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Maximal 3-wise Intersecting Families

József Balogh∗† Ce Chen∗ Kevin Hendrey‡ Ben Lund‡ Haoran Luo∗§

Casey Tompkins¶ Tuan Tran‖

Abstract

A family F on ground set [n] := {1, 2, . . . , n} ismaximal k-wise intersecting if every collection
of at most k sets in F has non-empty intersection, and no other set can be added to F while
maintaining this property. In 1974, Erdős and Kleitman asked for the minimum size of a maximal
k-wise intersecting family. We answer their question for k = 3 and sufficiently large n. We show
that the unique minimum family is obtained by partitioning the ground set [n] into two sets A
and B with almost equal sizes and taking the family consisting of all the proper supersets of A
and of B.

1 Introduction

A central topic in extremal set theory is intersection properties of families of finite sets. This
topic began with classical results of Erdős, Ko and Rado [14] determining the maximum size of an
intersecting family of subsets of an n-element set, for both arbitrary subsets and for subsets of a
given size.
A family F of sets is maximal (or saturated) with respect to some property if it satisfies the
property, but no family properly containing F satisfies the property. The problem of finding the
smallest object which is maximal with respect to some property has an extensive literature. In
the setting of graphs the topic was initiated by Erdős, Hajnal and Moon [12], who determined the
minimum number of edges in a maximal n-vertex graph not containing a clique of size k (see [16]
for an extensive survey on graph saturation). For set systems consisting of sets of a fixed size r,
Erdős and Lovász [15] suggested the problem of finding a maximal intersecting family of minimum
size. For this problem, the best known lower bound of 3r (when there is a projective plane of order
r − 1) was proved by Dow, Drake, Füredi and Larson [7], and the best known upper bound of
r2/2 + O(r) is due to Boros, Füredi and Kahn [5]. Kahn [22] conjectured that O(r) is an upper
bound. Other properties for which saturation results have been obtained for set systems include the
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k-Sperner [18], equal disjoint union free [8], VC-dimension at most k [17] and k-matching free [6]
properties.
In this paper we study a natural saturation problem concerning an intersection property. To state
the problem we need to introduce some notation. For a positive integer n, denote by [n] the set
{1, 2, . . . , n}. Given a set S, we write 2S for the power set of S, which is the family of all subsets
of S. For F ⊆ 2[n], let F̄ := {F c : F ∈ F} where F c denotes [n] \ F . We use the notation F∆G for
the symmetric difference (F \ G) ∪ (G \ F) of two set families F and G.
We say that a family F ⊆ 2[n] is maximal k-wise intersecting if the intersection of every collection
of at most k sets in F is non-empty, and no set from 2[n] \ F can be added to F while preserving
this property. In the case k = 2, it is well-known that every maximal 2-wise intersecting family
has the same size, namely 2n−1. For k > 3, an old question of Erdős and Kleitman [13] from 1974
asks for the size of the smallest maximal k-wise intersecting family. We answer this question for
the case k = 3 and n sufficiently large.
We now present our construction, which we call a balanced pair of linked cubes. A balanced pair of
linked cubes is a set family of the form {A : S ( A ⊆ [n]} ∪ {B : Sc ( B ⊆ [n]} for some S ⊆ [n]
with |S| = ⌊n/2⌋. It is not hard to check that a balanced pair of linked cubes is a maximal 3-wise
intersecting family of size 2⌊n/2⌋ + 2⌈n/2⌉ − 3.
Our main result is that for sufficiently large n, the smallest maximal 3-wise intersecting families
are balanced pairs of linked cubes.

Theorem 1.1. If F is a maximal 3-wise intersecting family of minimum size on ground set [n],
where n is sufficiently large, then F is a balanced pair of linked cubes.

Remark. The even case of Theorem 1.1 was first proved by the third, fourth, sixth and seventh
authors [20]. In [4], the first, second and fifth authors used the method of [20] together with some
new ideas to establish the odd case. The present paper provides a unified treatment of both cases.

A key ingredient in the proof of Theorem 1.1 is the following stability result, which shows that
a maximal 3-wise intersecting family of size at most (1 + o(1))(2⌊n/2⌋ + 2⌈n/2⌉) must be close in
structure to a balanced pair of linked cubes.

Theorem 1.2. For every ε > 0 there exists δ > 0 such that, if F is a maximal 3-wise intersecting
family on [n] of size |F| 6 (1 + δ)(2⌊n/2⌋ + 2⌈n/2⌉), where n is sufficiently large, then there exists a
balanced pair of linked cubes F0 such that |F△F0| 6 ε2⌊n/2⌋.

Organization and notation: The rest of the paper is organized as follows. In Section 2 we
prove Theorem 1.2, in Section 3 we deduce Theorem 1.1 from Theorem 1.2 using a perturbation
argument, and in Section 4 we discuss maximal k-wise intersecting families when k > 4.
We use standard asymptotic notation throughout. For functions f = f(n) and g = g(n) we write
f = o(g), f ≪ g, or g ≫ f to mean f/g → 0 as n → ∞. All asymptotics are as n → ∞.

2 Proof of Theorem 1.2

2.1 Proof Overview

In the proof of Theorem 1.2, we find it more convenient to work with F̄ .

Definition. A balanced pair of cubes on [n] is a set system of the form {A : A ( S}∪{B : B ( Sc},
where S ⊆ [n] with |S| = ⌊n2 ⌋. More generally, a balanced series of k cubes on [n], denoted by
Fn,k, is a set system of the form ∪k

i=1{A : A ( Si}, where S1, . . . , Sk is a partition of [n] with
⌊

n
k

⌋

6 |Si| 6
⌈

n
k

⌉

for each i ∈ [k].
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We also need the following key concepts, whose relevance will be revealed in Lemma 2.1 below.

Definition. A set system H ⊆ 2[n] is a (1− ε)-k-generator for [n] if all but at most ε2n subsets of
[n] can be expressed as a union of at most k disjoint sets of H.

Definition. Given a set system H ⊆ 2[n], denote by dp(H) the number of disjoint pairs in H, i.e.,
dp(H) = |{{A,B} : A,B ∈ H, A ∩B = ∅}| .

The following lemma is central to the proof of Theorem 1.2.

Lemma 2.1. If F is a maximal 3-wise intersecting family on [n], then

dp(F̄) > 2n − |F|.

Moreover, if |F| 6 ε2n, then F̄ is a (1− ε)-2-generator for [n].

Proof. Let Fc := 2[n] \ F , then |Fc| = 2n − |F|. For every A ∈ Fc, there exist B,C ∈ F such
that B ∩C ⊆ Ac, since F is a maximal 3-wise intersecting family. Notice that F is upward closed,
i.e., if F ∈ F and F ⊆ F ′ ⊆ [n], then F ′ ∈ F . Thus, we may select these sets B,C ∈ F so that
Ac = B ∩ C and B ∪ C = [n], which means Bc ∩ Cc = ∅. This (not necessarily unique) choice of
B and C defines an injective map from Fc into disjoint pairs of sets in F̄ (where ∅ is mapped to
{∅, ∅}). Therefore,

dp(F̄) > |Fc| = 2n − |F|.
Now assume that |F| 6 ε2n. Since |Fc| = 2n−|F| > (1−ε)2n and every set in Fc can be expressed
as a union of at most two disjoint sets of F̄ , F̄ is a (1− ε)-2-generator for [n].

