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Abstract Stochastic realization is still an open problem for the class of hidden
Markov models (HMM): given the law Q of an HMM find a finite parametric descrip-
tion of it. Fifty years after the introduction of HMMs, no computationally effective
realization algorithm has been proposed. In this paper we direct our attention to an
approximate version of the stochastic realization problem for HMMs. We aim at the
realization of an HMM of assigned complexity (number of states of the underlying
Markov chain) which best approximates, in Kullback Leibler divergence rate, a given
stationary law Q. In the special case of Q being the law of an HMM this corresponds
to solving the approximate realization problem for HMMs. In general there is no
closed form expression of the Kullback Leibler divergence rate, therefore we replace
it, as approximation criterion, with the informational divergence between the Hankel
matrices of the processes. This not only has the advantage of being easy to compute,
while providing a good approximation of the divergence rate, but also makes the prob-
lem amenable to the use of nonnegative matrix factorization (NMF) techniques. We
propose a three step algorithm, based on the NMF, which realizes an optimal HMM.
The viability of the algorithm as a practical tool is tested on a few examples of HMM
order reduction.
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2 L. Finesso et al.

1 Introduction

Hidden Markov models (HMM) are a simple, yet very rich, class of stochastic pro-
cesses which has become ubiquitous in several areas of control, signals and systems.
Let Y = (Y;);en be a stationary stochastic process taking values in a finite set. Fol-
lowing [20,21], we call Y an HMM, if it is equal in law to the output process n of a
finite stochastic system & = (X, n). A (finite) stochastic system, to be formally defined
later in the paper, has the property that the bivariate process &, also taking values in a
finite set, is jointly Markov. Note that, as a consequence, Y has the same law as f(§),
where f is the projection on the second component of &, which shows that an HMM
can always be represented as a deterministic function of a Markov chain. In principle,
since functions of Markov chains generally are not Markovian, the HMM can exhibit
complex dynamic behaviors with possibly long dependence on the past.

The probabilistic characterization of HMMs was first given by Heller [12] who
solved the following problem. Among all finitely valued stationary processes Y, char-
acterize those whose laws are HMMs. To some extent his elegant result is not sat-
isfactory. Even if Y is known to be an HMM [12], it does not provide a procedure
to solve the realization problem, that is to deduce from the law of Y, say Q, a finite
stochastic system whose output law is equal to Q. Such a stochastic system is then
called a (weak) realization of Y.

A realization is fully determined by a finite set of parameters, typically the tran-
sition probability matrix of the process £. The size of a realization is the cardinality
of the state space of the Markov chain X. The problem of constructing realizations
of HMMs starting from their law Q has attracted the attention of workers in the area
of Stochastic Realization Theory. An early reference is Picci and Van Schuppen [21],
see also Anderson [1]. More recent references with related results are Vidyasagar [24]
and Vanluyten et al. [23]. While some of the issues have been clarified, a construc-
tive and computationally feasible realization algorithm, producing the parameters of
a realization, is still missing.

In the present paper we focus on the simpler approximate realization problem which
can be roughly formulated as follows. Given the law Q of an HMM, find a realization
of assigned size, which best approximates Q in divergence rate, a most natural crite-
rion from a statistical perspective. Unfortunately there exists no general, closed form,
analytic expression of the divergence rate. To obviate this difficulty we reformulate
the criterion in terms of the informational divergence between some positive matrices,
representing the finite dimensional distributions of the processes. The approximate
realization problem becomes then amenable to the use of nonnegative matrix factor-
ization (NMF) techniques. Specifically we propose a three step, NMF based, optimi-
zation procedure to construct the parameters of the best approximate realization. The
advantage of this approach is that it can also be used, in principle, to approximate any
given stationary law Q by that of an HMM.

The remainder of the paper is organized as follows. Section 2 contains prelimi-
naries on HMMs. In Sect. 3 the Hankel matrix of finite dimensional distributions of
stationary processes is introduced. Section 4 establishes the existence of the divergence
rate between a stationary process and an HMM. In Sect. 5 the realization problem is
posed, as well as an approximate version of it, in terms of divergence rate. In Sect. 6 an
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Approximation of stationary processes by hidden Markov models 3

algorithm to find the best approximation is proposed. The concluding Sect. 7 contains
numerical examples.
This paper develops and extends some preliminary ideas presented in [8].

2 Preliminaries on HMMs

Let (Y;);en be a discrete time stationary stochastic process defined on a given prob-
ability space {2, A, P} and with values in the finite set (alphabet) ). Denote by J*
the set of all finite strings of symbols from the alphabet ), with the addition of the
empty string ¢. For any v € V*, let |v| be the length of the string v. By convention
|¢p| = 0.If u, v € Y*, denote by uv the string obtained by concatenation of v to u.
Foranyn € N, let )" be the set of all strings of length n, with the obvious inclusion
V" C YV*.Wedenote by Y, t+1 = (Y141, Yi42, . . .) the future of the process Y after t and
by Y, = (..., Y:—1, Y;) the past of the process Y up to ¢. The event (¥, ..., Y;) =v

is represented by Y! = v, for any v € Y* with [v| = ¢ — s + 1. By convention
(Y} = ¢} = (¥, = ¢} = Q. Forany v € Y* we use Y /1 = v as a shorthand
notation for the event YIL‘ | = . Since Y is stationary, the probability distribution of

the sequence ¥, is independent of ¢ and it induces a map p : J* — [0, 1] with the
following properties

(@ pw)=PY¥ =v) Yve)*
(®) pp) =1
© 0=<p =1 Yve)*
(d) 2 cyn pwv) = p(u) YueY* VneN.
The map p represents the finite dimensional probability distributions of the process
Y, sometimes referred to as pdf.
All the hidden Markov models considered in this paper will be in discrete time

and with values in a finite set. The basic definitions are taken from [20], to which the
reader is referred for detailed derivations.

