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Abstract— This paper tackles the problem of computing
smooth, optimal trajectories on the Euclidean group of motions
SE(3). The problem is formulated as an optimal control
problem where the cost function to be minimized is equal to
the integral of the classical curvature squared. This problem
is analogous to the elastic problem from differential geometry
and thus the resulting rigid body motions will trace elastic
curves. An application of the Maximum Principle to this
optimal control problem shifts the emphasis to the language
of symplectic geometry and to the associated Hamiltonian
formalism. This results in a system of first order differential
equations that yield coordinate free necessary conditions for
optimality for these curves. From these necessary conditions
we identify an integrable case and these particular set of
curves are solved analytically. These analytic solutions provide
interpolating curves between an initial given position and
orientation and a desired position and orientation that would
be useful in motion planning for systems such as robotic
manipulators and autonomous oriented vehicles.

I. INTRODUCTION

There are a number of applications in which the problem

of generating smooth 3−D trajectories for a rigid body is

encountered. For example in the path planning problem for

autonomous oriented vehicles such as Underwater Vehicles

[1], Unmanned Air Vehicles [2], for simulating objects in

computer graphics [3] and trajectory generation in robotics

and kinematics [4]. In each of these problems it is desirable

to plan a smooth motion between an initial position and

orientation and a desired final position and orientation in

R
3. In addition to planning smooth motions it is desirable

that the trajectories be invariant with respect to the choice of

coordinate system used to describe the motion. In particular

screw motion forms the basis for motion planning schemes

in [5] and [6]. Although screw displacement is smooth

and invariant with respect to rigid body transformations, it

does not optimize a meaningful cost function. In this paper

we aim to plan smooth trajectories that can be expressed

independently of the coordinate frame and are also optimized

with respect to some meaningful cost function.

Various literature has tackled the optimal trajectory planning

problem using a variational approach and optimizing the

curve with respect to some practically motivated cost func-

tion. For example in [7], [8] the authors derive coordinate

free necessary conditions for generalized cubic splines. In

[9], [10] for systems defined on SE(3), a coordinate free
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formulation of the variational approach was used to generate

shortest paths, minimum acceleration and jerk trajectories.

In this paper we propose a method that generates smooth

3−D trajectories that minimize the integral of the square

of the curvature of the curve. This problem is analogous

to the elastic problem from differential geometry described

in [11]. Therefore, rigid body systems which trace these

smooth, optimal curves will trace elastic curves in Euclidean

space. Such a cost function is practically motivated as it

minimizes the amount of steering required to track such

a curve and therefore avoids using high accelerations and

forces. In addition this paper uses the Maximum Principle

of Optimal control rather than a direct variational approach

[7], [8] to solve these problems. This method results in

a Hamiltonian system which lends itself to conceptually

clear global investigations. The advantage of the Hamiltonian

setting is that we can directly apply the theory of integrable

Hamiltonian systems [12]. If the conditions of this theorem

are satisfied then analytic solutions exist and it is therefore

of significance to try and solve for them. In addition the

presence of several conserved quantities inherent in these

Hamiltonian systems aids in the explicit computation of the

rigid body motions.

The motion planning problem for rigid body systems is

formulated as an optimal control problem on the Lie group

SE(3), where the cost function to be minimized is the integral

of the curvature squared (analogous to the elastic energy in

[11]). The coordinate free Maximum Principle [12], [13] is

then applied to solve this problem. The emphasis of this

paper is placed on an integrable case where the necessary

conditions for optimality can be expressed analytically. In

addition the corresponding optimal motions are expressed

in a coordinate free manner, that is they are described

completely in terms of the geometrically invariant natural

curvatures. These optimal motions are shown to trace helical

paths which could be useful in motion interpolation schemes.

This problem formulation is both practical for the path plan-

ning application considered and illuminates how the general

theory of optimal control, framed curves and left-invariant

Hamiltonian systems applies to this particular setting.

II. NATURAL FRAMES

In order to compute smooth trajectories in SE(3) we

assign a geometric frame to the rigid body system, that is,

a moving frame along a space curve. Each point on the

moving rigid body traces out a curve in space and hence

has a Serret-Frenet frame associated with it. An orthonormal

frame attached to the rigid body stays aligned with the Serret-

Frenet frame and the parameters of motion are given by



the curvature and torsion of the space curve along which

the object moves. The Serret-Frenet frame has been used

previously to study rigid body motions for robotic systems

in [14] and [15]. It is essential to note that framed curves

will in general not coincide with the rigid body fixed frame.

