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ABSTRACT. This paper studies left invertibility of discrete-time linear output-quantized
systems. Quantized outputs are generated according to a given partition of the state-space,
while inputs are sequences on a finite alphabet. Left invertibility, i.e. injectivity of I/O
map, is reduced to left D-invertibility, under suitable conditions. While left invertibility
takes into account membership to sets of a given partition, left D-invertibility considers
only membership to a single set, and is much easier to detect. The condition under which
left invertibility and left D-invertibility are equivalent is that the elements of the dynamic
matrix of the system form an algebraically independent set. Our main result is a method to
compute left D-invertibility (so also left invertibility for a full measure matrix set) for all
linear systems with no eigenvalue of modulus one. Some examples are presented to show
the application of the proposed method.

Left invertibility, uniform quantization, finite inputs, algebraic independent set, discrete
time

1. INTRODUCTION

Left invertibility is an important problem of systems theory, which corresponds to in-
jectivity of I/O map. It deals so with the possibility of recovering unknown inputs applied
to the system from the knowledge of the outputs.

We investigate left invertibility of discrete–time linear output-quantized systems in a
continuous state-space. In particular, inputs are arbitrary sequences of symbols in a finite
alphabet: each symbol is associated to an action on the system. Information available on
the system is represented by sequences of output values, generated by the system evolution
according to a given partition of the state-space (quantization).

In recent years there has been a considerable amount of work on quantized control
systems (see for instance [9], [19], [23] and references therein), stimulated also by the
growing number of applications involving “networked” control systems, interconnected
through channels of limited capacity (see e.g. [4, 7, 24, 25]). The quantization and the finite
cardinality of the input set occur in many communication and control systems. Finite inputs
arise because of the intrinsic nature of the actuator, or in presence of a logical supervisor,
while output quantization may occur because of the digital nature of the sensor, or if data
need a digital transmission.

Applications of left invertibility include fault detection in Supervisory Control and Data
Acquisition (SCADA) systems, system identification, and cryptography ([11, 14]). In-
vertibility of linear systems is a well understood problem, first handled in [6], and then
considered with algebraic approaches (see e.g. [21]), frequency domain techniques ([16],
[17]), and geometric tools (cf. [18]). Invertibility of nonlinear systems is discussed in
([20]). More recent work has addressed the left invertibility for switched systems ([26]),
and for quantized contractive systems ([10]).

The main intent of the paper is to show that the analysis of left invertibility can be
substituted, under suitable conditions, by an analysis of a stronger notion, called left D-
invertibility. The condition under which left invertibility and left D-invertibility are equiv-
alent is that the elements of the dynamic matrix of the system form an algebraically inde-
pendent set (Theorem 5). Therefore the set of matrices for which left D-invertibility and
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left invertibility are equivalent is a full measure set. While left invertibility takes in account
whether two states are in the same element of a given partition, left D-invertibility consid-
ers only the membership of a single state to a single set. For this reason left D-invertibility
is much easier to detect. Our main result (Theorem 6) is a method to compute left D-
invertibility for all linear systems whose dynamic matrix has no eigenvalue of modulus
one.

The main tools used in the paper are the theory of Iterated Function Systems (IFS), and
a theorem of Kronecker. The use of IFS in relation with left invertibility is described in
[10]. The Kronecker’s theorem has to do with density in the unit cube of the fractional part
of real numbers. By means of a particular construction illustrated in section 4 the problem
of “turning” left D-invertibility into left invertibility can be handled with a Kronecker-type
density theorem.

The paper is organized as follows. Section 2 is devoted to the definitions of left invert-
ibility and uniform left invertibility. Section 3 illustrates the background knowledge. In
section 4 the notion of D-invertibility is introduced and main results (Theorems 5 and 6)
are proved. Section 5 contains a deeper study of unidimensional systems. In section 6
we present some examples and section 7 shows conclusions and future perspectives. The
Appendix is devoted to technical proofs. Finally, in section 8, we collect all the notations
used in the paper.

2. BASIC SETTING

Definition 1. The uniform partition of rate δ of Rp is

P =
⋃

i∈Zp

Pi =
⋃

i1,...,ip∈Z
[i1δ ,(i1 +1)δ [ × . . .× [ipδ ,(ip +1)δ [,

where i = i1, . . . , ip. ♦

We consider systems of the form{
x(k +1) = Ax(k)+Bu(k)
y(k) = q

(
Cx(k)

) (1)

where A ∈ Rd×d ,B ∈ Rm×d ,C ∈ Rp×d , x(k) ∈ Rd is the state, y(k) ∈ Zp is the output, and
u(k) ∈ U ⊂ Rm is the input. The map q : Rp → Zp is induced by the uniform partition
P =

⋃
i∈Zp Pi of Rp of rate δ through q : (x ∈Pi) 7→ i and will be referred to as the

output quantizer. We assume that U is a finite set of cardinality n.

Remark 1. Without loss of generality in the system (1) we can suppose δ = 1 and C = πp,
the canonical projection on the first p coordinates.

Proof: We can indeed change the basis of Rp to achieve δ = 1, and the basis of Rd to
achieve C = πp. ♦

So we consider only systems of the form{
x(k +1) = Ax(k)+Bu(k) = fu(k)(x(k))
y(k) = bπpx(k)c, (2)

where the floor function b·c is intended to work componentwise.

Definition 2. A pair of input strings {u(i)}i∈N, {u′(i)}i∈N is uniformly distinguishable in
k steps (or with distinguishability time k) if there exists l ∈ N such that ∀x(0),x′(0) ∈ Rd

and ∀m > l the following holds for the correspondent orbits:

u(m) 6= u′(m) ⇒ [y(m+1), . . . ,y(m+ k)] 6= [y′(m+1), . . . ,y′(m+ k)],

(outputs y(i) are referred to the system with initial condition x(0) and inputs u(i), while
outputs y′(i) are referred to the system with initial condition x′(0) and inputs u′(i)). In this
case, we say that the strings are uniformly distinguishable with waiting time l. ♦
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Definition 3. A system of type (2) is uniformly left invertible (ULI) in k steps if every pair
of distinct input sequences is uniformly distinguishable in k steps after a finite time l, where
k and l are constant. ♦

For a ULI system, it is possible to recover the input string until instant m observing the
output string until instant m + k. For applications, it is important to obtain an algorithm
to reconstruct the input symbol used at time m > l by processing the output symbols from
time m to m+ k.