Definition 2.1 A pair (X, Y) = (X;, ¥;);en of stochastic processes taking values in
the finite set X x ) is said to be a stationary finite stochastic system (SFSS) if

(i) (X,Y) isjointly stationary,
(ii) forallr e N, o € X*, v € Y* it holds that
P(Yii=v. X =0lX .Y )=P (Y} =v.X ", =0lX,). (D

The processes X and Y are called, respectively, the state and the output of the SFSS.
The cardinalities of X and ) are denoted by N and m, respectively.

To the best of our knowledge Definition 2.1 goes back to [4], where it was given in an
input/output context not needed here. From property (1) it follows immediately that

1. (X,Y)isaMarkov chain.
2. X is a Markov chain.
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4 L. Finesso et al.

3. The past and the future of Y at time ¢ are conditionally independent given X;, i.e.
forallr € Nand v € Y*

P(Yl, =vlX,Y,)=P (Y, =vX)). )

Definition 2.2 A stochastic process ¥ = (¥;);en with values in Y is a HMM, if it is
equal in law to the output of a SFSS. Any such SFSS is called a representation of Y.
The cardinality N of X is called size of the representation. The smallest N for which
a representation exists is called order of the HMM.

Remark 2.3 If Y is an HMM, equal in law to the output of a SFSS, one can always
replace the latter with Y, when probabilities in terms of Y are to be computed. This
convention is followed in the remainder of the paper.

The probability distribution of a stationary HMM is specified by

e the m nonnegative matrices {M(y), y € V} of size N x N with elements
mij(y) = PYip1 =y, Xip1 = j | Xi = 1), (3)

e a probability (row) vector & of size N, such that 7 = w A, where
A= Z M(y).
)7

The matrix A is the transition matrix of the Markov chain X and 7 is an invariant
vector of A. Since the state space X is finite, A always admits an invariant vector,
see [19], which is unique if A is irreducible.

Definition (3) extends to strings v € Y* as follows.

Definition 2.4 Let v be a string in )* of arbitrary length, k say. Then M (v) € Rﬁ xN
is defined by

mij) = P (YIH = v, X = j1X, =1).
An immediate consequence of (1) is that the following semigroup property holds

M@uv) =MwM®) Yu,v e Y*.

Let w € Y*, then p(w) = nM(w)e, where e = (1,...,1)T € RV. For any pair of
strings u and v in J*, one then has

pwv) =aMu)M(v)e. 4)
andif w = y; - - - yy, then

p(w) = M(y1)--- M(yn)e. (&)
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Approximation of stationary processes by hidden Markov models 5

The factorization hypothesis

PYr1=y, Xep1=j | Xe =1)
=PY=y| Xir1=DPXi1 =j | X, =1), Vt,y,4,j (6)

is widely used in the signal processing literature, see [22]. Under (6) it is possible to
reparametrize the pdf. Define the readout matrix B € Rﬁ * with elements

by =PY,=y| X, =1)
and the diagonal matrices
By := diag{byy, bay, ..., bny}. 7
The factorization hypothesis then reads
M(y) = ABy, @®)
from which (5) turns into the classical Baum formula, see [2],
p(w) =mABy, ---ABy,e. )
Note that if ¥ = f(X), a deterministic function of X, then b;, € {0, 1} with b;, =1
iff (i) = y and (6) holds. As it was recalled in the Introduction, enlarging the size
it is always possible to represent an HMM as a deterministic function of an MC. The

factorization hypothesis therefore is not restrictive, in principle, but it is not always
desirable to work with HMMs of large size.

3 Hankel matrices

The Hankel matrix H of stationary process is a matricial representation of its finite
dimensional distributions. In the special case of HMMs H has positive factorization
properties which will be instrumental for the construction of the approximate realiza-
tions in Sect. 5.

3.1 Hankel matrix of a stationary process

Following [1], define for a given n € N two ordered sets, listing the strings of )".
The ordered set y;l ,, lists the strings in first lexical order (flo), i.e., lexicographically
reading from right to left. The ordered set )};, lists the strings in last lexical order
(llo), i.e. lexicographically reading from left to right. For )V = {0, 1} and n = 2 the
orders are y}lo = (00, 10,01, 11) and Y7, = (00,01, 10, 11).

The flo induces a complete enumeration of )*, denoted by y;;, o which is obtained

by first listing the empty string, followed by the strings of y}, ,» followed by the
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6 L. Finesso et al.

strings of yJ% 1o and so on. In a similar way one constructs y;;o. For Y = {0, 1} the two
enumerations are

y;:,o = (¢,0, 1,00, 10,01, 11, 000, 100, 010, 110, 001, 101,011, 111, ...)
and
Yi, = (¢,0,1,00,01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, ...).