However, in the particular case that the rigid body motion is

constrained to travel in the direction of the unit tangent vector

to the curve the two frames can be related [12]. Moreover,

the rigid body is reduced to a particle and the Serret-Frenet

frame describes the kinematics of this particle as it moves

along a continuous, differentiable curve.

For existence and uniqueness of the Serret-Frenet frame the

curve must be of class Cn where n≥ 3 and the nondegeneracy

condition of nonvanishing classical curvature must hold.

At zero curvature the normal vector is not well-defined

(it is arbitrary), hence it is not possible to associate a

unique Serret-Frenet frame at such a point, nor uniquely

continue it beyond this point. Such conditions have caused

problems in formulating control laws in [2]. This problem

was overcome in [2] by using an alternative frame known as

the Natural frame [16]. The natural frame does not require

the nondegeneracy condition and only that the curve be of

class Cn with n ≥ 2.

The Natural Frame [16], whose parameters of motion are

given by the natural curvatures of the space curve along

which the object moves, has previously been suggested in

the robotics literature [18] where these motions are referred

to as ‘rotation minimizing’. The Natural frame is useful

in these applications as it does not twist about the curve

as much as the Serret-Frenet frame. Additionally, rotation

minimizing frames such as Fermi-Walker frames have been

used extensively in the physics literature to model relativistic

kinematics, see for example [19].

Explicitly, the Natural frame is defined by an orthonormal

frame about the curve γ(t) described by the following

differential equations:

γ̇(t) = x

ẋ = k1y+ k2z

ẏ = −k1x

ż = −k2x

(1)

where γ(t) ∈ R
3, the orthonormal frame R(t) = (x| y|z) ∈

SO(3) and k1,k2 are the natural curvatures which are related

to the classical curvature κ of the Serret-Frenet frame by

κ2 = k2
1 + k2

2 [16]. In this paper we wish to use this Natural

frame as well as the Maximum Principle of optimal control

for systems defined on a Lie group [12] to plan rigid body

motions. In order to formulate our problem statement in the

context of an optimal control problem on the Lie group

SE(3), it is necessary to lift the Natural frame (1) to a

differential system defined on SE(3). This lift is similar to

that for the Serret-Frenet frame explained in [12]. We define

an element g(t) ∈ SE(3) by:

g(t) =

(

1 0

γ(t) R(t)

)

(2)

and therefore is associated with (1) via the relations

[1 γ(t)]T = g(t)~e1, [0 x]T = g(t)~e2,

[0 y]T = g(t)~e3, [0 z]T = g(t)~e4

(3)

where ~e1,~e2,~e3,~e4 is the standard orthonormal frame in R
4.

The Natural Frame (1) can then be expressed as a differential

system on SE(3):
Proposition 1: The left-invariant differential equation:

dg(t)

dt
= g(t)









0 0 0 0

1 0 −k1 −k2

0 k1 0 0

0 k2 0 0









(4)

where g(t) ∈ SE(3) is equivalent to the Natural frame (1).

Proof.

it follows from differentiating (3) w.r.t t that

[0 γ̇(t)]T =
dg(t)

dt
~e1 = g(t)~e2 = [0 x]T

[0 ẋ]T =
dg(t)

dt
~e2 = g(t)(k1~e3 + k2~e4) = k1[0 y]T + k2[0 z]T

[0 ẏ]T =
dg(t)

dt
~e3 = g(t)(−k1~e2) = −k1[0 x]T

[0 ż]T =
dg(t)

dt
~e4 = g(t)(−k2~e2) = −k2[0 x]T

(5)

then equating the L.H.S to the R.H.S yields (1). ¤

The system (4) can be expressed conveniently in coordinate

form by defining the following basis for se(3)

A1 =









0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0









,A2 =









0 0 0 0

0 0 0 −1

0 0 0 0

0 1 0 0









A3 =









0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0









,B1 =









0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0









B2 =









0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0









,B3 =









0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0









(6)

and it follows that (4) can be expressed as:

dg(t)

dt
= g(t)(B3 + k1A1 + k2A2) (7)

As explained in the introduction we will compute smooth

trajectories, that minimize the integral of the classical curva-

ture squared, which is equivalent to minimizing the elastic

energy of the curve [11]. For the Natural frame (7) this is

equivalent to minimizing the function:

J =
1

2

∫

κ2dt =
1

2

∫

(

k2
1 + k2

2

)

dt (8)



These natural curvatures are analogous to the gyroscopic

steering controls for an Unmanned Air Vehicle, see [2]. This

problem is formally stated as an optimal control problem:

Problem Statement 1: Compute the motions g(t) ∈ SE(3)
of the left-invariant differential system:

dg(t)

dt
= g(t)(B3 + k1A1 + k2A2) (9)

that minimizes the expression:

J =
1

2

∫

(

k2
1 + k2

2

)

dt (10)

subject to the given boundary conditions g(0) = g0 and

g(T ) = gT , where k1, k2 are the natural (steering) curvatures.

The Problem Statement 1 is geometrically analogous to the

elastic problem in [11]. It follows that the rigid body motions

that correspond to Problem Statement 1 will trace elastic

curves in Euclidean space. In the following section we apply

the Maximum Principle to Problem Statement 1.

III. HAMILTONIAN LIFT ON SE(3)

The application of the Maximum Principle [13], [12] to

Problem Statement 1 shifts the emphasis to the language

of symplectic geometry and to the associated Hamiltonian

formalism. The Maximum Principle states that the optimal

paths are the projections of the extremal curves onto the

base manifold, where the extremal curves are solutions of

certain Hamiltonian systems on the cotangent bundle. In

Problem Statement 1 the manifold in question is SE(3) and

the cotangent bundle is T ∗SE(3). We begin by defining the

appropriate pseudo-Hamiltonian on T ∗SE(3) for Problem

Statement 1 (see [24], [12] for details):

H(p,u,g) = p(g(t)B1)+ k1 p(g(t)A1)+ k2 p(g(t)A2)

−ρ0
1

2

(

k2
1 + k2

2

) (11)

where p(·) : T SE(3) 7→ R and ρ0 = 1 for regular extremals

and ρ0 = 0 for abnormal extremals. The abnormal extremals

arise as solutions of the optimal control problem defined by

the constraints alone and are the subject of extreme interest,

see [20], [21]. These situations are not of principle concern

in this paper and we consider only the regular extremals

(ρ0 = 1). As the configuration of the rigid body is the Lie

group SE(3), the cotangent bundle T ∗SE(3) can be realized

as the direct product SE(3)×se
∗(3) where se

∗(3) is the dual

of the Lie algebra se(3) of SE(3), see [12]. Therefore, the

original Hamiltonian defined on T ∗SE(3) can be expressed

as a reduced Hamiltonian on the dual of the Lie algebra

se
∗(3). We define the linear functions Mi = p̂(Ai), pi = p̂(Bi)

for i = 1,2,3 where p̂(·) : se(3) 7→ R. Such functions are

the Hamiltonian lifts of left-invariant vector fields on SE(3),
because p(g(t)Ai) = p̂(Ai) for any p = (g(t), p̂) and any

Ai ∈ se(3). Moreover, if Mi, pi is a collection of linear

functions generated by the basis Ai,Bi in se(3) then the

vector (M1,M2,M3, p1, p2, p3) is the coordinate vector of p̂

relative to the dual basis A∗
i ,B

∗
i . Therefore, the Hamiltonian

(11) can be expressed on se
∗(3) as

H = p1 + k1M1 + k2M2 −
1

2

(

k2
1 + k2

2

)

(12)

Then through the Maximum principle of optimal control

and the fact that the control Hamiltonian (12) is a concave

function of the control functions k1,k2, it follows from [12]

that calculating ∂H
∂k1

= ∂H
∂k2

= 0 yields the optimal controls:

k1 = M1,k2 = M2 (13)

substituting (13) into (12) gives the optimal Hamiltonian:

H = p1 +
1

2

(

M2
1 +M2

2

)

(14)

In addition substituting the expressions (13) into (4) the

optimal (with respect to the cost function (8)) motions are

the solutions g(t) ∈ SE(3) of the differential equation:

dg(t)

dt
= g(t)









0 0 0 0

1 0 −M1 −M2

0 M1 0 0

0 M2 0 0









(15)

Therefore, the path planning problem amounts to solving the

extremal curves M1 and M2 and then integrating equation

(15) to obtain the optimal motions g(t) ∈ SE(3). In Section

IV we solve the extremal curves M1 and M2 explicitly for

a special case and then proceed in Section V to solve the

equation (15) for g(t) ∈ SE(3).