Notations: We indicate with ei the i-th vector of the canonical basis of Rd , with 〈v1, . . . ,vi〉
the linear subspace generated by the vectors v1, . . . ,vi ∈ Rd . ♦

Definition 4. Define the quantization–diagonal set relative to the system (2) to be

Q =
⋃

i1,...ip∈Z

{
[i1, i1 +1[× . . . [ip, ip +1[×〈ep+1, . . . ,ed〉

}
︸ ︷︷ ︸

⊂〈e1,...,ed〉

×

×
{
[i1, i1 +1[× . . . [ip, ip +1[×〈ed+p+1, . . . ,e2d〉

}
︸ ︷︷ ︸

⊂〈ed+1,...,e2d〉

⊂ R2d

i.e. Q contains all pairs of states that are in the same element of the partition P . ♦

To address invertibility, we are interested in the following system on R2d :

Definition 5. Define the doubled system relative to the system (2) to be

X(k +1) = FU(k)(X(k)) =
[

fu(k) (x1(k))
fu′(k) (x2(k))

]
=
[

Ax1(k)+Bu(k)
Ax2(k)+Bu′(k)

]
(3)

where X(k) =
(

x1(k)
x2(k)

)
, U(k) =

(
u(k)
u′(k)

)
. ♦

If there exists sequences {u(k)},{u′(k)}, and an initial state in Q such that the corre-
sponding orbit of (3) remains in Q, then the two strings of inputs generate the same output
for the system (2). So conditions ensuring that the state is outside Q for some k will be
investigated to guarantee left invertibility.

3. BACKGROUND: ITERATED FUNCTION SYSTEMS

In this section we recall some results about Iterated Function System theory (see [3, 12]
for general theory about IFS), in connection with the notions of invertibility of our interest.

3.1. Contractive IFS theory.

Definition 6. Let (X,d) be a complete metric space. A map F : X→ X is contractive if
∃c ∈ R, 0 < c < 1 such that d

(
F(x),F(y)

)
≤ cd(x,y) for all x,y ∈ X.

A map F : X→X is expansive if ∃c > 1 such that d
(
F(x),F(y)

)
≥ cd(x,y) for all x,y ∈X.

♦

Example 1. A linear map is contractive if its associated matrix has norm less than 1,
where the norm of a matrix A is defined by ‖A‖= supx∈Rd

‖Ax‖
‖x‖ . A linear map is expansive

if for its associated matrix holds infx∈Rd
‖Ax‖
‖x‖ > 1. ♦

Definition 7. An Iterated Function System (IFS) is a collection {X,F1, . . . ,Fn}, where
(X,d) is a complete metric space, Fi : X→ X for i = 1, . . . ,n. ♦

Definition 8. Given an IFS, define Ft =
{
{Fi1 ◦ . . .◦Fit} : i1, . . . , it ∈ {1, . . . ,n}

}
. The IFS

is joint contractive if there exists t ∈ N such that all elements of Ft are contractions. The
IFS is joint expansive if there exists t ∈ N such that all elements of Ft are expansive. ♦
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Example 2. An output-quantized linear system of type (2) is joint contractive if and only
if for every eigenvalue λ of the matrix A it holds |λ | < 1. It is joint expansive if and only
for every eigenvalue λ of the matrix A it holds |λ |> 1. ♦

Definition 9. A set A ⊂ X is an attractor if for all initial condition x(0) ∈ X and for all
u ∈U N limk→∞ dist

(
x(k),A

)
= 0. ♦

Definition 10. A set I ⊂ X is an invariant set for an IFS if I =
⋃

i∈{1,...,n}Fi(I ). ♦

Theorem 1. [3, 13] Let an IFS be joint contractive. Then, for every u ∈ U N the limit
φ(u) = limk→∞ Fu(1) ◦ . . .◦Fu(k)(x) exists for every x ∈ X and is independent of x. The set
φ(U N) = A is the unique compact attractor and invariant set with respect to the IFS. ♦

Definition 11. An address of a point a ∈A is any member of the set φ−1(a) = {u ∈U N :
φ(u) = a}. The attractor is said to be totally disconnected if each point possesses a unique
address. ♦

3.2. Attractors and left invertibility. Thanks to Theorem 1, given a joint contractive
system of type (2), for the doubled-system (3) it is possible to describe a set A that is both
an attractor and an invariant set. Define ∆ = {(1,1),(2,2), . . . ,(n,n)}.

Definition 12. The graph Gk associated to the attractor A is given by:
• The set of vertices V = {AU(1)...U(k) = FU(k) ◦ . . .◦FU(1)(A ) : U(i) ∈ {U ×U }}.
• There is an edge from AU(1)...U(k) to AU ′(1)...U ′(k) if and only if U(i + 1) = U ′(i), for
i = 1, . . . ,k−1. In this case we say that the edge is induced by the input U ′(k). ♦

Definition 13. Consider the graph Gk, and delete all vertices (together with all starting
and arriving edges) AU(1)...U(k) such that AU(1)...U(k) ∩{R2d \Q} 6= /0. This new graph
is called internal invertibility graph, and denoted with IGk. The set of vertices of IGk is
denoted by VIGk .