Definition 3.1 For a stationary process with pdf p the Hankel matrix H is the infi-
nite matrix with elements p (uqvg), where u, and vg run through y;, o and y;; o
respectively.

As an example the upper left corner of H is written below, for the case of a binary
process. To improve readability the sequences u, and vg are displayed along the
borders.

|| ¢ | 0 1 | 00 01 10 11 | -

¢ 1 p(0) p () p (00) p (01) p (10) p (1)

0 p (0) p (00) p(01) p (000) p (001) p (010) p (011)
1 p 1) p (10) p(11) p (100) p (101) p (110) p (111)
00 || p0) | p(000) p(001) | p(0000) p(0001) p(0010) p (00LD)
10 || p10) | p(100) p01) | p(1000) p(1001)  p(1010)  p(1011)
o1 || p | p©10) p(@OI1) | p(0100) p(©0101) p(0110) p(OLL1)
1 || pan | paioy pail) | pa100) p(101)  p(1110)  p(1111)

The example clearly shows the natural block structure of the H matrix. For fixed
integers K > 0 and L > 0 the (K, L) block of H is

Hgp = llpivp)ll, (10)

K L

amatrix of size m® xm®, whereu;,i =1,...,y =m& andv;, j=1,....8 =m
run through y}f,o and yﬁo, respectively.
The matrix H can be partitioned as

Hyoo Ho; ---Hoz ---
Hyo Hy ---Hy ---

H=|: : : ) (11)
HKOHKI"'HKL"'

As the reader can readily see, the antidiagonal blocks Hg, (with K + L constant)
contain the same probabilities, although reshuffled. With abuse of language H is called
a (block) Hankel matrix, although in a standard block Hankel matrix Hg ; is constant
along the antidiagonals.
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Approximation of stationary processes by hidden Markov models 7

Let y}% = y}lo = (¥1, ... Ym). Because of the columns enumeration scheme, the

K L+1

block Hg 141 of size m® x m can be written as

Hg 11 = [Hgr (1) Hgr(y2) -~ Hxkp () 1, (12)
where Hg ; (y) is defined as

Hxr () = llp(ui yvj)lli=1,...y,j=1,...8- (13)

3.2 Hankel matrix of an HMM

The Hankel matrix H of a stationary HMM, and its blocks Hg 1 , have special proper-
ties in two respects; they can be factored into smaller, positive matrices and there are
recursive relations between neighboring blocks and block factors. We collect below,
following [1] and introducing new ones as needed, the results that will be used later
in the paper. All the properties stem from the basic formula (4)

puivj) =T M@u;)M(vj)e.

Substituting (4) into (10) one gets the positive factorization of Hg

aM(uy)
HKL= [M(Ul)E"'M(UB)e] = HKrL’ (14)
TM(uy)
where
M (uy)
Mg = , I'g ::[M(vl)e-~-M(v3)e] (15)
TM(uy)

are matrices of sizes mX x N and N x m’, respectively.
Comparing (11) with (14) one gets the positive factorization of H,

Iy
IT,;

H= : [rorl...rL...].
Mg

Turning to the Hg 7, (y) matrices, note that their elements take the form
puiyvj) =aMui)M(yvj)e. (16)
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8 L. Finesso et al.

Substitution of (16) into (13) gives a positive factorizations of Hx (),

TM(uy)
Hkr(y) = : [M(yvie - M(yvs)e]| =: g TL(y),
M (uy)
where
TL(y)=[MGyvDe--M(yvs)e| = M(y)Ty. (I7)

There are several relations between neighboring blocks, and block factors. From def-
inition (15), of I' 2, and the columns enumeration scheme one has

T =TG- Tolm]. (18)

which, in view of (17), becomes
Tri=[MGOTL - M(y)TL ], (19)

Defining the block matrices

r.o o
M:=[MGy).. M), Tawy:=|¢g .0 | (20)
0 0 Iy

of sizes N x mN and mN x m™*!, respectively, we rewrite (19) compactly as

Ipy =ML (y,. (21)

4 Existence of the divergence rate

The divergence rate is the optimality criterion of choice for the approximation of
stochastic processes. In this section, we review the definition of the divergence rate
between processes, as previously given for instance in [13] for two HMMs, and show,
under a technical condition, that the divergence rate between a stationary process and
an HMM is well defined.

Consider a process Y with values in ) under two possibly different laws Q and P,
probability measures on the path space J*°. Let ¢ (-) and p(-) be the respective pdfs.
For reasons of brevity, we write q(YéC ) for the likelihood ¢ (Yo, ..., Yx) and likewise
for p(Y¥).
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Approximation of stationary processes by hidden Markov models 9

Definition 4.1 Let Q and P be probability measures on ))°°. Define the (Kullback—
Leibler) divergence rate of Q with respect to P as

q Y(’)H)

o1
D(Q||P) := nlgrgo ;EQ log (22)

if the limit exists and is finite.