The following result together with Lemma 2.1 immediately implies Theorem 1.2. We will prove it
in Section 2.3.

Theorem 2.2. For every ε′ > 0, there exists δ = δ(ε′) > 0 such that for sufficiently large n, if
H ⊆ 2[n] is a (1 − δ)-2-generator for [n] with |H| 6 (1 + δ)(2⌊n/2⌋ + 2⌈n/2⌉), then there exists a
balanced pair of cubes Fn,2 such that |H△Fn,2| 6 ε′2⌊n/2⌋.

Remark. Theorem 2.2 for n even was first proved by Ellis and Sudakov [9, Proposition 9]. Our
proof of Theorem 2.2 uses their method.

Proof of Theorem 1.2 assuming Theorem 2.2. Let ε > 0 and n be a sufficiently large integer. Let
δ = δ(ε) > 0 be obtained from Theorem 2.2. Let F be a maximal 3-wise intersecting family
on [n] of size |F| 6 (1 + δ)(2⌊n/2⌋ + 2⌈n/2⌉), then |F| 6 δ2n, when n is sufficiently large. Since
|F̄ | = |F| 6 δ2n, F̄ is a (1−δ)-2-generator for [n] by Lemma 2.1. Applying Theorem 2.2 to H := F̄ ,
we conclude that there exists a balanced pair of cubes Fn,2 with |F̄△Fn,2| 6 ε2⌊n/2⌋. Taking the
complements of the sets in F̄ and Fn,2 yields the desired result.

Lemma 2.1 also leads to another classic question posed by Erdős [11]: How many disjoint pairs
of sets can there be in a set system of given size? A lower bound comes from Fn,k, a balanced
series of k cubes, i.e. Fn,k = ∪k

i=1{A : A ( Si}, where S1, . . . , Sk is a partition of [n] with
⌊

n
k

⌋

6 |Si| 6
⌈

n
k

⌉

for each i ∈ [k]. With the additional assumption that k divides n, it is easy to

see that |Fn,k| = k2n/k − 2k + 1 and dp(Fn,k) > (1 − 1/k)
(|Fn,k|

2

)

. Solving a conjecture of Daykin
and Erdős [19], Alon and Frankl [1] proved that Fn,k has asymptotically the maximum number of
disjoint pairs, given its size.
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Theorem 2.3 (Alon–Frankl). For every positive integer k, there exists β = β(k) > 0 such that, if
H is a set system on [n] of size m := |H| > 2(1/(k+1)+ε)n, where ε > 0, then

dp(H) 6

(

1− 1

k

)(

m

2

)

+O
(

m2−βε2
)

.

We strengthen Theorem 2.3 by proving a stability result, showing families with close to
(

1− 1
k

) (

m
2

)

disjoint pairs must resemble a balanced series of k cubes.

Theorem 2.4. For every ε > 0 and integer k > 2, there exists an η > 0 such that for every
sufficiently large n, if a set system H on [n] of size m := |H| > (1−η)k2n/k has at least (1− 1

k−η)m
2

2
disjoint pairs, then k divides n, and there exists a balanced series of k cubes Fn,k with |H△Fn,k| 6
ε2⌊n/k⌋.

The proof of Theorem 2.4, given in Section 2.2, borrows some ideas of Alon and Frankl [1], and
Alon, Das, Glebov and Sudakov [2]. The even case of Theorem 2.2 is proved using Theorem 2.4.

Proof of Theorem 2.2 for even n assuming Theorem 2.4. Let η be as given by Theorem 2.4 for k =
2 and ε > 0, and let δ = η2. Let H′ ⊇ H such that |H′| = ⌊(1 + δ)2(n+2)/2⌋, and every element of
H′ \H has size greater than n/2. This is possible because n is large and the number of sets of size
greater than n/2 is nearly 2n−1. Since H′ ⊇ H and H is a (1− δ)-2-generator for [n], we have

|H′|+ dp(H′) > |H|+ dp(H) > (1− δ)2n.

Hence dp(H′) > (1− δ)2n − (1+ δ)2(n+2)/2 > (1−2δ)2n for n sufficiently large. On the other hand,

(

1

2
− η

) |H′|2
2

6

(

1

2
− η

)

(1 + η)22n+1 = (1− 3η2 − 2η3)2n 6 (1− 3δ)2n.

It follows that dp(H′) > (1/2 − η)|H′|2/2, and the hypotheses of Theorem 2.4 are satisfied for H′.
Theorem 2.4 gives a balanced pair of cubes Fn,2 with |H′△Fn,2| 6 ε2n/2. By the second property
of H′, H′ \ H is disjoint from Fn,2. Hence, |H△Fn,2| 6 |H′△Fn,2| 6 ε2n/2.

Before starting the proofs of Theorems 2.2 and 2.4, we introduce the so-called disjointness graph,
which is the main object that we analyze in Sections 2.2 and 2.3.

Definition. For a set system H, the disjointness graph GH is the graph with vertex set H and
edge set {{A,B} ⊆ H : A ∩ B = ∅}. For two (not necessarily disjoint) set families H1,H2, the
disjointness bipartite graph GH1,H2 is the bipartite graph with classes (H1,H2), where there is an
edge between A ∈ H1 and B ∈ H2 if and only if A ∩B = ∅.

2.2 Proof of Theorem 2.4

The heart of the proof of Theorem 2.4 is the following lemma, which shows that the disjointness
graph of a large family has only few cliques of size k + 1. This lemma essentially appears in [1].
For completeness, we include its proof here.

Lemma 2.5. For every ε > 0, γ > 0 and integer k > 2, and sufficiently large integer n, if H is
a set system on [n] of size m := |H| > 2(1/(k+1)+ε)n, then GH contains at most γ

( m
k+1

)

copies of
Kk+1.
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We denote by Kr(t) the complete r-partite graph with parts of size t. The following proposition is
standard and follows from a result of Erdős [10] by a simple averaging argument (see for instance
[2, Proposition 3.2]).

Proposition 2.6. For integers r > 2, t > 1 and any real γ > 0, there exists δ2.6 = δ2.6(r, t, γ) > 0,
such that if m is sufficiently large and G is a graph on m vertices with at least γ

(m
r

)

copies of Kr,
then G contains at least δ2.6

(m
rt

)

copies of Kr(t).

We will use a probabilistic argument to derive Lemma 2.5 from Proposition 2.6.

