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A GENERALIZATION OF THE CHEVALLEY-WARNING AND AX-KATZ

THEOREMS WITH A VIEW TOWARDS COMBINATORIAL NUMBER

THEORY

DAVID J. GRYNKIEWICZ

Abstract. Let Fq be a finite field of characteristic p and order q. The Chevalley-Warning

Theorem is a classical result which asserts that the set V of common zeros of a collection of

polynomials must satisfy |V | ≡ 0 mod p, provided the number of variables is sufficiently large

with respect to the degrees of the polynomials. The Ax-Katz Theorem generalizes this by

giving tight bounds for higher order p-divisibility for |V |. Besides the intrinsic algebraic interest

of these results, they are also important tools in the Polynomial Method, particularly in the

prime field case Fp, where they have been used to prove many results in Combinatorial Number

Theory. In this paper, we begin by explaining how arguments used by R. Wilson to give an

elementary proof of the Fp case for the Ax-Katz Theorem can also be used to prove the following

generalization of the Chevalley-Warning and Ax-Katz Theorems for Fp, where we allow varying

prime power moduli. Given any box B = I1 × . . . × In, with each Ij ⊆ Z a complete system

of residues modulo p, and a collection of nonzero polynomials f1, . . . , fs ∈ Z[X1, . . . , Xn], then

the set of common zeros inside the box,

V = {a ∈ B : f1(a) ≡ 0 mod p
m1 , . . . , fs(a) ≡ 0 mod p

ms},

satisfies |V | ≡ 0 mod pm, provided n > (m − 1)maxi∈[1,s]

{

pmi−1 deg fi
}

+
s
∑

i=1

pmi−1
p−1

deg fi.

The introduction of the box B adds a degree of flexibility, in comparison to prior work of Zhi-Wei

Sun. Indeed, incorporating the ideas of Sun, a weighted version of the above result is given. We

continue by explaining how the added flexibility, combined with an appropriate use of Hensel’s

Lemma to choose the complete system of residues Ij , effectively allows many combinatorial

applications of the Chevalley-Warning and Ax-Katz Theorems, previously only valid for Fn
p , to

extend with bare minimal modification to validity for an arbitrary finite abelian p-group G.

We illustrate this be giving several examples, including a new proof of the exact value of the

Davenport Constant D(G) for finite abelian p-groups, and a streamlined proof of the Kemnitz

Conjecture. We also derive some new results, for a finite abelian p-group G with exponent q,

regarding the constant skq(G), defined as the minimal integer ℓ such that any sequence of ℓ

terms from G must contain a zero-sum subsequence of length kq. Among other results for this

constant, we show that skq(G) ≤ kq + D(G) − 1 provided k >
d(d−1)

2
and p > d(d − 1), where

d =
⌈

D(G)
q

⌉

, answering a problem of Xiaoyu He in the affirmative by removing all dependance

on p from the bound for k.
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enport Constant.

1

http://arxiv.org/abs/2208.12895v1


2 DAVID J. GRYNKIEWICZ

1. Introduction and Notation

1.1. Basic Notation. Let N0 = {0, 1, 2, . . .} and N = {1, 2, . . . , }, and let Fq denote the fi-

nite field of order q, whose characteristic must then be a prime p ≥ 2 with q a power of

p. For a commutative ring R, we let R[X1, . . . ,Xn] denote the polynomial ring in the vari-

ables X1, . . . ,Xn with coefficients from R, and we often use x = (X1, . . . ,Xn) to denote

the tuple of variable inputs. Each f ∈ R[X1, . . . ,Xn] is then a finite sum of monomials

f(x) =
∑

(k1,...,kn)∈Nn
0

ck1,...,knX
k1
1 · · ·Xkn

n with coefficients ck1,...,kn ∈ R. The monomials that occur

in f are then the summands with ck1,...,kn 6= 0. The degree of f is denoted deg f and is the

maximal value of k1 + . . . + kn as we range over all tuples (k1, . . . , kn) ∈ Nn
0 with ck1,...,kn 6= 0.

The zero-polynomial f = 0 has deg f = −1 by convention. For j ∈ [1, n], we use degj f to denote

the degree of f in the j-th variable Xj . Throughout the paper, the expression 00 := 1, being in-

terpreted as the constant polynomial X0 = 1 evaluated at 0. A polynomial f ∈ Q[X1, . . . ,Xn] is

called an integer valued polynomial if f(a) ∈ Z for all a ∈ Zn. We use Int(Z) to denote the set of

all integer valued polynomials f ∈ Q[X]. An integer valued map f : Z → Z is periodic with pe-

riod m if f(x+m) = f(x) for all x ∈ Z. All intervals are discrete, so [a, b] = {x ∈ Z : a ≤ x ≤ b}

for a, b ∈ R, and variables introduced with an inequality are assumed to be integers. Given

an integer m ≥ 1, a complete system of residues modulo m is a set I ⊆ Z with |I| = m whose

elements are distinct modulo m, i.e., I contains exactly one representative for every residue class

modulo m. We use ϕ to denote the Euler totient function, so ϕ(n) is the number of elements

x ∈ [1, n] that are relatively prime to the integer n ≥ 1. In particular,

ϕ(1) = 1 and ϕ(q) =
(p− 1)q

p

for a prime power q = ps > 1. Given a prime p ≥ 2 and x ∈ Z, we let vp(x) denote the p-adic

valuation of x, which is simply the multiplicity of the prime p in the prime factorization of x,

and we extend this for x = a
b
∈ Q with a, b ∈ Z by the standard definition vp(x) = vp(a)− vp(b).

For an element X in a commutative ring containing Q, the binomial coefficient is defined as

(
X

n

)

=
X(X − 1) · · · (X − n+ 1)

n!
,

with
(
X
0

)
:= 1. If x ∈ N0 is an integer, then

(
x
n

)
counts the number of ways to choose n elements

from a set of size x, and is thus an integer. Moreover,
(
x
n

)
= 0 for x ∈ N0 and n > x.

1.2. Introduction. The study of the common roots of a collection of polynomials f1, . . . , fs ∈

R[X1, . . . ,Xn] is a classical object of study in Commutative Algebra. When R = Fq is a

finite field of characteristic p, one of the most well-known such results is the Chevalley-Warning

Theorem [24] [33] [41].
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Theorem 1.1 (Chevalley-Warning Theorem (1936)). Let Fq be a finite field of characteristic p,

let f1, . . . , fs ∈ Fq[X1, . . . ,Xn] be nonzero polynomials, where s ≥ 1, and let

V = {a ∈ Fn
q : f1(a) = 0, . . . , fs(a) = 0}.

If n >
s∑

i=1
deg fi, then |V | ≡ 0 mod p.

As a particular case, if there is one common zero for the polynomials f1, . . . , fs, then there

must be at least one nontrivial zero, which was the original result of Chevalley [12], afterwards

generalized by Warning [45]. Later, the higher order p-divisibility of |V | was considered by Ax

[4] (for s = 1) and then for general s by Katz [28], resulting in what is known as the Ax-Katz

Theorem.

Theorem 1.2 (Ax-Katz Theorem (1971)). Let Fq be a finite field of characteristic p, let

f1, . . . , fs ∈ Fq[X1, . . . ,Xn] be nonzero polynomials, where s ≥ 1, and let

V = {a ∈ Fn
q : f1(a) = 0, . . . , fs(a) = 0}.

If n > (m− 1)maxi∈[1,s]{deg fi}+
s∑

i=1
deg fi, where m ≥ 1, then |V | ≡ 0 mod pm.

Both the Chevalley-Warning and Ax-Katz Theorems have attracted considerable attention in

Commutative Algebra, including many extensions, refinements, variants and alternative proofs.

See [1] [7] [5] [9] [10] [11] [13] [14] [27] [31] [32] [43] [44] [47] for a handful of such instances among

many more. However, the interest in these results extends much further, also to areas such as

Discrete Mathematics, where they form a standard tool in the “Polynomial Method.” Here, the

interest lies not directly in the results themselves but rather in what other results can be proved

by their usage in combination with appropriately chosen polynomials. For such reasons, the

Chevalley-Warning Theorem is often found in many texts on Additive Combinatorics, e.g. [24]

[33] [41], and is an indispensable tool in many parts of Combinatorics. As this will be a prime

focus in this paper, we will shortly see concrete examples of how this works. Worth noting,

regarding the use of the Ax-Katz and Chevalley-Warning Theorems in Discrete Mathematics,

the case Fp is the main focus of interest, and thus for this paper as well.

Despite the rather elementary formulation of the Ax-Katz Theorem, most proofs are rather

non-elementary, to varying extents. Perhaps the most elementary proof, though only valid for

Fp, was given by Wilson [47]. His interest was primarily in using the method he developed

to give striking applications in Coding Theory, and while his work received some attention

in Coding Theory, it’s importance outside Coding Theory seems not fully realized. The first

part of this paper is devoted to detailing how the method of Wilson readily adapts to prove the

following generalization of the Ax-Katz and Chevalley-Warning Theorems, where we are allowed

to consider polynomial equations modulo varying prime powers pmi .
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Theorem 1.3. Let p ≥ 2 be prime, let n ≥ 1 and B = I1 × . . . × In with each Ij ⊆ Z for

j ∈ [1, n] a complete system of residues modulo p, let s ≥ 1 and m1, . . . ,ms ≥ 0 be integers,

let f1, . . . , fs ∈ Z[X1, . . . ,Xn] be nonzero polynomials, let w1(X), . . . , ws(X) ∈ Q[X] be integer

valued polynomials with respective degrees t1, . . . , ts ≥ 0, and let

V = {a ∈ B : fi(a) ≡ 0 mod pmi for all i ∈ [1, s]} and N =
∑

a∈V

s∏

i=1

wi

(fi(a)

pmi

)

.

If n > (m− 1)maxi∈[1,s]

{

1, ϕ(pmi )
p−1 deg fi

}

+
s∑

i=1

(ti+1)pmi−1
p−1 deg fi, where m ≥ 1 and ϕ denotes

the Euler totient function, then

N ≡ 0 mod pm.

In the special case in Theorem 1.3 when all wi = 1 are constant polynomials, we find that

N = |V | is simply the cardinality of V , with ti = 0 for all i. Additionally assuming mi = 1

for all i, we then recover the Ax-Katz Theorem for Fp. In general, the quantity N counts the

elements a ∈ V each with multiplicity wi

(
fi(a)
pmi

)

, meaning N may be view as the weighted size

of V using the integer valued polynomials w1, . . . , ws ∈ Q[X] as weight functions. The idea to

consider such weight functions is due to Zhi-Wei Sun [39], who indeed noticed (in his unpublished

preprint from 2006) that Wilson’s argument could be used to prove a result of the form stated

in Theorem 1.3, specifically, in the case Ij = [0, p − 1] for all j. However, as already alluded

to, we are primarily interested in the application of Theorem 1.3, particularly to Combinatorial

Number Theory, and for this, the added flexibility gained by considering common zeros inside

the box B = I1 × . . . × In, with the Ij allowed to be any complete system of residues modulo

p, will be quite crucial. This will become clearer once we have some examples, but the crux of

the matter is that, by choosing the Ij carefully, we can simulate behavior modulo pm that could

normally only be expected modulo p, at least so long as we restrict to elements x ∈ Ij.

For instance, Fermat’s Little Theorem [34] tells us that

xp−1 ≡

{

1 mod p if x 6≡ 0 mod p

0 mod p if x ≡ 0 mod p.