The next theorem establishes, under some restrictions, that the divergence rate between
a stationary process and a stationary HMM is well defined. The approach adopted for
the proof is inspired by analogous results in [16] and [18], although the arguments
given in [17], where the divergence rate between two HMMs is studied, could also be
adapted. In the proof the following notation is used. If R is a set of real numbers, then
min™ R denotes the minimum of the strictly positive elements of R, if it exists, which
is of course the case when R is finite and contains at least one positive number.

Theorem 4.2 Let Y be a process with values in Y. Let Q be an arbitrary stationary
law of Y and P an HMM law. Assume that

(1) the distributions of all finite segments (Yo, ..., Y,—1) under Q are absolutely
continuous with respect to those under P,
(ii)  Q admits an invariant probability measure 1* on') i.e.

W) =D 01 = y|Yo = yo)u* (o).
Yo

(iii) Y is geometrically ergodic under Q i.e., there exists p € (0, 1) such that

QY = y|Yo = yo) — Q(Y, = y|Yo = yp)| = O(p") Vy,yo, ¥y € V.

Then the limit in (22) exists and is finite.
The following technical lemma is needed for the proof of Theorem 4.2.

Lemma 4.3 Under the assumptions of Theorem 4.2, there exists a constant ¢ €
(—o00, 0) such that

1
lim — log p (Y(;’—l) —¢ Q-as. (23)

n—oon

Proof This is a special case of Proposition 4.3 of [18]. Assumption A of [18] is
replaced with our assumptions (ii) and (iii). Assumption B of [18] plays no role in the
present context. Assumption C of [18] can be dispensed with, since the alphabet is
finite. O

Proof of Theorem 4.2 Rewrite (22) as the limit of

%EQlogq (Yg_l) — %EQ log p (Y(’f_l) . (24

@ Springer



10 L. Finesso et al.

For the first term in (24) note that —E g [log q(Y(;“1 )] is the entropy of q(Y(;'*l) and
therefore —%E 0 logq(Yg_l) converges to H(Q), the entropy rate of Q, which is
finite, because of stationarity and the fact that ) is finite, see [10, Lemma 2.4.1].
Therefore it is sufficient to show that the second term in (24) has a finite limit. Let
Y0, - - -, Yn—1 be a string in Y* with positive Q-probability. By absolute continuity,
assumption (i), it also has positive P-probability. Since ¥ is an HMM under P, it
follows from (5) that there are indices i, . . ., i,—1 such that

TigMigiy (YO) * + + Mi,_yi,y (Yn—1) > 0.
Since the set R of all probabilities 7rx and m;; (y) is finite, we have § := minT R > 0.
Hence, from the above displayed inequality, one concludes that p(y( Iy > sntl gt

follows that p(Yé’_l) > §"*t1Q-as. and

n+1

1
logé < —log p (Yél_l) <0 Q-as.
n

Moreover, by Lemma 4.3

. 1 n—1Y\ _
lim ;logp (YO ) =c Q-as.

n— oo

Then the dominated convergence theorem can be applied to conclude that
L1Eolog p(v)~") admits the finite limit c. O

Remark 4.4 1t is possible to show a uniform version of Theorem 4.2, i.e., the uniform
convergence of the divergence rate with respect to P, under more stringent conditions
on the approximating model class. For details on a closely related problem we refer
to [18], in particular Theorem 4.4.

A priori no extra information is available about the given stationary measure Q. There-
fore it is useful to give simple conditions on the parameters m;;(y) of the HMM mea-
sure P to ensure the validity of the absolute continuity condition of Theorem 4.2 for
any given stationary measure Q. One possibility is given in the following example.

Example 4.5 1f Q is arbitrary, then in principle all probabilities g ( ygfl ) can be strictly

positive. The following sufficient condition entails that all p(ygfl) are positive. Let
Q and P be as in Theorem 4.2 with (i) replaced by

S mip(») = PV =yIXic1 =) > 0, Vyel, Vied. (25)
J

We show that all finite strings have positive probability under P from which it follows
that the limit in (22) exists. Let 8’ = min P(Yy = y|Xx—1 = i) > 0, which is strictly
i,y
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Approximation of stationary processes by hidden Markov models 11

positive by (25). Then, for any y € )

P (Yk — | Yé*l) =>r (Yk =y, Xpo1 =i Yé‘")
i

=D P =y Xt = )P (Xioy =il ¥§ ")
i
>8> P (Xk_l = i|Y(’)‘_1) =5
i

By iteration of this inequality applied to p(ya~") = p(yo) [1{Z] pOlyt™"), the
result follows, since (25) also implies that p(yp) = Zij mim;ij(yo) > 0.

Condition (25) may appear restrictive, but in absence of any additional knowledge
about Q, one can not completely avoid it. To illustrate this, let us assume that Y is
Markov under P. Since in principle all strings y(’)‘*] may have positive Q-probability,
the same must hold under P, which implies that all transition probabilities A;; > 0,
which is Condition (25). The existence of the divergence rate in this case is much
easier to establish. Inspection of the proof of Theorem 4.2 reveals that the entropy
term — H (Q) remains, whereas one easily establishes by direct computation that

1 _
~Eglogp (Yg; ‘) — Eglog p(Y1|Yo).

The condition A;; > 0 guarantees finiteness of the divergence rate for arbitrary Q.