Proof of Lemma 2.5. Let t = ⌈2ε ⌉ + k. Select t sets A1, . . . , At ∈ H independently uniformly at
random, with repetitions allowed. The probability that |A1∪A2∪· · ·∪At| 6 n

k+1 is bounded above
by

∑

S⊆[n]
|S|=⌊n/(k+1)⌋

Pr
[

Ai ⊆ S, i = 1, . . . , t
]

6 2n
(

2n/(k+1)/m
)t

6 m−k,

since m > 2(1/(k+1)+ε)n, where 2n estimates the number of choices of S, and S has 2⌊n/(k+1)⌋ many
subsets, each could be chosen as Ai, if they are in H.
Let A = (A1, A2, . . . , A(k+1)t) be a random sample (chosen independently uniformly at random,
allowing repetition) of (k + 1)t vertices of GH. It follows from the discussion above that the
probability that |A(i−1)t+1 ∪A(i−1)t+2 ∪ · · · ∪Ait| 6 n

k+1 for some i ∈ [k+1] is at most (k+1)m−k.
On the other hand, if our random sample A gives a copy of K(k+1)(t) with {A(i−1)t+1, . . . , Ait}
being the i-th vertex class for every i ∈ [k+1], then A1∪ · · ·∪At, . . . , Akt+1∪ · · ·∪A(k+1)t are k+1
disjoint subsets of [n]. Hence, in this case, we must have |A(i−1)t+1 ∪A(i−1)t+2 ∪ · · · ∪Ait| 6 n

k+1 for
some i ∈ [k + 1]. Moreover, the probability that our random sample gives such a copy of Kk+1(t)
is precisely

m−(k+1)t · (k + 1)!(t!)k+1 ·# copies of Kk+1(t) in GH.

Therefore, the number of copies of Kk+1(t) in GH is at most

m(k+1)t−k

k!(t!)k+1
6 δ2.6(k + 1, t, γ)

(

m

(k + 1)t

)

for m sufficiently large. Hence, by Proposition 2.6, GH has at most γ
( m
k+1

)

copies of Kk+1. This
completes the proof of Lemma 2.5.

We will make use of the following theorem of Balogh, Bushaw, Collares, Liu, Morris and Sharifzadeh
[3, Theorem 1.2].

Theorem 2.7. For every m,k, t ∈ N, the following holds. Suppose G is graph on m vertices with

at most mk−1

e2k·k!

(

e(G) + t−
(

1− 1
k

)

m2

2

)

copies of Kk+1. Then there is a partition of the vertex set

of G as V (G) = V1 ∪ V2 ∪ · · · ∪ Vk with
∑k

i=1 e(Vi) 6 t.

We also use the following well-known estimate on the size of a set system in terms of the binary
entropy function.

Lemma 2.8. Let F be a set system on [n]. Denote by pi the fraction of sets in F that contain i.
Then

|F| 6 2
∑n

i=1 h(pi),

where h(p) = −p log2 p− (1− p) log2(1− p) is the binary entropy function.

5



We are now ready to prove Theorem 2.4. The proof closely follows the approach from [2].

Proof of Theorem 2.4. Let H be a family of subsets of [n] such that m := |H| > (1 − o(1))k2n/k

and dp(H) > (1− 1/k − o(1)) m2

2 . By Lemma 2.5, GH contains at most o(mk+1) copies of Kk+1.
Thus, applying Theorem 2.7 with t = o(m2), we conclude that GH has a k-partite subgraph with

(1 − 1/k − o(1))m
2

2 edges. In order to contain this many edges, it is clear that the vertex classes

must all have size (1 − o(1))m/k > (1 − o(1))2n/k . Furthermore, again by the edge density, all
but at most o(m) vertices must have at least (1 − 1/k − o(1))m neighbors. Thus, we may take a
k-partite subgraph G of GH consisting of parts of size at least (1− o(1))2n/k such that each vertex
has at least (1 − 1/k − o(1))k2n/k neighbors, and thus at least (1 − o(1))2n/k neighbors in every
other class.
Let ε > 0 be a sufficiently small constant with respect to k. Let H1,H2, . . . ,Hk be the sets from
H corresponding to the k color classes of G, respectively. By the above discussion,

|Hi| > (1− ε)2n/k for all i ∈ [k]. (1)

We will construct a balanced series of k cubes containing
⋃k

i=1Hi. To do this we begin with a
partition of the ground set [n] into 2k + 1 disjoint sets: A1, B1, . . . , Ak, Bk, R. For i ∈ [k], let Ai

and Bi be the set of those elements of [n]\⋃i−1
j=1(Aj ∪Bj) occurring in more than ε|Hi| members of

Hi and between 1 and ε|Hi| members of Hi, respectively. Let R be the set of remaining elements
of [n].
By the definition of the partition, if for some i ∈ [k] we have x ∈ Bi, then there is a set F ∈ Hi

such that x ∈ F . It follows from the density properties of G discussed above that for j 6= i, x is
not contained in at least (1 − ε)|Hj | members of Hj. If x ∈ Ai, then for j 6= i, x does not appear
in any member of Hj, since each member of Hj is disjoint from at least (1− ε)|Hi| members of Hi.
It follows that no set F ∈ H has vertices from

⋃i−1
j=1Aj . Furthermore, each element x ∈ ⋃i

j=1Bj is
contained in at most ε|Hi| sets in Hi. Using Lemma 2.8 we have

|Hi| 6 2|Ai|+h(ε)(
∑

j6i |Bj |).

We thus get

2n−
1
2 < (1− ε)k2n 6

k
∏

i=1

|Hi| 6 2
∑

i∈[k](|Ai|+h(ε)(k−i+1)|Bi|)

= 2n−|R|−
∑

i∈[k](1−h(ε)(k−i+1))|Bi|x 6 2n−|R|− 3
4

∑
i∈[k] |Bi|,

where in the first equality we used the fact that n = |R|+∑

i∈[k](|Ai|+ |Bi|), and the last inequality
holds since 1− h(ε)k > 3/4 for ε sufficiently small with respect to k. This implies that R = B1 =
· · · = Bk = ∅. As Hi ⊆ 2Ai∪Bi , by the definition of Ai and Bi, we have that |Hi| 6 2|Ai|+|Bi| = 2|Ai|.
Together with the lower bound |Hi| > (1− ε)2n/k from (1), we must have |Ai > (n− 1)/k, and so
|Ai| > n/k. Since

∑

i∈[k] |Ai| = n, we in fact have |Ai| = n/k for all i ∈ [k]. It follows that the

family
⋃k

i=1 Hi is contained in the balanced series of k cubes A1, . . . , Ak. Since H contains at most

ε|H| members not in
⋃k

i=1Hi, the proof is complete.

2.3 Proof of Theorem 2.2

Before stating the proof of Theorem 2.2, we need some preparation.

6



Definition. Given set systems H1,H2 and a bipartite subgraph B ⊆ GH1 with bipartition (X ,Y),
we say B (and sometimes we say E(B)) generates H2 if every H ∈ H2 can be expressed as a disjoint
union of some X ∈ X and Y ∈ Y, i.e., every H ∈ H2 corresponds to an edge of B.

Definition. For a set system H and i ∈ [n], let H−
i := {H ∈ H : i /∈ H} be the subfamily of H,

consisting of sets not containing i and H+
i := {H \ {i} : i ∈ H ∈ H}. Note that |H+

i |+ |H−
i | = |H|.

We will use the following result by Ellis and Sudakov [9].

Lemma 2.9 ([9, Proposition 18]). Let c > 0. Then, for every set family H ⊆ 2[n] with |H| > c2n/2,
the disjointness graph GH can be made bipartite by deleting at most o(|H|2) edges.

