices x, y ∈ NH(v), we have NH(x)∩NH(y) = {v}. Therefore we can in a greedy way
find a hub with center vertex v as desired.

We now expand hubs to get a unit.

Proof of Lemma 3.8. The proof ideas of (i) and (ii) are similar, and we choose κ as in (1).
We choose K to be sufficiently large. Recall that s ≥ 240, c = 1/200 and m is the smallest
even integer which is larger than 80 log4 n

κ2
, so κ2 ≥ log48 n ≥ m12. Since n/κ2 ≥ K, we have

m ≥ 80 log4K. For sufficiently large K, we have

cκ ≥ cm6 ≥ 8m5. (6)

We claim that we can find in G−W vertex-disjoint hubs H(w1), · · · , H(wm6) and H(u1), · · · ,
H(uκm6) such that each H(wi), 1 ≤ i ≤ m6, is a (2cκ, 2cκ)-hub and each H(uj), 1 ≤ j ≤ κm6,
is a (2m4, 2cκ)-hub. Note that the total number of vertices in W and all these hubs we desired
is at most

2cκ2m4 + 2(2cκ)2m6 + 2(2cκ)(2m4)κm6 ≤ 10cκ2m10.

Note that we can find a copy of (2m4, 2cκ)-hub in a (2cκ, 2cκ)-hub. It suffices to show that we
can find a (2cκ, 2cκ)-hub in G avoiding any vertex set of size at most 10cκ2m10. Indeed, this is
possible by applying Lemma 4.4 for (i) or Lemma 4.5 for (ii) with x = 10.

Recall that for a hub with a center vertex v, S1(v) is the vertex set of the neighbours of v
in the hub, and B1(v) = {v} ∪ S1(v). We will construct a unit using some vertex wi as the core
vertex. Let P be a maximum collection of paths connecting different pairs of center vertices
{wi, uj} under the following rules.
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C1 Each path has length at most 2m, and all the paths are pairwise internally vertex-disjoint.
Moreover all the vertices of those paths are disjoint from W .

C2 Each path avoids using any vertices in set B1(wi′) or B1(uj′) for 1 ≤ i′ ≤ m6 and 1 ≤ j′ ≤
κm6, except for at most two vertices each in B1(wi) and B1(uj) when {wi, uj} is the pair
of vertices being connected.

Claim 4.6. There exists a vertex wi connected to at least cκ vertices uj via the paths in P.

Proof. Suppose to the contrary that each vertex wi is connected to fewer than cκ vertices uj by
the paths in P. Let U be the set of interior vertices in all the paths in P. Then by C1,

|U | ≤ 2m ·m6 · cκ = 2cκm7. (7)

Let W1 be the vertex set containing the vertices in U and all the vertices in each set B1(uj) if uj
has been connected to at least one of the vertices wi. As there are at most m6 · cκ such vertices
uj , using (6) we have

|W1| ≤ |U |+m6cκ · (2m4 + 1)
(7)

≤ 2cκm7 + 4cκm10
(6)

≤ c2κ2m5. (8)

For each 1 ≤ i ≤ m6, let Ti = B1(wi)\W1. Then by C2 and the assumption, we have
|Ti| ≥ cκ. As the graphs H(wi) are vertex-disjoint (2cκ, 2cκ)-hubs, we have |∪m6

i=1NH(wi)(Ti)| ≥
2cκ · cκ ·m6, and hence we have

|∪m6

i=1NH(wi)(Ti)\W1| ≥ 2cκ · cκ ·m6 − |W1|
(8)

≥ c2κ2m6.

At least κm6−m6 ·cκ ≥ κm6/2 vertices uj have not been connected by a path in P. Without
loss of generality, we write these vertices u1, · · · , up, where p ≥ κm6/2. By C2, the set W1 is
disjoint from ∪pj=1B1(uj), we have

|∪pj=1H(uj)−W1| ≥ 2m4 · 2cκ · κm
6

2
− c2κ2m5 ≥ c2κ2m6.

We will apply Lemma 2.3 to connect ∪m6

i=1NH(wi)(Ti)\W1 and ∪pj=1V (H(uj))\W1, while

avoiding the vertices in ∪m6

i=1Ti, W and W1. Since d ≥ logs n ≥ m60 and n/κ2 ≥ K is suf-
ficiently large, we have

|∪m6

i=1Ti|+ |W |+ |W1| ≤ (2cκ+ 1)m6 + 2cκ2m4 + c2κ2m5 ≤ 2c2κ2m5. (9)

Hence, setting y := c2κ2m6, we have

1

4
· ε(y) · y ≥ 1

4
· ε(n) · y

(3)

≥ 1

4
· 105

m
· y ≥ 2c2κ2m5.