From a combinatorial point of view, this is quite nice, as it tells us that the polynomial Xp−1

can be used as an indicator function modulo p. Indeed, in many applications of the Chevalley-

Warning or Ax-Katz Theorem in Combinatorial Number Theory, this is the key means of

translating between combinatorial information and the algebraic information gleamed from the

Chevalley-Warning or Ax-Katz Theorem. Fermat’s Little Theorem, of course, fails modulo

higher powers of p. Nonetheless, Hensel’s Lemma can be used to find an appropriate Ij for

which Fermat’s Little Theorem holds modulo pm, when restricted to x ∈ Ij. We include the

short derivation of Proposition 1.4 at the end of Section 2.
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Proposition 1.4. Let p ≥ 2 be prime and let m ≥ 1. There exists a complete system of residues

I ⊆ [0, pm − 1] modulo p such that

xp−1 ≡

{

1 mod pm if x 6≡ 0 mod p

0 mod pm if x ≡ 0 mod p,
for every x ∈ I.

The main point is that, using Proposition 1.4 (or a more general application of Hensel’s

Lemma) to choose the Ij appropriately, it is then often possible to use Theorem 1.3, in place

of either the Chevalley-Warning or Ax-Katz Theorem, and de-facto obtain a result via the

Polynomial Method for a general finite abelian p-group G that could previously only be achieved

by the same means for the special case G = Fr
p. It is this point that we wish to particularly

highlight, and for which we provide several examples illustrating the idea.

The first example regards the Davenport Constant D(G) of a finite abelian group G, defined

as the minimal integer ℓ such that every sequence of ℓ terms from G must contain a nontrivial

subsequence whose terms sum to zero (called a zero-sum subsequence). It is an invariant that has

received considerable attention, in part due to its connection with Algebraic Number Theory.

It is perhaps best simply to refer to the texts [23] [24], and the many references therein, for

broader context. In general, if G = (Z/n1Z) × . . . × (Z/nrZ) with n1 | . . . | nr, then a rather

simple construction shows that

D(G) ≥ D∗(G) := 1 +

r∑

i=1

(ni − 1).

While even the (near) exact determination of D(G) remains an important and challenging ques-

tion for a general finite abelian group G, the following classical result of Olson [35] and also van

Emde Boas and Kruyswijk [16] showed that the trivial lower bound is tight for p-groups. Both

these original proofs relied upon ideals and group algebras. Our first application will be to use

Theorem 1.3 to give a fairly direct proof of Theorem 1.5.

Theorem 1.5. Let G be a finite abelian p-group. Then

D(G) = D∗(G).

The next example regards the Erdős-Ginzburg-Ziv Constant s(G) of the finite abelian group

G, defined as the minimal integer ℓ such that every sequence of ℓ terms from G must contain a

zero-sum subsequence of length exp(G) (the exponent of G). The Erdős-Ginzburg-Ziv Theorem

implies that s(Z/nZ) = 2n − 1 [24] [33] [23]. It was an open conjecture of Kemnitz [29] that

s((Z/nZ)2) = 4n−3, for which a simple argument shows that it suffices to consider the case n = p

prime. Partial progress towards this conjecture was achieved by Alon and Dubiner [2] and by

Rónyai [37] before finally being resolved by Reiher [36] (and also di Fiore [38]). Regarding higher

rank groups (Z/nZ)r, Alon and Dubiner gave a linear bound via Algebraic Graph Theory [3].

Reiher’s proof involved combining the Chevalley-Warning Theorem with several combinatorial

double counting arguments. Ronyai’s proof was also algebraic, but instead made use of linear
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algebra surrounding multi-linear monomials. Our second application will be to use Theorem

1.3 to give a streamlined proof of Theorem 1.6. As we will see, the flexibility of being able to

use more general weights allows us to directly derive some of the congruences used in Reiher’s

proof, reducing the number of ad-hoc combinatorial doubling counting arguments needed. This

is not surprising since the proof of the weighted Weisman-Fleck congruence [40], which is one

of the key components used in the proof of Theorem 1.3, already incorporates such double

counting arguments into its proof, meaning they are in some sense built into Theorem 1.3 itself.

While the proof of Theorem 1.6 is only a minor variation on Reiher’s, it does highlight how

the weight functions can be used to generate additional linearly independent congruences in a

routine manner. For more complicated arguments, this can simplify the technical calculations

and help focus attention on the more involved parts of the argument.

Theorem 1.6 (Kemnitz Conjecture). Let Cp be a cyclic group of order p ≥ 2 prime. Then

s(C2
p) = 4p − 3.

The final examples regard a generalized Erdős-Ginzburg-Ziv constant sk exp(G)(G) of the finite

abelian group G, defined as the minimal integer ℓ such that every sequence of ℓ terms from G

must contain a zero-sum subsequence of length k exp(G). See [6] [18] [19] [20] [21] [25] [26]

[30] for some relevant examples of results regarding sk exp(G)(G). More generally, given a subset

X ⊆ N0, we let sX(G) be the minimal integer ℓ such that every sequence of ℓ terms from G must

contain a zero-sum subsequence T with length |T | ∈ X. Here, we will particularly focus on a

question initially raised by Kubertin [30] and later extended in [19]. The problem, for a finite

abelian group G, is to find an optimal bound ℓ(G) such that sk exp(G)(G) = k exp(G) +D(G)− 1

for all k ≥ ℓ(G). The corresponding lower bound for sk exp(G)(G) follows from a rather basic

construction, so the issue is how large must k be to ensure sk exp(G)(G) ≤ k exp(G) + D(G)− 1.

An older result of Gao implies this is true for k ≥ |G|
exp(G) [18], and it was conjectured in [30]

[19] that the optimal bound for k should be k ≥ d :=
⌈

D(G)
exp(G)

⌉

. For p-groups, this was proven

for d ≤ 4 when p ≥ 2d− 1 by Dongchun Han [25]. For more general p-groups, Xiaoyu He could

show sk exp(G)(G) ≤ k exp(G) + D(G)− 1 holds for k ≥ p+ d when p ≥ 7
2d−

3
2 , and they posed

the problem of obtaining a significant improvement of their result by removing the dependance

on p from the lower bound for k [26, pp. 405].

Our concluding applications are to use Theorem 1.3 to give a much shorter proof of Dongchun

Han’s [25] result (Theorem 1.8), and to also answer the problem of Xiaoyu He [26] in the

affirmative by showing k > d(d−1)
2 , which is independent of p, suffices when p > d(d − 1)

(Theorem 1.9). Both these results make use of Theorem 1.7, which is derived from Theorem

1.3 and generalizes [26, Theorem 3] by relaxing the hypothesis X ⊆ [1, p] to that given in (1).

Xiaoyu He proved [26, Theorem 3] by an extension of the method used by Kubertin [30], which

was based on the methods developed by Rónyai for his result regarding the Kemnitz Conjecture
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[37]. In this way, Theorem 1.3 simultaneously generalizes both the Chevalley-Warning Theorem

and the main applications of the algebraic method of Rónyai into a single algebraic tool.

Theorem 1.7. Let G be a finite abelian p-group with exponent q > 1, let d =
⌈
D

∗(G)
q

⌉

, let m ≥ 0,

let X ⊆ N be a subset of positive integers with |X| ≥ d+m, and let {x1, . . . , xs} = [1,maxX]\X

with the xi distinct. Suppose

(1)

s∏

i=1

xi
∏

1≤i<j≤s

(xj − xi) 6≡ 0 mod pm+1.

Then

sX·q(G) ≤
(
maxX − |X|+

m(p− 1)

p
+ 1
)
q + D∗(G) − 1

≤
(
maxX + 1−

m

p

)
q − r,

where r ∈ [1, q] is the integer such that d = D∗(G)+r−1
q

.

Theorem 1.8. Let G be a finite abelian p-group with exponent q, let d =
⌈
D

∗(G)
q

⌉

, and suppose

p ≥ 2d− 1 and d ≤ 4. Then

skq(G) ≤ kq + D∗(G)− 1 for every k ≥ d.

Theorem 1.9. Let G be a finite abelian p-group with exponent q, let d =
⌈
D∗(G)

q

⌉

, and suppose

p > d(d − 1). Then

skq(G) ≤ kq + D∗(G)− 1 for every k > d(d−1)
2 .

1.3. Additional Notation. For our applications in Combinatorial Number Theory, we will

have need to deal with (combinatorial) sequences S of terms from a finite abelian group G.

Here, per tradition in Combinatorial Number Theory, a sequence is considered to be a finite and

unordered string of elements from G, which we write as

S = g1 · . . . · gℓ

with the gi ∈ G the terms in the sequence S and each term separated by the concatenation

operation ·. From a combinatorial perspective, a sequence is simply a multi-set, where we

use the natural language of sequences to describe its properties, and use the formal algebraic

notation from free abelian monoids to easily describe and manipulate its terms [23] [24]. The

former avoids confusion with ordinary sets, and the latter is very helpful in more complicated

combinatorial arguments. Then |S| = ℓ denotes the length of the sequence S. Analogous to the

definition of the p-adic valuation, for g ∈ G, vg(S) denotes the multiplicity of the term g in S,

in which case S =
∏•

g∈G g[vg(S)], where g[n] = g · . . . · g
︸ ︷︷ ︸n

denotes the sequence consisting of the

element g repeated n times. The notation T | S indicates that T is a subsequence of S, meaning

vg(T ) ≤ vg(S) for all g ∈ G, and then T [−1]
· S or S · T [−1] denotes the sequence obtained from
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S by removing the terms in T , so vg(T
[−1]

· S) = vg(S)− vg(T ) for all g ∈ G. The sum of terms

in S is denoted

σ(S) = g1 + . . . + gℓ ∈ G,

and the sequence S is zero-sum if σ(S) = 0. Given a subset X ⊆ N0, we use the notation

ΣX(S) = {σ(T ) : T | S, |T | ∈ X}

to denote all elements g ∈ G that can be represented of a sum of terms from a subsequence of

G whose length lies in X. In the case X = {1, 2, . . . , }, we use the abbreviation

Σ(S) = Σ{1,2,...}(S) = {σ(T ) : T | S, |T | ≥ 1}

to denote all elements that are a sum of terms from a nontrivial subsequence of S. The sequence

S is called zero-sum free if it has no nontrivial zero-sum subsequences, i.e., if 0 /∈ Σ(S). For

j ≥ 0, we let

Nj(S) = |{I ⊆ [1, ℓ] : |I| = j, σ
(∏•

i∈I
gi
)
= 0}|

count the number of (indexed) zero-sum subsequences of S = g1 · . . . · gℓ with length j.

Regarding finite abelian groups G, we let Cn denote a cyclic group of order n ≥ 1. Then

G = Cn1 ⊕ . . .⊕ Cnr with 1 ≤ n1 | . . . | nr and nr = exp(G) the exponent of G, and we set

D∗(G) = 1 +
r∑

i=1

(ni − 1).

The order of an element g ∈ G is denoted ord(g). A basis for G is a tuple (e1, . . . , er) of elements

e1, . . . , er ∈ G with G = 〈e1〉 ⊕ . . . ⊕ 〈er〉. Finally, given a subset X = {x1, . . . , xs} ⊆ Z and

q ∈ Z, we let

X · q = {x1q, . . . , xsq}.