When additional information on Q is available, Condition (25) may be relaxed.
For instance, if for some pair yo, y; it is known that ¢ (yoy;) = 0, then Ay, = 0 is
allowed.

5 Approximate realization by HMMs

The weak stochastic realization problem for HMMs was formulated in [21] as follows.
Let Y be an HMM whose law Q is known, e.g., via its pdf ¢(-). Find an SFSS (X, n)
such that n has law Q. Any such SFSS is called a (weak) realization of Y. Note that
the problem reduces to finding a set of parameters M (y), such that g(w) = 7 M (w)e
for all w € YV*, see Sect. 2.

A constructive approach to the solution of the realization problem has been pro-
posed in [1], but an effective algorithm is still lacking. Replacing the hard constraint
q(w) = mM(w)e by an approximation criterion one can formulate a number of
approximate realization problems. Specifically we are interested in finding an SFSS,
of assigned size N, which best approximates, in divergence rate, the given HMM law
Q. In view of the results of Sect. 4 it is apparent that the approximate realization of
an HMM leads naturally to the more general problem of approximating a stationary
law Q, which can be posed as follows.

Problem 5.1 Let Q, a stationary probability measure on J*°, and N € N be given.
Find a realization {M (y), y € )} of size N, of an HMM whose law P* is closest to
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12 L. Finesso et al.

Q in divergence rate, i.e., such that,

D(Q|IP*) = inf D(QIIP), (26)

where the infimum is taken over all HMM laws P corresponding to an SFSS of
size N.

This problem is well defined under the conditions of Theorem 4.2, since the divergence
rate is then guaranteed to exist.

Example 5.2 The minimization problem can be solved explicitly if P runs through
the set of all stationary Markov laws, a subset of the HMM measures. Let P* be such
a law, defined by the transition probabilities

P*(Yrp1 = jIYe = i) = Q(Yrq1 = jlY: = 1). (27
A direct computation shows the Pythagorean identity [5]
D(Q|IP) — D(QIIP*) = D(P*|| P),

which guarantees that P* is the optimal approximating measure. A similar result
holds for approximation by a k-step Markov chain. In [25] the Markov approximation
problem has been analyzed in detail.

Unfortunately, such appealing closed form solutions do not exist if the minimization
is carried out over stationary HMM measures. No analytic expression is known for the
divergence rate, when Q is arbitrary and P a genuine HMM measure. The situation
does not improve when Q is an HMM measure, see [14] for an interesting discussion
and [11] for recent results. The simplest non trivial example of an information quan-
tity computed for HMMs was given in [3], where the entropy rate is expressed as an
infinite series. To obviate this difficulty we approximate the criterion of Problem 5.1
with one which, in principle, is amenable to numerical computation. Specifically we
replace the divergence rate D(Q| P) between the processes with the informational
divergence between the corresponding Hankel matrices.

For two nonnegative numbers g and p their informational divergence is defined as
D(qllp) = qlog % — g + p with the conventions 0/0 = 0, 01log0 = 0 and g /0 = oo
for ¢ > 0. From the inequality x logx > x — 1 it follows that D(g||p) > 0 with
equality iff g = p.

Definition 5.3 Let M, N € R"’*". The informational divergence of M relative to N
is

M”
D(M|N) = > D(M;;|INij) = (Mi,- log = — Mij + N,-,/) .28
ij ij Y

It follows that D(M||N) > 0 with equality iff M = N. Ifzij M;; = Zij N;j = 1,the
informational divergence reduces to the usual Kullback—Leibler divergence between
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Approximation of stationary processes by hidden Markov models 13

probability distributions

M..
D(M|N) = > M;;log N—” (29)
ij Y

Let Q and P be measures as in Theorem 4.2 and denote by HnQ,, and H,,,, the (n, n)
blocks of their respective Hankel matrices. For notational convenience here, and later
in the paper, the Hankel blocks of the given measure Q will always carry the super-
script Q, those of the variable measure P will have no superscript. For all u; in y; Io

and v; in )} the corresponding element of HnQn is

q(zn)(uiv.,') =0 (Yg"_l = uiv.,') :
Analogously, a typical element of H,,, is
p(z")(uivj) =P (YOZn—l = M,'Uj).

The informational divergence between the Hankel blocks is

@) (4,7
> P vy log T (30)

2n) (17.1) -
Y p (uivj)
()

)

which, when compared to the definition of divergence rate, provides the following

D (HS, IH,.,)

Egp | log 3D

Theorem 5.4 Assume that Q and P are as in Theorem 4.2. Then
.1 0
lim — D (H,m||Hn,,) = D(Q|P). (32)
n—oo2n

Theorem 5.4 motivates the use of ﬁ D(HnQn |IH,,,,), for n properly chosen, as an approx-
imation of the theoretical divergence rate D(Q || P). The choice of  is critical. Intuition
suggests that a good approximation might require n to be large, while computational
efficiency does require n to be small as the size of the Hankel blocks increases expo-
nentially with n. Comments on the choice of the size parameter n are deferred to
Sect. 7.1.

6 Algorithm for the approximate realization

In view of Theorem 5.4 the approximation Problem 5.1 will now be reformulated in
order to make it more amenable to numerical computations.
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14 L. Finesso et al.