We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. We have already proved the even case of Theorem 2.2, hence from now on we
assume that n = 2ℓ+1 is a sufficiently large odd integer. Let ε′ ≫ ε ≫ δ > 0 be sufficiently small.
Suppose that H ⊆ 2[n] is a (1−δ)-2-generator for [n] with |H| 6 (1+δ)(2⌊n/2⌋+2⌈n/2⌉) = 3(1+δ)2ℓ.
Then, the number of ways to choose at most two disjoint sets (whose unions are all different) from
H is at least (1− δ)2n, by the definition of a (1− δ)-2-generator. Hence, |H|2 > (1− δ)2n, implying

|H| >
√
1− δ · 2n/2.

Moreover, let G0 be the disjointness graph of H, then

1 + |H|+ e(G0) > (1− δ)2n,

which implies that
e(G0) > (1− δ)22ℓ+1 − 3(1 + δ)2ℓ − 1.

We conclude that G0 has edge-density

e(G0)
(

|H|
2

)
>

(1− δ)22ℓ+1 − 3(1 + δ)2ℓ − 1

9(1 + δ)222ℓ−1
>

4− 5δ

9(1 + δ)2
,

where the last inequality comes from 3(1 + δ)2ℓ + 1 6 δ22ℓ−1. Applying Lemma 2.9 to H with
c =

√
1− δ, we conclude that one can delete at most

o(|H|2) = o(22ℓ+1)

edges from G0 and obtain a bipartite graph G = (X ,Y) with X ∪ Y = H. Note that G generates
all but at most

δ22ℓ+1 + 1 + |H|+ o(22ℓ+1)

subsets of [n]. Since |H| 6 3(1 + δ)2ℓ = o(22ℓ+1) and δ ≪ ε, G generates all but at most ε22ℓ+1

subsets of [n]. In particular,
e(G) > (1− ε)22ℓ+1. (2)

Let α := |X |/2ℓ and β := |Y|/2ℓ. Since |X |+ |Y| = |H| 6 3(1 + δ)2ℓ, we have

α+ β 6 3(1 + δ). (3)

Therefore, we have

αβ 6
9

4
(1 + δ)2. (4)

7



Since αβ22ℓ = |X ||Y| > e(G) > (1− ε)22ℓ+1, we also have αβ > 2−2ε. Combining with (3), we get

1− 3ε < α, β < 2 + 3ε, (5)

where we use ε ≫ δ.
Let

X1/3 := {i ∈ [n] : |X+
i | > |X |/3} and Y1/3 := {i ∈ [n] : |Y+

i | > |Y|/3}. (6)

Letting A := X1/3 and B := Y1/3, we will show that A,B forms an equipartition of [n], and that X
and Y are not too far from 2A and 2B , respectively, thereby proving Theorem 2.2. We will achieve
this goal step by step via the following lemma and a series of claims.

Lemma 2.10. It cannot happen that all the following equations hold at the same time:

|X |, |Y| = (3/2 − o(1))2ℓ, |X+
n |, |Y+

n | = (1− o(1))2ℓ−1 and |X−
n |, |Y−

n | = (1− o(1))2ℓ. (7)

Proof. Suppose for a contradiction that (7) holds. Since all but at most ε2n = 2ε · 2n−1 sets in [n]
can be expressed as a union of at most two disjoint sets in H, we have H−

n = X−
n ∪Y−

n is a (1−2ε)-
2-generator for [n− 1]. By the assumption that (7) holds, |H−

n | = (2− o(1))2ℓ = (2− o(1))2(n−1)/2 .
As |Fn−1,2| = 2 · 2(n−1)/2 − 1, we can apply the even case of Theorem 2.2 to H−

n and conclude
that there exists an equipartition S1 ∪ S2 = [n − 1] such that each of X−

n ,Y−
n contains at least

(1 − o(1))2ℓ sets in 2S1 , 2S2 . Define U := {F ∈ X : F ∩ S2 = ∅},V := {F ∈ Y : F ∩ S1 = ∅}. Note
that U−

n = X−
n ∩ 2S1 and V−

n = Y−
n ∩ 2S2 . We have |U−

n |, |V−
n | = (1− o(1))2ℓ, implying

|X−
n \ U−

n |, |Y−
n \ V−

n | = o(2ℓ). (8)

Now we prove that
|X+

n \ U+
n |, |Y+

n \ V+
n | = o(2ℓ).

In fact, for every X ∈ X+
n \ U+

n , we have X ∩ S2 6= ∅ by the definition of U , thus X ∪ {n} is
disjoint from at most 2ℓ−1 subsets of S2. Since |Y−

n \ 2S2 | = |Y−
n \ V−

n | = o(2ℓ), the set X ∪ {n} is
disjoint from at most 2ℓ−1 + o(2ℓ) sets in Y. Similarly, for every Y ∈ Y+

n \ V+
n , the set Y ∪ {n} is

disjoint from at most 2ℓ−1 + o(2ℓ) sets in X . Let en be the number of edges XY ∈ E(G) such that
n ∈ X ∪ Y . Since G generates all but at most ε2n subsets of [n], at least 22ℓ − ε2n = (1 − 2ε)22ℓ

sets containing n correspond to edges of G, which implies that

en > (1− 2ε)22ℓ = (1− o(1)) 22ℓ.

Let φ := |U+
n |/|X+

n | and θ := |V+
n |/|Y+

n |, then φ, θ ∈ [0, 1]. Combining with (7), we have

en 6 |U+
n ||Y−

n |+ |X+
n \ U+

n |
(

2ℓ−1 + o(2ℓ)
)

+ |V+
n ||X−

n |+ |Y+
n \ V+

n |
(

2ℓ−1 + o(2ℓ)
)

= φ(1− o(1))22ℓ−1 + (1− φ)(1− o(1))22ℓ−2 + θ(1− o(1))22ℓ−1 + (1− θ)(1− o(1))22ℓ−2

= (2 + φ+ θ − o(1)) 22ℓ−2.

Hence,
(1− o(1)) 22ℓ 6 en 6 (2 + φ+ θ − o(1)) 22ℓ−2,

which implies that φ, θ = 1 − o(1). Therefore, |X+
n \ U+

n | = o(|X+
n |) = o(2ℓ), and |Y+

n \ V+
n | =

o(|Y+
n |) = o(2ℓ), as desired.

Now we have

|X \ U|+ |Y \ V| = |X−
n \ U−

n |+ |X+
n \ U+

n |+ |Y−
n \ V−

n |+ |Y+
n \ V+

n | = o(2ℓ).
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For a set F ∈ H, notice that F ∈ (X \ U) ∪ (Y \ V) if and only if F ∈ X satisfies F ∩ S2 6= ∅ or
F ∈ Y satisfies F ∩ S1 6= ∅. For S ⊆ S1, if S ∪ {n} ∈ X , then S ∈ X+

n by definition. Hence, there
are at least 2|S1| − |X+

n | = 2ℓ − (1− o(1))2ℓ−1 = (1 + o(1))2ℓ−1 sets S ⊆ S1 satisfying S ∪ {n} /∈ X .
Similarly, there are at least (1 + o(1))2ℓ−1 sets S′ ⊆ S2 satisfying S′ ∪ {n} /∈ Y. Thus, there are
at least (1 + o(1))22ℓ−2 sets of the form S ∪ S′ ∪ {n} ⊆ [n] satisfying S ⊆ S1, S ∪ {n} /∈ X and
S′ ⊆ S2, S

′ ∪ {n} /∈ Y. Denote the family of sets of this form by S. Since G generates all but at
most ε2n subsets of [n], at least (1 + o(1))22ℓ−2 − ε22ℓ+1 = (1 − o(1))22ℓ−2 sets in S correspond
to edges of G. If F ∈ S can be expressed as a disjoint union of X ∈ X and Y ∈ Y, then either
X ∩ S2 6= ∅ or Y ∩ S1 6= ∅, implying that either X or Y is in (X \ U)∪ (Y \ V). Hence, the number
of choices for F is at most o(2ℓ)|H| 6 o(2ℓ) · 3(1 + δ)2ℓ ≪ (1− o(1))22ℓ−2, a contradiction.