IV. SOLVING THE EXTREMAL CURVES

In order to solve equation (15) it is necessary to solve the

extremals curves M1 and M2. In order to do this we need

to look at all the available information. Firstly, we compute

the corresponding Hamiltonian vector fields from the left-

invariant Hamiltonian (14). To do this it is convenient to

state the Lie bracket table with the Lie bracket defined by

[X ,Y ] = XY −Y X , then for the basis (6):

[, ] A1 A2 A3 B1 B2 B3

A1 0 A3 -A2 0 −B3 B2

A2 -A3 0 A1 B3 0 −B1

A3 A2 -A1 0 −B2 B1 0

B1 0 −B3 B2 0 0 0

B2 B3 0 -B1 0 0 0

B3 -B2 B1 0 0 0 0

the Poisson bracket is given by the equation:

{ p̂(·), p̂(·)} = −p̂([·, ·]) (16)

and it follows that the time derivative of M1 along the

Hamiltonian flow is then:

Ṁ1 = {M1,H}
= {M1, p1}+M1{M1,M1}+M2{M1,M2}
= 0+0−M2M3

(17)

the remaining Hamiltonian vector fields are:

Ṁ1 = −M2M3

Ṁ2 = −p3 +M1M3

Ṁ3 = p2

ṗ1 = M2 p3

ṗ2 = p1M3

ṗ3 = −p1M1

(18)



The integral curves of the Hamiltonian vector fields (18)

are necessary conditions for optimality and can be used to

solve for our critical variables M1 and M2. In addition to this

there are constants of motions inherent in all left-invariant

Hamiltonian systems defined on SE(3), see [12] for details.

In particular the Casimir functions

I2 = p2
1 + p2

2 + p2
3 (19)

and

I3 = M1 p1 +M2 p2 +M3 p3 (20)

are constant along the Hamiltonian flow. This is easily veri-

fied as they are in involution with any other constant function

Ci on se
∗(3) i.e. {I2,H} = 0,{I3,H} = 0 and {I2, I3} = 0,

see [12] for details. Using the Hamiltonian vector fields and

the constants of motion H, I2, I3 we can attempt to solve

for M1 and M2. Solving the Hamiltonian vector fields (18)

with respect to the constants of motion can be achieved

numerically using such methods as those described in [22].

However, the advantage of studying Hamiltonian systems is

that in many cases analytic solutions can be computed, even

for high dimensional cases such as our system defined on the

12-D cotangent bundle T ∗SE(3)∼= SE(3)×se
∗(3). Moreover,

Hamiltonian systems that can be solved analytically are

called Integrable Hamiltonian systems, explicitly from [23]:

A Hamiltonian function on a symplectic manifold N of

dimension 2n is said to be integrable if there exist constant

functions ϕ2, ...,ϕn on N that together with the Hamiltonian

H = ϕ1 satisfy the following two properties:

• ϕ1, ...,ϕn are functionally independent i.e the differen-

tials dϕ1, ...,dϕn are linearly independent for an open

subset of N.

• The functions ϕ1, ...,ϕn Poisson commute with each

other.

Thus, in identifying the (n−1) functions ϕi the Hamiltonian

function is completely integrable and analytic solutions of

the Hamiltonian vector fields can be found. For left-invariant

Hamiltonian systems defined on SE(3) we can be more

specific about integrability, following the arguments posed

in [23] we state the following theorem:

Theorem 1: For any left (respectively right) invariant

Hamiltonian system defined on SE(3), there exist five con-

stants of motion ϕ1 = H,ϕ2 = I2,ϕ3 = I3,ϕ4,ϕ5, where

the constants of motion ϕ4,ϕ5 correspond to right-invariant

vector fields.

Proof. see [23]. It follows from Theorem 1 that for the

left-invariant Hamiltonian (14) and the corresponding vector

fields (18) to be integrable, an additional constant of motion

needs to be identified. This is because the Hamiltonian is

defined on the 12-D cotangent bundle T ∗SE(3) ∼= SE(3)×
se

∗(3) and therefore six constants of motion are required for

integrability. In the classic example of Hamiltonian systems

defined on SE(3) such as the spinning top [12], the additional

constant of motion required for integrability arises through

the assumption that the top is axially symmetric. However,

an analogous symmetry argument can not be used for the

Hamiltonian vector fields (18). Therefore, to solve (18)

numerical methods such as those described in [22] can be

used to solve the extremal curves. However, using numerical

methods does not provide a global solution to this system

as these methods are inherently local. Computing analytic

solutions are highly desirable in motion planning as they

lend themselves to conceptually clear global investigations.