Consider the graph Gk, and delete all vertices (together with all starting and arriv-
ing edges) AU(1)...U(k) such that AU(1)...U(k) ∩Q = /0. This new graph is called external
invertibility graph, and denoted by EGk. The set of vertices of EGk is denoted by VEGk . ♦

Definition 14. A path {Vi}∞
i=0 on EGk or IGk is called proper path if the first edge is

induced by an input not in ∆. ♦

Theorem 2. [10] Denote with ∂Q the boundary of Q. Suppose that A ∩ ∂Q = /0. Then
there exists a (computable) k such that VIGk = VIGk ∩Q, and the system (2) is ULI if and
only if IGk does not contain arbitrary long proper paths. ♦

3.3. IFS techniques for joint expansive systems. If the system (2) is joint expansive,
then fu(·) admit an inverse for every u ∈U . Therefore it is possible to define a correspon-
dent system on R2d :

Definition 15. The inverse-doubled system, relative to the system (2), is

Z(k +1) = GU(k)(Z(k)) =

[
f−1
u(k)(z1(k))

f−1
u′(k)(z2(k))

]
(4)

where Z(k) =
(

z1(k)
z2(k)

)
; U(k) =

(
u(k)
u′(k)

)
. ♦

The system (4) gives rise to an attractor R ⊂ R2d , since it is joint contractive: the
attractor R can be described also as the set of initial conditions that can start a bounded
orbit of the doubled system (3):

Theorem 3. [10] Suppose that the system (2) is joint expansive. If {X(k)} is an infinite
bounded orbit of the doubled system (3), then ∀k ∈ N X(k) ∈ R. Consequently, if we
restrict to bounded orbits, Theorem 2 applies to the attractor R. ♦
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4. DIFFERENCE SYSTEM AND D-INVERTIBILITY

Notations: We indicate with f rac(·) : R→ Z the function that associates to each real
number its fractional part:

f rac(r) = r−brc;
Moreover we define πi : Rd → Ri to be the orthogonal projection on the first i coordinate
axes, while ϖi : Rd → R is the orthogonal projection on the i-th coordinate axis. ♦
Definition 16. The difference system associated with the system (2) is

z(k +1) = Az(k)+Bv(k) = fv(k)(z(k)) (5)

where z(k) ∈ Rd , v(k) ∈ V = U −U = {u−u′ : u ∈U , u′ ∈U }. ♦
Remark 2. The difference system represents at any instant the difference between the two
states z(k) = x(k)− x′(k) when the input symbols u(k)− u′(k) = v(k) are performed. So
we are interested in understanding the conditions under which

{z(k)} ∩ { ]−1,1[ }p×〈ep+1, . . . ,ed〉= /0.

Indeed, this implies that y(k) 6= y′(k). The converse is obviously not true. ♦
Definition 17. Consider the difference system. If z(0) is an initial condition and (v(1), . . . ,v(k2))
a sequence of inputs of the difference system, we let Dk2

k1
(z(0),v(1), . . . ,v(k2)) denote the

sequence (πpz(k1), . . . ,πpz(k2)) generated by the difference system (5) with initial condi-
tion z(0) and input string (v(1), . . . ,v(k2)). ♦
Definition 18. A pair of input strings {u(i)}i∈N, {u′(i)}i∈N is uniformly D-distinguishable
in k steps (or with distinguishability time k) if there exists l ∈N such that ∀x(0),x′(0) ∈Rd

and ∀m > l the following holds:

v(m) 6= 0 ⇒ Dm+k
m+1(z(0),v(1), . . . ,v(m+ k)) 6∈ ]−1,1[p × . . .× ]−1,1[p︸ ︷︷ ︸

k times

,

where z(0) = x(0)− x′(0) and v(i) = u(i)−u′(i). In this case, we say that the strings are
uniformly D-distinguishable with waiting time l. ♦
Definition 19. A system of type (2) is uniformly left D-invertible (ULDI) in k steps if every
pair of distinct input sequences is uniformly D-distinguishable in k steps after a finite time
l, where k and l are constant. ♦
Remark 3. Thanks to Remark 2 uniform left D-invertibility implies uniform left invertibil-
ity. ♦

We are going to prove the first main theorem, that is based on a density theorem of
Kronecker.

Definition 20. The numbers ϑ1, . . . ,ϑM ∈R are linearly independent over Z if the follow-
ing holds:

k1, . . . ,kM ∈ Z : k1ϑ1 + . . . ,+kMϑM = 0 ⇒ k1 = . . . = kM = 0. ♦
Theorem 4 (Kronecker). [15] If ϑ1, . . . ,ϑM,1 ∈ R are linearly independent over Z, then,
for every α1, . . . ,αM ∈ R the set of points

{[ f rac(α1 + lϑ1), . . . , f rac(αM + lϑM)] : l ∈ R}
is dense in the unit cube of RM . ♦

Considering the difference system (Definition 16), we are interested in orbits completely
included in

(]−1,1[)p×〈ep+1, . . . ,ed〉.
The following proposition shows that under a very weak condition orbits completely in-
cluded in (]−1,1[)p×〈ep+1, . . . ,ed〉 must be bounded.
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Proposition 1. Suppose that the matrix A does not have an eigenvector belonging to
〈ep+1, . . . ,ed〉. Then there exists a bounded set I such that, if {z(k)}k∈N ⊂ (]− 1,1[)p×
〈ep+1, . . . ,ed〉 is an orbit of the difference system, then {z(k)}k∈N ⊂ I. ♦

Proof: See Appendix. ♦

Remark 4. The set of matrices A∈Rd2
that have an eigenvector in 〈ep+1, . . . ,ed〉 is a zero

measure set. ♦

Define now SD(B,U ) to be the set of matrices A ∈ Rd2
such that the system (2) is

uniformly left D-invertible. Define S(B,U ) to be the set of matrices A ∈Rd2
such that the

system (2) uniformly left invertible.

Definition 21. Indicate with Q[ζ1, . . . ,ζN ] the ring of polynomials in the variables ζi with
coefficients in Q. The set of numbers α1, . . . ,αN ∈C is said to be algebraically independent
if

0 6= p(ζ1, . . . ,ζN) ∈Q[ζ1, . . . ,ζN ] ⇒ p(α1, . . . ,αN) 6= 0. ♦

Theorem 5. Suppose that in the d-dimensional system (2) the set of elements of the matrix
A is algebraically independent. Then the system is uniformly D-invertible if and only if it
is uniformly left invertible.
This in turn implies that S(B,U )\SD(B,U ) has measure zero in Rd2

for every B,U .