Claim 2.11. A ∪B = [n].

Proof. Suppose for a contradiction that A ∪ B 6= [n]. We may assume without loss of generality
that n /∈ A ∪ B. Let x := |X+

n |/|X | and y := |Y+
n |/|Y|, then x, y < 1/3 by the definitions of A

and B. Recalling that en > (1 − 2ε)22ℓ is the number of disjoint pairs X ∈ X , Y ∈ Y such that
n ∈ X ∪ Y , we have

(1− 2ε)22ℓ 6 en 6 |X+
n ||Y−

n |+ |Y+
n ||X−

n | = |X+
n |

(

|Y| − |Y+
n |

)

+ |Y+
n |

(

|X | − |X+
n |

)

= xα2ℓ(β2ℓ − yβ2ℓ) + yβ2ℓ(α2ℓ − xα2ℓ) = (x+ y − 2xy)αβ22ℓ.
(9)

Define the function f(x, y) := x + y − 2xy. On 0 6 x, y 6 1/3, the function f(x, y) attains its
maximum value 4/9, when x = y = 1/3. Combining with (9), we have

1− 2ε 6 f(x, y)αβ 6
4

9
αβ.

Recalling that α+ β 6 3(1 + δ) by (3), we then get

3

2
− 4

√

ε

2
6 α, β 6

3

2
+ 4

√

ε

2
.

Additionally, αβ 6
9
4(1 + δ)2 by (4), implying that 1− 2ε 6 f(x, y)αβ 6

9
4(1 + δ)2f(x, y), so

1

3
− 3ε 6 x, y 6

1

3
.

In summary, we have

|X |, |Y| = (3/2− o(1))2ℓ, |X+
n |, |Y+

n | = (1− o(1))2ℓ−1 and |X−
n |, |Y−

n | = (1− o(1))2ℓ,

where ε = o(1). Therefore, Claim 2.11 follows from Lemma 2.10.

Claim 2.12. A ∩B = ∅.

Proof. Suppose for a contradiction that A∩B 6= ∅. We may assume without loss of generality that
n ∈ A ∩ B. Let x := |X+

n |/|X | and y := |Y+
n |/|Y|, then x, y > 1/3 by the definitions of A and B.

Notice that
(2− 2ε)22ℓ 6 e(G) 6 |X ||Y| − |X+

n ||Y+
n | = (1− xy)αβ22ℓ.

Hence,

2− 2ε 6 (1− xy)αβ 6
8

9
αβ.
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Recalling that α+ β 6 3(1 + δ) by (3), we then get

3

2
− 2

√
ε 6 α, β 6

3

2
+ 2

√
ε.

Additionally, αβ 6
9
4(1 + δ)2 by (4), implying that 2− 2ε 6 (1− xy)αβ 6

9
4(1 + δ)2(1− xy), so

1

3
6 x, y 6

1

3
+ 3ε.

In summary, we have

|X |, |Y| = (3/2− o(1))2ℓ, |X+
n |, |Y+

n | = (1− o(1))2ℓ−1 and |X−
n |, |Y−

n | = (1− o(1))2ℓ,

where again ε = o(1). By Lemma 2.10, we have completed the proof of Claim 2.12.

By Claims 2.11 and 2.12, we now know that A ∪ B is a partition of [n]. It remains to show that
A ∪ B is in fact an equipartition of [n] and X ,Y are close to 2A, 2B , respectively. The following
observation is simple but will be useful hereafter.

Observation 2.13. If F ∈ X \ 2A, then F has at most 2|Y|/3 neighbors in Y. Similarly, if
F ∈ Y \ 2B, then F has at most 2|X |/3 neighbors in X .

Proof. By symmetry, it suffices to prove the first part. Suppose F ∈ X \ 2A, then there exists
i ∈ [n] such that i ∈ F ∩ B. By the definition of B = Y1/3 (see (6)), there are at least |Y|/3 sets
in Y containing i, which therefore have non-empty intersection with F . By the definition of G, we
conclude that F has at most |Y| − |Y|/3 = 2|Y|/3 neighbors in Y, as desired.

Claim 2.14. We have |X ∩ 2A| > (2/3 − 3ε)|X | and |Y ∩ 2B | > (2/3 − 3ε)|Y|. Additionally,
[n] = A ∪B is an equipartition.

Proof. Let θ := |X∩2A|
|X | and φ := |Y∩2B|

|Y| . By Observation 2.13 and (4), we have

(2− 2ε)22ℓ 6 e(G) 6 |X ∩ 2A| · |Y|+ |X \ 2A| · 2
3
|Y| = 2 + θ

3
αβ22ℓ 6

2 + θ

3
· 9
4
(1 + δ)222ℓ.

Hence 2+θ
3 · 94(1+ δ)2 > 2− 2ε, which implies that θ > 2/3− 3ε, as desired. Similarly, we can prove

φ > 2/3 − 3ε.
If |A| 6 ℓ− 1, then

|X | = |X ∩ 2A|
θ

6
|2A|
θ

6
2ℓ−1

2/3 − 3ε
< (1− 2ε)2ℓ,

a contradiction to (5), so we have |A| > ℓ. Similarly, we have |B| > ℓ. Therefore, [n] = A∪B is an
equipartition.

According to Claim 2.14, we can assume from now on that |A| = ℓ and |B| = ℓ+1. We claim that

α 6
3

2
+ 8ε, β >

3

2
− 7ε, (10)

which are better bounds for α, β than (5). Notice that we only need to show β > 3/2 − 7ε, as
α+β 6 3(1+ δ) will then imply α 6 3(1+ δ)−β 6 3/2+8ε. Suppose that β = 3/2− γ with some
γ > 0, then α 6 3/2 + 3δ + γ since α+ β 6 3(1 + δ) by (3). By (2) and Observation 2.13, we have

(2− 2ε)22ℓ 6 e(G) 6 |X ∩ 2A||Y|+ |X \ 2A| · 2
3
|Y| = |X ∩ 2A||Y|+

(

|X | − |X ∩ 2A|
)

· 2
3
|Y|

=

(

1

3
|X ∩ 2A|+ 2

3
|X |

)

|Y| 6
(

1

3
· 2ℓ + 2

3

(

3

2
+ 3δ + γ

)

2ℓ
)(

3

2
− γ

)

2ℓ 6

(

2 + 3δ − 1

3
γ

)

22ℓ,
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which implies that 2− 2ε 6 2 + 3δ − γ/3. Therefore, γ 6 7ε.
The final three claims show that X and Y are not too far from 2A and 2B , respectively.

Claim 2.15. (i) |2A \ X | 6 24ε2ℓ.
(ii) |Y \ 2B | 6 (

√
ε+ 3ε)2ℓ.