In the remainder of this paper a trivial integrable case

will be stated followed by a non-trivial integrable case of

the Hamiltonian vector fields (18). For the non-trivial case

analytic expressions are derived for the optimal motions.

A trivial example of an integrable case of vector fields

(18) occurs when p1 = p2 = p3 = M1 = M2 = M3 = 0.

Moreover, for these values p1 = p2 = p3 = M1 = M2 = M3 are

constant ∀t and therefore the system is integrable (providing

6 constants necessary for integrability). Substituting these

values into (9) yields

dg(t)

dt
= g(t)B3 (21)

this is easily integrated to yield γ(t) = [t,0,0]T with R equal

to a 3×3 matrix with zero entries. Therefore, a straight line

motion with zero rotation about this line is an optimal rigid

body motion. In addition there exists a non-trivial integrable

case of the Hamiltonian vector fields (18). This case is

considered non-trivial as it gives rise to time-dependent

extremal curves. It is observed that p1 = p2 = p3 = 0 is

an invariant surface for the Hamiltonian vector fields (18).

Explicitly, for p1 = p2 = p3 = 0 the equations (18) degenerate

to:
Ṁ1 = −M2M3

Ṁ2 = M1M3

Ṁ3 = 0

ṗ1 = 0

ṗ2 = 0

ṗ3 = 0

(22)

this implies that M3 (if not identically zero), which is func-

tionally independent of H, I2, I3 is constant. For convenience

the constant M3 will be denoted by c. In addition p1 = p2 =
p3 = 0 ∀t. It follows that the Hamiltonian vector fields (22)

are completely integrable. These particular curves will be

the focus of the remainder of this paper. For these particular

curves the Hamiltonian (14) reduces to

H = M2
1 +M2

2 (23)

and we assume that H > 0. It follows parameterizing the

Hamiltonian (23) using polar coordinates in such a way that

the differential equations (22) are satisfied that the extremal

curves are:
M1 = r cosct

M2 = r sinct

M3 = c

(24)

It follows that as se
∗(3) ∼= R

6, the extremal curves can

be geometrically interpreted as a circle embedded in R
6.

Substituting M1 = M2 = 0 into (15), it is easily shown that

the corresponding optimal motions are along a straight line



with zero rotation about this line. However, to compute the

optimal motions corresponding to the extremal curves (24)

is not trivial as the elements of the Lie algebra are time-

dependent. Integrating (15), where M1 and M2 are defined

by (24) is the subject of the next section.

V. OPTIMAL MOTIONS FOR THE RIGID BODY

Having solved for the extremal curves M1 and M2 we

now wish to solve for the corresponding optimal motions in

SE(3). This is done by integrating the equation (15), which

describes optimal motions with respect to the cost function

(8). For the purpose of integration it is convenient to split the

natural frame (15) into its translational and rotational part:

dγ(t)

dt
= R~e1 (25)

and

dR

dt
= R





0 −M1 −M2

M1 0 0

M2 0 0



 (26)

where R−1 = RT . This section exploits the conservation laws

inherent in all left-invariant Hamiltonian systems on SE(3)
to integrate (25) and (26). For convenience we define a basis

for the Lie algebra so(3)

E1 =





0 −1 0

1 0 0

0 0 0



 ,E2 =





0 0 −1

0 0 0

1 0 0





E3 =





0 0 0

0 0 −1

0 1 0





(27)

then the following quantities are conserved for all left-

invariant Hamiltonian systems on SE(3)

RPR−1 = constant (28)

and

RMR−1 +[X ,RPR−1] = constant (29)

where

M = M1E1 +M2E2 +M3E3

P = p1E1 + p2E2 + p3E3

X = x1E1 + x2E2 + x3E3

(30)

where x1,x2,x3 are the position coordinates of the vector

γ(t) = [x1,x2,x3]
T . For a proof that the quantities (28) and

(29) are constant for all left-invariant Hamiltonian systems on

SE(3) see [12]. Using these constants of motion we are able

to integrate (26) which is stated in the following theorem:

Theorem 2: R = (x| y|z) ∈ SO(3) is the rotation matrix

which relates the natural frame to a fixed inertial frame

where:

x =





c
K

− r
K

sinKt
r
K

cosKt





y =





r
K

sinct

cosKt cosct + c
K

sinKt sinct

sinKt cosct − c
K

cosKt sinct





z =





− r
K

cosct

− c
K

cosct sinKt + sinct cosKt
c
K

cosKt cosct + sinct sinKt





(31)

where K =
√

r2 + c2 and r,c are the constant parameters of

the curvatures(24)

Proof.