2. Proof of the Weighted Ax-Katz-Wilson Theorem

In this section, we give the details of the proof of Theorem 1.3. The following congruence is

the first the key component in the proof. The case when w(X) = 1 is a constant polynomial is a

result of Weisman [46], generalizing an older congruence of Fleck [17] [15] who treated the case

s = 1. The more general version involving the polynomial weight w(X) was originally proved by

Daqing Wan [42], with an elementary proof via complex roots of unitary later found by Zhi-Wei

Sun and Daqing Wan [40].

Theorem 2.1 (Weighted Weisman-Fleck Congruence). Let n, r, s ≥ 0 be integers, let p ≥ 2 be

prime, and let w(X) ∈ Q[X] be an integer valued polynomial of degree t ≥ 0. Then

∑

i≡r mod ps

i≥0

(−1)i
(
n

i

)

w
( i− r

ps

)

≡ 0 mod pm, where m = max{0,
⌈
n−(t+1)ps+1

ϕ(ps)

⌉

}.
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The set

Map(Z) = {f : Z → Z}

of all maps f : Z → Z forms an abelian group with addition defined pointwise: (f + g)(x) =

f(x) + g(x) for f, g ∈ Map(Z) and x ∈ Z. We then have an endomorphism ring for this abelian

group,

End(Map(Z)) = {F : Map(Z) → Map(Z) : F is an abelian group homomorphism},

with addition in End(Map(Z)) again defined pointwise and multiplication given by composition,

so (FG)(f) = F (G(f)) and (F+G)(f) = F (f)+G(f) for F, G ∈ End(Map(Z)) and f ∈ Map(Z).

Let I ∈ End(Map(Z)) denote the identity map and let E ∈ End(Map(Z)) be the shift operator,

defined by

E(f)(x) := f(x+ 1) for f ∈ Map(Z) and x ∈ Z.

The finite difference operator is then the map

∆ := E − I ∈ End(Map(Z)),

meaning

∆f(x) := ∆(f)(x) = f(x+ 1)− f(x) for f ∈ Map(Z) and x ∈ Z.

The next component in Wilson’s argument is the classical Newton Expansion of an integer

valued function, which is easily derived from the above set-up. We include the brief proof for

the reader’s benefit.

Proposition 2.2 (Newton Expansion). For any map f : Z → Z, we have

(2) f(x) =
∞∑

n=0

(∆nf)(0)

(
x

n

)

for all x ∈ N0.

Proof. Iterating the identity (∆ + I)f(y) = f(y + 1), for y ∈ Z, it follows that (∆ + I)xf(y) =

f(y + x) for y ∈ Z and x ≥ 0, whence

∞∑

n=0

(∆nf)(0)

(
x

n

)

=

(
x∑

n=0

(
x

n

)

∆n

)

f(0) = (∆ + I)xf(0) = f(x)

for all x ∈ N0. �

To deal with general weight functions w(X), we recall the well-known fact that the integer

valued polynomials Int(Z) ⊆ Q[X] are a free abelian group with basis the binomial functions

[8]. This essentially means there is little loss of generality to only consider w(X) =
(
X
t

)
, where

t ≥ 0, when using a weight function, or even simply w(X) = Xt for t ≥ 0 if linear independence

is all that is required.

Proposition 2.3. Int(Z) is a free abelian group with basis {
(
X
t

)
: t = 0, 1, . . .}.
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Next, we come to the main step in Wilson’s proof, which he modestly named a lemma. The

case where w(X) = 1 is the constant polynomial equal to 1 is found in Wilson’s original paper

[47]. Exchanging the use of the non-weighted Weisman-Fleck congruence with its weighted

version (Theorem 2.1) in Wilson’s argument, one obtains the following weighted version with

no other major modifications needed. In order to obtain a more self-contained work, we include

the details below, which may also be found in an unpublished paper of Zhi-Wei Sun [39], who

was the first to realize Wilson’s ideas could readily be extended to include weights.

Theorem 2.4 (Weighted Wilson’s Lemma). Let m ≥ 1 and s ≥ 0 be integers, let p ≥ 2 be prime,

let w(X) ∈ Q[X] be an integer valued polynomial of degree t ≥ 0, and let f : Z → Z be a map

that is periodic with period ps. Then there exists a rational polynomial g(X) =
d∑

n=0
an
(
X
n

)
∈ Q[X]

with an ∈ Z and d < (t+ 1)ps + (m− 1)ϕ(ps) such that

g(x) ≡ w
(⌊ x

ps

⌋)

f(x) mod pm for all x ∈ Z, and

an ≡ 0 mod pℓ for all n ∈ [0, d], where ℓ = max{0,
⌈
n−(t+1)ps+1

ϕ(ps)

⌉

}.

Proof. Define the map h : Z → Z by

h(x) = w
(⌊ x

ps

⌋)

f(x) for x ∈ Z

and use Proposition 2.2 to write

(3) w
(⌊ x

ps

⌋)

f(x) = h(x) =

∞∑

n=0

(∆nh)(0)

(
x

n

)

for all x ∈ N0.

Let I, E,∆ = E− I ∈ End(Map(Z)) be as defined earlier. Since f is periodic with period ps, we

have f(i) ≡ f(r) mod ps whenever i ≡ r mod ps. For any n ≥ 0, it follows that

(∆nh)(0) = ((E − I)nh)(0) =

(
( n∑

i=0

(
n

i

)

(−I)n−iEi
)

h

)

(0) =

n∑

i=0

(−1)n−i

(
n

i

)

(Eih)(0)

=
n∑

i=0

(−1)n−i

(
n

i

)

h(i) =

ps−1
∑

r=0

∑

i≡r mod ps

i≥0

(−1)n−i

(
n

i

)

w
(⌊ i

ps

⌋)

f(i)

=

ps−1
∑

r=0

f(r)







∑

i≡r mod ps

i≥0

(−1)n−i

(
n

i

)

w
( i− r

ps

)







.

Applying Theorem 2.1, it follows that

an := (∆nh)(0) ≡ 0 mod pℓ, where ℓ = max{0,
⌈
n−(t+1)ps+1

ϕ(ps)

⌉

} .
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As a particular consequence, we have an ≡ 0 mod pm for all n ≥ (t + 1)ps + (m − 1)ϕ(ps).

Combined with (3), we obtain

(4) g(x) ≡ h(x) = w
(⌊ x

ps

⌋)

f(x) mod pm for all x ∈ N0,

where

g(X) :=
d∑

n=0

an

(
X

n

)

∈ Q[X] and d = (t+ 1)ps + (m− 1)ϕ(ps)− 1.

To complete the proof, we need to show (4) also holds for x < 0.

For n ≥ 0 and x, y ∈ Z, we have
(
x+y
n

)
=
(
x
n

)
+ y z

n! , for some z ∈ Z, whence

(5)

(
x+ y

n

)

≡

(
x

n

)

mod pm for any x, y ∈ Z with vp(y) ≥ m+ vp(n!).

Proposition 2.3 implies that w(X) =
t∑

n=0
bn
(
X
n

)
for some bn ∈ Z. Combined with (5), we conclude

that

(6) w(x+ y) ≡ w(x) mod pm for any x, y ∈ Z with vp(y) ≥ m+ vp(t!).

Let x ∈ Z be arbitrary and let y ≥ 0 be an integer with x+ y ≥ 0 and

vp(y) ≥ max{s+m+ vp(t!), m+ vp(d!)}.

Then

g(x) =
d∑

n=0

an

(
x

n

)

≡
d∑

n=0

an

(
x+ y

n

)

= g(x+ y) ≡ w
(⌊x+ y

ps

⌋)

f(x+ y)

= w
(⌊ x

ps

⌋

+
y

ps

)

f(x) ≡ w
(⌊ x

ps

⌋)

f(x) mod pm,

which establishes (4) for x < 0, completing the proof. �

The following simple lemma is well-known (combine Fermat’s Little Theorem [34] with [24,

Lemma 22.3]).

Lemma 2.5. Let p ≥ 2 be prime and let m ≥ 0 be an integer. Then

∑

x∈Fp

xm =

{

0 if m 6≡ 0 mod p− 1

−1 if m ≡ 0 mod p− 1.

The next lemma is a variation on Chevalley’s key observation used in the proof of the

Chevalley-Warning Theorem [12] [45] [24] [33] [41]. The case when all Ij = [0, p− 1] is found in

Wilson’s original paper [47], but the argument is sufficiently robust to also work when replacing

[0, p − 1] with an arbitrary complete system of residues modulo p. As the added flexibility of

being able to consider arbitrary complete system of residues is rather crucial, we include the

details.
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Lemma 2.6. Let p ≥ 2 be prime, let n ≥ 1, let B = I1× . . .×In with each Ij ⊆ Z for j ∈ [1, n]

a complete system of residues modulo p, and suppose f ∈ Q[X1, . . . ,Xn] is an integer valued

polynomial with degj(f) ≤ p− 2 for every j ∈ [1, n], and vp(c) ≥ 0 for every coefficient c ∈ Q of

a monomial in f(x). Then
∑

a∈B

f(a) ≡ 0 mod pn.

Proof. Let g(x) = cXk1
1 Xk2

2 · · ·Xkn
n be an arbitrary monomial occurring in f(x), so cg ∈ Q \{0}

and vp(cg) ≥ 0 by hypothesis. Now

∑

a∈B

g(a) =
∑

(a1,...,an)∈B

cga
k1
1 ak22 · · · aknn =

∑

(a1,...,an−1)∈B′

(

cga
k1
1 · · · a

kn−1

n−1

∑

an∈In

aknn

)

,

where B′ = I1 × . . . × In−1. By hypothesis, we have kj ≤ p − 2 for every j ∈ [1, n]. Combined

with the hypothesis that In is a complete system of residues modulo p, we can apply Lemma

2.5 to conclude that
∑

an∈In

aknn = b′p for some b′ ∈ Z. Consequently,

∑

a∈B

g(a) = b′p
∑

a∈B′

h(a),

where h(x) = cgX
k1
1 · · ·X

kn−1

n−1 ∈ Q[X1, . . . ,Xn−1]. Iterating this argument n times, it follows

that
∑

a∈B

g(a) = cgbgp
n for some bg ∈ Z.

Thus
∑

a∈B
f(a) =

∑

g

∑

a∈B
g(a) =

(
∑

g

cgbg

)

pn, where the sum
∑

g

is taken over all monomials g

occurring in f . Hence, since f is integer valued with bg ∈ Z and vp(cg) ≥ 0 for all g, it follows

that
∑

a∈B

f(a) ≡ 0 mod pn, as desired. �

The final component in Wilson’s argument is the following consequence of Lemma 2.6. Again,

the case when all Ij = [0, p−1] is found in Wilson’s original paper [47], and the more general case

simply requires using Lemma 2.6 in Wilson’s original argument, with the details given below.

