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Two Extensions of Topological Feedback Entropy

Rika Hagihara - Girish N. Nair

Abstract Topological feedback entropy (TFE) measures the intrireie at which
a continuous, fully observed, deterministic control sgstgenerates information for
controlled set-invariance. In this paper we generalisg tiotion in two directions;
one is to continuous, partially observed systems, and theras to discontinuous,
fully observed systems. In each case we show that the comdsp generalised
TFE coincides with the smallest feedback bit rate that al@form of controlled
invariance to be achieved.

Keywords Topological entropy communication-limited controlquantised systems

1 Introduction

In 1965, Adler, Konheim, and McAndrew]|[1] introducégpological entropyas a
measure of the fastest rate at which a continuous, distire&e-dynamical system in
a compact space generates initial-state information. §haalated to the measure-
theoretic notion oKolmogorov-Sinai entropgsee e.g.[13]), it is a purely determin-
istic notion and requires only a topology on the state spaaian invariant measure.
Subsequently, Bowehl[3] and Dinabuig [6] proposed an aters, metric based def-
inition of topological entropy. This accommodates unif§rmoontinuous dynamics
on honcompact spaces and is equivalent to the original defirin compact spaces.
These concepts play an important role in dynamical systern®emained largely
neglected in control theory. However, the emergence otallginetworked control
systems (see e.q./[2]) over the last four decades renewa@#hin the information
theory of feedback, and in 2004 the techniques of Adler etvate adapted to in-
troduce the notion ofopological feedback entropy (TFEL1]. Unlike topological
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entropy, TFE quantifies thr@owestate at which a continuous, deterministic, discrete-
time dynamical systerwith inputs(i.e. a control plant) generates information, with
states confined in a specified compact set. Equivalentlgsitidbes the rate at which
the plant generates information relevant to the contraaije of set-invariance.

From an engineering perspective, the operational signifieaf TFE arises from
the fact that it coincides with the smallest average bi-fa¢tween the plant and
controller that allows set invariance to be achieved. Irepthiords, if an errorless
digital channel with limited bit rat® connects the plant sensor to the controller, then
a coder, controller and decoder that achieve set invarieacde constructed if and
almost only ifR exceeds the TFE of the plzﬂhﬂ'hus set invariance is possible if
and almost only if the digital channel can transport infotiorafaster than the plant
generates it.

Later, the notion ofnvariance entropyas introduced for continuous, determin-
istic control systems in continuous time|[4,17, 8] based @mtietric-space techniques
of Bowen. This measures the smallest growth rate of the nuwf@pen-loop con-
trol functions needed to confine the states within an aniligramall distance from a
given compact set. In contrast, TFE is defined in a topoldgigace and counts the
minimum rate at which initial state uncertainty sets areneafj with states confined
to a given compact set. Despite these significant concegiffi@fences, it has been
established that TFE and invariance entropy are ess@rttiallsame object.

A limitation of the formulations above of entropy for contystems is their
restriction to plants with fully observed states and camtiins dynamics. This makes
them inapplicable when only a function of the state can besoreal or the plant has
discontinuities such as a quantised internal feedback Wogcent articlel[5] studied
continuous, partially observed plants in continuous timig) the objective being to
keep the plant outputs arbitrarily close to a given compatta any initial state in
another set. The notion ofitput invariance entropyas defined as a lower bound on
the required data rate. However, the control functions i filrmulation are chosen
according to the initial state. Thus when the controller &ecess to only the output
not the state, the lower bound may be loose.

For discontinuous systems, notions of topological entttge been proposed for
piecewise continuous, piecewise monotone (PCPM) maps imearal [10[ 9], using
a Bowen-style metric approach. It is shown that the topalaigintropy of a PCPM
map coincides with the exponential growth rate of the nundfesubintervals on
which the iteration of the map is continuous and monotonf.2f a metric approach
was also adopted to define a topological entropy for a pgsdistontinuous, open-
loop, discrete-time system driven by a sequence of dishodgsm However, it is not
clear how these constructions can be adapted to feedbatthkeystems with vector-
valued states.

In this paper we use open-set techniques to extend TFE initectins; one is to
continuous plants with continuous, partial observationsdctiod 2, and the other is
to a class of discontinuous plants with full state obseovetin sectiofil3. In each case
we show that the extended TFE coincides with the smallesageebit-rate between

1 without loss of generality, there can also be an errorlegiatiichannel from the controller to the
plant actuator; in this cadRis taken to be the minimum of the two channel rates.
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the plant and controller that allows weak invariance to beeas®d, thus giving these
concepts operational relevance in communication-limitaatrol.