Proof: See appendix. ♦

4.1. D-invertibility of output-quantized linear systems. We are going to show how to
detect left D-invertibility of any linear systems without eigenvalues of modulus one. Sup-
pose that, if λ is an eigenvalue of the matrix A, then |λ | 6= 1. Denote with Ec,Ee re-
spectively the contractive and the expansive eigenspaces of the matrix A. Because of the
hypothesis on the eigenvalues we have Ec +Ee = {x+ y : x ∈ Ec, y ∈ Ee}= Rd .

Now consider the following two systems respectively on Ec,Ee, that are joint contrac-
tive:

zc(k +1) = fv(k)(zc(k)); (6)

ze(k +1) = f−1
v(k)(ze(k)); (7)

where zc ∈ Ec, ze ∈ Ee, v(k) ∈ V . The above systems must have invariant attractors
T c,T e. Moreover the set T e is formed of all initial conditions giving rise to bounded
orbits of system (Theorem 3)

xe(k +1) = fv(k)(xe(k)), (8)

here xe ∈ Ee. Let us denote with T the attractor

T = T c +T e = {x+ y : x ∈T c,y ∈T e}.

We can now apply the construction of the external and internal invertibility graphs (Defini-
tion 13) for the attractor T , substituting Q with

{
]−1,1[

}p×〈ep+1, . . . ,ed〉, and calling a
path {V1, . . . ,Vi} on EGk or IGk proper if it is induced by an input v ∈ V , v 6= 0. Denoting
with ∂

(
(]−1,1[)p×〈ep+1, . . . ,ed〉

)
the boundary of (]−1,1[)p×〈ep+1, . . . ,ed〉 we have

the following

Theorem 6. Suppose that, if λ is an eigenvalue of the matrix A, then |λ | 6= 1, that

T ∩ ∂

(
(]− 1,1[)p × 〈ep+1, . . . ,ed〉

)
= /0, and that A does not have an eigenvector in

〈ep+1, . . . ,ed〉. Let k be such that IGk = EGk. Then the system (2) is uniformly left D-
invertible if and only if IGk does not contain arbitrary long proper paths.
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Proof: Since A does not have an eigenvector in 〈ep+1, . . . ,ed〉, by Proposition 1 all orbits
of the difference system included in (]−1,1[)p×〈ep+1, . . . ,ed〉 must be bounded, and, by
Theorem 3, must be included in the attractor T . By Theorem 2 the system is uniformly
D-invertible if and only if IGk does not contain arbitrary long proper paths. ♦

Remark 5. Theorem 6 gives an explicit, algorithmically implementable, way to compute
ULDI of a system. By Theorem 5 we are able to compute ULI in the same way for systems
with a full measure set of matrices A (the conditions on the eigenvalues do not affect the
full measure). ♦

5. OUTPUT-QUANTIZED LINEAR SYSTEMS OF DIMENSION 1

Linear systems of dimension 1 assume the following form, deriving from (2):{
x(k +1) = ax(k)+u(k)
y(k) = bx(k)c (9)

This is a contractive system if |a| < 1 and an expansive system if |a| > 1. If |a| < 1 the
invertibility problem can be solved with the methods of section 3 (see [10]).

The next Theorem shows a necessary condition for the ULI of a system of type (9): if it
is not satisfied we construct inductively a pair of strings that gives rise to the same output.

Theorem 7. Suppose that in the system (9) |a|> 2. If there exist u1,u2 ∈U ,u1 6= u2 such
that |u1−u2|< a, then the system is not ULI.

Proof: We will consider sequences of sets of type{
Si+1 = {a(Si)+u(i)}

⋂
{a(Si)+u′(i)}

⋂
P(i+1)

S0 = [0,1[, (10)

where u(i),u′(i) ∈ {u1,u2} and P(i + 1) ∈P is chosen at each step to maximize the
measure of Si+1.

In the sequence (10) take u(1) = u1, u′(1) = u2 and P(1). Since |u1− u2| < a, there
exists a P(1) ∈P such that µ(S1) > 0. Then, for i > 1 define

u(i) = u′(i) = u1.

Since |a|> 2 there exists an i0 such that µ
(
Si0

)
= 1, therefore, applying again u(i0 +1) =

u1 and u′(i0 +1) = u2

µ
{

A(Si0)+Bu1 ∩ A(Si0)+Bu2
}

> 0.

So there exists x0,x′0 ∈R and (u(1), . . . ,u(i0 +1)),(u′(1), . . . ,u′(i0 +1)), with u(1) 6= u′(1)
and u(i0 +1) 6= u′(i0 +1), such that for the corresponding outputs it holds

(y(0), . . . ,y(i0 +1)) = (y′(0), . . . ,y′(i0 +1))

It is then enough to point out that, since we can achieve every pair of states x,x′ ∈ Si0
in the above described way, we can again go on in the same way and find a new instant i1,
a pair of initial states x1,0,x′1,0, and control sequences (u(1), . . . ,u(i1)), (u′(1), . . . ,u′(i1)),
with u(i1) 6= u′(i1), such that for the corresponding output it holds

(y(0), . . . ,y(i1)) = (y′(0), . . . ,y′(i1)).

Finally, we can achieve by induction an increasing finite sequence, but arbitrarily long,
of instants ik, pairs of initial states (xk,0,x′k,0), and sequences of controls (u(1), ...,u(ik)),(u′(1), ...,u′(ik))
with u(i) 6= u′(i) if i = i j + 1 for j = 1, ...,k− 1 such that such that for the corresponding
output it holds

(y(0), . . . ,y(ik)) = (y′(0), . . . ,y′(ik)).
This contradicts the uniform left invertibility property. ♦
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FIGURE 1. Here, for i = 1,2,3, the point Xt(i) has a distance ki from the
union of positive coordinate axes along the line ri (drawn with a dashed
line), and “velocity” ai (with respect to t)

We simplify notations to handle the unidimensional ULI problem. Consider the cor-
respondent doubled-system of dimension 2 given by (3), and suppose that there exists at
least one proper orbit included in the set

Q′ =
{( t

t

)
+
(

s
0

)
: s ∈ ]−1,1[ , t ∈ R

}
.