Lemma 2.7. Let p ≥ 2 be prime, let n ≥ 0, let B = I1 × . . .× In with each Ij ⊆ Z for j ∈ [1, n]

a complete system of residues modulo p, let f1, . . . , fs ∈ Z[X1, . . . ,Xn] be nonzero polynomials,

and suppose

(7) f(x) =

(
f1(x)

k1

)(
f2(x)

k2

)

· · ·

(
fs(x)

ks

)

∈ Q[X1, . . . ,Xn]

for some k1, . . . , ks ≥ 0 and s ≥ 1. If n ≥ (m− 1) + deg f+1
p−1 , where m ≥ 1, then

∑

a∈B

f(a) ≡ 0 mod pm.
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Proof. For k ≥ 0 and t ≥ 1, we utilize the polynomial identity

(8)

(
Y1 + . . .+ Yt

k

)

=
∑

k1+...+kt=k

(k1,...,kt)∈Nt
0

(
Y1

k1

)

· · ·

(
Yt

kt

)

,

which holds when each Yi > 0 is an integer by a basic combinatorial counting argument, and

extends to the case when each Yi is a polynomial by noting that the difference of both sides is then

a polynomial with all a ∈ Nt as roots. We can write each fj(x) ∈ Z[X1, . . . ,Xn], for j ∈ [1, s], as

a sum of tj ≥ 1 nonzero monomials with integer coefficients, and then use the identity given in

(8) to write f(x) as a sum of expressions of the form given in (7) (with s replaced by
s∑

j=1
tj and

the ki varying), with each such expression in the sum individually satisfying the hypotheses of

the lemma and having each fj(x) occurring in a given expression replaced by a single nonzero

monomial. As it would then suffice to prove the lemma individually for each of the expressions

in this sum, it follows that we can w.l.o.g. assume each fj(x) is itself a monomial. As a result, it

follows that there is a unique monomial in f(x) whose degree equals deg f , namely, the monomial

h(x) :=
1

k1! · · · ks!
f1(x)

k1 · · · fs(x)
ks .

Additionally, any monomial cXb1
1 · · ·Xbs

s occurring in f(x) must have bj ≤ degj(h) for all j ∈

[1, s].

By hypothesis, deg f ≤ (n−m+1)(p− 1)− 1, which combined with the Pigeonhole Principle

means there are at most n−m variables Xj having degj(h(x)) ≥ p− 1. By re-indexing, we can

w.l.o.g. assume that degj(h(x)) ≤ p− 2 for every j ∈ [1,m]. Since every monomial in f(x) has

its degree in the variable Xj bounded by degj(h(x)), we conclude that

(9) degj(f(x)) ≤ p− 2 for all j ∈ [1,m].

This has the useful consequence that any variable Xj with j ∈ [1,m] cannot occur with positive

degree in any monomial fi(x) having ki ≥ p− 1.

We can write

(10)
∑

a∈B

f(a) =
∑

b∈Im+1×...×In

∑

c∈I1×...×Im

fb(c),

where fb(x) = f(X1, . . . ,Xm, bm+1, . . . , bn) ∈ Q[X1, . . . ,Xm] for b = (bm+1, . . . , bn). Then

(11) fb(x) =

(
f1(X1, . . . ,Xm, bm+1, . . . , bn)

k1

)

· · ·

(
fs(X1, . . . ,Xm, bm+1, . . . , bn)

ks

)

is a polynomial in the variables X1, . . . ,Xm. Moreover, in view of (9), we have

degj fb ≤ p− 2 for all j ∈ [1,m].

From (11) and the fact that fi ∈ Z[X1, . . . ,Xn] for all i ∈ [1, s], we see that fb ∈ Q[X1, . . . ,Xm]

is an integer valued polynomial.
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Let b = (bm+1, . . . , bn) ∈ Im+1 × . . . × In be arbitrary. In view of (11), fb(x) is a product

of s factors of the form
(
fi(X1,...,Xm,bm+1,...,bn)

ki

)
, for i ∈ [1, s]. If ki ≥ p, then none of the

variables X1, . . . ,Xm occur with positive degree in fi(x), as already noted, meaning the factor
(
fi(X1,...,Xm,bm+1,...,bn)

ki

)
is a constant, which must then be an integer since

(
fi(x)
ki

)
is an integer

valued polynomial (in view of fi ∈ Z[X1, . . . ,Xn]). From this, and the fact that all fi ∈

Z[X1, . . . ,Xn], we conclude that the every coefficient c of a monomial in fb(x) must have the

denominator of its coefficient c dividing
∏

i∈J ki!, where J ⊆ [1, s] is the subset of all indices

i ∈ [1, s] with ki ≤ p − 1, which ensures that vp(c) ≥ 0 (as p is prime). Combined with the

conclusions of the previous paragraph, we can now apply Lemma 2.6 to fb to conclude that
∑

c∈I1×...×Im

fb(c) ≡ 0 mod pm for all b ∈ Im+1 × . . . × In,

which combined with (10) yields the desired congruence. �

We can now complete the proof of Theorem 1.3.

Proof of Theorem 1.3. The hypotheses give

n > (m− 1) max
i∈[1,s]

{

1,
ϕ(pmi)

p− 1
deg fi

}

+

s∑

i=1

(ti + 1)pmi − 1

p− 1
deg fi.(12)

For each j ∈ [1, s], apply Theorem 2.4 to the integer valued function with period pmj which

sends 0 to 1 and all elements of [1, pmj − 1] to 0, using wj(X) as weight function, to find a

rational polynomial

gj(X) =

dj∑

i=0

b
(j)
i

(
X

i

)

∈ Q[X],

with all b
(j)
i ∈ Z and dj ≤ (tj + 1)pmj + (m− 1)ϕ(pmj )− 1, such that

gj(x) ≡

{

wj

(
x

p
mj

)
mod pm if x ≡ 0 mod pmj

0 mod pm if x 6≡ 0 mod pmj ,
and(13)

b
(j)
i ≡ 0 mod pℓ, where ℓ = max{0,

⌈
i−(tj+1)pmj+1

ϕ(pmj )

⌉

}.(14)

In view of all definitions involved,

N ≡
∑

a∈B

g1
(
f1(a)

)
g2
(
f2(a)

)
· · · gs

(
fs(a)

)
mod pm

=
∑

a∈B

(
d1∑

i=0

b
(1)
i

(
f1(a)

i

))( d2∑

i=0

b
(2)
i

(
f2(a)

i

))

· · ·

(
ds∑

i=0

b
(s)
i

(
fs(a)

i

))

=
∑

(k1,...,ks)∈
∏s

i=1[0,di]

b
(1)
k1

b
(2)
k2

· · · b
(s)
ks

∑

a∈B

(
f1(a)

k1

)(
f2(a)

k2

)

· · ·

(
fs(a)

ks

)

.(15)
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It suffices to show each summand in (15) is divisible by pm. With this goal in mind, let

(k1, . . . , ks) ∈
∏s

i=1[0, di] be arbitrary. For j ∈ [1, s], define ℓj := max{0,
⌈
kj−(tj+1)pmj+1

ϕ(pmj )

⌉

} ≥

kj−(tj+1)pmj+1

ϕ(pmj )
, in which case

(16) kj ≤ ℓjϕ(p
mj ) + (tj + 1)pmj − 1.

All summands in (15) with ℓ1 + . . . + ℓs ≥ m are congruent to 0 modulo pm by (14), since this

ensures that b
(1)
k1

· · · b
(s)
ks

≡ 0 mod pm. We need only consider those with

(17) ℓ1 + . . .+ ℓs = m− t for some t ≥ 1.

In this case, (14) instead ensures that the coefficient b
(1)
k1

b
(2)
k2

· · · b
(s)
ks

is divisible by pm−t, so we

just need to show that the summation
∑

a∈B

(
f1(a)
k1

)(
f2(a)
k2

)
· · ·
(
fs(a)
ks

)
is divisible by pt.

In view of (16), (17), (12) and t ≥ 1, we have

deg

((
f1(x)

k1

)(
f2(x)

k2

)

· · ·

(
fs(x)

ks

))

= k1 deg f1 + . . . + ks deg fs

≤
s∑

j=1

(

ℓjϕ(p
mj ) + (tj + 1)pmj − 1

)

deg fj

= (p− 1)
( s∑

i=1

ℓi
ϕ(pmi)

p− 1
deg fi +

s∑

i=1

(ti + 1)pmi − 1

p− 1
deg fi

)

≤ (p− 1)
(

(ℓ1 + . . .+ ℓs) max
i∈[1,s]

{

1,
ϕ(pmi)

p− 1
deg fi

}

+
s∑

i=1

(ti + 1)pmi − 1

p− 1
deg fi

)

= (p− 1)
(

(m− 1− (t− 1)) max
i∈[1,s]

{

1,
ϕ(pmi)

p− 1
deg fi

}

+
s∑

i=1

(ti + 1)pmi − 1

p− 1
deg fi

)

< (p− 1)
(

n− (t− 1) max
i∈[1,s]

{

1,
ϕ(pmi)

p− 1
deg fi

})

≤ (p− 1)(n + 1− t),

implying that

n ≥ (t− 1) +
deg

((
f1(x)
k1

)(
f2(x)
k2

)
· · ·
(
fs(x)
ks

))

+ 1

p− 1
.

But now Lemma 2.7 implies that
∑

a∈B

(
f1(x)
k1

)(
f2(x)
k2

)
· · ·
(
fs(x)
ks

)
is divisible by pt, completing the

proof as already noted. �

To effectively use Theorem 1.3 requires a “good” choice for the complete system of residues

modulo p. This can generally be achieved by use of Hensel’s Lemma [34]. We state one commonly

used version below.

Theorem 2.8 (Hensel’s Lemma). Let p ≥ 2 be prime, let m ≥ 1 and e ∈ [1,m] be integers, and

let f(X) ∈ Z[X] be a polynomial. If f(x) ≡ 0 mod pm and f ′(x) 6≡ 0 mod p, where x ∈ Z,
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then there is some y ∈ Z with

y ≡ x mod pm and f(y) ≡ 0 mod pm+e.

Moreover, the value of y is uniquely determined modulo pm+e.

We conclude the section by giving the short derivation of Proposition 1.4 using Hensel’s

Lemma, which provides the appropriate choice for the complete system of residues for many

combinatorial applications of Theorem 1.3.

Proof of Proposition 1.4. Let z ∈ [1, p − 1] be a primitive residue class modulo the prime p,

meaning {0} ∪ {zi : i ∈ [1, p − 1]} is a complete system of residues modulo p (since Z/pZ is a

finite field with cyclic multiplicative group, such z exists) and

zp−1 ≡ 1 mod p.

Let

f(X) = Xp−1 − 1 ∈ Z[X]

and note that f ′(x) = (p − 1)x ≡ −x 6≡ 0 mod p for any x ∈ Z with x 6≡ 0 mod p. For each

i ∈ [1, p − 1], we have f(zi) = (zp−1)i − 1 ≡ 1i − 1 = 0 mod p. Thus we can repeatedly apply

Hensel’s Lemma (Theorem 2.8) to find some yi ∈ [0, pm − 1] with

(18) yi ≡ zi 6≡ 0 mod p and yp−1
i − 1 = f(yi) ≡ 0 mod pm,

for all i ∈ [1, p − 1]. Let I = {0} ∪ {yi : i ∈ [1, p − 1]}. Since {0} ∪ {zi : i ∈ [1, p − 1]} was a

complete system of residues modulo p with yi ≡ zi mod p for all i, it follows that I remains a

complete system of residues modulo p, and one with the needed properties in view of (18). �

3. Applications in Combinatorial Number Theory

In this section, we give the proofs of the applications of Theorem 1.3.

Proposition 3.1. Let G be a finite abelian p-group with exponent q > 1, and let S be a sequence

of terms from G with |S| ≥ m (p−1)q
p

+ D∗(G), where m ≥ 0. Then

∞∑

j=0

(p − 1)jNj(S) ≡ 0 mod pm+1.

