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Abstract

We consider robust adaptive control designs for relative degree one, minimum phase
linear systems of known high frequency gain. The designs are based on the dead-zone
and projection modifications, and we compare their performance w.r.t. a worst case tran-
sient cost functional with a penalty on the L∞ norm of the output, control and control
derivative. We establish two qualitative results. If a bound on the L∞ norm of the dis-
turbance is known and the known a-priori bound on the uncertainty level is sufficiently
conservative, then it is shown that a dead-zone controller outperforms a projection con-
troller. The complementary result shows that the projection controller is superior to the
dead-zone controller when the a-priori information on the disturbance level is sufficiently
conservative.

Key words. Robust Adaptive Control, Non-singular Performance

1. Introduction

It is well known that adaptive controllers are suitable for systems whose nominal mathe-
matical model contains an uncertain parameter θ. A common feature of adaptive designs is
the construction of a time varying parameter θ̂(·) whose value is controlled by an adaptive
law. In contrast with most adaptive control mechanisms which would attempt to ‘identify’
or ‘estimate’ the uncertain parameter θ of the plant by a ‘parameter estimator’ θ̂(·), the ob-
jective of a ‘non-identifier-based’ adaptive controller is to use certain information about the
plant to find suitable methods of system regulation. In other words, the adaptive law makes
no attempt to identify or estimate the unknown plant parameter θ, but merely attempts to
seek out a stabilising value for the so-called ‘tuning function’ δ̂(·). See eg. [M, WB] and [I2]
for an overview.

However, this method, like other adaptive controllers, is susceptible to phenomena such
as parameter drift even when small disturbances are present. To overcome such problems,
a number of standard techniques are widely utilised, such as dead-zones, σ modification,
projection modification, etc. [NA].

Each of these techniques has advantages and drawbacks. For example, dead-zone modi-
fications typically require a-priori knowledge of the disturbance level, and only achieve con-
vergence of the state/output/error to some pre-specified neighbourhood of the origin (whilst
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keeping all signals bounded). In particular if the disturbance vanishes, then the dead-zone
controller does not typically achieve convergence of the output to zero, the convergence
remains to the pre-specified neighbourhood of the origin. On the other hand, projection
modifications generally achieve boundedness of all signals, and furthermore have the desir-
able property that if no disturbances are present, then the state/output/error converges to
zero, however, an arbitrarily small L∞ disturbance can completely destroy any convergence
to zero.

This illustrates that in the case of asymptotic performance, there are some known char-
acterisations of ‘good’ and ‘bad’ behaviour. However, there are many situations in which we
cannot definitively state whether a projection or dead-zone controller is superior. Although
the asymptotic performance of such modifications has often been investigated, very little of
this research is concerned with transient performance. Furthermore, the known results, see
e.g. [KKK], as with most results in adaptive control, are confined to singular performance,
i.e. without any consideration of the control signal. The primary results of this paper take
control effort into account.

The present paper extends the line of our work on developing a comparison theory of
robust adaptive controllers [F, SF, XF]. We compare dead-zone and projection based adaptive
controllers for finite dimensional, minimum phase, linear systems of relative degree one with
positive high frequency gain. The comparison has been made with respect to a worst case non-
singular transient cost functional P penalising the state (x), the input (u) and the derivative
of the input (u̇) of the plant. We will identify circumstances in which the dead-zone controller
is superior to the projection controller with respect to P and vice versa.

The paper is structured as follows. In Section 2 we introduce the system class and the ba-
sic adaptive controller. Section 3 defines two standard classes of robust modifications to the
basic adaptive controller, namely the dead-zone modification and the projection modification,
and states their main properties. The proofs of these results are deferred to Appendices A
and B. Our main results are presented in Section 4, where situations are described in which
the dead-zone controller outperforms the projection controller and vice-versa. Section 5 and
6 contain the proofs of the results of Section 4, and Section 7 contains a short discussion on
alternative choices of dead-zones. Section 8 contains a brief summary and conclusions.

2. System and Basic Control Design

Suppose Σ is a SISO linear time invariant plant described by

y =
bn−1s

n−1 + bn−2s
n−2 + · · ·+ b0

sn + an−1sn−1 + · · ·+ a0
(u + d), (1)

where ai, bi ∈ R, 0 ≤ i ≤ n−1, are unknown constants and d(·) belongs to a class of bounded
disturbances D ⊂ L∞ = L∞[R≥0] = L∞[0,∞). Note that for notational convenience, we
adopt the standard shorthand of letting u, y, d denote both the time domain signal and cor-
responding element in frequency domain. We assume that only the output y(·) is available
for measurement. Consider the following assumptions:

C1. The plant is minimum phase i.e. bn−1s
n−1 + · · ·+ b0 is Hurwitz.

C2. The plant order n is known, and the high frequency gain is positive (i.e. bn−1 > 0).

It is convenient for the analysis in this paper to consider two different state space represen-
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tation of (1). The observer canonical form is obtained as follows:

Σ(x0, θ, d(·)) : ẋ(t) = Ax(t) + B(u(t) + d(t)) x(0) = x0 ∈ R
n, d ∈ D,

y(t) = Cx(t),
(2)

in which x(t), B, CT ∈ R
n, A ∈ R

n×n, and

A =















−an−1 1 0 . . . 0
−an−2 0 1 0 0

...
...

...
. . .

...
−a1 0 0 . . . 1
−a0 0 0 . . . 0















, B =











bn−1
...
b1

b0











, C =
[

1 0 · · · 0
]

, (3)

where

θ = (a0, . . . , an−1, b0, . . . , bn−1) ∈ S, S := {θ ∈ R
2n | Σ(·, θ, ·) satisfies C1,C2 }, (4)

and θ ∈ S represents the uncertain system parameters. We emphasise that by non-identifier-
based control, we will not be estimating unknown parameter θ.

The second useful state space form is obtained by utilizing the coordinate transformation
matrices:

S :=
[

B(CB)−1, T
]

, S−1 =
[

CT , NT
]T

, (5)

where

T =

[

0 . . . 0
In−1

]

∈ R
n×(n−1), N =







−bn−2/bn−1
... In−2

−b0/bn−1






∈ R

(n−1)×n.

Applying (5) to (2), we have

x̄(t) := (y(t), z(t)T )T = S−1x(t), S−1 BC S =

[

bn−1 0
0 0

]

, S−1AS =

[

ā1 Ā2

Ā3 Ā4

]

, (6)

where ā1 ∈ R, ĀT
2 , Ā3 ∈ R

n−1 and Ā4 ∈ R
(n−1)×(n−1). This gives

ẏ(t) = ā1y(t) + Ā2z(t) + bn−1 (d(t) + u(t)) , y(0) = Cx0,

ż(t) = Ā3y(t) + Ā4z(t), z(0) = Nx0.
(7)

It has been shown that Ā4 is stable [I2], i.e. there exists a positive definite matrix
R = RT > 0 satisfying the Lyapunov equation

RĀ4 + ĀT
4 R = −In−1. (8)

Note that there exists k∗
θ > 0 such that for all k ≥ k∗

θ ,

(S−1(A− kBC)S)T P + P (S−1(A− kBC)S) ≤ −Q,

where the symmetric positive definite matrices P, Q are defined as

P =

[

1
2 0
0 R

]

, Q =

[

1 0
0 1

2In−1

]

. (9)
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This can be shown by observing that for all k > k∗
θ and for all x̄ ∈ R

n,

x̄T ((S−1(A− kBC)S)T P + P (S−1(A− kBC)S))x̄

= −(bn−1k − ā1)y
2 + y

(

Ā2 + 2ĀT
3 R
)

z − ‖z‖2

≤ −(bn−1k −M)y2 − 1

2
‖z‖2,

≤ −x̄T Qx̄

where
M := |ā1|+

(

‖Ā2‖+ 2‖R‖ ‖Ā3‖
)2

/2, k∗
θ := (M + 1/2)/bn−1. (10)

Therefore, by considering the Lyapunov function V (x̄) = x̄T Px̄, it follows that if θ ∈ S
then the system (2) is high-gain stabilizable, i.e. it is stabilized by the feedback u = −ky for
sufficient large k.