Take as initial condition Xt(0) =
(

t
t

)
+
(

s
0

)
∈R2, with t, considered as a parameter,

varying in R and s ∈]−1,1[ fixed. Then, for fixed input string

Xt(k) =
(

akt +aks+ak−1u1 + . . .+uk
akt +ak−1u′1 + . . .+u′k

)
= ak

(
t
t

)
+
(

ck
c′k

)
.

Suppose that an orbit {Xt(i)}∞
i=1 of the doubled-system is included in Q′. We can see the

points Xt(i), when t varies in R, as points moving along the line

ri =
{

ai
(

t
t

)
+
(

ci
c′i

)
: t ∈ R

}
with initial condition

(
ci
c′i

)
and velocity ai. Call ki the distance between the point(

ci
c′i

)
and the union of positive coordinate axes along the line ri (refer to the Fig. 1).
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Definition 22. A number α ∈C is called algebraic if there exists a polynomial p(x)∈Z[x]
such that p(α) = 0. In this case the minimum degree of a polynomial with such a property
is called the degree of α . A number α ∈ C is called trascendental if it is not algebraic. ♦

Proposition 2. Suppose that the unidimensional linear system (9) is not uniformly left
D-invertible. If a is an algebraic number of degree m then the system is not uniformly
invertible in m−1 steps.

Proof: Since the system is not uniformly left D-invertible there exist arbitrary long
orbits of the doubled system included in Q′. Fix one of these orbits of length greater than
m−1.

If, for every ε > 0, and every k1, . . . ,km ∈ R there exists a t ∈ R such that

f rac
(

ki +
ai
√

2
t
)

< ε f or i = 0, . . . ,m−1 (11)

then the system (9) is not uniformly left invertible in m−1 steps: it can be showed adapt-
ing the proof of Lemma 1 (see also Fig. 1). Equation (11) is equivalent to find integers
N0, . . . ,Nm such that for every i = 0, . . . ,m

Ni ≤ ki +
ai
√

2
t < Ni + ε

But, if a is algebraic of degree m, then numbers ai, i = 0, . . . ,m−1 are linearly independent
over Z, and by Theorem 4 there always exists a t such that equation (11) holds, and so the
system is not uniformly invertible in m−1 steps. ♦

The following Theorem can be deduced from Proposition 2, or directly from Theorem
5, observing that an algebraically independent set of one element is a trascendental number.

Theorem 8. Suppose that a is trascendental. Then the system (9) is uniformly invertible if
and only if it is uniformly D-invertible. ♦

Proposition 3. The unidimensional system (9) is either ULDI in time 1, or not ULDI at
all.

Proof: A sufficient condition for uniform left D-invertibility in one step is

∀v ∈ V ,v 6= 0 : |v| ≥ |a|+1 :

indeed in this hypothesis ∀v ∈ V ,v 6= 0

]−1,1[ ∩
{

a · (]−1,1[)+ v
}

= ]−1,1[ ∩ ]−a+ v,a+ v[ = /0

We now prove that if ∃v ∈ V ,v 6= 0 : |v|< |a|+1, then the system is not uniformly left
D-invertible. Indeed in this case the system{

ax1 + v = x2
ax2− v = x1

has the solution x1 = −v
a+1 ,x2 = v

a+1 . Since |x1|, |x2| < 1 the difference system has the
infinite orbit {x1,x2,x1,x2, . . .} ⊂ (]−1,1[)p×〈ep+1, . . . ,ed〉. Therefore system (9) is not
left D-invertible. ♦

Corollary 1. Consider the unidimensional system (9), with trascendental a. Then it is
either ULI in one step, or it is not ULI. ♦

Remark 6. It’s easy to see that a system of the form (9) is uniformly D-invertible in one
step if there for all u1,u2 ∈ U it holds |u1− u2| > a + 1. Therefore we have this summa-
rizing situation for unidimensional systems:

• |a|< 1: ULI can be detected with methods described in section 3.
9
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FIGURE 2. Attractor of system (13).

• |a|> 2:

 minu1,u2∈U |u1−u2|< |a|, the system is not ULI;
minu1,u2∈U |u1−u2|> |a|+1, the system is ULI in 1 step;
|a| ≤minu1,u2∈U |u1−u2| ≤ |a|+1, F holds.

• 1≤ |a| ≤ 2: F holds.
F The unidimensional system (9) is either ULDI in time 1, or not ULDI at all. With

the additional hypothesis of trascendence of a the system is ULI in one step or it
is not ULI. ♦

6. EXAMPLES

Consider the system (2). As stated in Theorem 5, if the elements of the matrix A forms
an algebraically independent set, then uniform left D-invertibility is equivalent to uniform
left invertibility. A standard method to construct algebraically independent sets can be
easily deduced from the following Theorem of Lindemann and Weierstrass:

Theorem 9. [2] Suppose that the numbers α1, . . . ,αN are linearly independent over Q.
Then eα1 , . . . ,eαN are an algebraically independent set. ♦

Example 3. Consider the system (2) with

A =

(
e
√

5 e
√

3

e
√

2 e
√

7

)
, B =

(
1
1

)
, U = {0,±1,2} y(k) = bπ1x(k)c. (12)

The two eigenvalue of A are approximately 6.3531 and 17.0974, so system (12) is joint
expansive. The difference system is then joint expansive too. The inverse difference system
is given by

x(k +1) = A−1(x(k)− v(k)), v(k) ∈ V = {0,±1,±2,±3} (13)

which is joint contractive. It is possible to show (see Fig. 2) that the attractor of the
inverse difference system (13) is included in ]−1,1[×R. So the system is not uniformly left
D-invertible.