Proof. Write G = Cq1 ⊕ . . .⊕ Cqr with each qi a power of p and

1 < q1 ≤ . . . ≤ qr = q.

Then D∗(G) =
r∑

i=1
(qi − 1) + 1. Let (e1, . . . , er) be a basis for G with ord(ei) = qi for i ∈ [1, r].

Let S = g1 · . . . · gℓ, so ℓ = |S| ≥ m (p−1)q
p

+ D∗(G). For each i ∈ [1, ℓ], write

gi =

r∑

j=1

a
(j)
i ej with a

(j)
i ∈ [0, qj − 1].
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Let

fj(x) =

ℓ∑

i=1

a
(j)
i Xp−1

i ∈ Z[X1, . . . ,Xℓ], for j ∈ [1, r].

In view of Proposition 1.4, let I ⊆ [0, q − 1] be a complete system of residues modulo p such

that

(19) xp−1 ≡

{

1 mod q if x 6≡ 0 mod p

0 mod q if x ≡ 0 mod p,
for every x ∈ I.

Observe that maxj∈[1,r]
{
1,

ϕ(qj)
p−1 deg fj

}
= maxj∈[1,r]

{
ϕ(qj)

}
= ϕ(q) = (p−1)q

p
and

ℓ = |S| ≥ m max
j∈[1,r]

{
1,

ϕ(qj)

p− 1
deg fj

}
+

r∑

j=1

qj − 1

p− 1
deg fj + 1.

Thus we can apply Theorem 1.3, with m taken to be m+ 1, taking Ij = I for all j, and using

the polynomials f1, . . . , fr, prime powers q1, . . . , qr = q, and weight functions wj(X) = 1 for all

j ∈ [1, r]. As a result, letting

V = {a ∈ Iℓ : fj(a) ≡ 0 mod qj for all j ∈ [1, r]},

it follows that

(20) |V | ≡ 0 mod pm+1.

Let us next describe what |V | equals in terms of the zero-sum subsequences of S.

Associate to each a ∈ Iℓ the subsequence Sa =
∏•

j∈Ia
gj , where Ia ⊆ [1, ℓ] consists of all

j ∈ [1, ℓ] for which the j-th coordinate of a is nonzero modulo p. Thus the nonzero (modulo

p) terms in I “select” the terms included in the sequence Sa. In view of (19), the conditions

fj(a) ≡ 0 mod qj in the definition of V , for j ∈ [1, r], restrict to tuples a ∈ Iℓ for which

the associated sequence Sa is zero-sum. This means that the tuples a ∈ V are precisely those

whose associated sequence Sa is a zero-sum subsequence, in which case |Sa| = j for some j ≥ 0.

Moreover, each zero-sum subsequence of length j is associated to exactly (p− 1)j tuples a ∈ Iℓ,

for there are (p− 1) elements of I that are nonzero modulo p, each of which selects one term in

Sa, while the unique element of I congruent to zero is the only way to not select a term in Sa.

As a result, |V | =
∞∑

j=0
(p−1)jNj(S), which combined with (20) yields the desired conclusion. �

We now can complete the proof regarding the Davenport Constant. Note, the original proof

also proceeds by first deriving Proposition 3.1, so the proof below continues as usual.

Proof of Theorem 1.5. Let G = Cq1⊕. . .⊕Cqs and let (e1, . . . , es) be a basis for G with ord(ei) =

qi for all i ∈ [1, s]. We can assume G is nontrivial else D(G) = D∗(G) = 1. Now D∗(G) =

1 +
s∑

i=1
(qi − 1) and the sequence

∏•
i∈[1,s] e

[qi−1]
i is zero-sum free, showing D(G) ≥ D∗(G). To

show the upper bound, let S be a sequence of terms from G with length D∗(G). Assuming
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by contradiction that S is zero-sum free, we obtain Ni(S) = 0 for all i > 0, in which case

Proposition 3.1 applied with m = 0 yields the contradiction 1 = N0 ≡ 0 mod p. �

As a minor variation on Proposition 3.1, we have the following result.

Proposition 3.2. Let G be a finite abelian p-group with exponent q > 1, let α ∈ [0, q − 1], let

t ≥ 1, and let S be a sequence of terms from G with |S| ≥ m (p−1)q
p

+ tq − 1 + D∗(G), where

m ≥ 0. Then

∞∑

j=0

(p− 1)jq+α
(

jiNjq+α(S)
)

≡ 0 mod pm+1, for every i ∈ [0, t− 1].

Proof. Write G = (Z/q1Z)⊕ . . . ⊕ (Z/qrZ) with each qi a power of p and

1 < q1 ≤ . . . ≤ qr = qr+1 := q.

Then D∗(G) =
r∑

i=1
(qi − 1) + 1. Let (e1, . . . , er) be a basis for G with ord(ei) = qi for i ∈ [1, r].

Let S = g1 · . . . · gℓ, so ℓ = |S| ≥ m (p−1)q
p

+ tq − 1 + D∗(G). For each i ∈ [1, ℓ], write

gi =
r∑

j=1

a
(j)
i ej with a

(j)
i ∈ [0, qj − 1].

Let

fj(x) =

ℓ∑

i=1

a
(j)
i Xp−1

i ∈ Z[X1, . . . ,Xℓ], for j ∈ [1, r].

Let

fr+1(x) =
ℓ∑

i=1

Xp−1
i − α ∈ Z[X1, . . . ,Xℓ].

For i ∈ [0, t− 1], let

wi(X) = Xi ∈ Z[X].

In view of Proposition 1.4, let I ⊆ [0, qpm+1 − 1] be a complete system of residues modulo p

such that

(21) xp−1 ≡

{

1 mod qpm+1 if x 6≡ 0 mod p

0 mod qpm+1 if x ≡ 0 mod p,
for every x ∈ I.

Observe that maxj∈[1,r+1]

{
1,

ϕ(qj)
p−1 deg fj

}
= maxj∈[1,r+1]

{
ϕ(qj)

}
= ϕ(q) = (p−1)q

p
and

ℓ = |S| ≥ m max
j∈[1,r+1]

{
1,

ϕ(qj)

p − 1
deg fj

}
+

tq − 1

p− 1
deg fr+1 +

r∑

j=1

qj − 1

p− 1
deg fj + 1.
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Thus, for each i ∈ [0, t−1], we can apply Theorem 1.3, with m taken to be m+1, taking Ij = I

for all j, and using the polynomials f1, . . . , fr, fr+1, weights w0, . . . , w0
︸ ︷︷ ︸

r

, wi, and prime powers

q1, . . . , qr, qr+1 = q. As a result, letting

V = {a ∈ Iℓ : fj(a) ≡ 0 mod qj for all j ∈ [1, r + 1]},

it follows that the weighted size of V is congruent to 0 modulo pm+1, for each i ∈ [0, t− 1]. Let

us next describe what this size equals.

Associate to each a ∈ Iℓ the subsequence Sa =
∏•

j∈Ia
gj , where Ia ⊆ [1, ℓ] consists of all

j ∈ [1, ℓ] for which the j-th coordinate of a is nonzero modulo p. In view of (21), the conditions

fj(a) ≡ 0 mod qj in the definition of V , for j ∈ [1, r], restrict to tuples a ∈ Iℓ for which

the associated sequence Sa is zero-sum. Likewise, the additional condition fr+1(a) ≡ 0 mod q

further restricts to tuples a ∈ Iℓ whose associated sequence Sa has length |Sa| = |Ia| ≡ α

mod q. This means that the tuples a ∈ V are precisely those whose associated sequence Sa

is a zero-sum subsequence of length |Sa| ≡ α mod q, meaning |Sa| = jq + α for some j ≥ 0.

Moreover, each zero-sum subsequence of length jq+α is associated to exactly (p−1)jq+α tuples

a ∈ Iℓ, and the weighted size of each such tuple is wi(j) ≡ ji mod pm+1 (in view of (21)). As a

result, for i ∈ [0, t− 1], the weighted size of V equals
∞∑

j=0
(p− 1)jq+α

(

jiNjq+α(S)
)

modulo pm+1,

meaning the conclusion of Theorem 1.3 is precisely the desired conclusion of the proposition. �

We now give the proof of the Kemnitz Conjecture, which contains Alon and Dubiner’s argu-

ment that N3p(S) 6= 0 implies Np(S) 6= 0 [2]. We remark that it would also be possible to derive

the congruences below using the higher order p divisibility of |V | in Theorem 1.3 (combined

with combinatorial double counting arguments of the type used by Reiher [36]) rather than the

weight functions. However, using the weight functions directly is simpler.

Proof of Theorem 1.6. Let G = C2
p with (e1, e2) a basis for G. Note that 0[p−1]

· e
[p−1]
1 · e

[p−1]
2 ·

(e1 + e2)
[p−1] is a sequence of 4p− 4 terms from G containing no p-term zero-sum subsequence,

showing sp(C
2
p ) ≥ 4p−3. To show the upper bound, assume by contradiction that S is a sequence

of terms from G with |S| = 4p − 3 and 0 /∈ Σp(S). If p = 2, then |S| = 4p − 3 = 5 ensures via

the Pigeonhole Principle that S contains a term g with multiplicity at least two, in which case

g[2] will be a p-term zero-sum subsequence, contrary to assumption. Therefore we can assume

p ≥ 3.

If T | S is any subsequence with |T | ≥ 3p − 2, then Proposition 3.2 (applied with α = 0,

m = 0 and t = 1) implies that N0(T ) − Np(T ) + N2p(T ) − N3p(T ) ≡ 0 mod p. In particular,

since Np(S) = 0 by assumption, it follows that any zero-sum subsequence T | S with |T | = 3p

has N2p(T · g[−1]) ≡ −N0(T · g[−1]) = −1 mod p, for any g ∈ Supp(T ), ensuring that T · g[−1]

has a zero-sum subsequence R of length 2p. However, the complement of R in T would then be

a zero-sum subsequence of length |T | − |R| = p, contradicting that Np(S) = 0. Therefore we
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instead conclude that

(22) Np(S) = N3p(S) = 0,

and now Proposition 3.2 implies that

(23) N2p(T ) ≡ −1 mod p for all T | S with |T | ≥ 3p − 2.

For j ≥ 0, let

Nj = Nj(S).

Since |S| ≥ 3p− 2, Proposition 3.2 (applied with α = p− 1, m = 0 and t = 1) implies that

(24) Np−1 −N2p−1 +N3p−1 ≡ 0 mod p

Let T | S be an arbitrary zero-sum sequence with |T | = 3p − 1. Then Np−1(T ) = N2p(T ) ≡

−1 mod p by (23), with the first equality holding since the complement in T of a zero-sum

subsequence of T is also zero-sum. Thus
∑

T

Np−1(T ) ≡ −N3p−1 mod p, where the sum is taken

over all zero-sum subsequences T | S with |T | = 3p − 1. On the other hand, every zero-sum

subsequence R | S with |R| = p−1 is contained in exactly N2p(S ·R[−1]) zeros-sum subsequences

T | S with |T | = 3p− 1. Since |S ·R[−1]| = 3p− 2, (23) ensures that N2p(S ·R[−1]) ≡ −1 mod p

for any such R, in which case −N3p−1 ≡
∑

T

Np−1(T ) =
∑

R

N2p(S ·R[−1]) ≡ −Np−1 mod p, where

the second sum is taken over all zero-sum subsequences R | S with |R| = p− 1. Hence

(25) Np−1 ≡ N3p−1 mod p.