It was shown by Willems & Byrnes [WB] that disturbance free (D = {0}) systems of
the form (2), i.e. Σ(x0, θ, d(·)) which satisfy C1,C2, are stabilised by the following simple
adaptive high-gain controller:

Ξ : u(t) = −δ̂(t) y(t),

˙̂
δ(t) = y(t)2 δ̂(0) = 0.

(11)

Special features of this strategy are its simplicity and the absence of any plant identification
mechanism. This idea formed the foundation of the theory of ‘universal adaptive control’
which has continued to develop since 1985 in the areas of linear systems, nonlinear systems,
and infinite dimensional systems, see for example [T, IT, R, LT] for some representative pa-
pers, and [I1] for an early survey. These controllers have also been considered for application
studies [LK, GI].

3. Robust Modifications to the Control Design

For systems of the form (2), it is well known that even a small L∞ disturbance can cause a
drift of the tunable function δ̂(·), see e.g. [E, NA]. To overcome this problem, two distinct
approaches have been proposed [NA]: (i) using an appropriately rich reference input, and
(ii) modifying the adaptation law. In this section we briefly explain two common methods in
modifying the adaptive law, in particular dead-zone and parameter projection modifications
(see e.g. [NA] for details).

Whilst a subset of results on asymptotic behaviour of dead-zone and projection modifi-
cations presented in this section is known, we remark that the boundedness properties of the
closed loop signals (properties D2 and P2 of Theorems 3.1 and 3.2) do not appear in the
literature, to the best knowledge of the authors. Moreover these properties play a key role in
the main results.

3.1 Dead-zone Modification

Consider the unmodified adaptive law of the form
˙̂
δ(t) = y(t)2, δ̂(0) = 0. The idea of

the dead-zone is to modify the adaptive law so that the adaptive mechanism is ‘switched
off’ when system output y(·) lies inside a region where the disturbance has a destabilising
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effect on the dynamics [PN]. A-priori knowledge of the size of the disturbance is typically
used to define the size of the dead-zone. Let dmax be the a-priori known upper bound of the
disturbance level, i.e. dmax ≥ ‖d(·)‖L∞ for all d(·) ∈ D. For SISO output feedback systems
(2), the standard definition of the modified adaptive law is

˙̂
δ(t) = y(t)2 D̃η(y(t)), δ̂(0) = 0, η := dmax > 0 (12)

where D̃η(y) := 0 if y ∈ [−η , η] and D̃η(y) := 1 if y 6∈ [−η , η], η > 0. It should be observed
that there are other valid choices for η, see Section 7 where this is discussed further.

Note that the discontinuous switching activity of the above definition introduces a r.h.s.
discontinuity in the related differential equations resulting in the need for a more delicate
analysis. In this paper, we take the advantages of so-called ‘smooth dead-zone’ for which, the
local existence and uniqueness of the solution of the corresponding closed loop system follows
directly from the classical theory of differential equations. However, modulo these technical
issues, the authors expect that similar results to those in this paper can also be obtained for
the ‘standard dead-zone’ (12). The smooth dead-zone is defined by

Dη(y) =

{

0, y ∈ [−η , η]

|y| − η, y 6∈ [−η , η]
(13)

where η > 0 and leads to the modified adaptive law of the form,

ΞD(dmax) : u(t) = −δ̂(t)y(t)

˙̂
δ(t) = |y(t)|Dη(y(t)), δ̂(0) = 0, η := dmax > 0.

(14)

The following theorem establishes the properties of such controllers:

Theorem 3.1. Consider the closed loop system (Σ(x0, θ, d(·)), ΞD(dmax)) defined by (2)-(4)
and (14), where x0 ∈ R

n, θ ∈ S, d(·) ∈ L∞ and dmax ≥ 0. Then the following properties hold:

D1. There exists a unique solution (x(·), δ̂(·)) : R≥0 → R
(n+1).

D2. There exists a continuous function M : R
n×S×R≥0×R≥0 → R≥0 such that the closed

loop signals x(·), δ̂(·), u(·) satisfy

‖x(·)‖L∞ + ‖δ̂(·)‖L∞ + ‖u(·)‖L∞ ≤M(x0, θ, ‖d(·)‖L∞ , dmax)

D3. limt→∞ infx∈[−dmax,dmax] |y(t)− x| = 0.

Proof. See Appendix A.

3.2 Projection Modification

The projection modification [KN] is an alternative method to eliminate parameter drift by
keeping the adaptive parameter within some a-priori defined bounds. In ‘identifier-based’
adaptive control, this can be accomplished by projecting the parameter estimator into a
given compact convex set containing the true parameter vector. The general definition for
such method can be found in e.g. [KKK, page 511]. In our ‘non-identifier-based’ case, the
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definition is as follows. Let δmax > k∗
θ where k∗

θ is defined by (10). The modified adaptive
law is defined by

˙̂
δ(t) =

{

y(t)2 δ̂(t) < δmax

0 δ̂(t) ≥ δmax

(15)

Given an output y: [0, ω) → R, where ω ∈ [0,∞] = [0,∞) ∪ {∞}, we define the projection
controller as follows:

ΞP (δmax) : u(t) = −δ̂(t)y(t)

˙̂
δ(t) = y(t)2, δ̂(0) = 0, ∀t ∈ [0, Tm),

˙̂
δ(t) = 0, ∀t ∈ [Tm,∞),

(16)

where Tm = inf{t ∈ [0,∞] | δ̂(t) = δmax}. Note that Tm is the first time instance that
δ̂ hits the boundary δmax, and after this time δ̂ remains at constant level δmax and hence
the adaptive law in (16) coincides with (15). We denote the respective closed loop system
by (Σ(x0, θ, d(·)), ΞP (δmax)). The stability of the closed loop is examined in the following
theorem.

Theorem 3.2. Consider the closed loop system (Σ(x0, θ, d(·)), ΞP (δmax)) defined by (2), (16),
where x0 ∈ R

n, θ ∈ S, d(·) ∈ L∞ and let δmax > k∗
θ where k∗

θ ≥ 0 is given by (10). Then the

following properties hold:

P1. There exists a solution (x(·), δ̂(·)) : R≥0 → R
(n+1).

P2. Let V = {(θ, δmax) ∈ S × R>0 | k∗
θ < δmax}. Then there exists a continuous function

M : R
n × V × R≥0 → R≥0 such that the closed loop signals x(·), δ̂(·), u(·) satisfy

‖x(·)‖L∞ + ‖δ̂(·)‖L∞ + ‖u(·)‖L∞ ≤M(x0, θ, δmax, ‖d‖).

Proof. See Appendix B.