Moreover the elements of the matrix A, by Theorem 9, are an algebraically independent
set because

√
5,
√

2,
√

3,
√

7 are linearly independent over Q. So by Theorem 5 system
(12) is not uniformly left-invertible. ♦

10
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FIGURE 3. Attractor of the inverse difference system on Ec.

Example 4. Consider the system (2) with

A =

 2 0 0
0 1

2 1
0 0 1

3

 , B =

 2
3
6

 , U = {0,1} y(k) = bπ2x(k)c. (14)

We have so V = {0,±1}. The three eigenvalue of the matrix are 1
2 , 1

3 and 2 so we can
apply Theorem 6. Therefore we split R3 in Ec = R2 (identified with {0}×R2) and Ee = R
(identified with R×{0}×{0}). The attractor Ae relative to the inverse difference system
on Ee is [−2,2], while the attractor Ac relative to the inverse difference system on Ec is
drawn in Fig. 3. We are interested in orbits of the inverse difference system on Ee that
remains in ]−1,1[, and in orbits of the difference system on Ec that remains in ]−1,1[×R.
It’s easy to see that( 1

2 1
0 1

3

)
(Ac∩ ]−1,1[×R)+

(
3
6

) ⋂ {
Ac∩]−1,1[×R

}
= /0,

so, no matter the behavior of the system on Ee, system (14) is uniformly left D-invertible in
one step, therefore uniformly invertible in one step. ♦

The last example illustrates the difference between left D-invertibility and left invert-
ibility.

Example 5. Consider the unidimensional system (9) with

a = 1/2, U = {−1,0,1}. (15)

We are going to show that system (15) is uniformly left invertible but not uniformly left
D-invertible.

To show that the system is not ULDI consider the following orbit with initial condition
x0 = 1

2 :

xk+1 =
{ 1

2 x(k +1), x(k) < 0;
1
2 x(k−1), x(k) > 0.

Clearly x(k) ∈]−1,1[ for every k ∈ N, so system (15) is not ULDI.
11
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Nonetheless system (15) is ULI in 1 step. Consider indeed the quantization-diagonal
set (defined in Definition 4)

Q =
⋃
i∈Z

[i, i+1[×[i, i+1[

and observe that
1
2

Q+
(

u
u′

) ⋂
Q = /0 ∀u 6= u′.

This in turn implies that system (15) is ULI in 1 step. ♦

7. CONCLUSIONS

In this paper we studied left invertibility of output-quantized linear systems, and we
proved that it is equivalent, under suitable conditions, to left D-invertibility, a stronger
notion, much easier to detect (Theorem 6). More precisely the condition under which
left invertibility and left D-invertibility are equivalent is that the elements of the dynamic
matrix of the system form an algebraically independent set. Therefore the set of matri-
ces for which left D-invertibility and left invertibility are equivalent is a full measure set
(Theorem 5). Moreover there is a standard way to create matrices whose elements are an
algebraically independent set (Theorem 9). Notice that algebraic conditions play a central
role in investigation of left invertibility of quantized systems as well in other fields when a
quantization is introduced (see for instance [4, 8]).

Future research will include further investigation on the equivalence between left in-
vertibility and left D-invertibility to matrices whose elements are not algebraically inde-
pendent.

APPENDIX

Proof of Proposition 1: It’s easy to see that the matrix A does not have an eigenvector
included in 〈ep+1, . . . ,ed〉= Ker(πp) if and only if

d−p−1⋂
i=0

Ai[Ker(πp)] = {0}. (16)

Define F : Rd → Rd

F (x) =
⋃

v∈V
Ax+Bv.

We show that F ◦(d−p)
(
(]−1,1[)p×〈ep+1, . . . ,ed〉

)
, where F ◦(d−p) is the composition of

F for p times, is bounded: this is sufficient for the existence of the bounded set I.
(]− 1,1[)p×〈ep+1, . . . ,ed〉 is the convex space delimited by the (d− p)-dimensional

affine subspaces

Ψ
j0
i0

= i0ep
j0
×〈ep+1, . . . ,ed〉 i0 ∈ {−1,1}, j0 ∈ [1, p],

where ep
j0

is the j0-th vector of the canonical basis of Rp. So z(1) belongs to the convex
space delimited by the (d− p−1)-dimensional affine subspaces

Ψ
j0, j1
i0,i1

= A(i1ep
j1
×〈ep+1, . . . ,ed〉)+Bv(1)

⋂
i0ep

j0
×〈ep+1, . . . ,ed〉.

Therefore z(d− p) belongs to the convex space delimited by the (d− p− (d− p)) = 0-
dimensional affine subspaces (points)

Ψ
j0,..., jd−p
i0,...,id−p

= i0ep
j0
×〈ep+1, . . . ,ed〉 ∩

{
d−p⋂
k=1

Ak(ikep
jk
×〈ep+1, . . . ,ed〉)+Bv(k)

}
.

By hypothesis (16) z(d− p) belongs so to the convex space delimited by a finite number
of points, that is a bounded set, i.e. I. ♦

12
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FIGURE 4. In this Figure the set Qi is represented by the squares on the
diagonal, while the set Q′i is the strip between the two dashed lines.

The following technical lemma gives a necessary condition for uniform left invertibility,
a basilar ingredient in the proof of Theorem 5. Let us parametrize the possible pairs of
states (x,x′) ∈ R2d such that x′− x ∈ (]−1,1[)p×〈ep+1, . . . ,ed〉 with the set

I0 =
{
(t1, . . . , td , t1 + s1, . . . , tp + sp, t̃p+1, . . . , t̃d)

T : ti, t̃ j ∈ R,sk ∈]−1,1[
}

.