Observe that Nj(S · 0) = Nj +Nj−1 for every j > 0. Thus, since |S · 0| = |S| + 1 = 4p − 2,

applying Proposition 3.2 (with α = 0, m = 0 and t = 2) to S · 0 implies

Np +Np−1 − 2N2p − 2N2p−1 + 3N3p−1 + 3N3p ≡ 0 mod p.

We have N2p ≡ −1 mod p by (23), and Np = N3p = 0 by (22). Thus

(26) Np−1 − 2N2p−1 + 3N3p−1 ≡ −2 mod p.

The equations (24), (25) and (26) form a system of 3 linear equations in the variables Np−1,

N2p−1 and N3p−1 over the field Z/pZ. However, for p ≥ 3, basic linear algebra shows this system

to be inconsistent, yielding a proof concluding contradiction. �

The remainder of the section is devoted to the constant sk exp(G)(G). We begin with the

refinement to the result obtained via Rónyai’s method.

Proof of Theorem 1.7. Letting X ′ ⊆ X be the subset consisting of the smallest d+m elements

in X, we have maxX ′ ≤ maxX − (|X| − d−m). Since maxX ′ < min(X \X ′), it follows that
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(1) also holds for X ′. If the result holds whenever |X| = d +m, then applying this case to X ′

yields

sX·q(G) ≤ sX′·q(G) ≤
(
maxX ′ − d−

m

p
+ 1
)
q + D∗(G) − 1

≤
(
maxX − |X|+

m(p− 1)

p
+ 1
)
q + D∗(G)− 1

≤
(
maxX + 1−

m

p

)
q − r,

with the third inequality in view of the hypothesis |X| ≥ d+m, as desired. Therefore it suffices

to handle the case when |X| = d+m, which we now assume. We need to show

sX·q(G) ≤
(
k − d−

m

p
+ 1
)
q + D∗(G) − 1,

where k = maxX. Let {x1, . . . , xs} = [1, k]\X, where s = k−d−m and 1 ≤ x1 < . . . < xs < k.

Write G = Cq1 ⊕ . . .⊕ Cqr with each qi a power of p and

1 < q1 ≤ . . . ≤ qr = qr+1 := q.

Then D∗(G) =
r∑

i=1
(qi − 1) + 1. Let (e1, . . . , er) be a basis for G with ord(ei) = qi for i ∈ [1, r].

Let S = g1 · . . . · gℓ be a sequence of terms from G with |S| = ℓ = (k− d− m
p
+1)q +D∗(G)− 1.

We have

(27)

⌊
|S|

q

⌋

≤ k − d+

⌊

1 +
D∗(G)− 1

q

⌋

= k.

For each i ∈ [1, ℓ], write

gi =

r∑

j=1

a
(j)
i ej with a

(j)
i ∈ [0, qj − 1].

Let

fj(x) =
ℓ∑

i=1

a
(j)
i Xp−1

i ∈ Z[X1, . . . ,Xℓ], for j ∈ [1, r].

Let

fr+1(x) =
ℓ∑

i=1

Xp−1
i ∈ Z[X1, . . . ,Xℓ].

For i ∈ [0, k − d−m], let

wi(X) = Xi ∈ Z[X].

In view of Proposition 1.4, let I ⊆ [0, qpm+1 − 1] be a complete system of residues modulo p

such that

(28) xp−1 ≡

{

1 mod qpm+1 if x 6≡ 0 mod p

0 mod qpm+1 if x ≡ 0 mod p,
for every x ∈ I.
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Observe that maxj∈[1,r+1]

{
1,

ϕ(qj)
p−1 deg fj

}
= maxj∈[1,r+1]

{
ϕ(qj)

}
= ϕ(q) = (p − 1) q

p
and

ℓ = |S| = m(p− 1)
q

p
+

r∑

j=1

(qj − 1) + (k − d−m+ 1)q

= m max
j∈[1,r+1]

{
1,

ϕ(qj)

p − 1
deg fj

}
+

r∑

j=1

qj − 1

p− 1
deg fj +

(k − d−m+ 1)q − 1

p− 1
deg fr+1 + 1.

Thus, for each i ∈ [0, k − d−m], we can apply Theorem 1.3, with m taken to be m+ 1, taking

Ij = I for all j, and using the polynomials f1, . . . , fr, fr+1, weights w0, . . . , w0
︸ ︷︷ ︸

r

, wi, and prime

powers q1, . . . , qr, q. As a result, letting

V = {a ∈ Iℓ : fj(a) ≡ 0 mod qj for all j ∈ [1, r + 1]},

it follows that the weighted size of V is congruent to 0 modulo pm+1, for each i ∈ [0, k− d−m].

Let us next describe what this size equals.

Let

Nj := Njq(S) for j ∈ [0, k].

Let i ∈ [0, k − d − m] be arbitrary. Associate to each a ∈ Iℓ the subsequence Sa =
∏•

j∈Ia
gj ,

where Ia ⊆ [1, ℓ] consists of all j ∈ [1, ℓ] for which the j-th coordinate of a is nonzero modulo

p. In view of (28), the conditions fj(a) ≡ 0 mod qj, for j ∈ [1, r], restrict to tuples a ∈ Iℓ for

which the associated sequence Sa is zero-sum. Likewise, the additional condition fr+1(a) ≡ 0

mod q further restricts to tuples a ∈ Iℓ whose associated sequence Sa has length |Sa| = |Ia| ≡ 0

mod q. This means that the tuples a ∈ V are precisely those whose associated sequence Sa is a

zero-sum subsequence of length |Sa| ≡ 0 mod q, meaning |Sa| = jq for some j ∈ [0, k] (in view

of (27)). Moreover, each zero-sum subsequence of length jq is associated to exactly (p − 1)jq

tuples a ∈ Iℓ, and the weighted size of each such tuple is wi(j) ≡ ji mod pm+1 (in view of (28)).

As a result, for i ∈ [0, k − d − m], the weighted size of V equals
k∑

j=0
ji(p − 1)jqNj mod pm+1,

meaning the conclusion of Theorem 1.3 is that

(p− 1)qN1 + (p− 1)2qN2 + . . .+ (p− 1)jqNj + . . .+ (p− 1)kqNk ≡ −N0 = −1 mod pm+1

and

(p− 1)qN1 + 2i(p− 1)2qN2 + . . .+ ji(p− 1)jqNj + . . .+ ki(p − 1)kqNk ≡ 0 mod pm+1,

for every i ∈ [1, k − d−m].

Assuming by contradiction that S has no zero-sum subsequence of length kq with k ∈ X, it

follows that Nj = 0 for all j ∈ X. This leaves us with a system of k−d−m+1 linear equations,

one for each i ∈ [0, k − d−m], in the k− d−m variables Nj, where j ∈ [1, k] \X, over the ring

R = Z/pm+1Z. We proceed to show this system is inconsistent, which will complete the proof.
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Let A′ be (k−d−m+1)×(k−d−m) matrix, with rows indexed by i ∈ [0, k−d−m], columns

indexed by j ∈ [1, k] \X, and (i, j)-th entry equal to ji(p− 1)jq, and let y be the column vector

[Nj ]j∈[1,k]\X . Then the above system of linear equations can be written as A′y ≡ [−1, 0, . . . , 0]

mod pm+1. To show this system is inconsistent, it suffices to show a nonzero (modulo pm+1)

multiple the first row of A′ can be written as a linear combination of the remaining rows. To

this end, let A = [ji(p−1)jq]i∈[1,k−d−m],j∈[1,k]\X be the (k−d−m)×(k−d−m) matrix obtained

from A′ by removing the first row. We continue by calculating detA. Note that A can be

obtained from the matrix B = [ji]i∈[0,k−d−m−1],j∈[1,k]\X by multiplying each j-th column of B

by j(p − 1)jq. Thus

detA =
( ∏

j∈[1,k]\X

j(p − 1)jq
)

detB =
( s∏

j=1

xj(p − 1)xjq
)

detB,

where we recall that [1, k] \ X = {x1, . . . , xs} with x1 < . . . < xs (by hypothesis). However,

note that B is simply a Vandermonde matrix, whose well-known determinant (see [22]) equals

detB =
∏

1≤i<j≤s(xj − xi). It follows that

detA =
( s∏

j=1

xj(p− 1)xjq
)( ∏

1≤i<j≤s

(xj − xi)
)

6≡ 0 mod pm+1,

with this determinant being nonzero by hypothesis. In consequence, the rows of A are linearly

independent over Q, meaning there is some Q-linear combination of the rows of A equal to the

first row in A′. Moreover, since the entries of A′ are integers, Cramer’s Rule (see [22]) ensures

that each coefficient in this linear combination has it denominator dividing detA. By clearing

denominators, it then follows that there is a Z-linear combination of the rows of A equal to

the first row of A′ multiplied by the integer detA 6≡ 0 mod pm+1. Reducing modulo pm+1, we

obtain a linear combination of the rows of A equal to a nonzero (modulo pm+1) multiple of the

first row of A′, which shows that the system of linear equations is inconsistent, completing the

proof as noted earlier. �

The following is the main step in the proof of Theorem 1.9.

Proposition 3.3. Let G be a finite abelian p-group with exponent q, let d =
⌈
D∗(G)

q

⌉

, and let k

be an integer such that
d(d−1)

2 + 1 ≤ k ≤ p. Then

skq(G) ≤ kq + D∗(G)− 1.

Proof. If q = 1, then G is trivial with skq(G) = kq = kq + D∗(G) − 1, as desired. Therefore

we can assume q > 1. Let r ∈ [1, q] be the integer such that d = D
∗(G)+r−1

q
. Note that d ≥ 1.

Assume by contradiction that S is a sequence of terms from G with

0 /∈ Σkq(S) and |S| = kq +D∗(G)− 1 = (k + d)q − r.
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Claim A: There are disjoint subsequences T1 · . . . · Td−1 | S such that each Ti is zero-sum

with |Ti| = iq, for every i ∈ [1, d − 1].

Proof. Let Y ⊆ [1, d − 1] be a maximal subset (possibly empty) such that there are disjoint

subsequences
∏•

i∈Y Ti | S with each Ti is zero-sum and |Ti| = iq, for every i ∈ Y . To establish

the claim, we need to show Y = [1, d− 1]. If d = 1, then the claim is trivial taking Y = ∅, so we

can assume d ≥ 2.

We begin by showing |Y | ≥ 1. To this end, let X = [1, d−1]∪{k}. In view of k ≥ d(d−1)
2 +1 ≥

d ≥ 1, we have X ⊆ N and |X| = d. In view of k ≤ p, we have [1,maxX] \X = [d, k − 1] ⊆

[d, p−1]. Thus, since |S| = (k+d)q−r ≥ (k+1)q−r (as d ≥ 1), we can apply Theorem 1.7 with

X = [1, d− 1]∪ {k} and m = 0 to conclude that there is some zero-sum subsequence T | S with

|T | ∈ ([1, d− 1] ∪ {k}) · q. Since 0 /∈ Σkq(S), it thus follows that |T | = iq for some i ∈ [1, d− 1],

and taking Ti = T and Y = {i} now shows that |Y | ≥ 1. The claim is now complete unless

d ≥ 3.

We continue by showing that |Y | ≥ 2. If this fails, then we have Y = {y1} for some y1 ∈

[1, d− 1], and there is a zero-sum subsequence T1 | S with |T1| = y1q. Since 0 /∈ Σkq(S), we have

(29) 0 /∈ Σ{(k−y1),k}·q(T
[−1]
1 · S).