Proof. Let
D := min{|2B \ Y|, |Y \ 2B |},

then D 6 |Y \ 2B | 6 (1/3 + 3ε)|Y| < 2|Y|/3 by Claim 2.14. Define Y ′ from Y by adding D sets
in 2B \ Y and deleting D sets in Y \ 2B . Thus, |Y ′| = |Y| 6 (2 + 3ε)2ℓ by (5). Note that X and
Y ′ are not necessarily disjoint. Let G1 = GX ,Y ′ . If D = |2B \ Y| 6 |Y \ 2B |, then 2B ⊆ Y ′ and
|Y ′ \ 2B | = |Y ′| − 2ℓ+1 6 2ε2ℓ+1; if D = |Y \ 2B | 6 |2B \ Y|, then Y ′ ⊆ 2B and |Y ′ \ 2B | = 0. In
both cases, we have |Y ′ ∩ 2B | > |Y ∩ 2B | and

|Y ′ \ 2B | 6 2ε2ℓ+1. (11)

We now compare e(G1) and e(G). Every deleted Y ∈ Y \ 2B has at most 2|X |/3 neighbors in X by
Observation 2.13. On the other hand, every added S ∈ 2B \ Y is disjoint from every set in 2A ∩X ,
thus has at least |2A ∩ X | > (2/3 − 3ε)|X | neighbors in X by Claim 2.14. Therefore, by (3),

e(G)− e(G1) 6 D

(

2

3
|X | −

(

2

3
− 3ε

)

|X |
)

6
2

3
|Y| · 3ε|X | = 2εαβ22ℓ 6 2ε · 9

4
(1+ δ)222ℓ 6 3ε22ℓ+1,

which, with (2), implies that

e(G1) > e(G) − 3ε22ℓ+1
> (1− ε)22ℓ+1 − 3ε22ℓ+1 = (1− 4ε)22ℓ+1.

Similarly, we define another bipartite graph G2. Let

C := min{|2A \ X |, |X \ 2A|}.

Define X ′ from X by adding C sets in 2A \ X and deleting C sets in X \ 2A. Thus, |X ′| =
|X | > (1 − 3ε)2ℓ by (5). Note that X ′ and Y ′ are not necessarily disjoint. Let G2 = GX ′,Y ′. If
C = |2A \ X | 6 |X \ 2A|, then 2A ⊆ X ′ and |X ′ ∩ 2A| = |2A| = 2ℓ; if C = |X \ 2A| 6 |2A \ X |, then
X ′ ⊆ 2A and |X ′ ∩ 2A| = |X ′| > (1− 3ε)2ℓ. In both cases, we have |X ′ ∩ 2A| > (1− 3ε)2ℓ. We now
compare e(G2) and e(G1). Every deleted X ∈ X \ 2A intersects B, thus has at most 2ℓ neighbors
in 2B . By (11), X has at most 2ε2ℓ+1 neighbors in Y ′ \ 2B , thus has at most (1 + 4ε)2ℓ in Y ′. On
the other hand, every added S ∈ 2A \ X is disjoint from every set in 2B ∩ Y ′, thus has at least

|2B ∩ Y ′| = |Y ′| − |Y ′ \ 2B | > (3/2 − 7ε)2ℓ − (2ε)2ℓ+1 = (3/2 − 11ε)2ℓ

neighbors by (10) and (11). Therefore,

e(G2) > e(G1) + C

(

3

2
− 11ε− (1 + 4ε)

)

2ℓ > (1− 4ε)22ℓ+1 + C

(

1

2
− 15ε

)

2ℓ. (12)

If |X ′| 6 2ℓ, then by (3), we have that e(G2) 6 |X ′||Y ′| 6 |X ′|(3(1 + δ)2ℓ − |X ′|) attains its
maximum value (1 + 3

2δ)2
2ℓ+1 when |X ′| = 2ℓ. If |X ′| > 2ℓ, then let |X ′| = (1 + γ)2ℓ for some

γ > 0. Since |X ′| + |Y ′| = |X |+ |Y| 6 3(1 + δ)2ℓ by (3), we have |Y ′| 6 (2 + 3δ − γ)2ℓ. Recalling
|Y ′| = |Y| > (3/2 − 7ε)2ℓ by (10), we have γ 6 1/2 + 7ε + 3δ. By the definition of X ′, we have
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X ′ ⊇ 2A, so |X ′ \ 2A| = |X ′| − |2A| = γ2ℓ. Every X ∈ X ′ \ 2A intersects B, thus has at most 2ℓ

neighbors in Y ′ ∩ 2B , so it has at most (1 + 4ε)2ℓ neighbors in Y ′ by (11). Therefore,

e(G2) 6 |X ′ \ 2A|(1 + 4ε)2ℓ + |X ′ ∩ 2A||Y ′| 6 γ2ℓ(1 + 2ε)2ℓ + 2ℓ(2 + 3δ − γ)2ℓ

= (1 + εγ +
3

2
δ)22ℓ+1

6 (1 + ε)22ℓ+1.

In both cases, we have
e(G2) 6 (1 + ε)22ℓ+1. (13)

Combining (2), (12) and (13), we conclude that

e(G1)− e(G) 6 e(G2)− e(G) 6 (1 + ε)22ℓ+1 − (1− ε)22ℓ+1 = 2ε22ℓ+1. (14)

Now we prove (i). By (12) and (13), we have

C 6
10ε

1/2− 15ε
2ℓ 6 21ε2ℓ, (15)

so if C = |2A \ X |, then we are done. Assume C = |X \ 2A|. Then, by (5) and (15), we have

|2A \ X | = |2A| − |2A ∩ X | = 2|A| − (|X | − |X \ 2A|) 6 2ℓ − (1− 3ε)2ℓ + 21ε2ℓ = 24ε2ℓ,

as desired.
For (ii), we show that it suffices to prove

D 6
√
ε2ℓ. (16)

Indeed, if D = |Y \ 2B |, then we are done. Assume D = |2B \ Y|. Then, by (5), we have

|Y \ 2B | = |Y| − |2B ∩ Y| = |Y| − (|2B | − |2B \ Y|) 6 (2 + 3ε)2ℓ − 22ℓ+1 +
√
ε2ℓ =

(√
ε+ 3ε

)

2ℓ,

as desired.
Now suppose for a contradiction that D >

√
ε2ℓ. We claim that there exists some Y ∈ Y \ 2B

having at least 2|X |/3 − 8
√
ε2ℓ neighbors in X . Otherwise, recall that every S ∈ Y ′ \ Y ⊆ 2B \ Y

has at least (2/3 − 3ε)|X | neighbors in X and |X | 6 (3/2 + 8ε)2ℓ by (10). Then,

e(G1)− e(G) > D

((

2

3
− 3ε

)

|X | −
(

2|X |
3

− 8
√
ε2ℓ

))

>
√
ε

(

8
√
ε− 9

2
ε− 24ε2

)

22ℓ > 2ε22ℓ+1,

a contradiction to (14). Fix some Y ∈ Y \ 2B having at least 2|X |/3− 8
√
ε2ℓ neighbors in X . Note

that there exists i ∈ [n] such that i ∈ Y ∩A. We may assume without loss of generality that i = n.
By the definition of G, at most |X | − (2|X |/3− 8