Problem 6.1 Let Q, a stationary probability measure on J*°, and N € N be given.
For given n, let H,,Q,, be the Hankel block of Q. Find a realization {M(y),y € )V}
of size N, of an HMM whose Hankel block H*

wn 1 closest to HS, in informational
divergence, i.e.,

D (MG, 1H;,) = minD (HS, [ H,,), 33

1,

where the minimum is taken over all H,,,,, Hankel blocks of HMM laws corresponding
to an SFSS of size N.

By the positive factorization property (14) of the Hankel blocks of HMMs, the mini-
mization (33) reduces to the following approximate Nonnegative Matrix Factorization
(NMF) problem

min D (H,% ||1'[,,rn), (34)

ns%tn

under the constraints I, > 0,T, > 0,¢' l,e = 1 and T,,e = e. The necessity of
these constraints follows from the definitions of the factors IT,, and IT',,

A minimizing nonnegative factorization (IT}}, T'}) always exists, see [9], Proposi-
tion 2.1, but Problem 6.1 also calls for the construction of the corresponding parameters
M*(y). The analysis of the ideal case will serve as a guide. If Q were an HMM law,

the following exact NMFs would hold by the results of Sect. 3.2

HY =nfr¢ (35)
0 0
Hn,nJrl = HnanJrl (36)
0 0
Iy, = MQF(n) (37)

This can be considered as an ideal algorithm. Feeding into the system (35), (36),
and (37) the inputs (H,,Q,,, Hgn +1), which are known since Q is given, produces the

output M€, whose blocks contain the parameters M € (y) sought for. In real situations
the exact NMFs are not valid since Q might not be an HMM, or might be an HMM of
order larger than N. This suggests constructing a three step algorithm where (35), (36),
and (37) are substituted with approximate NMFs. The inputs of the algorithm will still
be the given N and (H,%, HnQ " +1)' The scheme below illustrates the three steps.

Algorithm

1. Law approximation step

Given: HnQn
Problem: min D(H,,Qn||l'[nI'n) constraints e ' Mye = 1, Tye =e

Solution: (IT%,I})  of respective sizes (m" x N) and (N x m").
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2. Approximate realization step

Given: H,?n 41 and IT7, from step 1
Problem: {-niﬁD(HnQ,nH [IT%T,+1) constraint Ty je=e

Solution: T, of size (N x m"*1).

3. Parametrization step
Given: I'; fromstep 1, T} 4 from step 2, an) defined as in (20)
Problem: nl{/iln D (I“L_1 ||MI“Z‘n)) constraint Me = e
Solution: M* = [M*(y1)... M*(ym)].

Note that the constraint Me = e, imposed at step 3, corresponds to the requirement
that the transition matrix of the underlying Markov chain be stochastic. The resulting
A*=>" wM *(;) is used as the transition matrix of the Markov chain in approximate
model.

We discuss the behavior of the algorithm in two special cases. Issues concerning
the numerical implementation are deferred to Sect. 7.

The algorithm when the true distribution is an HMM

It is desirable that under ideal conditions the algorithm behaves as expected. Con-
sider first the case where the “true” law Q is actually that of a stationary HMM
of order N. Equations (35), (36), and (37) then hold and the exact NMF’s are full
rank factorizations. The matrices IT%, I'), resulting from step 1, satisty l'InQ l",? =
IT'T; as this gives value zero to the informational divergence. It then holds that
IT%, = M,S and ST} = I, for some invertible matrix S, with the property that
Se = e. It also follows that SF;H = T',+1 and one easily verifies that the matri-
ces M*(y;) from step 3 satisfy SM*(y;) = M(y;)S. Consequently SA* = AS
and 7* = 7§ is an invariant vector of A*. The probabilities p*(w) = 7*M*(w)e
induced by the output of the algorithm are therefore equal to the original proba-
bilities p(w) = wM(w)e. As expected the output of the algorithm reproduces the
original Q.

The algorithm under Markov approximation

Here we analyze the behavior of the algorithm when the given Q is any stationary
law and P varies in the set of Markov laws, a subset of the HMMs. In Example 5.2
it was proved that, in this case, the optimal P* is the Markov measure with transition
probabilities P* (Y41 = jlY; = i) = q(jli) := QY41 = jl|Y; = i), see (27). As
it will be proved below, also in this case the output of the algorithm is in agreement
with the theoretical solution.

As Markov measures are special cases of HMMs, one can construct the correspond-
ing M (y) parametrization. Let ) = {1, ..., N} be the space state of the Markov chain
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16 L. Finesso et al.

with transition matrix A, then the matrices M (y) assume the special structure
m,-j(y) = Aijéjy, (38)

where §, is the Kronecker delta. The corresponding matrix II, consists of the row
vectors T M (u), withu = y;...y, € y';.la. The generic row takes the form of an

N-vector consisting of zeros and on the jth place P(Y;L" = u) iff y, = j. Write

u = iy, where i runs through all strings of length n — 1. It follows that IT,, has the
following block-diagonal structure,

1'['1! 0 B 0
0 m o 0
m, =" : , (39)
0 0
0 o oV

where each block IT fl is a column vector consisting of the probabilities P (Y, t’j:]" =1uj).