4. Statement of the Main Results

A goal in control theory is to design control laws which achieve good performance for any
member of a specified class of systems. Consider a system Σ which belongs to the set of all
admissible systems S∗. The performance of a controller Ξ is measured by a cost functional J
dependent on some measurable signals (state/output/input). In this paper, we are interested
in a worst case scenario, i.e. a performance P which is defined over the power set of S∗ and is
formulated as a supremum of all possible costs. Furthermore, the non-singular performance
measure will penalise the state (x) and the input and its derivative (u, u̇) of the plant;
specifically we will consider cost functionals of the form:

P (Σ (X0(γ), Λ,D(ǫ)), Ξ) = sup
x0∈X0(γ)

sup
θ∈Λ

sup
d∈D(ǫ)

(‖x(·)‖L∞ + ‖u(·)‖L∞ +‖u̇(·)‖L∞) , (17)

where
X0(γ) := {x0 ∈ R

n | ‖x0‖ ≤ γ}, γ > 0,

D(ǫ) := {d(·) ∈ L∞ | ‖d(·)‖L∞ ≤ ǫ}, ǫ ≥ 0,
(18)

and Λ is any compact subset of ∆(δ), where

∆(δ) := {θ ∈ S | k∗
θ ≤ δ}, δ ≥ 0, (19)
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where A, B, C are defined in (3) and θ is given by (4). Note that ∆(δ) is not bounded, and
that there are elements on the boundary of ∆(δ) which do not satisfy C1,C2 and for which the
closed loop is not stable, hence generating an infinite cost. Therefore the second supremum
cannot be taken over ∆(δ). This is reflected in the bounds obtained in Theorems 3.1 and 3.2
(see relations A-11, A-18, and B-5).

4.2 Main Results

Both designs considered require particular types of a-priori information on the system
or disturbance environment. The projection based design requires an explicit a-priori upper
bound δmax on the stabilizing value of δ, whereas the dead-zone design requires an explicit
a-priori bound dmax on the magnitude ǫ of the disturbance signals d ∈ D(ǫ). We therefore
consider the situations where either δmax or dmax are large with respect to the ‘true’ values
δ or ǫ respectively. This corresponds to the cases where the control designer has made
conservative choices for the projection/dead-zone levels.

The following theorems are the main results of the paper:

Theorem I. Consider the system Σ(x0, θ, d(·)) and the controllers ΞD(·) and ΞP (·)
defined by (2), (14) and (16) respectively, where x0 ∈ R

n, θ ∈ S, d ∈ L∞. Let δ, ǫ > 0 and

∅ 6= Λ ⊂ ∆(δ) be compact. Consider the transient performance cost functional (17). Then

for all dmax ≥ ǫ, there exists δ∗max ≥ δ such that for all δmax ≥ δ∗max,

P(Σ (X0(γ), Λ,D(ǫ)), ΞP (δmax) ) > P(Σ (X0(γ), Λ,D(ǫ)), ΞD(dmax) ).

This theorem can be interpreted as stating that if the a-priori knowledge of the paramet-
ric uncertainty level δmax is sufficiently conservative (δmax ≥ δ∗max), then the dead-zone based
design will out-perform the projection based design, see figure 1(left).

δmaxδ∗max

Projection

Dead-zone

P

dmaxd∗max

Dead-zone

Projection

P

Figure 1: Statement of the main results: Theorem I (left), Theorem II (right)

Theorem II. Consider the system Σ(x0, θ, d(·)) and the controllers ΞD(·) and ΞP (·)
defined by (2), (14) and (16) respectively, where x0 ∈ R

n, θ ∈ S, d ∈ L∞. Then for all ǫ > 0
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there exists δ > 0 such that for all δmax ≥ δ, there exists d∗max ≥ ǫ > 0 such that for all

dmax ≥ d∗max,

P(Σ (X0(γ), Λ,D(ǫ)), ΞD(dmax)) > P(Σ (X0(γ), Λ,D(ǫ)), ΞP (δmax)),

where P is the transient performance cost functional (17), Λ ⊂ ∆(δ) is compact and Λ 6⊂ ∆(0).

This theorem can be interpreted as stating that above a certain uncertainty level δ, if the
a-priori knowledge dmax of the disturbance level is sufficiently conservative (dmax ≥ d∗max),
then the projection design will out-perform the dead-zone design, see figure 1 (right).

As an aside, we observe that it is natural to ask whether there is any benefit of adaptive
control when a bound δmax is known, as with this information, the natural static output feed-
back u(t) = −δmaxy(t) achieves stabilization. One scenario in which adaptive strategies can
be shown to outperform such memoryless feedbacks is when δmax is a conservative estimate
for δ, see, e.g. [F] for such an argument in a related context. In the context of this paper,
similar arguments also show that one should utilize dead-zone adaptive controllers in prefer-
ence to memoryless feedbacks in the scenario whereby δmax is a conservative estimate for δ,
and dmax is small. In the scenario where dmax is a conservative bound on ǫ, the motivation
for adaptation e.g. using the projection design over the memoryless design is less clear-cut.
However, if both δmax and dmax are conservative estimates of δ and ǫ respectively, and classes
of disturbances are considered in which adaptive law does not drift, (as for example in the
disturbance free case), the projection design will in general not cause δ̂ to reach the projection
value δmax, and hence can be expected to generate a lower cost than the high gain memoryless
design.

5. Proof of Theorem I

Firstly, we show that P = ∞ for the unmodified design (11), (Proposition 5.3). From
this we can show that the projection modification design, ΞP (δmax) has the property that
P → ∞ as δmax → ∞ (Proposition 5.4). Finally we show that P < ∞, and that the bound
is independent of δmax, for the dead-zone design, ΞD(dmax) (Proposition 5.5). This suffices
to establish Theorem I.
Proposition 5.1. Consider the closed loop system (Σ(x0, θ, d(·)), Ξ) defined by (2), (11),
where x0 ∈ R

n, θ ∈ S. Let d(·) ≡ ǫ for some ǫ 6= 0. Then

‖x(t)‖ → 0 as t→∞⇐⇒ δ̂(t)→∞ as t→∞.

Proof. Let (xT , δ̂)T denote the unique global solution [WB] of the closed loop (Σ(x0, θ, d(·)), Ξ)
given by equations (2), (11).

→ ) Suppose for a contradiction that δ̂(t) 6→ ∞. Then δ̂(t)→ δ̂∗ <∞, since δ̂(·) is mono-
tonically increasing by (11). Therefore since by assumption x→ 0 and since the r.h.s.
of (2),(11) is continuous, it follows that (x(·), δ̂(·)) ≡ (0, δ̂∗) is an equilibrium point of
the closed loop (Σ(x0, θ, d(·)), Ξ). Hence (x(·), δ̂(·)) ≡ (0, δ̂∗) must be a solution of the
following equations:

x2(t)− an−1x1(t) + bn−1(ǫ− δ̂(t)x1(t)) = 0,

...

−a0x1(t) + b0(ǫ− δ̂(t)x1(t)) = 0, (20)

x1(t)
2 = 0.
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But b0 6= 0 since the system is minimum phase. We also have ǫ 6= 0. Therefore
(x(·), δ̂(·)) ≡ (0, δ̂∗) cannot be a solution of (20), hence contradiction.

← ) Let ζ > 0 and recalling that y = Cx, z = Nx, define

V (t) =
1

2
y(t)2 + z(t)T Rz(t), t ≥ 0,

where R is defined by equation 8. The time derivative of V along the solution of (7),(11)
is

V̇ (t) = y(t)
(

(ā1 − bn−1δ̂(t))y(t) + Ā2z(t) + bn−1 ǫ
)

+ 2y(t)ĀT
3 Rz(t) + z(t)T (ĀT

4 R + RĀ4)z(t)

= −(bn−1δ̂(t)− ā1)y(t)2 +
bn−1√

ζ
y(t) ·

√

ζ ǫ + y(t)
(

Ā2 + 2ĀT
3 R
)

z(t)− ‖z(t)‖2

≤ −(bn−1δ̂(t)−M)y(t)2 − 1

2
‖z(t)‖2 +

1

2
ζ ǫ2,

where M := |ā1|+ b2
n−1

2ζ
+
(

‖Ā2‖+ 2‖R‖ ‖Ā3‖
)2

/2. We choose tζ > 0 such that bn−1δ̂(t)−
M > 1/2 for all t ≥ tζ . Therefore

V̇ (t) ≤ −αV (t) +
1

2
ζ ǫ2 ∀t ≥ tζ ,

where α = min{1, 1/2λ(R)}. It follows that

lim
t→∞

sup V (t) ≤ ζ ǫ2

2α
.