Thus, by (9) and Lemma 2.3, there is a shortest path of length at most

2

ε1
log3

15n

ε2κ2
+ 1 ≤ log4

n

κ2
≤ m

from some Ti to some V (H(uj)) avoiding W and W1. Taking such a path, we extend it to a
wi, uj-path of length at most 1 + m + 2 ≤ 2m in G − (W ∪W1), which together with all the
paths in P satisfies C1 and C2, a contradiction.
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By Claim 4.6, we have a vertex wi, which is connected to cκ vertices uj . Without loss of
generality, we may take u1, u2, · · · , ucκ for instance so as to ease the notation. If we can find
in every (2m4, 2cκ)-hub H(uj) an (m4, cκ)-hub which is disjoint from all the internal vertices of
the wi, uj-paths in P, 1 ≤ j ≤ cκ, then all such (m4, cκ)-hubs together with all the wi, uj-paths
form a (cκ,m4, cκ, 2m)-unit. It suffices to find for every j ∈ [cκ] a (m4, cκ)-hub centered at uj
as required above.

By C2, for every j ∈ [cκ], at most one vertex in S1(uj) is used in the wi, uj-paths. Denote
by W2 the vertices in all the wi, uj-paths, 1 ≤ j ≤ cκ. By C1, we have that |W2| ≤ 2cκm.
Therefore, for every uj , there are at most 2m vertices v ∈ S1(uj) such that |S1(v) ∩W2| ≥ cκ
vertices from S1(v) in W2. Then we can take a set of m4 vertices v in S1(uj) along with cκ
vertices in every S1(v) avoiding W2, forming the desired (m4, cκ)-hub.

4.2 Constructing an adjuster

In this section, we start by finding a simple adjuster in an expander despite the removal of any
medium-sized vertex set by Lemma 4.7. Then, we link simple adjusters together to obtain a
desired adjuster. First we state Lemma 4.7, a key ingredient of our proof. It finds a simple
adjuster robustly in an expander G, that is, given any subset W ⊆ V (G) with a moderate size,
we can construct an adjuster in G−W .

Lemma 4.7. There exists some ε1 > 0 such that, for every 0 < ε2 < 1 and integer s ≥ 240,
there exists d0 and K such that the following holds for each n ≥ d ≥ d0 and d ≥ logs n.

(i) If G is a TK
(2)√
d
-free n-vertex (ε1, ε2d)-expander with δ(G) ≥ d and n ≥ Kd, then for any

vertex set W ⊆ G satisfing |W | ≤ 10D with D = dm4/107, we have that G −W contains a
(D,m/4, 1)-adjuster.
(ii) If G is a C4-free n-vertex (ε1, ε2d

2)-expander with δ(G) ≥ d and n ≥ Kd2, then for any
vertex set W ⊆ G satisfing |W | ≤ 10D with D = d2m4/107, we have that G −W contains a
(D,m/4, 1)-adjuster.

Using Lemma 4.7, we can find many vertex-disjoint simple adjusters. Then we can connect
them together into a large adjuster.

Proof of Lemma 3.9. The proof ideas of (i) and (ii) are similar, and we choose κ as in (1). Thus
D = κ2m4/107. Let ε1 > 0, and K, d0 be sufficiently large. We prove the lemma by induction
on r. For r = 1, as |W | ≤ D/ log3 n

κ2
, by Lemma 4.7, G −W contains a (D,m/4, 1)-adjuster,

which is also a (D,m, 1)-adjuster.
Suppose then, for some r with 1 ≤ r < 1

10κ
2m2, G−W contains a (D,m, r)-adjuster, denoted

byA1 = (v1, F1, v2, F2, A1). Let W1 = W∪A1∪V (F1)∪V (F2), we have |W1| ≤ 4D. Then Lemma
4.7 shows that G − W1 contains a (D,m/4, 1)-adjuster A2 = (v3, F3, v4, F4, A2). Note that
|F1∪F2| = |F3∪F4| = 2D =: x, and |W ∪A1∪A2| ≤ D/ log3 n

κ2
+20rm ≤ D/ log3 n

κ2
+2κ2m3 ≤

2D/ log3 n
κ2

. By (3), we have 1/4 · ε(x)x ≥ 1/4 · ε(n)x ≥ 2D/ log3 n
κ2
≥ |W ∪ A1 ∪ A2|, then by

Lemma 2.3, there is a shortest path P of length at most m, from V (F1)∪V (F2) to V (F3)∪V (F4)
avoiding W ∪A1 ∪A2.