In step 1 of the algorithm we therefore impose that the matrix II,, has the block-
diagonal structure (39). The Markov assumption does not impose any special struc-
ture on the matrices I';,. Write

where the l“,{ are row vectors. Likewise decompose the Hankel matrix H,,Q,, of the
given law Q as
H,,
HY =|:
HN

nn
The minimization D(H,% [T, T,) in step 1, under the constraint I'ye = e, reduces to
the N (decoupled) minimization problems D(Hj}, || II;T;) with constraints T'je = e.

These problems can be solved explicitly, since the inner size of the factorization is
equal to one. The solutions are

w _ ppd
I, =H;,e,

and
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Stated in other terms, Hﬁj has typical elements ¢ (&) and F,’;j has typical elements

% (v a string of length n). In step 2 of the algorithm something similar takes place.

The solution F:ﬂr | has typical elements 2Uw) " \where w is a string of length n 4 1. In

step 3 of the algorithm, the matrix M takes the form

M=[M' . .. MM,

where, by virtue of (38), M/ =1[0,...,0,m/,0,...,0], with the column vector m/
on the jth place. It turns out that also this step of the algorithm has an explicit solution,
%. Hence the corresponding matrix of transition probabilities A*

A U))
has elements Aij =50

given by m;‘j =

in agreement with the theoretical result of Example 5.2.

7 Numerical examples

In this section we present some numerical examples to illustrate the behavior of the pro-
posed approximation algorithm. We first show, on a known example, that the approx-
imation of the divergence rate proposed in Theorem 5.4 yields good results even for
small values of n. The three step algorithm is then tested on a set of HMM model reduc-
tion problems. The computer code for all the examples is written in the R programming
language and is available [27].

7.1 Hankel approximation of the divergence rate

The first issue that needs to be addressed is the use of the informational divergence
between the finite Hankel matrices H,,Q,, and H,,,, to approximate the divergence rate
between the processes (Theorem 5.4). A priori n should be large enough to ensure
that the asymptotics have set in, on other hand it should be small enough to avoid the
curse of dimensionality, since the size of the Hankel matrices grows exponentially in
n. We will see below, when Q and P are both HMM measures, that even small values
of n are sufficient for a good approximation to hold. The Q and P HMM measures for
this example are taken from [13]. Both are such that the factorization hypothesis (6)
holds. Specifically, under Q, the matrix of transition probabilities is

080 0.15 005 O

0.07 075 0.12 0.06
0.05 0.14 0.80 0.01
0.001 0.089 0.11 0.80

A2 =

and the readout matrix is

03 04 02 0.1
05 03 0.1 0.1
01 02 04 03
04 03 0.1 02

BY =
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18 L. Finesso et al.

Similarly P is the HMM with matrix of transition probabilities

040 025 0.15 0.20
0.27 045 0.22 0.06

AP =
035 0.14 040 0.11
0.111 0.119 023 0.54
and readout matrix
0.1 0.15 065 0.1
BP — 02 03 04 0.1

03 03 01 03
0.15 025 04 02

It follows from (7), (8) that M2 (y) = A2 B and M (y) = AP BY.

No general, closed form, expression of the divergence rate D(Q]|| P) in terms of
the parameters M2 (y) and M” (y) is available in the literature. A computationally
efficient device for the numerical evaluation of D(Q]|| P), proposed in [13], is based
on the Shannon—-McMillan-Breiman (SMB) theorem:

.1 q(¥o, ..., Yr—1)
lim —log ————F——— Q-as.
T—oo T pYo,...,YT—1)

D(Q|IP) =
For a proof of the SMB Theorem in the context of HMMs see e.g. Theorem 2 of [17].
The procedure proposed in [13], based on the almost sure convergence in the SMB
Theorem, is as follows. Simulate, according to Q, a chunk of a trajectory yg, ..., yr—1
of the process Y, and define

A 1 e VT
Dy = _logq(yo yr-1)

. 40
T PO, -y YT-1) “0)

where the numerator and the denominator are computed via the Baum formula (9).
For T large enough ﬁT will be close to D(Q|| P) for Q-almost all trajectories. In the
table below we collect the results for three different simulation runs (i.e. three different
trajectories of Y).

T [[100 220 500 10° 10* 10° 10°
run 1 D7([0.1998 0.1817 0.1186 0.1357 0.1207 0.1022 0.1016
run 2 D7{|0.1111 0.1432 0.1255 0.1140 0.0961 0.1018 0.1026
run 3 D7{|0.2059 0.1436 0.1061 0.0942 0.1072 0.1049 0.1023

Note that, after about T = 10° simulation samples, the different runs stabilize around
the value 0.10, in agreement with the trajectory independent behavior predicted by
the SMB theorem. In [13] the approximate value 0.14 was obtained, with T = 220
simulation samples of only one trajectory of Y. Our runs, on a 25 years newer PC, are
compatible with [13] for 7 = 220 but also indicate that it takes rather long (T = 10°)
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Approximation of stationary processes by hidden Markov models 19

before convergence sets in. We conclude that 0.10 is a good approximation of the
theoretical divergence rate D(Q|| P).