Let X =
(
[1, d− 1] \ {y1}

)
∪ {k − y1} ∪ {k}. Since k ≥ d(d−1)

2 + 1 ≥ 2(d− 1) and y1 ∈ [1, d− 1],

we have X ⊆ N with |X| = d. Since k ≤ p, we have [1,maxX] \ X ⊆ [1, k − 1] ⊆ [1, p − 1].

Since y1 ≤ d − 1, we have |T
[−1]
1 · S| = (k − y1 + d)q − r ≥ (k + 1)q − r. As a result, we can

apply Theorem 1.7 to T
[−1]
1 · S with X =

(
[1, d − 1] \ {y1}

)
∪ {k − y1} ∪ {k} and m = 0 to find

a zero-sum subsequence T2 | T
[−1]
1 · S with |T2| = y2q for some y2 ∈ [1, d − 1] \ {y1} (in view of

(29)). But now the set {y1, y2} can be taken for Y , showing that |Y | ≥ 2. The claim is now

complete unless d ≥ 4.

In view of the our prior work, let s := |Y | ≥ 2, let Y = {y1, . . . , ys}, and let T1 · . . . · Ts | S

with each Ti a zero-sum subsequence of length |Ti| = yiq with yi ∈ [1, d− 1], for every i ∈ [1, s].

Assume by contradiction that 2 ≤ s ≤ d− 2. Let y = y1 + . . .+ ys and let

max([1, d − 1] \ Y ) = d− s0, where s0 ∈ [1, s + 1].

Observe that

y ≤
s+1∑

i=1

(d− i)− (d− s0) =
s(2d− s− 3)

2
+ s0 − 1 ≤

d(d− 1)

2
− 1 ≤ k − 2,(30)

with the final inequality holding by hypothesis. Let T ∗ = y1 · . . . · ys, which is a sequence of

terms from Z. Since 0 /∈ Σkq(S), we have

(31) 0 /∈ Σ(k−t)q

(
(T1 · . . . · Ts)

[−1]
· S
)
, for every t ∈ Σ(T ∗) ∩ [1, k − 1].

Since s ≥ 2, we have

y ∈ Σ(T ∗) and y − yi = y1 + . . .+ yi−1 + yi+1 + . . . + ys ∈ Σ(T ∗), for every i ∈ [1, s].
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Hence, in view of (30) and y1, . . . , ys ≥ 1, it follows that y, y− y1, . . . , y− ys ∈ Σ(T ∗)∩ [1, k− 1]

are distinct elements. Thus (31) implies that

(32) 0 /∈ Σ{(k−y),(k−y+y1),...,(k−y+ys)}·q

(
(T1 · . . . · Ts)

[−1]
· S
)
.

Now let X =
(
[1, d− 1] \ {y1, . . . , ys}

)
∪ {k − y, k − y + y1, . . . , k − y + ys}. By definition of

s0, we have max
(
[1, d − 1] \ {y1, . . . , ys}

)
= d − s0. If k − y ≤ d − s0, then (30) and s ≤ d − 2

yield

k ≤ d− s0 + y ≤ d+
s(2d− s− 3)

2
− 1 ≤

d(d− 1)

2
,

contrary to hypothesis. Therefore, we must instead have k − y > d− s0, which ensures that

max
(
[1, d− 1] \ {y1, . . . , ys}

)
< min

(

{k − y, k − y + y1, . . . , k − y + ys}
)

and

|X| = d.

In view of k ≤ p, we have [1,maxX]\X ⊆ [1, k−2] ⊆ [1, p−2]. We also have |(T1 ·. . .·Ts)
[−1]

·S| =

|S| − yq = (k − y + d)q − r. As a result, in view of y1, . . . , ys ∈ [1, d − 1], it follows that we can

apply Theorem 1.7 using m = 0 and

X =
(
[1, d − 1] \ {y1, . . . , ys}

)
∪ {k − y, k − y + y1, . . . , k − y + ys}

to conclude in view of (32) that there is a zero-sum subsequence Ts+1 | (T1 · . . . · Ts)
[−1]

· S with

|Ts+1| = ys+1q for some ys+1 ∈ [1, d−1]\Y = [1, d−1]\{y1, . . . , ys}. But now {y1, . . . , ys, ys+1}

contradicts the maximality of Y , completing the proof of the claim. �

Let y = d(d−1)
2 =

∑

i∈[1,d−1]

i, and let X = [k−y, k−y+d−1]. Since k ≥ d(d−1)
2 +1 by hypothesis,

we have X ⊆ N and |X| = d. Since k ≤ p, we have [1,maxX] \X = [1, k − y − 1] ⊆ [1, p − 1].

In view of Claim A, we have |(T1 · . . . · Td−1)
[−1]

· S| = |S| − yq = (k − y + d)q − r. As a result,

we can apply Theorem 1.7 to (T1 · . . . · Td−1)
[−1]

· S with X = [k − y, k − y + d− 1] and m = 0

to conclude that

(33) 0 ∈ Σ[(k−y),k−y+d−1]·q

(
(T1 · . . . · Td−1)

[−1]
· S
)
.

In view of Claim A, we have 0 ∈ Σtq(T1 · . . . · Td−1) for every t ∈ [0, y], which combined with

(33) implies that 0 ∈ Σkq(S), contrary to assumption, completing the proof. �

Next, we handle the main step in the proof of Theorem 1.8.

Proposition 3.4. Let G be a finite abelian p-group with exponent q, let d =
⌈
D

∗(G)
q

⌉

. Suppose

d ≤ 4 and k is an integer with d ≤ k ≤ p. Then

skq(G) ≤ kq + D∗(G)− 1.
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Proof. If q = 1, then G is trivial with skq(G) = kq = kq + D∗(G) − 1, as desired. Therefore we

can assume q > 1. Note that d ≥ 1. Assume by contradiction that S is a sequence of terms

from G with

0 /∈ Σkq(S) and |S| = kq +D∗(G)− 1 = (k + d)q − r,

where r ∈ [1, q] is the integer such that d = D
∗(G)+r−1

q
.

Case 1: d = 1

Let X = {k}. Since 1 = d ≤ k ≤ p, we have X ⊆ N and [1,maxX] \ X = [1, k − 1] ⊆

[1, p − 1], allowing us to apply Theorem 1.7 using X = {k} and m = 0 to conclude that

skq(G) ≤ kq + D∗(G) − 1, as desired.

Case 2: d = 2

Note that k ≥ d = 2. Suppose there is a zero-sum subsequence T | S with |T | = q. Then

0 /∈ Σkq(S) ensures that 0 /∈ Σ{(k−1),k}·q(T
[−1]

· S). Let X = {k − 1, k}. In view of k ≥ 2, we

have X ⊆ N and |X| = 2. In view k ≤ p, we have [1,maxX] \X = [1, k − 2] ⊆ [1, p − 2] and

|T [−1]
· S| = (k + 1)q − r, allowing us to apply Theorem 1.7 to T [−1]

· S using X = {k, k − 1}

and m = 0 to conclude that 0 ∈ Σ{(k−2),k}·q(T
[−1]

· S), contradicting that the opposite was just

shown. So we instead conclude that

(34) 0 /∈ Σ{1,k}·q(S).

Now let X = {1, k}. In view of k ≥ 2, we have X ⊆ N and |X| = 2. In view of k ≤ p, we have

[1,maxX] \X = [2, k − 1] ⊆ [1, p− 1] and |S| ≥ (k + 1)q − r, allowing us to apply Theorem 1.7

to S using X = {1, k} and m = 0 to conclude that 0 ∈ Σ{1,k}·q(S), contrary to (34).

Case 3: d = 3

Note that k ≥ d = 3. Suppose there is a zero-sum subsequence T1 | S with |T1| = q. Then

0 /∈ Σkq(S) ensures that 0 /∈ Σ{(k−1),k}·q(T
[−1]
1 · S). Let X = {1, k − 1, k}. In view of k ≥ d = 3,

we have X ⊆ N with |X| = 3. In view of k ≤ p, we have [1,maxX] \X = [2, k − 2] ⊆ [2, p − 2]

and |T
[−1]
1 · S| = (k + 2)q − r, allowing us to apply Theorem 1.7 using X = {1, k − 1, k} and

m = 0 to conclude that 0 ∈ Σ{1,(k−1),k}·q(T
[−1]
1 · S), which in view of 0 /∈ Σ{(k−1),k}·q(T

[−1]
1 · S)

means there is some zero-sum subsequence T2 | T
[−1]
1 · S with |T2| = q. But now 0 /∈ Σkq(S)

ensures that

0 /∈ Σ{(k−2),(k−1),k}·q(T
[−1]
1 · T

[−1]
2 · S).

Now let X = {k − 2, k − 1, k}. Note X ⊆ N with |X| = 3 = d in view of k ≥ d = 3. In view

of k ≤ p, we have [1,maxX] \X = [1, k − 3] ⊆ [1, p − 3] and |T
[−1]
1 · T

[−1]
2 · S| = (k + 1)q − r,

allowing us to apply Theorem 1.7 using X = {k − 2, k − 1, k} and m = 0 to conclude that

0 ∈ Σ{(k−2),(k−1),k}·q(T
[−1]
1 · T

[−1]
2 · S), contrary to what was just noted. So we instead conclude

that

(35) 0 /∈ Σ{1,k}·q(S).
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Suppose there is a zero-sum subsequence T | S with |T | = (k + 2)q. Let X = {1, k, k + 1}.

Then X ⊆ N with |X| = 3 in view of k ≥ 2. Since the complement of a zero-sum subsequence in

T is also zero-sum, we conclude from (35) that 0 /∈ Σ{1,k,(k+1)}·q(T ). In view of k ≤ p, we have

[1,maxX] \X = [2, k − 1] ⊆ [2, p − 1] and |T | = (k + 2)q ≥ (k + 2)q − r, allowing us to apply

Theorem 1.7 using X = {1, k, k + 1} and m = 0 to conclude that 0 ∈ Σ{1,k,(k+1)}·q(T ), contrary

to what was just noted. So we instead conclude that

(36) 0 /∈ Σ{1,k,(k+2)}·q(S).

Now let X = {1, k, k+2}. Then |S| = (k+3)q−r and [1,maxX]\X = [2, k−1]∪{k+1}. We

also have k ≤ p. As a result, unless p = k+1, we can apply Theorem 1.7 using X = {1, k, k+2}

and m = 0 to conclude that 0 ∈ Σ{1,k,(k+2)}·q(S), contrary to (36). Therefore we must have

p = k + 1 ≥ d+ 1 = 4, whence k + 1 = p ≥ 5 as p is prime. In particular, k ≥ 4.

Now let X = {1, 2, k}. Note that |X| = 3 in view of k ≥ 3. In view of k ≤ p, we have

[1,maxX] \X = [3, k − 1] ⊆ [3, p− 1] and |S| = (k + 3)q − r, allowing us to apply Theorem 1.7

using X = {1, 2, k} and m = 0 to conclude that 0 ∈ Σ{1,2,k}·q(S), which in view of (36) implies

that there is a zero-sum subsequence T | S with |T | = 2q. But now 0 /∈ Σkq(S) ensures that

0 /∈ Σ(k−2)q(T
[−1]

· S). Thus (36) yields

(37) 0 /∈ Σ{1,(k−2),k}·q(T
[−1]

· S).