We can assume, without loss of generality, that P is a path from V (F1) to V (F3). Then by
extending P , using that F1 and F3 are (D,m)-expansions of v1 and v3 respectively, we can get
a v1, v3-path Q ⊆ F1∪P ∪F3 of length at most 3m. Now we claim that (v2, F2, v4, F4, A1∪A2∪
V (Q)) is a (D,m, r+1)-adjuster. Indeed, we easily have that A1 and A2 hold, and A3 holds as
|A1∪A2∪V (Q)| ≤ 10mr+10·(m/4)+3m ≤ 10(r+1)m. Finally, let l = l(A1)+l(A2)+l(Q). For
every i ∈ {0, 1, · · · , r+ 1}, there are some i1 ∈ {0, 1, · · · , r} and i2 ∈ {0, 1} such that i = i1 + i2.
Let P1 be a v1, v2-path in G[A1 ∪ {v1, v2}] of length l(A1) + 2i1 and let P2 be a v3, v4-path in
G[A2 ∪ {v3, v4}] of length l(A2) + 2i2. Thus, P1 ∪Q ∪ P2 is a v2, v4-path in G[A1 ∪A2 ∪ V (Q)]
of length l + 2i, and therefore A4 holds.
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Now we start to prove Lemma 4.7. We first introduce the concept of octopus used to find a
simple adjuster.

Definition 4.8 (Octopus). Given integers r1, r2, r3, r4 > 0, an (r1, r2, r3, r4)-octopus B = (A,R,
D,P) is a graph consisting of a core (r1, r2, 1)-adjuster A, one of the ends of A, called R, and

• a family D of r3 vertex-disjoint (r1, r2, 1)-adjusters, which are disjoint from A, and

• a minimal family P of internally vertex-disjoint paths of length at most r4, such that each
adjuster in D has at least one end which is connected to R by a subpath from a path in
P, and all the paths are disjoint from all center sets of the adjusters in D∪{A}. It is easy
to observe that |P| ≤ |D|.

Figure 2: octopus

An outline of the proof of Lemma 4.7 is as follows. We can find an expander H ⊆ G −W ,
but note that H may be much smaller than G, so we may not find a simple adjuster of desired
size directly. To overcome this, we first find many vertex-disjoint small simple adjusters. Then
we connect them such that by averaging one end of a small simple adjuster would be linked
to many others by internally vertex-disjoint paths, forming an octopus (see Claim 4.9). This
process can be seen as that we expand one end of the small simple adjuster to a desired size.
Finally, using the similar idea, we can expand another end to get the desired simple adjuster.

Proof of Lemma 4.7. The proof ideas of (i) and (ii) are similar, and we choose κ as in (1). Recall
m is the smallest even integer that larger than 80 log4 n

κ2
. Let K be sufficiently large. We first

prove that there are m30 pairwise disjoint (κ2/800,m/400, 1)-adjusters in G −W . Note that
such m30 adjusters have total size at most (2 ·κ2/800 + 10 ·m/400) ·m30 ≤ κ2m30/20. It suffices
to show that for any set W ′ ⊆ V (G) with size κ2m30/10, there is a (κ2/800,m/400, 1)-adjuster
in G−W ′.

For (i), by Lemma 4.1 with (W,x) = (W ′, 30), we have d(G−W ′) ≥ d/2, and by Corollary
2.5 with G = G−W ′, there exists a bipartite (ε1, ε2d)-expander H ⊆ G−W ′ with δ(H) ≥ d/16.
Then by Lemma 2.3, there exists a shortest cycle C in H of length at most m/16 and whose
length is denoted by 2r. Thereafter, we arbitrarily pick two vertices v1, v2 ∈ V (C) of distance
r − 1 apart on C, together with d/800 distinct vertices in NH−C(v1), NH−C(v2) respectively,
then we get a (d/800,m/400, 1)-adjuster as desired. Note that every vertex in the ends of the
adjuster has no neighbour in the same end, except for v1 and v2.