Proof of Theorem 5:

Definition 23. If X = (t1, . . . , td , t1 +s1, . . . , tp +sp, t̃p+1, . . . , t̃d)T ∈ I0, for i = 1, . . . , p define
di(X) to be the distance, measured along the line

{t1, . . . , τi︸︷︷︸
varies

, . . . , td , t1 + s1, . . . , τi︸︷︷︸
varies

+si, . . . , tp + sp, t̃p+1, . . . , t̃d : τi ∈ R}

from the set
Ωi = {X ∈ R2d : ϖ jX = 0 f or j 6= i, i+d}. ♦

Lemma 1. Fix a sequence {U( j)} j∈N of inputs for the doubled system (3). Suppose that
∀ε > 0, ∀m ∈ N, ∀s1, . . . ,sp ∈]− 1,1[, there exists t1, . . . , td , t̃p+1, . . . , t̃d ∈ R such that, if
{X( j)}m

j=0⊂ I0 is the orbit of the doubled system (3) with X(0) = (t1, . . . , td , t1 +s1, . . . , tp +
sp, t̃p+1, . . . , t̃d), the following holds

f rac
(

di(X( j))√
2

)
< ε, (17)

for every i = 1, . . . , p, j = 1, . . . ,m. Then the system is not uniformly left invertible.

Proof: Suppose that an orbit {X(i)}∞
i=1 is included in I0 and consider the 2-dimensional

plane 〈ei,ed+i〉. Define

Q′i = {(t, t + s) ∈ R2 : t ∈ R, s ∈]−1,1[} ⊂ 〈ei,ed+i〉,

Qi =
⋃
j∈Z

[ j, j +1[×[ j, j +1[⊂ 〈ei,ed+i〉.

13
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Now observe that f rac
(

di(X( j))√
2

)
= 0 if and only if X( j) belongs to some translation of

Ωi ,along the diagonal of the 2-dimensional plane 〈ei,ed+i〉, that is entirely included in Qi,
i.e. a translation that takes Ωi to the “bottom-left boundary” of a square of Qi. It’s now
easy to see that, for every X ∈ R2d there exists ε > 0 such that, if f rac

(
di(X)√

2

)
< ε then

X ∈Qi. Therefore, if the relations (17) are satisfied, then there exists an arbitrary long orbit
included in Q (see also Fig. 4). ♦

Proposition 4. Suppose that the entries of a matrix A = {ai j} ∈Rd×d are an algebraically
independent set, and denote with a(k)

i j the entries of the matrix Ak. Then the set{
a(k)

i j : i, j = 1, ...d; k = 1, . . . ,N
}

(18)

is a linearly independent set for every N ∈ N.

Proof: First, note that all a(k)
i j are polynomials of degree k in the ai j. Since the ai j

are algebraically independent, they can be treated formally as the independent variables
of polynomials in d2 variables (more precisely there exists a ring isomorphism between
Q[a11,a12, . . . ,add ] and the ring of polynomials in d2 variables Q[x1, . . . ,xd2 ], see [1]). If
a nontrivial linear combination of the elements of the set (18) is zero, then there exists a
nontrivial polynomial in the ai j which is zero, so there exists a k0 such that a nontrivial
linear combination of the a(k0)

i j ’s, seen as polynomials in the ai j’s, which is zero. These are
the entries of the matrix Ak0 , so there would exist a nontrivial linear relation among these
entries. Suppose this is the case. If this linear relation results in a linear relation among
polynomials which is not identically zero, we are done. Indeed, if there exists λi jk0 ∈ Q
and x11, . . . ,xdd ∈ R such that (note that the entries a(k0)

i j of the matrix Ak0 are seen as
polynomials in the variables a11, . . . ,add , renamed as x11, . . . ,xdd)

∑
i, j

λi jk0a(k0)
i j (x11, . . . ,xdd) 6= 0,

then, substituting the ai j’s to the xi j’s, it is not possible that

∑
i, j

λi jk0a(k0)
i j (a11, . . . ,add) 6= 0,

since the ai j’s are algebraically independent.
Therefore we only have to show that it is not possible that

∑
i, j

λi jk0a(k0)
i j (x11, . . . ,xdd)≡ 0,

i.e. that this polynomial cannot be identically zero. Now note that the matrices M =
{mi j} ∈ Rd×d whose entries do not satisfy the (nontrivial) linear relation ∑i, j λi jk0mi j = 0
form a full measure set, dense in Rd×d . On the other hand also the matrices with dis-
tinct eigenvalues form a full measure set, dense in Rd×d . Therefore there exists a matrix
M = {mi j} having distinct eigenvalues, whose entries do not satisfy the linear relation
∑i, j λi jk0mi j = 0.

Since M has distinct eigenvalues, there exists a matrix B such that Bk0 = M (diagonalize
and take k0-roots of the eigenvalue). Denote with b(k0)

i j the entries of the matrix Bk0 : then

the b(k0)
i j ’s do not satisfy the linear relation ∑i, j λi jk0b(k0)

i j = 0, since Bk0 = M. This implies

that ∑i, j λi jk0a(k0)
i j (x11, . . . ,xdd) is not identically zero as a polynomial. ♦

We now prove Theorem 5. Consider the state X(m) of the doubled-system (3) at instant
m given by an initial condition X(0) ∈ I0 and an input sequence

14
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U(1) =
(

u(1)
u′(1)

)
, . . . ,U(m) =

(
u(m)
u′(m)

)
∈U ×U :

Then

X(m) =
(

A 0
0 A

)m

X0 + . . .+
(

Bu(m)
Bu′(m)

)
Suppose that the (d−dimensional) system (2) is not uniformly left D-invertible. So there
exists arbitrarily long orbits of the (2d−dimensional) doubled-system (3) included in I0.
In the following we provide conditions such that ∀ε > 0, ∀m ∈ N, ∀s1, . . . ,sp ∈]− 1,1[,
there exists t1, . . . , td , t̃p+1, . . . , t̃d ∈ R such that, if {X( j)}m

j=0 is the orbit of the doubled-
system (3) with X(0) = (t1, . . . , td , t1 + s1, . . . , tp + sp, t̃p+1, . . . , t̃d), then the following holds

f rac
(

di(X( j))√
2

)
< ε, (19)

for every i = 1, . . . , p, j = 1, . . . ,m. Therefore the system will be not uniformly left invert-
ible by Lemma 1. These conditions will be verified by a full measure set. Consider the
set

S′ =
{

A ∈ Rd×d : {ai j}d
i, j=1 is an algebraically independent set

}
.