Now let X = {1, k − 2, k}. In view of k ≥ 4, we have X ⊆ N and |X| = 3. In view of k ≤ p,

we have [1,maxX] \X ⊆ [2, k− 1] ⊆ [2, p− 1] and |T [−1]
·S| = (k+1)q− r, allowing us to apply

Theorem 1.7 using X = {1, k − 2, k} and m = 0 to conclude that 0 ∈ Σ{1,(k−2),k}·q(T
[−1]

· S),

contrary to (37).

Case 4: d = 4.

Note that k ≥ d = 4. We divide the proof into five subcases. Note, since p is prime, that

k = 5 and p = k + 1 cannot both hold, ensuring all possibilities are covered.

CASE 4.1: 0 /∈ Σ{1,2}·q(S).

Suppose there is a zero-sum subsequence T | S with |T | = (k + 1)q. Then, since the com-

plement of zero-sum subsequence of T is also zero-sum, it follows from the subcase hypothesis

0 /∈ Σ{1,2}·q(S) that 0 /∈ Σ{1,2,(k−1),k}·q(T ). Let X = {1, 2, k − 1, k}. Since k ≥ 4, we have

X ⊆ N and |X| = 4. In view of k ≤ p, we have [1,maxX] \ X = [3, k − 2] ⊆ [3, p − 2] and

|T | = (k + 1)q ≥ (k + 1)q − r, allowing us to apply Theorem 1.7 to T with X = {1, 2, k − 1, k}

and m = 0 to conclude that 0 ∈ Σ{1,2,(k−1),k}·q(T ), contrary to what was just noted. So we

instead conclude that

(38) 0 /∈ Σ{1,2,k,(k+1)}·q(S).

Now let X = {1, 2, k, k + 1}. Since k ≥ 3, we have X ⊆ N and |X| = 4. In view of k ≤ p, we

have [1,maxX]\X = [3, k−1] ⊆ [3, p−1] and |S| = (k+4)q− r. But now Theorem 1.7 applied

to S with X = {1, 2, k, k + 1} and m = 0 yields 0 ∈ Σ{1,2,k,(k+1)}·q(S), contrary to (38).
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CASE 4.2: There exists disjoint subsequences T1 · T2 | S with |T1| = q, |T2| = 2q, and T1 and

T2 each zero-sum.

In this case, there are zero-sum subsequences of T1 · T2 having lengths q, 2q and also 3q. As

a result, since 0 /∈ Σkq(S), we have

0 /∈ Σ{(k−3),(k−2),(k−1),k}·q(T
[−1]
1 · T

[−1]
2 · S).

Let X = [k − 3, k]. Since k ≥ d = 4, we have X ⊆ N and |X| = 4. Since k ≤ p, we have

[1,maxX] \ X = [1, k − 4] ⊆ [1, p − 4]. Hence, since |T
[−1]
1 · T

[−1]
2 · S| = (k + 1)q − r, we

can apply Theorem 1.7 to T
[−1]
1 · T

[−1]
2 · S with X = [k − 3, k] and m = 0 to conclude that

0 ∈ Σ{(k−3),(k−2),(k−1),k}·q(T
[−1]
1 · T

[−1]
2 · S), contrary to what was just noted.

CASE 4.3: 0 ∈ Σq(S).

Let T1 | S be a zero-sum subsequence with |T1| = q, which exists by subcase hypothesis. In

view of CASE 4.2 and 0 /∈ Σkq(S), we can assume

(39) 0 /∈ Σ{2,(k−1),k}·q(T
[−1]
1 · S).

Suppose there is a zero-sum subsequence T | T
[−1]
1 · S with |T | = (k + 1)q. Then, since

the complement of a zero-sum subsequence of T is also zero-sum, it follows from (39) that

0 /∈ Σ{1,2,(k−1),k}(T ). Let X = {1, 2, k − 1, k}. Since k ≥ d = 4, we have X ⊆ N and |X| = 4.

Since p ≥ k, we have [1,maxX] \ X = [3, k − 2] ⊆ [3, p − 2]. Hence, since |T | = (k + 1)q ≥

(k + 1)q − r, we can apply Theorem 1.7 to T with X = {1, 2, k − 1, k} and m = 0 to conclude

that 0 ∈ Σ{1,2,(k−1),k}·q(T ), contrary to what was just noted. So we instead conclude that

0 /∈ Σ(k+1)q(T
[−1]
1 · S), which along with (39) ensures that

(40) 0 /∈ Σ{2,(k−1),k,(k+1)}·q(T
[−1]
1 · S).

Now let X = {2, k − 1, k, k + 1}. Since k ≥ d = 4, we have X ⊆ N and |X| = 4. Since p ≥ k,

we have [1,maxX] \X = {1} ∪ [3, k − 2] ⊆ [1, p− 2]. Hence, since |T
[−1]
1 · S| = (k + 3)q − r, we

can apply Theorem 1.7 to T
[−1]
1 · S with X = {2, k − 1, k, k + 1} and m = 0 to conclude that

0 ∈ Σ{2,(k−1),k,(k+1)}·q(T ), contrary to (40).

CASE 4.4: p 6= k + 1.

We have 0 /∈ Σkq(S) and can assume 0 /∈ Σq(S) in view of CASE 4.3.

Suppose there is a zero-sum subsequence T | S with |T | = tq for some t ∈ [k + 2, k + 3].

Then, since 0 /∈ Σ{1,k}·q(S) with the complement of a zero-sum subsequence in T also zero-sum,

it follows that

0 /∈ Σ{1,(t−k),k,(t−1)}·q(T ).

Let X = {1, t − k, k, t − 1}. Since k ≥ d = 4 and k + 2 ≤ t ≤ k + 3 < 2k, we have X ⊆ N and

|X| = 4. If t = k + 2, then [1,maxX] \ X = [3, k − 1]. If t = k + 3, then [1,maxX] \ X =

{2} ∪ [4, k − 1] ∪ {k + 1}. In either case, since p ≥ k with p 6= k + 1 (by subcase hypothesis), it

follows in view of |T | = tq ≥ tq−r that we can apply Theorem 1.7 to T withX = {1, t−k, k, t−1}
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and m = 0 to conclude that 0 ∈ Σ{1,(t−k),k,(t−1)}·q(T ), contrary to what was noted above. So

we instead conclude that 0 /∈ Σ{(k+2),(k+3)}·q(S), which along with the already noted fact that

0 /∈ Σ{1,k}·q(S) means

(41) 0 /∈ Σ{1,k,(k+2),(k+3)}·q(S).

Now let X = {1, k, k + 2, k + 3}. Since k ≥ d = 4, we have X ⊆ N and |X| = 4. Since

p ≥ k, we have [1,maxX] \ X = [2, k − 1] ∪ {k + 1}. We also have p ≥ k with p 6= k + 1

by subcase hypothesis. Hence, since |S| = (k + 4)q − r, we can apply Theorem 1.7 to S with

X = {1, k, k + 2, k + 3} and m = 0 to conclude that 0 ∈ Σ{1,k,(k+2),(k+3)}·q(S), contrary to (41).

CASE 4.5: k 6= 5.

In view of CASES 4.1 and 4.3, we can assume there is a zero-sum subsequence T2 | S with

|T2| = 2q. Then, since 0 /∈ Σkq(S), it follows in view of CASE 4.3 that

(42) 0 /∈ Σ{1,(k−2),k}·q(T
[−1]
2 · S).

Suppose there is a zero-sum subsequence T | T
[−1]
2 · S with |T | = (k + 1)q. Then, since the

complement of a zero-sum subsequence in T is also zero-sum, it follows from (42) that

0 /∈ Σ{1,3,(k−2),k}·q(T ).

Let X = {1, 3, k − 2, k}. Since k ≥ d = 4 and k 6= 5 (in view of the subcase hypothesis), we

have X ⊆ N and |X| = 4. Since p ≥ k, we have [1,maxX] \X ⊆ [2, k − 1] ⊆ [2, p − 1]. Hence,

since |T | = (k + 1)q ≥ (k + 1)q − r, we can apply Theorem 1.7 to T with X = {1, 3, k − 2, k}

and m = 0 to conclude that 0 ∈ Σ{1,3,(k−2),k}·q(T ), contrary to what was noted above. So we

can now assume 0 /∈ Σ(k+1)q(T
[−1]
2 · S), which together with (42) means

(43) 0 /∈ Σ{1,(k−2),k,(k+1)}·q(T
[−1]
2 · S).

Now let X = {1, k − 2, k, k + 1}. In view of k ≥ d = 4, we have X ⊆ N and |X| = 4.

In view of p ≥ k, we have [1,maxX] \ X = [2, k − 3] ∪ {k − 1} ⊆ [2, p − 1]. Hence, since

|T
[−1]
2 · S| = (k + 2)q − r, we can apply Theorem 1.7 to T

[−1]
2 · S with X = {1, k − 2, k, k + 1}

and m = 0 to conclude that 0 ∈ Σ{1,(k−2),k,(k+1)}·q(T ), contrary to (43), which completes the

proof. �

The means of transferring Propositions 3.4 and 3.3 into Theorems 1.8 and 1.9 is the following

simple lemma.

Lemma 3.5. Let G be a finite abelian p-group with exponent q, let d =
⌈
D

∗(G)
q

⌉

, and let k0 ≥ 1.

Suppose skq(G) ≤ kq +D∗(G)− 1 for all k ∈ [k0, 2k0 − 1]. Then

skq(G) ≤ kq + D∗(G) − 1 for all k ≥ k0.
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Proof. Let k ≥ k0 be arbitrary. Write k = mk0 + r with m ≥ 0 and r ∈ [k0, 2k0 − 1]. Let S be

a sequence of terms from G with |S| = kq + D∗(G) − 1 ≥ mk0q + D∗(G)− 1. We need to show

0 ∈ Σkq(S). By repeated application of the definition of sk0q(G) ≤ k0q+D∗(G)− 1, we can find

subsequences T1 · . . . · Tm | S such that each Ti is zero-sum with |Ti| = k0q, for i ∈ [1,m]. But

now

|(T1 · . . . · Tm)[−1]
· S| = |S| −mk0q = rq + D∗(G)− 1,

so applying the definition of srq(G) ≤ rq+D∗(G)−1 to (T1 · . . . ·Tm)[−1]
·S, we find another zero-

sum subsequence T0 | (T1 ·. . .·Tm)[−1]
·S with |T0| = r ∈ [k0, 2k0−1], and now T = T0 ·T1 ·. . .·Tm

is a zero-sum subsequence of S with |T | = (mk0 + r)q = kq, as desired. �

We conclude with the proofs for both results regarding sk exp(G)(G).

Proof of Theorem 1.8. Let k0 = d. Since p ≥ 2d− 1, we have p ≥ k for every k ∈ [k0, 2k0 − 1] =

[d, 2d−1]. Thus Proposition 3.4 implies that skq(G) ≤ kq+D∗(G)−1 for every k ∈ [k0, 2k0−1],

and the result now follows by applying Lemma 3.5. �

Proof of Theorem 1.9. Let k0 = d(d−1)
2 + 1. Since p ≥ d2 − d + 1, we have p ≥ k for every

k ∈ [k0, 2k0−1] = [d(d−1)
2 +1, d2−d+1]. Thus Proposition 3.3 implies that skq(G) ≤ kq+D∗(G)−1

for every k ∈ [k0, 2k0 − 1], and the result now follows by applying Lemma 3.5. �
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