√
ε2ℓ) = (1/3 + o(1))|X | sets in X contain n, i.e.,

|X+
n |/|X | 6 1/3 + o(1). On the other hand, since |2A \ X | 6 24ε2ℓ by (i), at least 2ℓ−1 − 24ε2ℓ =

(1 − o(1))2ℓ−1 subsets of A containing n are contained in X , so |X+
n | > (1 − o(1))2ℓ−1 and hence

|X | > (3/2−o(1))2ℓ. Recalling that |X | 6 (3/2+o(1))2ℓ by (10), we have |X | = (3/2−o(1))2ℓ, which
then implies that |X+

n | = (1− o(1))2ℓ−1 and |Y| = (3/2 − o(1))2ℓ. By the definition of B, we have
|Y+

n |/|Y| 6 1/3, since n ∈ A. Recall (9), where we have now x, y 6 1/3+o(1) and α, β 6 3/2+o(1).
We get y = 1/3+o(1) and hence |Y+

n | = (1−o(1))2ℓ−1. Therefore, |X−
n |, |Y−

n | = (1−o(1))2ℓ. Again,
by Lemma 2.10, we obtain a contradiction and complete the proof of Claim 2.15.

Claim 2.16. |2B \ Y| 6 6
√
ε2ℓ.
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Proof. For every e ∈ E(G), call e bad if e has an endpoint in Y \ 2B and good otherwise. By
Claim 2.15 (ii) and (10), G has at most

|Y \ 2B ||X | 6
(√

ε+ 3ε
)

2ℓ · (3/2 + 8ε) 2ℓ 6 2
√
ε22ℓ (17)

bad edges.
Fix S′ ∈ 2B \Y and choose a set F ⊆ [n] of the form F = S ∪S′, where S ⊆ A. If F corresponds to
a good edge of G, assume that F = X ∪Y with X ∈ X , Y ∈ Y ∩2B ,X ∩Y = ∅. By the assumption
that S′ ∈ 2B \ Y and Y ∈ Y ∩ 2B , we have Y 6= S′ and hence Y ( S′. Hence, X ∩ B 6= ∅, so
X ∈ X \ 2A. Furthermore, X ∩ A = S, which implies that S is determined by X. By (10) and
Claim 2.15 (i), we have

|X \ 2A| = |X | − |X ∩ 2A| = |X | − (|2A| − |2A \ X |) 6 (3/2 + 8ε)2ℓ − (1− 24ε)2ℓ = (1/2 + 32ε)2ℓ.

Hence, for every fixed S′ ∈ 2B \ Y, there are at most (1/2 + 32ε)2ℓ sets F of the form F = S ∪ S′,
where S ⊆ A, corresponding to good edges of G. There are 2ℓ|2B \ Y| sets of the form S ∪ S′ with
S ⊆ A,S′ ∈ 2B \Y in total, so there are at least |2B \Y|(2ℓ − (1/2+ 32ε)2ℓ) sets of the form S ∪S′

with S ⊆ A,S′ ∈ 2B \ Y that correspond to bad edges of G or do not correspond to edges of G.
Recalling that H is a (1− ε)-2-generator for [n] and using (17), we have

|2B \ Y|
(

2ℓ − (1/2 + 32ε) 2ℓ
)

6 2
√
ε22ℓ + ε2n =

(

2
√
ε+ 2ε

)

22ℓ.

Therefore, we get |2B \ Y| 6 6
√
ε2ℓ.

Claim 2.17. |X \ 2A| 6 7
√
ε2ℓ.

Proof. By Claims 2.15 (i) and 2.16, we have

3(1 + δ)2ℓ > |H| = |X |+ |Y| = |X \ 2A|+
(

|2A| − |2A \ X |
)

+ |Y \ 2B |+
(

|2B | − |2B \ Y|
)

> |X \ 2A|+ (1− 24ε)2ℓ + (2− 6
√
ε)2ℓ = |X \ 2A|+ 3 · 2ℓ − (6

√
ε+ 24ε)2ℓ,

implying |X \ 2A| 6 7
√
ε2ℓ.

By Claim 2.14, [n] = A ∪B is an equipartition. By Claims 2.15, 2.16 and 2.17, we have

|H∆(2A ∪ 2B)| 6 (14
√
ε+ 27ε)2ℓ 6 ε′2ℓ,

completing the proof of Theorem 2.2.

3 Proof of Theorem 1.1

In this section, we will employ a perturbation argument to deduce Theorem 1.1 from Theorem 1.2.
Let n be a sufficiently large integer and F be a maximal 3-wise intersecting family on [n] of
size at most 2⌊n/2⌋ + 2⌈n/2⌉ − 3. Let H := F̄ = {F c : F ∈ F} and fix some ε ∈ (0, 1/4). By
Theorem 1.2, there exists S ⊆ [n] of size ⌊n/2⌋ such that F0 := {A : A ⊆ S} ∪ {B : B ⊆ Sc}
satisfies |H∆F0| 6 ε2⌊n/2⌋.
Recall that H is downward closed since F is upward closed, so ∅ ∈ H. We first prove that
S /∈ H = F̄ . Suppose for a contradiction that Sc ∈ F . Since |H∆F0| 6 ε2⌊n/2⌋, among the 2⌈n/2⌉

subsets of Sc, there exists some A ⊆ Sc such that both A and Sc \A are contained in H. However,
this would imply that Sc, Ac, (Sc \A)c = S ∪A are in F . As Sc ∩Ac ∩ (S ∪A) = ∅, this contradicts
that F is a 3-wise intersecting family. It can be proved similarly that Sc /∈ H.
We work with the following partition H = H1 ∪H2 ∪H3 ∪ {∅}, where

H1 := {A ∈ H : ∅ ( A ( S}, H2 := {B ∈ H : ∅ ( B ( Sc}, H3 := H \ F0.
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Claim 3.1. |2[n] \ (F ∪ F0)| 6 |H1||H2|+ |H3| · ε2⌊n/2⌋.
Proof. If A /∈ F , then as stated in the proof of Lemma 2.1, there exist B,C ∈ H such that A = B∪C
with B ∩ C = ∅. There exists a pair {B,C} such that

g({B,C}) := min{|B \ S|+ |C \ Sc|, |B \ Sc|+ |C \ S|}

attains its minimum value over all such choices of B and C. Therefore, we can define an injection f
on 2[n] \ (F ∪ 2S ∪ 2S

c
) by mapping A to a pair of sets {B,C} in H, which has minimum g({B,C})

given A = B ∪ C and B ∩ C = ∅. Since ∅ ∈ H, S, Sc /∈ H and H is downward closed, we have
that f(A) = {B,C} must be one of the following two types: |{B,C} ∩ H1| = |{B,C} ∩ H2| = 1;
|{B,C} ∩H3| > 1. The number of pairs {B,C} satisfying |{B,C} ∩H1| = |{B,C} ∩H2| = 1 is at
most |H1||H2|, so it suffices to prove that if f(A) = {B,C} with B ∈ H3, then there are at most
ε2⌊n/2⌋ choices for C.
Suppose B = X ∪ Y , where ∅ 6= X ( S, ∅ 6= Y ( Sc. Then, g({B,C}) > 0 and Y ∈ H, since
Y ⊆ B ∈ H and H is downward closed. There are three possibilities for C.
(1) C ⊆ S: Define B′ := X ∪ C,C ′ := Y , then B′ ∪ C ′ = B ∪ C = A. Since g({B′, C ′}) = 0 <
g({B,C}) and C ′ = Y ∈ H, we have that B′ /∈ H by the definition of f . Note that B′ = X ∪ C is
determined by C, so the number of choices for C ⊆ S is at most |2S \ H|.
(2) C ⊆ Sc: Similarly, the number of choices for C is at most |2Sc \ H|.
(3) C ∈ H \ F0: The number of choices for such C is at most |H \ F0|.
In summary, the number of choices for C is at most

|2S \ H|+ |2Sc \ H|+ |H \ F0| = |H∆F0| 6 ε2⌊n/2⌋,

as desired.