Though both generalisations involve open covers, the gssons and techniques
underlying them are significantly different. The questiohlow to compute bounds
on these notions and how to construct a unified notion of faekientropy for dis-
continuous, partially observed systems are ongoing afaas@arch.
Terminology.The nonnegative integers are denotedZpyand the positive integers
by N. Sequence segmerlts, ..., %) are denoted by.. A collectiona of open sets
in a topological spacé is called anopen coverwf a setW C Z if UpcagAD W. A
subcollection3 C a is called asubcovef W if Ug.gB 2 W. If a contains at least
one finite subcover oW, thenN(a|W) € N denotes the minimal cardinality over
them all; in the case whekW = Z, the second argument will be dropped.

2 Continuous, Partially Observed Systems

In this section, we extend topological feedback entropyR)Ite continuous, partially
observed, discrete-time control systems. We then prowdhieal FE coincides with
the smallest average feedback bit-rate that allows a forooofrolled set-invariance
to be achieved via a digital channel.

2.1 Weak Topological Feedback Entropy

To improve readability, most of the proofs in this subsattoe deferred to the Ap-
pendix. LetX be a compact topological space and consider the continpautsally
observed, discrete-time control system

X1 = f(Xk,Uk) eX
Yk=0(%) €Y

where the inputy is taken from a s, the outputy lies in a topological spacé, and
the functiongandf(-,u), u€ U, are continuous. For simplicity writg(-) := f(-,u),
fugfl = fug , fue , -+ fyp @nd for anys e N, let Gug? denote the continuous function

,  Vke Zo, (2.2)

that maps¢ to y3 when the plant is fed with input sequemﬁél. Given a compact
target seK S X with nonempty interior, assume the following:

(Ob) The plant isuniformly controlled observablghere existss € Zy and an input
sequencearg’1 such that the mag,s-1 is continuously invertible ogvgfl(X).

(WCI) The setK is weakly controlled invariantthere existd € N such that for any
Xp € X there exists a sequengEl(Xo) }(j) of inputs inU that ensures; € intK.

Condition (Ob) states that there is a fixed input seque@?:% that allows the
initial statexo to be recovered as a continuous function of the output segugn
The statesq, ..., Xs are not required to lie inside ikt this gives the freedom to trade
transient control performance off for improved accuracgtate estimation.

We also remark that the main difference between WCI and thal aefinition of
controlled set-invariance is that the state only needs tst&erable to the target set
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in t time steps, not one. As a technicality, the topological méswe employ also
require the statg to lie in the interior ofK.

We now introduce tools to describe the information generatate. Picks € Zg
and an input sequen@%’l. Leta be an open cover (g‘vgl(X) C Ys*L, 1 a positive

integer, ands = {Gx: a — U };;é a sequence af maps that assign input values to

each element ofr. Define% to be the set of all tuple@,vgfl,a, T,G) that satisfy
the following constraint:

(C) ForanyA < a andxg € g\}ll(A), the concatenated input sequelﬁu%’l,G(A))
0
yieldsxs,; € intK, with Gyt continuously invertible ogv(s;l(X).

Proposition 2.1 If (Ob) and (WCI) hold, thefs” £ 0, i.e. constraint (C) is feasible.

Next, we usex to track the orbits of the initial states. Divide time up imtecles
of durations+ 1 and apply an input sequenu?1 that satisfies (Ob) for the first
instants of each cycle. Lé{,Ay,... be elements ofr and for eachj € N define

Xi(st1) € g;gM), 0<i<j-1,and

UFéifiis””l = (Vi1 G(A)),0<i<j-2

Bj:=q{ X € X: (2.2)

In other wordsB; is the set of initial states such that during the- 1)th cycle, the
sequencgr:ggJrS of the firsts+ 1 outputs lies insidé; when the sequence sf- T

inputs over the cycle i§v5 1, G(A))) € UStT foreveryi € [0, ..., j — 2].
Proposition 2.2 The set B has the following properties.

i. Each B is an open set.
ii. Every e X must lie in some B

Corollary 2.1 For each je N the collection of sets B

Bj = {Bj :Ao,Al,...,Aj,lea}, (2.3)
is an open cover of X.

Now, since; is an open cover oK, compactness implies that it must contain a
finite subcover. Consider a minimal subcover with cardigdli(3;) € N. As no set
in this minimal subcover o; is contained in a union of other sets, each carries new
information. Thus adN(B;) increases, the amount of information gained about the
initial state grows. In order to measure the asymptoticaéibeformation generation,
we need the following:

Lemma 2.1 The sequencgog, N([B'j))‘j’":1 is subadditive.