Since ζ is arbitrary, this proves limt→∞ V (t) = 0, hence limt→∞(y(t), z(t)T ) = 0. This
completes the proof.

Proposition 5.2. Consider the closed loop system (Σ(x0, θ, d(·)), Ξ) defined by (2), (11),
where x0 ∈ R

n, θ ∈ S. Let d(·) ≡ ǫ for some ǫ 6= 0. If x(·) is uniformly continuous, then

‖x(t)‖ → 0, δ̂(t)→∞ as t→∞.

Proof. Let (xT , δ̂)T denote the unique global solution [WB] of the closed loop (Σ(x0, θ, d(·)), Ξ)
given by equations (2), (11), and recall that y = Cx, z = Nx. Firstly we show that y(t)→ 0
as t→∞. From this we will prove that δ̂(t)→∞ and finally by Proposition 5.1, we conclude
that ‖x(t)‖ → 0 as t→∞.

Suppose for a contradiction that y(t) 6→ 0 as t → ∞. Then there exists M > 0 and a
positive sequence {tk}k≥1 , tk → ∞ as t → ∞ for which y(tk) ≥ M . Since, by assumption,
x(·) is uniformly continuous, it follows that y(·) is uniformly continuous, and hence

∃ω > 0 s.t. ∀τ ∈ [0, ω], and ∀t > 0, |y(t)− y(t + τ)| < M

2
. (21)

Therefore |y(tk)− y(tk + τ)| < M/2 and since y(tk) ≥M , we have that y(tk + τ) > M/2 i.e.
y(t) ≥M/2 for all t ∈ [ tk, tk + ω ]. Without loss of generality, we may assume tk+1 − tk ≥ ω.
It follows that

δ̂(tk + ω) =

∫ tk+ω

0

˙̂
δ(τ)dτ =

∫ tk+ω

0
y2(τ)dτ ≥ M2

4
kω, (22)
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so δ̂(tk + ω) → ∞ as k → ∞, hence δ̂(t) → ∞ as t → ∞. It follows by Proposition 5.1 that
‖x(t)‖ → 0 as t→∞, therefore y(t)→ 0 as t→∞ by (2), hence contradiction.

Now we have y(t) = x1(t)→ 0 as t→∞ and we claim δ̂(t)→∞ as t→∞. Suppose for
contradiction δ̂(t) 6→ ∞ as t → ∞. Then δ̂(t) → δ̂∗ < ∞ as t → ∞, since δ̂(·) is monotonic
by (11). Substitute this into (2), we have

ẋ1(t) = x2(t)− (an−1 + δ̂∗ bn−1)x1(t) + bn−1ǫ, (23)

...

ẋn(t) = −(a0 + δ̂∗ b0)x1(t) + b0ǫ, (24)

where by minimum phase assumption, biǫ 6= 0, i ∈ [0, n − 1]. Since x1(t) → 0 as t → ∞,
equation (24) implies that xn(t)→∞ as t→∞, since x(·) is uniformly continuous. It follows
that xn−1(t) → ∞ as t → ∞, and cascading the argument shows to x1(t) → ∞ as t → ∞,
hence contradiction. Therefore δ̂(t) → ∞ as t → ∞. From this and Proposition 5.1, the
claim of the Proposition follows.

Proposition 5.3. Consider the closed loop system (Σ(x0, θ, d(·)), Ξ) defined by (2), (11),
where x0 ∈ R

n, θ ∈ S, d ∈ L∞. Let δ, ǫ, γ > 0 and suppose ∅ 6= Λ ⊂ ∆(δ) is compact.

Consider the transient performance cost functional (17). Then

P(Σ (X0(γ), Λ,D(ǫ)), Ξ) =∞. (25)

Proof. Let lim denote lim sup
t→∞

. Let x0 ∈ X0(γ) and θ ∈ Λ. Let d1(·) ≡ ǫ 6= 0, and consider

(Σ(x0, θ, d1), Ξ). Consider the two cases: either 1. lim ‖ẋ(t)‖ =∞ or 2. lim ‖ẋ(t)‖ <∞:

1. Suppose lim ‖ẋ(t)‖ =∞, i.e. lim ‖Ax(t) + Bu(t) + Bǫ‖ =∞. Therefore either

(a) lim ‖x(t)‖ =∞, which implies that ‖x(·)‖L∞ =∞, or

(b) lim ‖x(t)‖ <∞, therefore lim u(t) =∞ i.e. ‖u(·)‖L∞ =∞.

2. Suppose lim ‖ẋ(t)‖ <∞ i.e. x(·) is uniformly continuous. Therefore by Proposition 5.2

∀δ̂∗ > 0 ∃T > 0 s.t. ∀t > T δ̂(t) > δ̂∗. (26)

Now we choose d2(t) := ǫ, ∀t ≤ T , d2(t) := −ǫ, for all t > T . Note that d2(t) = d1(t)
for all t ≤ T and d2 ∈ D(ǫ). Consider (Σ(x0, θ, d2), Ξ). With this choice, and by
continuity and causality, we have that

lim
t→T+

x(t) = x(T ), lim
t→T+

δ̂(t) = δ̂(T ) (27)

where limt→T+ denote limt→T,t>T . It follows that

(

lim
t→T+

u̇(t)

)

− u̇(T ) = 2δ̂(T )CBǫ ≥ 2δ̂∗bn−1ǫ. (28)

By choosing a suitable δ̂∗, it follows that δ̂(T ) can be made arbitrarily large and hence
the difference (28) is arbitrarily large. Then either u̇(T ) is large or limt→T+ u̇(t) is large,
therefore ‖u̇(·)‖L∞ can be made arbitrarily large.

Therefore at least one component of (17) is unbounded, hence

P(Σ (X0(γ), Λ,D(ǫ)), Ξ) =∞.
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Proposition 5.4. Consider the closed loop system (Σ(x0, θ, d(·)), ΞP (δmax)) defined by (2),
(16), where x0 ∈ R

n, θ ∈ S, d ∈ L∞. Let δ, ǫ, γ > 0 and suppose ∅ 6= Λ ⊂ ∆(δ) is compact.

Consider the transient performance cost functional (17). Then

P(Σ (X0(γ), Λ,D(ǫ)), ΞP (δmax))→∞ as δmax →∞.

Proof. Let M > 0. By Proposition 5.3 there exists x0 ∈ X0(γ), d(·) ∈ D(ǫ), θ ∈ Λ so that
the closed loop (Σ(x0, θ, d(·)), Ξ) satisfies

‖x(·)‖L∞ [0,∞) + ‖u(·)‖L∞ [0,∞) + ‖u̇(·)‖L∞ [0,∞) ≥ 2M.