Claim 3.2. |H1||H2| + |H3| · ε2⌊n/2⌋ 6 (2⌊n/2⌋ − 2)(2⌈n/2⌉ − 2). Equality holds if and only if
H1 = {A : ∅ ( A ( S}, H2 = {B : ∅ ( B ( Sc} and H3 = ∅.
Proof. By the definitions of H1 and H2, we have

|H1||H2| 6 (2⌊n/2⌋ − 2)(2⌈n/2⌉ − 2). (18)

Notice that min{|H1|, |H2|} > 2⌊n/2⌋ − |F0 \ H| > 2⌊n/2⌋ − |F0∆H| > (1 − ε)2⌊n/2⌋. Define the
function ϕ(h1, h2, h3) := h1h2 + h3 · ε2⌊n/2⌋. Given that min{h1, h2} > (1− ε)2⌊n/2⌋, we claim that
ϕ(h′1, h2, h

′
3) > ϕ(h1, h2, h3) if h

′
1 = h1 + 1 and h′3 = h3 − 1. In fact, we have

ϕ(h′1, h2, h
′
3)− ϕ(h1, h2, h3) = h2 − ε2⌊n/2⌋ > (1− 2ε)2⌊n/2⌋ > 0.

Therefore, fixing h1 + h2 + h3 and stipulating h1, h2 > (1 − ε)2⌊n/2⌋ and h3 > 0, the function
ϕ(h1, h2, h3) attains its maximum when h3 = 0. Take hi = |Hi| for i ∈ [3]. Combining with (18),
we have

|H1||H2|+ |H3| · ε2⌊n/2⌋ 6 (2⌊n/2⌋ − 2)(2⌈n/2⌉ − 2),

where equality holds if and only if H1 = {A : ∅ ( A ( S}, H2 = {B : ∅ ( B ( Sc} and H3 = ∅.

By Claims 3.1 and 3.2, we have

2n−(2⌊n/2⌋+2⌈n/2⌉−1)−|F| 6 |2[n]\(F∪F0)| 6 (2⌊n/2⌋−2)(2⌈n/2⌉−2) = 2n−2·2⌊n/2⌋−2·2⌈n/2⌉+4,

which implies that |F| > 2⌊n/2⌋ + 2⌈n/2⌉ − 3. By our assumption that |F| 6 2⌊n/2⌋ + 2⌈n/2⌉ − 3,
equality has to hold in Claim 3.2. Hence, we have H = F0, which means that F is a balanced pair
of linked cubes. This completes our proof of Theorem 1.1.
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4 The Case when k > 4

Denote by f(n, k) the minimum possible size of a maximal k-wise intersecting family on [n]. For the
case when k > 4, we remark that our method also gives the following general bounds for f(n, k).

Proposition 4.1. For every k > 4 there exist positive constants ck and dk such that for every
positive integer n, we have

ck · 2n/(k−1)
6 f(n, k) 6 dk · 2n/⌈k/2⌉.

Proof. The proof of Lemma 2.1 easily generalizes to give a lower bound for f(n, k). Indeed, there
is an injective map from Fc to

(

F
k−1

)

, such that each set A ∈ Fc is sent to a (k − 1)-tuple
{B1, B2, . . . , Bk−1} of sets in F such that B1∩B2∩· · ·∩Bk−1 = Ac (unless A is so small that fewer
than k − 1 sets contain Ac). This observation immediately leads to the lower bound.
The linked cubes construction also generalizes. In more detail, suppose that ℓ divides n, and let
S1, S2, . . . , Sℓ be a partition of [n] such that |Si| = n/ℓ for each i. Let Fi = {A : [n] \Si ( A ⊆ [n]},
and let F = F1 ∪ F2 ∪ · · · ∪ Fℓ. For any set G of 2ℓ − 1 elements of F , there is an i such that
|G ∩ Fi| 6 1. The sets in G − Fi all contain Si, and the set in G ∩ Fi contains at least one element
of Si, which element is in every set of G. Hence, G is (2ℓ− 1)-wise intersecting. On the other hand,
if A /∈ F , then either A is missing elements from two distinct sets Si, or A is missing all of the
elements from some Si. In either case, it is easy to find a non-intersecting (2ℓ−1)-tuple of elements
in F ∪ {A}.
For the case when k is even, let F ′ be a maximal (k − 1)-intersecting family on [n − 1]. Then the
family F = {A ∪ {n} : A ∈ F} ∪ {[n − 1]} is a maximal k-wise intersecting family.
These constructions give the upper bound.

Very recently, Janzer [21] showed that the lower bound in Proposition 4.1 is the correct order
of magnitude of f(n, k), by constructing a maximal k-wise intersecting family of size O(2n/(k−1))
for every k > 3 and n. Note that in the special case k = 3, Theorem 1.1 matches Janzer’s [21]
construction.
Assume that n is sufficiently large. Let F be a maximal k-wise intersecting family on [n] with
minimum size. Similarly to the case k = 3, one can show that F̄ is a (1 − ε)-(k − 1)-generator for
[n], where ε = o(1). A modification of the method in this paper could be used to determine the
structure of F̄ , if |F̄ \ Fn,k−1| was small. However, Janzer [21] showed that |F̄ \ Fn,k−1| cannot be
small.

Theorem 4.2 ([21, Lemma 1.2]). For every k > 4, there exist d = d(k) > 0, c = c(k) > 0 and
n0 = n0(k) > 0 such that the following holds when n > n0. Let S1 ∪ · · · ∪ Sk−1 be a partition of
[n], where n

k−1 − d 6 |Si| 6 n
k−1 + d for every i ∈ [k − 1]. Let F0 = 2S1 ∪ · · · ∪ 2Sk−1 . For every set

system F ⊆ 2[n] with |F \ F0| 6 c · 2n/(k−1), F̄ cannot be maximal k-wise intersecting.

Combining our method with Theorem 4.2, we obtain the following result.

Proposition 4.3. For every k > 4, there exists c = c(k) > 0 such that

f(n, k) > (1 + c)|Fn,k−1| = (1 + c)
(

(k − 1)2
n

k−1 − k + 2
)

,

when n is divisible by k − 1.

Therefore, a maximal k-wise intersecting family of minimum size will necessarily have a more
complex structure when k > 4. It is worth mentioning that the exact value of the upper bound on
Janzer’s construction [21] is (k − 1)2k−32n/(k−1) − (k − 2)(2k−1 − 1), which is about 2k−3|Fn,k−1|.
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