The next proposition follows from Fekete’s lemma; see €8, Theorem 4.9] for a
proof.
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Proposition 2.3 The following limit exists and equals the right hand infimum:

log,N(Bj) . log;N(B;)
mSern M Tern (2.4)

We now define a topological feedback entropy for continupasjally observed
plants:

Definition 2.1 The weak topological feedback entropy (WTF&)the plant [Z.11)
with target seK is defined as

= i tim 22N 24 inf o6 N(B;)
(sviLa,rG)egive J(S+T) (svila,1.G)e%,jen J(S+T)

, (2.5

where% is the set of alll tupleﬁs, v(s)’l, a,T, G) that satisfy constraint (C).

This definition reduces to theeak invariance TFBf [11] if the plant is fully ob-
served, since in that case condition (Ob) is trivially Segwiths= 0 andgvgl =g
reducing to the identity map. Like classical topologicairepy for dynamical sys-
tems [1], it measures the rate at which initial state unaestesets are refined as
more and more observations are taken ‘via’ an open coverdiffegzences here are
that control inputs must be accommodated, only partia¢ sthservations are possi-
ble, and the slowest rate is of interest, not the fastest.

Instead of ‘pulling back’ and intersecting the open #&fs7;, ... € a to form an
open covelB; of the initial state spack, suppose we simply counted the smallest
cardinality of minimal subcovers of the open coweitself, under constraint (C). It
turns out that this more direct approach yields the same Bumb

Proposition 2.4 The weak topological feedback entropy[2.5) for the comtirs,par-
tially observed planf{2]1) satisfies the identities

hw=  inf  0%NG)

(s\gtarG)ew STT
|092N(a|9\,371(x))

n
(sv§1a,1.6)e? S+T

)

Proof Note first that by plugging = 1 into the second equality il (2.5) we obtain

hw = inf PENBY) .y 10%RNBY 5 g

(s,vg’l,a,r,G)e(za",jeN j(3+ T) (&,v()}l,a,r,G)e(z«;" S+T

We prove that the infimum (with = 1) arbitrarily close tdwy can be achieved.
The definition of the WTFE, combined with the fact that jim, j/(j —1) = 1 and
Propositio 2.8, implies that given> 0 we can find a tupléavg’l,a, 17,G) that
satisfies constraint (C) and a large N such that

log, N(Bj) 10 N(Bj) ]
WS T et o1 M @n
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We now construct a new tupl@’,\/g’l,a’,r’,G’). Let s and \/8’1 be s and v(s)*l
chosen above. The open cowerof gVS 1(X) in YS*1 is obtained as follows. Recall

that3j is an open cover oX. We use the continuous mg& to form a collection of
open sets |rgv(s)—1( ), {gVOH(BJ) Bj € Bj}. Note that the union of seg§,H(BJ) is
gvgl(X). Sincegv(s;l(X) is equipped with the subspace topologyrsf?, each open
Setgv(s)fl(Bj) in gv(s;l(x) can be expanded to an openBétn Ystlso thalg;oil maps
points inB; ﬁgvgfl(X) into Bj. Now a’ = {Bj] : Bj € f3j} is an open cover cgvgl(X)
in YSt1. Recall that eacB; € B; is of the form

BJ:g;?}l(AO)m(D 7 gvH(Al)ﬁ<D (1 )(D 7 gv%l( 2)N-

SN Bl - Poa, gVH(AJ 1),
where @gp) = fvs 1g(a) With Ag,...,Aj_1in a. Sett’ = (j —1)(s+ 1) —sand de-
fine a sequence of mapsG’ by G’(B’j) = G(Ao)V§ 1G(A1)... V5 IG(Aj_2). Since
(s, v(s)*l, a,T,G) satisfies constraint (C), by constructi(rh,\/g’l, a’,7,G) satisfies
(C). Clearly,N(B;) = N(Bj), wherep; = g;il(a’), and from inequalities i (2. 7) we
have | (B )
109, N(p71)
hw <
W= "Ter

Sincee > 0 was arbitrary, the above inequalities and the earlieftr&s(@.6) give
the first equality.

For the second equality, observe that given any u@r@*l, a,1,G) satisfying

constraint (C) we hav®l(f1) = N(B1|X) = N(a|gV371(X)), wheref; = g;jl(a),
0
sincea is an open cover (gv(s;l(x) inYsti, gv(s;l(x) is equipped with the subspace

<hw-+e.

topology of YSt1, andgvgfl is a homeomorphism from the compact spacento
gvgl(X). Thus we obtain the desired equation. O

The first equality in this result is a technical simplificatithat allows the cycle
index j € N in the definition of WTFE to be restricted to the value 1. Theosal
equality follows almost immediately but is conceptually ragignificant. In rough
terms, it states that under constraint (C), the smallesttjroate of the number of
‘topologically distinguishable’ output sequencesgl;%l(X) C YS*1 coincides with
the smallest growth rate of the number of such initial states.