The computation of D,, := %D(Hg1 |IH,,,), assuming the above HMM specifica-
tions, has been carried out for n = 2, 3,4, 5. The resulting values of D, are listed
below.

n |2 3 4 5
D, ||0.0976 0.0991 0.0998 0.1003

Comparing the two tables it clearly appears that D, is close to the theoretical value
D(Q| P), already for n = 4 and n = 5. This phenomenon is not completely sur-
prising. In the case of an HMM Q, with a representation of size N, its pdf g(-) is
completely determined by the values g (w), for all strings w of length 2N, see [7] for
an easy proof, or [4] for more involved arguments leading to a proof that in fact length
2N — 1 suffices. It follows that the Hankel matrices with n = N completely determine
the laws of the corresponding HMM processes.

7.2 The algorithm in action

The implementation of the three step algorithm requires the numerical computation
of three approximate NMFs. Lee and Seung [15] have proposed an iterative algorithm
for the approximate NMF minw g D(V ||W H) under the constraint He = e. Its con-
vergence properties, close to those of the EM [26], have been analyzed in [9]. By its
very nature the iterative algorithm stops at the local minima of the objective function.
In practice it is essential to start from many initial conditions (Wy, Hp) and select
the best run. As a final remark note that our three NMFs satisfy different constraints.
Moreover, in the second and third steps, one of the matrices W or H is fixed. In this
case convergence takes place to a global minimum, which follows from application
of results by Csiszar and Tusnady [6]. These differences have been taken into account
in the implementation [27].

We have tested the algorithm in the context of model order reduction. In all the
examples the given (true) law Q, is a binary valued HMM of size 4, to be approxi-
mated with the law P of a binary HMM of size 3.

In the first example, the true law Q of the 4 state HMM has matrix of transition
probabilities

0.325 0.325 0.025 0.325
0.300 0.375 0.025 0.300
0.333 0.333 0 0.333
0.375 0.275 0.050 0.300

and readout matrix

03 0.7
04 06
B=109 01
0.7 03
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20 L. Finesso et al.

Note that the third column of A has been chosen much smaller than the others. The
third state of the hidden state process therefore appears only rarely and it is conceivable
that, in this case, the 4 state HMM Q can be well approximated with a 3 state HMM
P. We executed 10 runs of the algorithm generating randomly, for each run, the initial
conditions required for the three steps. The number of iterations has been set empiri-
cally to 2,000 for the first step, 1,000 for the second, and 500 for the third. The table
below gives, for each run, the divergence rate of Q with respect to the HMM induced
by the initialization (second column) and with respect to the best approximation (third
column).

Run |Initial value Final value

8.96 x 1073 6.52 x 10~
9.02 x 1073 7.04 x 10~°
9.41 x 1073 2.88 x 1078
9.11 x 1073 1.75 x 10~8
9.02 x 1073 8.46 x 10~
8.75 x 1073 3.78 x 107
9.89 x 1073 6.88 x 10~
9.58 x 1073 5.33 x 1072
9.16 x 1073 6.33 x 10~
0 19.13x 1073 7.13 x 1072

= 0 00 1O N AW =

Notice that for each of the 10 runs, the divergence rate drops by a factor of order 107°.
The sixth run gives the lowest value of the divergence rate, which we consider as the
best numerical approximation in this case.

In the second example, the ‘true’ law Q of the 4 state HMM has matrix of transition
probabilities

0.567 0.131 0.258 0.043
A 10325 0.190 0.411 0.074
random =1 9259 0.364 0.111 0.266 |

0.758 0.104 0.008 0.130

which was randomly generated, while the readout matrix B is as before. Following
the procedure outlined above, and maintaining the same initial conditions, the 10 runs
produced the following results.

Run |Initial value Final value

133 x 1072 4.92 x 103
1.26 x 1072 9.61 x 107©
1.34 x 1072 1.29 x 1075
1.25 x 1072 1.06 x 1073
1.19x 1072 1.59 x 107>
1.28 x 1072 1.78 x 1073
1.36 x 1072 2.60 x 1074
1.24 x 1072 9.27 x 10
1.34 x 1072 3.38 x 107
0 [1.22x10725.09 x 105

— 0 00 O\ W R W N =

Note that, in this case, the divergence rate roughly drops by a factor of order 1073,
For this example the 8th run produces the best result.
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Fig. 1 Minimum divergence rate for p = k/20 (k =0, 1,...,20)

Comparing the first two examples observe that, in agreement with what was exp-
ected, the almost degenerate HMM corresponding to the A of the first example can be
approximated much better than the the HMM corresponding to Arandom-

The final example provides a preliminary analysis of the sensitivity of the best
approximation P to variations of the readout matrix of Q. We constructed a set of
HMMs Q with common matrix of transition probabilities A, as in the first example,
and generated a family of 21 readout matrices By, p = k/20,k = 0,1, ...,20 by
changing the fourth row of the B used in the first example.

03 07
04 0.6

Br=109 01
p 1—p

To make comparisons meaningful, the initializations required by the three step algo-
rithm were kept fixed for all 21 cases. Figure 1 shows, for each B, the corresponding
minimal divergence rate. The minimum divergence for p in the range [0.45, 0.75] is
practically constant. This shows that the final outcome is hardly sensitive to values of
p within that range. On the other hand, there is a strong dependence on p for p < 0.45.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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