Set A ∈ S′. For i = 1, . . . , p, ϖ〈ei,ed+i〉X( j) has the form

(
ϖiX( j)

ϖi+dX( j)

)
= ϖ〈i,i+d〉

[(
A 0
0 A

) j

X(0)+
(

A 0
0 A

) j−1

U(1)+ . . .+U( j)

]
=

= ϖ〈i,i+d〉





a11 . . . a1d 0 . . . 0
...

. . .
...

...
. . .

...
ad1 . . . add 0 . . . 0
0 . . . 0 a11 . . . a1d
...

. . .
...

...
. . .

...
0 . . . 0 ad1 . . . add



j



t1
...

td
t1 + s1

...
tp + sp
t̃p+1

...
t̃d


+ const.


=

=

 c( j)
i,1 t1 + . . .+ c( j)

i,d td

c( j)
i,1 t1 + . . .+ c( j)

i,p tp + c( j)
i,p+1 t̃p+1 + . . .+ c( j)

i,d t̃d

 + const.

where c( j)
i,l is the entry (i, l) of the matrix A j. By Proposition 4 the set

{
a( j)

il : i, l = 1, ...d; j = 1, ...N
}

is a linearly independent set, so, by Kronecker’s Theorem (Theorem 4) there exists a choice
of (t1 . . . , td , t̃p+1, . . . , t̃d) such that equation (17) is satisfied, and Lemma 1 thus apply.

To prove that the set of matrices with algebraically independent entries are a full mea-
sure set, first observe that the set of polynomial P∈Q[ζ1, . . . ,ζd2 ] is countable. For a single
polynomial P the set

0P =
{
(x1, . . . ,xd2) ∈ Rd2

: P(x1, . . . ,xd2) = 0
}

is a finite union of manifolds of dimension at most d2− 1. So the measure of 0P is zero.
Moreover

S′ =
⋃

P∈Q[ζ1,...,ζd2 ]

0P,
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i.e. S′ is a countable union of sets of measure zero, which in turn implies that the measure
of S′ is zero. ♦

8. NOTATIONS

The authors made an effort to simplify notations, though they are intrisically complex.
For this reason in this “special” section we collect the notations used in this paper, ordered
as their appearance.

• P =
⋃

Pi is the uniform partition. Without loss of generality the rate of the
uniform partition is supposed to be δ = 1 (Definition 1);
• U is the finite alphabet of inputs (just after the Definition 1);
• q : (x ∈Pi) 7→ i is the output quantizer. Without loss of generality it is supposed

to be the floor function, acting componentwise (just after the Definition 1);
• πp is the canonical projection on the first p coordinates (Remark 1);
• b·c is the floor function, acting componentwise (just after Remark 1);
• 〈v1, . . . ,vi〉 denotes the linear subspace generated by the vectors v1, . . . ,vi ∈ Rd

(Notations before Definition 4);
• Q is quantization–diagonal set (Definition 4);
• X(k),U(k),F (capital letters) are used to indicate states, inputs and updating func-

tion of the doubled-system (3);
• (X,d) is a complete metric space used in the IFS setting (Definition 6);
• Ft =

{
{Fi1 ◦ . . .◦Fit} : i1, . . . , it ∈ {1, . . . ,n}

}
is the set of all possible concatena-

tions of length t of maps of an IFS (Definition 8);
• A denotes the attractor of a system, of an IFS (Definition 9);
• I denotes the invariant set of an IFS (Definition 10);
• φ indicates the function that associates to each input sequence its limit point (The-

orem 1);
• Gk, IGk,EGk are respectively the graph of depth k associated to the attractor A ,

the internal invertibility graph, and the external invertibility graph (Definitions 12,
13);
• VIGk ,VEGk denote respectively the set of vertices of the internal and external in-

vertibility graph (Definition 13);
• ∂ indicates “topological boundary of . . . ” (Theorem 2);
• \ denotes the set difference (Theorem 2);
• Z(k),GU(k) are used to indicate the state and the updating map of the doubled-

inverse system(4);
• R is the attractor of the doubled–inverse of a joint expansive system (Theorem 3);
• V = U −U = {u− u′ : u ∈ U , u′ ∈ U } is the input set of the difference set

(Definition 16)
• ei is the i−th vector of the canonical basis of Rd (Notations before Definition 16);
• f rac(·) denotes the fractional part, acting componentwise (Notations before Defi-

nition 16);
• ϖi : Rd → R denotes the orthogonal projection on the i-th coordinate (Notations

before Definition 16);
• z(k),v(k) indicate respectively the state and the input of the difference system

(Definition 16);
• Dk2

k1
(z(0),v(1), . . . ,v(k2)) denotes the sequence (πpz(k1), . . . ,πpz(k2)) generated

by the difference system with initial condition z(0) and inputs v(1) . . . ,v(k2) (Def-
inition 17);
• SD(B,U ) denotes the set of matrices A ∈ Rd×d such that the system (2) is ULDI

(before Definition 23);
16
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• S(B,U ) denote the set of matrices A ∈ Rd×d such that the system (2) is ULI
(before Definition 23);
• I0 =

{
(t1, . . . , td , t1 + s1, . . . , tp + sp, t̃p+1, . . . , t̃d)

T : ti, t̃ j ∈ R,sk ∈]−1,1[
}

• di(X) is the measure of a distance defined in Definition 23;
• Ωi is the union of the two coordinate axes of 〈ei,ed+i〉 (Definition 23);
• Q[ζ1, . . . ,ζN ] is the ring of polynomial in the variables ζ1, . . . ,ζN , with coefficients

in Q (Definition 21);

• Q′ denotes the “strip”
{( t

t

)
+
(

s
0

)
: s ∈ ]−1,1[ , t ∈ R

}
(After the proof

of Theorem 7);
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