It follows that ∃T > 0 s.t. ‖x(·)‖L∞ [0,T ] + ‖u(·)‖L∞ [0,T ] + ‖u̇(·)‖L∞ [0,T ] ≥ M . By choos-

ing δmax = 2δ̂(T ), we have that δmax > δ̂(T ), hence the solutions (Σ(x0, θ, d(·)), Ξ) and
(Σ(x0, θ, d(·)), ΞP (θmax)) are identical on [0, T ], and therefore

P(Σ (X0(γ), Λ,D(ǫ)), ΞP (δmax)) ≥ ‖x(·)‖L∞ [0,T ] + ‖u(·)‖L∞ [0,T ] + ‖u̇(·)‖L∞ [0,T ] ≥M.

Since this holds for all M > 0, this completes the proof.

Proposition 5.5. Consider the closed loop (Σ(x0, θ, d(·)), ΞD(dmax)) defined by (2), (14),
where x0 ∈ R

n, θ ∈ S, d ∈ L∞. Let δ, ǫ, γ > 0 and suppose ∅ 6= Λ ⊂ ∆(δ) is compact.

Consider the transient performance cost functional (17). Then

P(Σ (X0(γ), Λ,D(ǫ)), ΞD(dmax)) <∞, ∀dmax > ǫ ≥ 0. (29)

Proof. Let x0 ∈ X0(γ), θ ∈ Λ and d ∈ D(ǫ). A direct application of Property D2 of Theorem
3.1 guarantees the boundedness of x(·), δ̂(·), u(·) as a continuous function of x0, θ, dmax. Since

u̇(t) = −y(t)2Ddmax
(y(t))− δ̂(t)C

((

A− δ̂(t)BC
)

x(t) + Bd(t)
)

, ∀t ≥ 0

it follows that ‖u(·)‖L∞ is bounded in terms of a continuous function of x0, θ, dmax. Therefore

P(Σ(x0, θ, d(·)), ΞD(dmax)) ≤M(x0, θ, dmax),

for some continuous function M : R
n × S × R≥0 → R≥0. Taking the supremum over system

parameters x0, θ, d implies that for all dmax ≥ ǫ,

P(Σ (X0(γ), Λ,D(ǫ)), ΞD(dmax)) ≤ sup
x0∈X0(γ)

sup
θ∈Λ

sup
d∈D(ǫ)

M(x0, θ, dmax) <∞.

Proof of Theorem I.

This is a simple consequence of Proposition 5.4 and Proposition 5.5.

6. Proof of Theorem II

In order to prove Theorem II, we first give the following Propositions:
Proposition 6.1. Consider the closed loop system (Σ(x0, θ, d(·)), ΞD(dmax)) defined by (2),
(14), where x0 ∈ R

n, θ ∈ S, d ∈ L∞. Let δ, ǫ, γ > 0 and suppose ∅ 6= Λ ⊂ ∆(δ) is compact,

and Λ 6⊂ ∆(0). Consider the transient performance cost functional (17). Then ∃δ > 0 such

that

P(Σ (X0(γ), Λ,D(ǫ)), ΞD(dmax))→∞, as dmax →∞.
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Proof. Since Λ 6⊂ ∆(0), there exists θ ∈ Λ such that A has an eigenvalue with strictly
positive real part or a purely imaginary eigenvalue. In either case it follows that there exists
x0 ∈ X0(γ)∩ [−η , η] and d ∈ D(ǫ) such that lim sup

t→∞

|x̃(t)| =∞ where x̃(·) is the solution to:

˙̃x(t) = Ax̃(t) + Bd(t) x̃(0) = x0 t ∈ [0,∞).

Consider the closed loop system (Σ(x0, θ, d(·)), ΞD(dmax)) and define τ as follows:

τ =

{

∞ if y(t) ∈ [−η , η] ∀t ≥ 0

inf{t ≥ 0 | |y(t)| ≥ η}, otherwise.

Note that by dead-zone definition (14),
˙̂
δ(t) = 0 for all t ∈ [0, τ), hence δ̂(t) = 0 for all

t ∈ [0, τ) since δ̂(0) = 0. Therefore

ẋ(t) = Ax(t) + Bd(t) x(0) = x0 ∀t ∈ [0, τ).

Since x(t) = x̃(t) for t ∈ [0, τ) it follows by the observability of (A, C) that y(t) = Cx(t) hits
the boundary of [−η , η] in finite time, i.e. τ <∞. It follows that

‖x(·)‖L∞ ≥ |y(τ)| = η = dmax.

Hence P(Σ(x0, θ, d(·)), ΞD(dmax))→∞ as dmax →∞, and therefore

P(Σ (X0(γ), Λ,D(ǫ)), ΞD(dmax)) → ∞ as dmax →∞.

Proposition 6.2. Consider the closed loop (Σ(x0, θ, d(·)), ΞP (δmax)) defined by (2),(16),where

x0 ∈ R
n, θ ∈ S, d ∈ L∞. Let δ, ǫ, γ > 0 and suppose ∅ 6= Λ ⊂ ∆(δ) is compact. Then for all

δmax ≥ δ,
P(Σ (X0(γ), Λ,D(ǫ)), ΞP (δmax)) <∞. (30)

Proof. Let x0 ∈ X0(γ), θ ∈ Λ, d ∈ D(ǫ). A direct application P2 of Theorem 3.2 guarantees
the boundedness of signals x(·), δ̂(·), u(·) of the closed loop (Σ(x0, θ, d(·)), ΞP (δmax)) as a
continuous function of x0, θ, ‖d‖, δmax. It follows that

u̇(t) = −y(t)3 − δ̂(t)C (Ax(t) + B(u(t) + d(t)))

is bounded in terms of a continuous function of x0, θ, ‖d‖, δmax, hence

P(Σ(x0, θ, d(·)), ΞP (δmax)) ≤M(x0, θ, δmax, ‖d‖) <∞, (31)

where M : R
n×V×R≥0 → R≥0 is continuous. Taking the supremum over system parameters

x0, θ, d implies that for all δmax ≥ δ

P(Σ (X0(γ), Λ,D(ǫ)), ΞP (δmax)) ≤ sup
x0∈X0(γ)

sup
θ∈Λ

sup
d∈D(ǫ)

M(x0, θ, δmax, ‖d‖) <∞.

Proof of Theorem II.

This is a simple consequence of Proposition 6.2 and Proposition 6.1.

The proof of Theorem II is heavily based on the natural assumption that the size of
dead-zone η is chosen to be equal to the a-priori bound on the disturbance level dmax. In
particular, η := dmax implies that P(Σ (X0(γ), ∆(δ),D(ǫ)), ΞD(dmax)) → ∞ as dmax → ∞.
In the following section we show that the other choices of η also yield the similar results.
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7. Alternative Choices of Dead-zones

In this section we consider alternative choices for the dead-zone, and variations on the
definition of the controller. We consider the following smooth dead-zone controller (compare
to equation (14)):

ΞD,̺(dmax) : u(t) = −δ̂(t)y(t))

˙̂
δ(t) = |y(t)|Dη(y(t)), δ̂(0) = 0, η := ̺(dmax)

(32)

where ̺ : [0,∞)→ [0,∞), noting that we have previously considered the case where ̺(r) = r.
We consider two possibilities for the growth of the function ̺:1

(i) limr→∞ ̺(r) =∞,

(ii) limr→∞ ̺(r) ≤ c for some constant c ≥ 0.