For (ii), by Corollary 4.3 with (W,x) = (W ′, 30), we have d(G−W ′) ≥ d/2, and by Corollary
2.5 with G = G−W ′, there exists a bipartite (ε1, ε2d

2)-expander H ⊆ G−W ′ with δ(H) ≥ d/16.
Then by Lemma 2.3, there exists a shortest cycle C in H of length at most m/16 and whose
length is denoted by 2r. We can arbitrarily pick one vertex v1 ∈ V (C), which has at least d/20
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neighbours in H −C. As G is C4-free, every pair of vertices in NH−C(v1) has no other common
neighbour than v1. Thus NH−C(NH−C(v1)) has size at least (d/16− 2r)d/20 ≥ d2/400. Choose
another vertex v2 ∈ V (C) which is at distance r − 1 from v1 in C. Now we find two vertex-
disjoint (d2/800, 2)-expansions of v1 and v2 respectively, F1, F2 say, such that every vertex in
NF1(v1) and NF2(v2) has at most d neighbours in the same expansion. Thus F1 and F2 together
with C form the (d2/800,m/400, 1)-adjuster as desired.

We will sometimes call an adjuster is touched by a path if they intersect in at least one vertex,
and untouched otherwise. Now we give a claim, which helps us find internally vertex-disjoint
short paths connecting a vertex set to many ends of different adjusters.

Claim 4.9. Given G, m, s and κ as above. Let x ≥ 5 and X ⊆ V (G) be an arbitrary vertex set
of size at most κ2mx−1/2. Let B ⊆ G−X be a graph with order at least κ2mx/800 and U be a
subfamily of vertex-disjoint (κ2/800,m/400, 1)-adjusters in G−(X∪V (B)) with |U| ≥ m2x. Let
PB be a maximum collection of internally vertex-disjoint paths of length at most m/8 in G−X,
each connecting V (B) to one end from different adjusters in U . Then V (B) can be connected
to 1600mx+4 ends from different adjusters in U via a subpath from a path in PB.

Proof. Suppose to the contrary that there are less than 1600mx+4 such ends from different
adjusters, and denote by P the set of internal vertices of those paths. Then we have |P | ≤
1600mx+4 ·m/8 = 200mx+5, and there are at least m2x−1600mx+4 adjusters in U untouched by
the paths in PB. Arbitrarily pick mx adjusters among those adjusters, and let B′ be the union
of their ends. Then we have |B′| = mx · 2κ2/800 = κ2mx/400. As s ≥ 240, and thus d ≥ m60,
we have

|X ∪ P | ≤ κ2mx−1

2
+ 200mx+5 ≤ κ2mx−1.

Let y := κ2mx/800. By (3), we have 1/4 · ε(y)y ≥ 1/4 · ε(n)y ≥ κ2mx−1 ≥ |X ∪ P |. Then by
Lemma 2.3, there is a path of length at most m/8 from V (B) to V (B′), avoiding X ∪ P , that
is, this path connects V (B) to an end of one more adjuster in U , contrary to the maximality of
PB.

In order to build a (D,m/4, 1)-adjuster, we shall first construct many octopuses using those
(κ2/800,m/400, 1)-adjusters we found above. Let Z be the union of the center sets and core
vertices of all those adjusters.

Claim 4.10. There are m5 (κ2/800,m/400, 800m4,m/8)-octopuses Bj = (Aj , Rj ,Dj ,Pj), 1 ≤
j ≤ m5 in G−W such that the following rules hold.

D1 Aj are pairwise disjoint adjusters, 1 ≤ j ≤ m5.

D2 Ai /∈ Dj , 1 ≤ i, j ≤ m5.

D3 Dj contains every adjuster other than Aj which intersects at least one path in Pj , 1 ≤ j ≤
m5.

D4 Paths in Pi are vertex-disjoint from Z and Aj , except for i = j, 1 ≤ i, j ≤ m5.

D5 Every two paths from distinct Pi, Pj are mutually vertex-disjoint, 1 ≤ i < j ≤ m5.

Proof. We will construct the octopuses iteratively. Suppose that we have constructed q octopuses
so far. Let W1 = W ∪Z. Let U be the union of the vertex sets of the ends of the core adjusters
of octopuses we have constructed. Then we have |U | ≤ m5 · 2κ2/800 = κ2m5/400. Let us call
an adjuster used if it is used to construct an octopus, and unused otherwise. There are at most
m5 · (800m4 + 1) adjusters are used until now, so there are more than m20 unused adjusters.