For these particular curves p1 = p2 = p3 = 0 the conservation

laws (28) and (29) reduce to:

RMR−1 = constant (32)

this constant matrix RMR−1 is then conjugated for a partic-

ular solution R such that:

RMR−1 =
√

M2
1 +M2

2 +M2
3 E3 (33)

substituting (24) into (33) gives:

RMR−1 =
√

r2 + c2E3 (34)

for convenience we will define the constant K2 = r2 + c2

therefore we can write

M = KR−1E3R (35)

expressing R in a convenient coordinate form [12]:

R = exp(φ1E3)exp(φ2E2)exp(φ3E3) (36)

and substituting (36) into (35) yields:

M = K exp(−φ3E3)exp(−φ2E2)E3 exp(φ2E2)exp(φ3E3)
(37)

explicitly

M = K





0 cosφ3 sinφ2 −sinφ2 sinφ3

−cosφ3 sinφ2 0 −cosφ2

sinφ2 sinφ3 cosφ2 0





(38)

equating M in (30) to (38) gives:

M1 = −K cosφ3 sinφ2

M2 = K sinφ2 sinφ3

M3 = K cosφ2

(39)

therefore it is easily shown that:

cosφ2 =
M3

K

sinφ2 = ±

√

1− M2
3

K2

(40)

and substituting (24) into (40) and simplifying gives:

cosφ2 =
c

K

sinφ2 = ± r

K

(41)



in addition from (39) we have:

tanφ3 = −M2

M1
(42)

therefore:

sinφ3 = ∓ M2
√

M2
1 +M2

2

cosφ3 = ± M1
√

M2
1 +M2

2

(43)

and substituting (24) into (43) and simplifying yields:

sinφ3 = ∓sinct

cosφ3 = ±cosct
(44)

in order to obtain an expression for φ1 we substitute (36)

into (26) and simplify to yield:

φ̇1





0 cosφ3 sinφ2 −sinφ2 sinφ3

−cosφ3 sinφ2 0 −cosφ2

sinφ2 sinφ3 cosφ2 0





+φ̇2





0 −sinφ3 −cosφ3

sinφ3 0 0

cosφ3 0 0





+φ̇3





0 0 0

0 0 −1

0 1 0



 =





0 −M1 −M2

M1 0 0

M2 0 0





(45)

which leads to

φ̇1 sinφ2 sinφ3 + φ̇2 cosφ3 = M2 (46)

and

φ̇1 cosφ3 sinφ2 − φ̇2 sinφ3 = −M1 (47)

dividing equation (47) by sinφ3 and (46) by cosφ3 and

adding the two equations and simplifying yields:

φ̇1 =
M2 sinφ3 −M1 cosφ3

sinφ2
(48)

substituting (24), (41) and (44) into (48) and integrating with

respect to t yields:

φ1 = Kt +β (49)

where β is a constant of integration. Assuming for simplicity

of exposition that β = 0 and substituting (41), (44), (49) into

(36) and choosing the natural frame to be positively oriented

yields (31) R = (x| y|z) ¤

Having solved for φ1,φ2,φ3, we can easily solve (25) for

γ(t) ∈ R
3, which is stated as a Lemma:

Lemma 1: The optimal path γ(t) ∈ R
3 defined by the

differential equation (25), with M1 = r cosct and M2 = r sinct

are helices described by:

γ(t) =
1

K2
[ct,r cosKt,r sinKt]T (50)

Proof.

Substituting (36) into (25) yields:

dγ(t)

dt
=





cosφ2

−sinφ1 sinφ2

cosφ1 sinφ2



 (51)

then substituting (49) and (41) into (51) and assuming a

positively oriented frame gives:

dγ(t)

dt
=

1

K





c

−r sinKt

r cosKt



 (52)

finally on integrating (52) yields

γ(t) =
1

K

∫





c

−r sinKt

r cosKt



dt =
1

K2
[ct,r cosKt,r sinKt]T

(53)

¤.