In case (i) it is straightforward to observe that

P := P (Σ (X0(γ), Λ,D(ǫ)), ΞD,̺(dmax))→∞ as dmax →∞, (33)

by the same argument as in Proposition 6.1.
Choice (ii) is also a viable option, since ΞD,̺(dmax) = ΞD(̺(dmax)), and by Theorem 3.1,

P (Σ (X0(γ), Λ,D(ǫ)), ΞD,̺(dmax)) <∞ and limt→∞ infx∈[−̺(dmax),̺(dmax)] |y(t)−x| = 0. This
choice has been extensively studied in the context of tracking, where the case ̺(r) = λ is
known as λ–tracking [IR]. The next result shows that if c is too small, then the projection
controller out-performs the dead-zone design. For simplicity we consider a scalar system:

Proposition 7.1. Consider the system Σ(x0, (a, 1), d(·)) and the controllers ΞD,̺(·) and

ΞP (·) defined by(2), (32) and (16) respectively, where x0 ∈ R, a ∈ R, d ∈ L∞ and where

limr→∞ ̺(r) ≤ c for c > 0. Let δ, ǫ > 0 and let Λ = {(a, 1) ∈ R
2 : |a| ≤ δ}. Consider the

transient performance cost functional (17). Then for all dmax ≥ ǫ, and for all δmax ≥ δ, there

exists c∗ > 0 such that for all 0 < c < c∗,

P (Σ (X0(γ), Λ,D(ǫ)), ΞD,̺(dmax)) > P(Σ (X0(γ), Λ,D(ǫ)), ΞP (θmax) ).

Proof. Let x0 ∈ X0(γ) and suppose (a, 1) ∈ Λ is such that a > 0. Let d(·) = ǫ > 0 be
constant. Consider (Σ(x0, (a, 1), d), ΞD,̺(dmax)). Since y(t)→ [−̺(dmax), ̺(dmax)] as t→∞,
there exists T > 0 such that y(T ) ≤ 2̺(dmax) and 1

2
d
dt

y(T )2 = ẏ(T )y(T ) ≤ 0. It follows that,

(δ̂(T )− a) ≥ ǫ

2̺(dmax)
.

Define d2(·) as in Proposition 5.3 and consider (Σ(x0, θ, d2), ΞD,̺(dmax)). It follows that
(

lim
t→T+

u̇(t)

)

− u̇(T ) = 2δ̂(T )ǫ =
ǫ2

̺(dmax)
≥ ǫ2

c
.

Hence for all P∗ > 0, there exists c∗ > 0 such that for all 0 < c < c∗,

P (Σ (X0(γ), Λ,D(ǫ)), ΞD,̺(dmax)) = sup
x0∈X0(γ)

sup
θ∈Λ

sup
d∈D(ǫ)

‖u̇(·)‖L∞ ,

> P∗. (34)

The proof is completed by choosing P∗ = P(Σ (X0(γ), Λ,D(ǫ)), ΞP (θmax) ) <∞.

1Other cases such as oscillatory but unbounded ̺(·) can be handled suitably by considering monotonic
subsequences.
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Similar results can be obtained in the tracking setting, where the error signal e(·) =
y(·)− yref(·) replaces the state x(·) = y(·) and ẏref(·)− θyref(·) plays an analogous role to the
disturbance d(·). See [S], [SF] for further discussions.

8. Conclusion

In this paper we have established two rigorous results to demonstrate situations in which we
can compare the transient performance of projection and dead-zone based controllers of non
identifier based adaptive designs. We have shown that

• The dead-zone based controller outperforms the projection based controller when the
a-priori information on the uncertainty level is sufficiently conservative.

• The projection based controller outperforms the dead-zone based controller when the
a-priori information on the disturbance level is sufficiently conservative.

Our results are based on the a-priori information dmax and θmax. We have also shown
that other choices of controllers with differing dependence on a-priori information such as
λ–tracking controllers can be driven to similar conclusions.

There are a number of directions in which the result can be generalised, for example:
(i) generalisation of the result for adaptive controllers for higher relative degree plants, (ii)
generalisation of the results for nonlinear systems in the form of integrator chain [S], or in
the strict feedback form, and (iii) establishing whether the same results can be given for the
alternative costs, for example, P = ‖x(·)‖L∞ + ‖u(·)‖L∞ .

It would also be of interest to determine explicit tight bounds on d∗max, δ∗max, note however
that this is challenging as it would require tight upper and lower bounds on performance of
both controllers.
Acknowledgements. We would like to express our gratitude to the reviewers for their
perceptive comments and detailed reading of the draft manuscript.

Appendices

The proofs of Theorems 3.1 and 3.2 are given in this part.

Appendix A. Proof of Theorem 3.1

Before we give the proof, we first present a preliminary Lemma:
Lemma A-1. Suppose M ∈ R

n×n, n ≥ 1 is an stable matrix. Let the positive definite matrix

G ∈ R
n×n be the solution of the Lyapunov equation

GM + MT G = −I.

Then for all t ≥ 0,

‖eMt‖ ≤ k1e
−kt, k := 1/λ(G), k1 :=

√

λ(G)/λ(G),

where λ(G), λ(G) denote the minimum and maximum eigenvalue of G respectively.
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Proof. The proof is elementary and omitted for brevity.

The proof of Theorem 3.1 is derived from the technique used in the proof of ‘λ–tracking’
based on [I2](pages 112–117) but with a significant extension to obtain property D2.

Proof of Theorem 3.1. The continuity of Dη implies by classical result of differential equa-

tions that there exists a unique solution (x(·), δ̂(·)) over a maximal interval of existence [0, ω)
for some ω ∈ (0,∞]. Using the transformation defined by (5), we obtain

ẏ(t) =
(

ā1 − bn−1δ̂(t)
)

y(t) + Ā2z(t) + bn−1d(t), y(0) = Cx0, (A-1)

ż(t) = Ā3y(t) + Ā4z(t), z(0) = Nx0, (A-2)

˙̂
δ(t) = |y(t)|Ddmax

(y(t)), δ̂(0) = 0 (A-3)

Define the C1 function

V (y) :=







0, y ∈ [−η , η],

1

2
(|y| − η)2, y 6∈ [−η , η],

(A-4)

where η = dmax ≥ 0. Observe that

V̇ (y(t)) = ζ(t)ẏ(t) ∀t ∈ [0, ω), (A-5)

where the continuous function ζ : [0, ω)→ R is

ζ(t) :=







0, y(t) ∈ [−η , η].

(|y(t)| − η)
y(t)

|y(t)| , y(t) 6∈ [−η , η].
(A-6)

Note that by (14)
˙̂
δ(t) = ζ(t)y(t) = |ζ(t)| |y(t)|, ∀t ∈ [0, ω) (A-7)

and by the continuity of (A-6), |y(t)| |ζ(t)| ≥ η |ζ(t)|, or

|ζ(t)| ≤ η−1|ζ(t)| |y(t)| = η−1 ˙̂
δ(t), ∀t ∈ [0, ω) (A-8)

Substituting (A-1) in (A-5), we have for all t ∈ [0, ω),

V̇ (y(t)) = (ā1 − bn−1δ̂(t))y(t)ζ(t) + Ā2z(t)ζ(t) + bn−1d(t)ζ(t)

≤ (ā1 − bn−1δ̂(t))
˙̂
δ(t) + bn−1‖d(·)‖L∞ |ζ(t)|+ ‖Ā2‖ ‖z(t)‖ |ζ(t)|

≤ (M1 − bn−1δ̂(t))
˙̂
δ(t) + ‖Ā2‖ ‖z(t)‖ |ζ(t)|, (A-9)

where M1 := M1(θ, dmax, ‖d(·)‖L∞) := |ā1| + η−1bn−1‖d(·)‖L∞ . Note that the continuous
dependency of M1 on θ ∈ S follows from definition (4) and transformation (6) which also
depends continuously on θ ∈ S. M1 also depends continuously on dmax by definition (14).