Let P = ∪qj=1V (Pj). Then |P | ≤ m/8 · 800m4 ·m5 ≤ m11. Arbitrarily pick a subfamily B of

m6 unused adjusters, and let B be the union of their ends. Then |B| = m6 ·2κ2/800 = κ2m6/400.
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Let U be the family of unused adjusters, except for the adjusters we picked above. Then we
have |U| ≥ m12. Note that |W1 ∪ U ∪ P | ≤ (10D + m30 ·m/16) + κ2m5/400 + m11 ≤ κ2m5/2
as d ≥ logs n ≥ m60. Then by Claim 4.9 with (B,U , x,X) = (B,U , 6,W1 ∪ U ∪ P ), V (B) can
be connected to 1600m10 ends from different adjusters in U via some internally vertex-disjoint
paths of length at most m/8 in G−W1 − U − P .

By the pigeonhole principle, there exists an adjuster in B, say Aq+1, such that Aq+1 has an
end Rq+1 connected to at least 800m4 adjusters, say D′q+1, via a subfamily of internally vertex-
disjoint paths, denoted by P ′q+1, and then observe that we can choose Dq+1 ⊆ D′q+1 of exactly

800m4 adjusters and a system of paths Pq+1 such that every path is an initial segment of one
in P ′q+1 and thus D3 holds. Denote by Lq+1 the other end of Ap+1. As we only use adjusters
outside the octopuses which have been constructed during the process, D1 and D2 hold. As we
find paths in Pq+1 avoiding W1 ∪ U ∪ P , D4 and D5 hold. Thus, Aq+1,Rq+1, Dq+1 and Pq+1

form a (κ2/800,m/400, 800m4,m/8)-octopus.

Now we have m5 octopuses Bj = (Aj , Rj ,Dj ,Pj), 1 ≤ j ≤ m5. Let B1 be the union of Lj ,
1 ≤ j ≤ m5. Then we have |B1| = m5 ·κ2/800. There are at most m5 ·(800m4+1) adjusters used,
and thus at least m20 adjusters unused. Let U ′ be the family of unused adjusters. Reset P =⋃m5

j=1 V (Pj), then |P | ≤ m11. By definition, inside each Bj = (Aj , Rj ,Dj ,Pj), j ∈ [m5], every
adjuster A ∈ Dj intersects V (Pj) and thus there exists a shortest path in A of length at most
m/400 connecting a core vertex of A to V (Pj), and denote by Qj the disjoint union of such paths

taken over all adjusters in Dj . Let Q = ∪m5

j=1V (Qj). Then |Q| ≤ m5 ·800m4 ·(m/400+1) ≤ m11.

Recall s ≥ 240 and d ≥ logs n ≥ m60, we have |W1∪P ∪Q| ≤ (10D+m30 ·m/16)+m11 +m11 ≤
κ2m4/2. Then by Claim 4.9 with (B,U , x,X) = (B1,U ′, 5,W1∪P ∪Q), V (B1) can be connected
to 800m9 ends from different adjusters in U ′ via some internally vertex-disjoint paths of length
at most m/8 in G−W1 − P −Q.

By the pigeonhole principle, there exists a core adjuster Ak such that Lk is connected to
a family D′k of at least 800m4 adjusters, via a subfamily of internally vertex-disjoint paths,
denote by P ′k. Then Ak, Lk D′k and P ′k form a (κ2/800,m/400, 800m4,m/8)-octopus. Note that
(Ak, Rk,Dk,Pk) is also a (κ2/800,m/400, 800m4,m/8)-octopus.

For the adjuster Ak, denote by Ck the center vertex set of Ak, and note that Lk, Rk are
(κ2/800,m/400)-expansions of vertices v1, v2 respectively. Let F ′1 := G[V (Lk)∪V (P ′k)∪V (D′k)],
and F ′2 be the component of G[V (Rk)∪V (Pk)∪V (Dk)]−V (P ′k) containing v2. Indeed, paths in
Pk and P ′k are disjoint from Z, and V (Pk) and V (P ′k) are disjoint. Recall that for every adjuster
in Dk, every vertex in the ends of the adjuster has at most κ neighbours in the same end, except
for its core vertices. As d ≥ logs n ≥ m60, and V (P ′k) is disjoint from Z and Q, F ′2 has size at
least