Therefore, this particular smooth rigid body motion traces

a helix and the natural frame rotates along with this helical

motion according to the rotation matrix R = (x| y|z)∈ SO(3)
in (31). These motions are also expressed completely in

terms of the parameters r,c of the geometrically invariant

natural curvatures k1 = r cosct and k2 = r sinct and therefore

independently of a coordinate frame. It is important to note

that although screw motions trace helical paths, we cannot

say that the particular solution (50) is a screw motion. A

general screw motion can be described by motion along

a straight line with rotation about the direction of motion.

However, because in general, framed curves do not coincide

with the rigid body fixed frame we cannot conclude that

the rigid body is rotating in a screw motion. Indeed, in the

particular case that the rigid body is constrained to travel in

the direction of the unit tangent vector to the curve, we can

say that the solution (50) is not a screw motion. In this case

the motion is along a helix (not a straight line) with rotation

about this helix.

Note that the optimal motion described by (50) and (31)

is only a particular optimal motion with initial γ(0) and

R0 = R(0) chosen to satisfy the equation (33). Moreover,

expressing these initial conditions as an element of SE(3) at

t = 0 the initial g(0) ∈ SE(3) is equal to:

g(0) =









1 0 0 0

0 c
K

0 − r
K

r
K2 0 1 0

0 r
K

0 c
K









(54)

however, from the particular optimal motion (50) and (31) it

is easy to express a more general optimal motion given any

initial condition. Firstly, define arbitrary initial position and

orientation by gint ∈ SE(3) and the position and orientation

at time t given these initial conditions as ggen ∈ SE(3). It

follows that given a particular solution g(t) ∈ SE(3) where

g(0) ∈ SE(3) is g(t) ∈ SE(3) at t = 0, the general solution

ggen ∈ SE(3) can be expressed as:

ggen = gintg(0)−1g(t) (55)

g(0)−1 is the inverse of g(0) such that g(0)−1g(0) = I where

I is the identity matrix. Computing the general solution

explicitly from the particular optimal motion described by

(50) and (31) yields:

ggen = gint

(

1 0

γ(t) R(t)

)

(56)



where

γ(t) =









c2t+r2 sin(Kt)
K(c2+r2)

r(cos(Kt)−1)
c2+r2

cr(sin(Kt)−t)
K(c2+r2)









(57)

and R(t) = (x |y |z ) is:

x =









c2+r2 cos(Kt)
c2+r2

−(r+Kr sin(Kt))
c2+r2

−2cr sin2(Kt/2)
c2+r2









y =









r((c−ccos(Kt))sin(ct)+K cos(ct)sin(Kt))
c2+r2

K2 cos(ct)cos(Kt)+cK sin(ct)sin(Kt)−r

c2+r2

−(r2+c2 cos(Kt))sin(ct)+cK cos(ct)sin(Kt))
c2+r2









z =









r(ccos(ct)(cos(Kt)−1)+K sin(ct)sin(Kt))
c2+r2

−(r+cK cos(ct)sin(Kt)−K2 sin(ct)sin(Kt))
c2+r2

cos(ct)(r2+c2 cos(Kt))+cK sin(ct)sin(Kt))
c2+r2









(58)

this optimal helical motion describes a curve through any

specified initial position and orientation of a rigid body and

can be used to plan motions adjusting the parameters r and

c as required.

VI. CONCLUSION

This paper derives smooth, optimal trajectories on the

Euclidean group of motions SE(3). These trajectories have

the advantage that they are expressed independently of a local

coordinate frame. In order to compute such trajectories we

assign a geometric frame to the rigid body, that is, a moving

frame along a space curve. A point in the rigid body follows

a curve and an orthonormal frame attached to the rigid body

stays aligned with this geometric frame. We use the Natural

Frame, where the parameters of the motion are given by the

natural curvatures of the space curve along which the object

moves. The problem of computing smooth trajectories was

then formulated as an optimal control problem where the

cost function to be minimized is the integral of the curvature

squared. This problem is analogous to the elastic problem

from differential geometry and therefore the resulting rigid

body motions will trace elastic curves. An application of

the Maximum Principle to this optimal control problem

results in a system of first order differential equations that

yield coordinate free necessary conditions for optimality.

We analysed a particular set of curves that satisfy these

necessary conditions and provide analytic solutions for the

corresponding optimal motions. Moreover, this paper derives

helical motions that are expressed completely in terms of

their natural curvatures and as such provide smooth, optimal

curves described in a coordinate free manner that can be used

to plan rigid body motions.
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