Now we derive a relation between the second part of (A-9) and δ̂(·). Rewrite equation
(A-2) as

ż(t) = Ā4z(t) + Ā3ζ(t) + h(t), (A-10)

where
h(t) := Ā3(y(t)− ζ(t)).
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Note that since

y − ζ =







y, |y| < η

η
y

|y| , |y| ≥ η

we have that |h(t)| ≤ η‖Ā3‖. Since Ā4 is exponentially stable, by Lemma A-1, for all t ∈ [0, ω)

M2e
−µt ≥ ‖eĀ4t‖, M2 := M2(θ) =

√

λ(R)

λ(R)
, µ := µ(θ) = 1/λ(R), (A-11)

where R is defined in (8). M2 and µ depend continuously on θ ∈ S since Ā4 depends
continuously on θ ∈ S, hence R and its eigenvalues are continuously dependent on θ ∈ S.
Therefore by equation (A-10), we have for all t ∈ [0, ω)

‖z(t)‖ ≤ M2e
−µt‖z0‖+ M2

∫ t

0
e−µ(t−s)(‖Ā3‖ |ζ(s)|+ |h(s)|) ds

≤ M2e
−µt‖z0‖+ M2‖Ā3‖

∫ t

0
e−µ(t−s)|ζ(s)|ds + M2‖Ā3‖ηµ−1(1− e−µt)

≤ M3

(

1 +

∫ t

0
e−µ(t−s)|ζ(s)| ds

)

, (A-12)

where M3 := M3(x0, θ) := M2

[

‖z0‖+ ‖Ā3‖(1 + ηµ−1)
]

. The continuous dependency of M3

on x0, θ ∈ S, dmax follows from the definition of η and the continuous dependency of S−1, µ
and M2 on θ ∈ S. Let t ∈ [0, ω). From inequality (A-12) it follows that

∫ t

0
‖z(s)‖ |ζ(s)| ds ≤M3

∫ t

0
|ζ(s)|+ M3

∫ t

0
|ζ(s)|

∫ s

0
e−µ(s−τ)|ζ(τ)| dτ ds. (A-13)

Using the Cauchy-Schwarz inequality, we have that

∫ t

0
|ζ(s)|

∫ s

0
e−µ(s−τ)|ζ(τ)| dτ ds ≤ ‖ζ(·)‖L2(0, t) ·

∥

∥

∥

∥

∫ •

0
e−µ(•−τ)|ζ(τ)|dτ

∥

∥

∥

∥

L2(0, t)

.

An application of the following inequality (Theorem 6.5.54)[V]
∥

∥

∥

∥

∫ •

0
e−µ(•−τ)|ζ(τ)|dτ

∥

∥

∥

∥

L2(0, t)

≤
∥

∥e−µ •
∥

∥

L1(0, t)
· ‖ζ(·)‖L2(0, t) ≤ µ−1‖ζ(·)‖L2(0, t), (A-14)

together with relations (A-13),(A-8) and (A-14), implies

∫ t

0
‖z(s)‖ |ζ(s)|ds ≤ M3(1 + µ−1)

∫ t

0
|ζ(s)|+ ζ(s)2 ds

≤ M3(1 + µ−1)

∫ t

0
(1 + η−1)|ζ(s)| |y(s)| ds

≤ M4δ̂(t), (A-15)

where M4 := M4(x0, θ) := M3(1 + µ−1)(1 + η−1). Now, using (A-15), we can calculate a
bound on V (y(t)) in terms of δ̂(t) by integrating (A-9) over [0, t]

V (y(t)) ≤ V (y(0)) +

∫ t

0

(

M1 − bn−1δ̂(s)
)

˙̂
δ(s)ds + ‖Ā2‖M4δ̂(t)

≤ V0 + M5δ̂(t)−
bn−1

2
δ̂(t)2,
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where V0 := V (y(0)), and M5 := M5(x0, θ, dmax, ‖d(·)‖L∞) := M1 + ‖Ā2‖M4. The positive
definiteness of V implies that

−bn−1

2
δ̂(t)2 + M5δ̂(t) + V0 ≥ 0. (A-16)

Solving the quadratic inequality (A-16) for δ̂(t), we have that

M5 −M6

bn−1
≤ δ̂(t) ≤ M5 + M6

bn−1
, (A-17)

where M6 := M6(x0, θ, dmax, ‖d(·)‖L∞) :=
√

M2
5 + 2bn−1V0 > M5. We discard the non–

positive lower bound of (A-17) due to the fact that by (A-3), δ̂(0) = 0 and δ̂(·) is non
decreasing. Therefore

0 ≤ δ̂(t) ≤ M5 + M6

bn−1
. (A-18)

The continuous dependency on x0, θ, dmax of M4–M6 is a consequence of the continuous
dependency of M3, µ and the coordinate transformation (6). We now define a continuous
function V ∗ : R

n × S × R≥0 × R>0 → R≥0 by V ∗(x0, θ, ‖d(·)‖L∞ , dmax) = V0 + M5(M5 +
M6)/bn−1. Then

V (y(t)) ≤ V ∗(x0, θ, ‖d(·)‖L∞ , dmax) ∀t ∈ [0, ω), (A-19)

The boundedness of y(·) in terms of V ∗(x0, θ, ‖d(·)‖L∞ , dmax) on [0, ω) follows from (A-4), (A-
19). Therefore by (A-6), ζ(·) is bounded by a continuous function of V ∗(x0, θ, ‖d(·)‖L∞ , dmax)
on [0, ω). Hence by (A-12), z(·) is bounded by a continuous function of V ∗(x0, θ, ‖d(·)‖L∞ , dmax)
on [0, ω). It follows by (6) that x(·) ∈ L∞(0, ω) is bounded by a continuous function of
V ∗(x0, θ, ‖d(·)‖L∞ , dmax). The continuity of the right hand side of equations (A-1)–(A-3) and
the boundedness of the solution (x(·), δ̂(·)) implies that ω =∞. Finally the boundedness of
u(·) as a continuous function of V ∗(x0, θ, ‖d(·)‖L∞ , dmax) follows from (14), thus establishing
D1–D2.

Since y(·) is bounded, it follows from the definition of δ̂(·) that
˙̂
δ(·) is uniformly con-

tinuous. Furthermore,
˙̂
δ(·) ∈ L1, hence Barbalat’s lemma shows

˙̂
δ(t) → 0 as t → ∞. So

limt→∞ infx∈[−η,η] |y(t)− x| = 0 hence proving D3, and thus completing the proof.

Appendix B. Proof of Theorem 3.2

Proof of Theorem 3.2. Since the (time-varying) right hand side of the differential equa-
tions (2) and (16) is piecewise locally Lipschitz, a unique piecewise absolutely continuous
local solution exists. Let (x(·), δ̂(·)) denote a solution of closed loop (Σ(x0, θ, d(·)), ΞP (δmax))
on a maximum interval of existence [0, ω) for some ω ∈ [0,∞). Using the transformation
defined by (5), we obtain

ẏ(t) =
(

ā1 − bn−1δ̂(t)
)

y(t) + Ā2z(t) + bn−1d(t), y(0) = Cx0, (B-1)

ż(t) = Ā3y(t) + Ā4z(t), z(0) = Nx0, (B-2)

˙̂
δ(t) =

{

y(t)2 δ̂(t) < δmax

0 δ̂(t) ≥ δmax

, δ̂(0) = 0 (B-3)
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By definition of projection modification (16), δ̂(t) ≤ δmax for all t ≥ 0. Let k∗
θ < δmax be

given by equation (10). The monotonicity of δ̂(·) implies that either (i) δ̂(t) < k∗
θ for all

t ∈ [0, ω), or (ii) there exists t∗ ∈ [0, ω) such that δ̂(t) ≥ k∗
θ for all t ∈ [t∗, ω).