|V (Dk)| − κ|V (P ′k)| ≥ 800m4 · κ
2

800
· 2− κ · m

8
· 800m4 ≥ κ2m4,

and the distance between v2 and each v ∈ V (F ′2) is at most m/400 + m/8 + m/400 + m/32 +
m/400 ≤ m/4. Then by Proposition 3.4, there exists a subgraph of F ′2, denoted by F2, which is
a (κ2m4,m/4)-expansion of v2. Similarly, we can find F1, which is a (κ2m4,m/4)-expansion of
v1. Recall that Ck ∪ {v1, v2} is an even cycle of length 2r′ ≤ m/16, and the distance between v1
and v2 on Ck ∪ {v1, v2} is r′ − 1. Thus, (v1, F1, v2, F2, Ck) is a (κ2m4,m/4, 1)-adjuster, and by
Proposition 3.4, there exists a (D,m/4, 1)-adjuster in G−W .

4.3 Connecting vertices with paths of desired length

Our goal now is connecting two vertex sets to two expansions with two paths, whose combined
length is in the desired range. We first connect one vertex set to an expansion by the following
lemma.

Lemma 4.11. For any 0 < ε1, ε2 < 1, there exists d0 and K such that the following holds for
n ≥ d ≥ d0 and d ≥ logs n.
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(i) Let G be a TK
(2)√
d
-free n-vertex (ε1, ε2d)-expander with δ(G) ≥ d and n ≥ Kd. Let D =

dm4/107. Suppose U ⊆ V (G) is a vertex set with |U | ≥ D, F is a (D,m)-expansion of v in
G− U , and W ⊆ V (G)\(U ∪ V (F )) satisfies |W | ≤ 2D/ log3 nd . Then for any l ≤ dm3, there is
a v, v′-path in G−W for some v′ ∈ U of length between l and l + 11m.
(ii) Let G be a C4-free n-vertex (ε1, ε2d

2)-expander with δ(G) ≥ d and n ≥ Kd2. Let D =
d2m4/107. Suppose U ⊆ V (G) is a vertex set with |U | ≥ D, F is a (D,m)-expansion of v in
G− U , and W ⊆ V (G)\(U ∪ V (F )) satisfies |W | ≤ 2D/ log3 n

d2
. Then for any l ≤ d2m3, there

is a v, v′-path in G−W for some v′ ∈ U of length between l and l + 11m.

Proof. The proof ideas of (i) and (ii) are similar, and we choose κ as in (1). Thus D = κ2m4/107

and l ≤ κ2m3. Let K be sufficiently large. Let (P, v1, F1) be such that l(P ) is maximised subject
to the following properties.

E1 P is a v, v1-path in G−W .

E2 l(P ) ≤ l + 7m.

E3 F1 is a (D, 3m)-expansion of v1 in G−W with V (F1) ∩ V (P ) = {v1}.

Note that P = G[v1], v1 = v, and F1 = F satisfy E1-E3, therefore such a tuple (P, v1, F1) exists.
We claim that l(P ) ≥ l. Suppose to the contrary that l(P ) < l. Note that for sufficiently

large K, we have |W ∪V (P ∪F1)| ≤ 2D/ log3 n
κ2

+D+l ≤ 2D. By Lemma 3.8, G−W−V (P ∪F1)

contains a (cκ,m4, cκ, 2m)-unit U ′ with core vertex v2. Note that |W ∪ V (P )| ≤ 3D/ log3 n
κ2

.

By (3), we have 1/4 · ε(D)D ≥ 1/4 · ε(n)D ≥ 3D/ log3 n
κ2
≥ |W ∪ V (P )|. Then by Lemma 2.3,

there is a path Q′ from V (U ′) to V (F1) of length at most m, avoiding W ∪V (P )\{v1}. Without
loss of generality we can assume that Q′ has endvertices v′1 ∈ F1 and v′2 ∈ U ′. By E3 and the
fact that U ′ is a (cκ,m4, cκ, 2m)-unit, we can extend Q′ to a v1, v2-path Q of length at most
2m+2+m+3m ≤ 7m which is vertex-disjoint from P −v1. Using the definition of unit, we can
get F2 ⊆ U ′\V (Q) ∪ {v2} which is a (D, 3m)-expansion of v2. Let P1 = P ∪Q. As l(Q) ≤ 7m,
P1 is a v, v2-path of length at least l(P ) + 1 and at most l(P ) + 7m. Then, (P1, v2, F2) satisfies
E1-E3 with l(P1) > l(P ), a contradiction. Therefore, l(P ) ≥ l.