(i) If δ̂(t) < k∗
θ for all t ∈ [0, ω) then by (16) we have

˙̂
δ(t) = y(t)2 for all t ∈ [0, ω). It

follows that
∫ ω

0
y(s)2ds < k∗

θ ,

and hence y(·) ∈ L2[0, ω). Since Ā4 is stable, (B-2) can be considered as an L2 input
y(·) to a stable system ż(t) = Ā4z(t)+ Ā3y(t) for all 0 ≤ t < ω, from which follows that
ż(·), z(·) ∈ L2[0, ω). An explicit bound on ‖z‖L2 [0,ω) can be obtained as follows. Note

that since y(·) ∈ L2[0, ω) and Ā4 is exponentially stable, by Lemma A-1, there exists
M0, ν ≥ 0 such that for all t ∈ [0, ω)

M0e
−νt ≥ ‖eĀ4t‖ M0 := M0(θ) =

√

λ(R)/λ(R), ν := ν(θ) = 1/λ(R), (B-4)

where R is defined in (8). Therefore2

‖z‖L2[0,ω) ≤ ‖eĀ4•z0‖L2[0,ω) + ‖(sI − Ā4)
−1Ā3‖H∞

‖y‖L2[0,ω)

≤ M0

ν
‖z0‖+ ‖(sI − Ā4)

−1Ā3‖H∞

√

k∗
θ .

(B-5)

A bound on z(·) is also required to show the boundedness of x(·). Applying (B-4) to
the solution of (A-2), we have that for all t ∈ [0, ω),

‖z(t)‖ ≤ M0

ν
‖z0‖+ M0

∫ t

0
e−ν(t−s)‖Ā3‖ |y(s)| ds

≤M1

(

1 +

∫ t

0
e−ν(t−s)|y(s)| ds

)

,

(B-6)

where M1 := M1(‖x0‖, θ) := M0(
1
ν
‖z0‖+ ‖Ā3‖). Since y(·) ∈ L2[0, ω), and ‖y‖L2[0,ω) ≤

k∗
θ , it follows that z(·) is bounded as a continuous function of ‖x0‖ and θ. It remains

to show y(·) ∈ L∞[0, ω), and to construct an explicit uniform bound for y(·) which is
continuously dependent on x0, θ, ‖d‖, δmax. To this end, consider (A-1) and define:

V1(t) :=
1

2
y(t)2, ∀t ∈ [0, ω). (B-7)

The time derivative of (B-7) along the solution of (B-1)– (B-3) is bounded by:

V̇1(t) = (ā1 − bn−1δ̂(t))y(t)2 + Ā2z(t)y(t) + bn−1d(t)y(t)

= − 1

2
y(t)2 + (ā1 + 1)y(t)2 − bn−1δ̂(t)y(t)2 + Ā2z(t)y(t)− 1

2
y(t)2 + bn−1d(t)y(t)

≤ −V1(t) + (ā1 + 1 + ‖Ā2‖2)y(t)2 + |z(t)|2 +
b2
n−1

2
‖d(·)‖2L∞ , ∀t ∈ [0, ω) (B-8)

2Recall that ‖G(·)‖
H∞ = ess sup

ω∈R

|G(jw)|.
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where (B-8) follows from two applications of Young’s inequality and by observing that
bn−1δ̂(t) > 0 for all t ∈ [0, ω). Hence for all t ∈ [0, ω),

1

2
y(t)2 ≤ V1(t)

≤ e−tV1(0) +

∫ t

0
e−(t−s)((ā1 + 1 + ‖Ā2‖2)y(s)2 + |z(s)|2 +

b2
n−1

2
‖d(·)‖2L∞) ds

≤ y(0)2

2
+ (ā1 + 1 + ‖Ā2‖2)‖y(·)‖2L2[0,ω) + ‖z(·)‖2L2[0,ω) +

b2
n−1

2
‖d(·)‖2L∞ .(B-9)

Since ‖y(·)‖2
L2[0,ω) < k∗

θ which is continuously dependent on θ, and we have shown that

‖z(·)‖2
L2[0,ω) is bounded as a continuous function of |x0| and θ, it follows that y(·) is

bounded on [0, ω) in terms of a continuous function of x0, θ, ‖d‖ and δmax. It follows by
(B-6) and (6) that x(·) is bounded on [0, ω) as a continuous function of x0, θ, ‖d‖, δmax.

(ii) Suppose there exists t∗ ∈ [0, ω) such that δ̂(t) ≥ k∗
θ for all t ∈ [t∗, ω). Define the

Lyapunov function
V2(t) = x̄(t)T Px̄(t), ∀t ∈ [0, ω) (B-10)

where x̄(t), P are defined by (6) and (9) respectively.

Then all t ∈ [0, ω), the time derivative of V2(t) w.r.t. (B-1)– (B-3) is given by:

V̇2(t) =x̄(t)T P ˙̄x(t) + ˙̄x(t)T Px̄(t),

=x̄(t)T P
(

D̄(δ̂(t))x̄(t) + B̄d(t)
)

+
(

D̄(δ̂(t))x̄ + B̄d(t)
)T

Px̄(t),

=x̄(t)T
(

PD̄(δ̂(t)) + D̄T (δ̂(t))P
)

x̄(t) + 2x̄(t)T PB̄d(t),

(B-11)

where S is given by (5) and B̄ := S−1B, D̄(•) := S−1(A− •BC)S. Let

µ(θ, ‖d‖) :=
2
√

λ(P )

λ(Q)
|PB̄| ‖d(·)‖L∞ ,

where Q is defined in (9). Then µ is continuously dependent on θ ∈ S by the continuity
of the transformation (6). By (9), we observe that

V̇2(t) ≤ −x̄(t)T Qx̄(t) + 2x̄(t)T PB̄d(t), (B-12)

≤ −
(

λ(Q)− 2
√

λ(P )
√

V2(t)
|PB̄| ‖d(·)‖L∞

)

‖x̄(t)‖2, (B-13)

≤ −λ(Q)

(

1− µ(θ, ‖d‖)
√

V2(t)

)

‖x̄(t)‖2, ∀t ∈ [t∗, ω). (B-14)

Inequality (B-14) implies that V̇2(t) < 0 for all V2(t) > µ(θ, ‖d‖)2, i.e.

V (t) ≤ V ′(x̄∗, θ, ‖d‖) := max{V2(x̄
∗) , µ(θ, ‖d‖)2 } ∀t ∈ [t∗, ω), (B-15)

where x̄∗ := x̄(t∗). Therefore, by (B-10), x̄(·) is bounded on [t∗, ω) in terms of
V ′(x̄∗, θ, ‖d‖). A bound on x̄(·) on [0, t∗) and a bound on the end point x̄(t∗) as
a continuous function of x0, θ, ‖d‖, δmax follows directly by the argument of part (i)
where δ̂(t) < k∗

θ < δmax for all t ∈ [0, t∗). Hence by the continuity of the transformation
(6), x(·) is bounded on [0, ω) as a continuous function of x0, θ, ‖d‖, δmax.
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The boundedness of x(·) over [0, ω) implies that x(·) cannot have a finite escape time.
By definition (16), δ̂(·) is also known never to leave the set [0, δmax]. Hence ω = ∞ i.e.
the solution (x(·), δ̂(·) ) exists for all t ∈ [0,∞). Furthermore, the solution is bounded as
a continuous function of x0, θ, ‖d‖, δmax. Finally, the boundedness of u(·) as a continuous
function of x0, θ, ‖d‖, δmax follows by (16).
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