Now, note that |W ∪ V (P1)| ≤ 3D/ log3 n
κ2

. By (3), we have ε(D)D/4 ≥ ε(n)D/4 ≥
3D/ log3 n

κ2
≥ |W ∪ V (P1)|. Then by Lemma 2.3, there is a path R of length at most m, from

some r1 ∈ U to some r2 ∈ V (F1) avoiding W ∪ V (P )\{v1}. Let Q1 be a path from v1 to r2 in
F1 of length at most 3m. Then, P ∪Q1 ∪R is a v, r1-path in G−W of length at least l(P ) ≥ l
and at most l + 7m+ 3m+m = l + 11m by E2.

Combining Lemma 4.11 with Lemma 2.3, we can prove Lemma 3.10 as follows.

Proof of Lemma 3.10. The proof ideas of (i) and (ii) are similar, and we choose κ as in (1).
Thus D = κ2m4/107 and l ≤ κ2m3. Given G, W , U1 and U2 as stated, we choose K to be
sufficiently large. Note that |U1 ∪ U2| ≥ 2D and |V (F3) ∪ V (F4)| = 2D. By (3), we have
1/4 · ε(2D) · 2D ≥ 1/4 · ε(n) · 2D ≥ D/ log3 n

κ2
≥ |W |. Then by Lemma 2.3, there is a shortest

path P ′ ⊆ G−W from U1∪U2 to V (F3)∪V (F4) of length at most m. Without loss of generality,
we can assume that P ′ goes from some v1 ∈ U1 to v′3 ∈ V (F3). As F3 is a (D,m)-expansion of
v3, there is a v1, v3-path P of length at most 2m in U1 ∪ P ′ ∪ F3.

Let W ′ = W ∪V (P ). Then |W ′| ≤ D/ log3 n
κ2

+ 2m+ 2 ≤ 2D/ log3 n
κ2

. By Lemma 4.11 with
(U,F,D,m,W, l) = (U2, F4, D,m,W

′, l), there is a path Q in G−W ′ from some v2 ∈ U2 to v4 of
length between l and l+ 11m. As l ≤ l(P ) + l(Q) ≤ l+ 13m, the paths P and Q are desired.
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A Dependent random choice

The following lemma can be regarded as a bipartite version of dependent random choice, of
which the proof follows from that of Fox and Sudakov [7].

Lemma A.1. Given integers a, t, n1, n2, c, r and a constant α > 0, let G = (V1, V2, E) be a
bipartite graph such that |V1| = n1, |V2| = n2 and |E| ≥ αn1n2. If it holds that

αtn1 −
(
n1
r

)(
c

n2

)t
≥ a,
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then there exists a set A0 ⊆ V1 of size at least a such that every r-subset of A0 has at least c
common neighbours in V2.

Proof. Pick a set of t vertices of V2 uniformly at random with repetition, say b1, b2, · · · , bt. Let A
denote the set of common neighbours for all vertices bi and X = |A|. By linearity of expectation,

E(X) =
∑
v∈V1

P(b1, · · · , bt ∈ N(v)) =
∑
v∈V1

(
d(v)

n2

)t
.

By the convexity of the function f(x) = xt, we have

E(X) ≥
n1(
∑

v∈V1 d(v)/n1)
t

nt2
≥ n1(αn2)

t

nt2
≥ αtn1.

Let Y denote the random variable counting the number of r-subsets in A with fewer than c
common neighbours in V2. Therefore, the probability that a randomly chosen bi is one of the
common neighbours of such an r-set is at most c

n2
. Hence, since we made random choices of bi

uniformly and independently, the probability that such an r-tuple be contained in A is at most(
c
n2

)t
. As there are at most

(|V1|
r

)
subsets of size r, it follows that

E(Y ) ≤
(
|V1|
r

)(
c

n2

)t
.

Again, by linearity of expectation, it holds that

E(X − Y ) ≥ αtn1 −
(
n1
r

)(
c

n2

)t
≥ a.

Hence there exists a choice of A for which X − Y ≥ a. Delete one vertex from each subset
r-subset of A with fewer than c common neighbours and let A0 be the remaining subset of A.
Thus, |A0| ≥ a and every r-subset of A0 has at least c common neighbours.
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