2.2 Data-Rate-Limited Weak Invariance

The weak topological feedback entropy (WTFE) construatetthé previous subsec-
tion is defined in abstract terms. We now show its relevantkegroblem of feed-

back control via a channel with finite bit-rate, for a genefass of coding and control

laws.
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Suppose that the sensor that measures the outputs of the(@Entransmits
one discrete-valued symbsgl per sampling interval to the controller over a digital
channel. Each symbol transmitted by the coder may potgntabend on all past
and present outputs and past symbols,

So= {0 {sHo0) €S VKE Zo, (2.8)

whereS; is a coding alphabe of time-varying sizeuy, andy : Y x S x -+ x
S 1 — & is the coder map at timle Assuming that the digital channel is errorless,
at timek the controller hasy, . .. ,s available and generates

ue=&({s} o) €U, VkeZy, (2.9)

wheredy: S x - - - x § — U is the controller map at timle Define thecoder-controller
as the triple(S,y,d) 1= ({Sctkezy, {Whkezyr {Otkez,) Of the alphabet, coder and
controller sequences.

Suppose that the performance objective of the coder-deetis to renderK
weakly invarianti.e. to ensure that there exists a time N such that for anyg € X,
Xg € intK. Let Qy C N be the set of all the invariance timegsof a given coder-
controller that achieves this objective. For eaehQy, ag-periodic coder-controller
extension that ensureg, Xoq, ... € intK can be constructed by ‘resetting the clock’
to zero at timeeq,Zq,...E The average transmission data rate of eggieriodic
extension is simply}] z?;élogz Hj, and the (smallest) average data rate required by
the coder-controller is then

19t
R:= inf - lo i (bits/sample, 2.10
qEquJZo GH ( ple) ( )

We remark that in[[11], the communication requirements ef¢bder-controller
were measured instead by the asymptotic average data.eateyér allj € Zg, and
the weak-invariance control objective was to ensiteyy, . .. € intK. Thus for that
coder-controllergN C Qy, and applying[{2.0) to it would yield a less conservative
number.

The main result of this subsection follows.

Theorem 2.1 Consider the continuous, patrtially observed, discreteetplant[([2.11).
Suppose that the uniformly controlled observability (Objl sveak controlled invari-
ance (WCI) conditions hold for a given target set K.

For K to be made weakly invariant by a coder-controller of fbem (2.8) and
(Z2.9), the feedback data rate in R2(2.10) cannot be less thanwieak topological
feedback entropy:

Furthermore, this lower bound is tight: there exist codentrollers that achieve
weak invariance at data rates arbitrarily close t@.h

2 See section |1l in[[11].
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This theorem says that weak invariance can be achieved by soder-controller
if and (almost) only if the available data rate exceeds the®/6f the plant on the
target set. This gives operational significance to WTFE astifies its intepretation
as the rate at which the plant generates information for vireadriance.

The remainder of this subsection comprises the proof ofrdsslt.

Necessity of the Lower Boundlet the coder-controllefS, y, ) achieve invariance
with data rateR. By (2.10),Ve > 0 there exists} € Qy such thatxy € intK for any
Xo € X and

19t
=Y log, ik < R+€. (2.11)
a kZO ?

Let (S, v, 6) be theg-periodic extension, which achieves weak invariance ag¢im
g,2dq,....

We wish to transform this periodic coder-controller int@#rer that more closely
matches the structure of a WTFE quintuple and has nearlyetfine slata rate. Specif-
ically, we seek a periodic coder-controller each cycle ofcthas two phases. The
first phase is an initial ‘observation’ phase, during whicé tontroller applies a pre-
agreed input sequence so as to enable the coder to detetmiegdct value of the
current state. This is followed by an *action’ phase, whéee ¢urrent state value is
used to generate symbols and controls so as to achieve wealaimce by the end of
the cycle.

Letse N and the input sequeneg™ ! satisfy condition (Ob). Set = q and con-
struct a(s+ 1)-periodic coder-controllefS?, y2, 52) as follows; to simplify notation,
the coding and control laws are defined only for the first cyfeiiest, the controller ap-
plies the input sequencu%’l = v(s)’l; during this time, the coder transmits an ‘empty’
symbol. For the remainder of the cycle, ie< k < s+ 1 — 1, the coder-controller
implementgS', y*, %) and obtains a new staxg, ; € intK. This can be achieved by
defining the coder-controllé&?, y2, 52) by

S ifs<k<s+r-1

S R {o ) fo<k<s-1

§{ﬂn ifo<k<s—1

V%fs(ylsgi 1) ifs<k<st+r1—-1’

Vi ifo<k<s-1
Uy = 82(s6) = {d} () ifs<k<s+r-1

Observe that the symbol sequers§e™ ! is completely determined by by a
fixed map that incorporates both coder and controller lawlsisThere exist maps
andA such that

i&rflz
S+r l_ (fr 1)

(2.12)
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Now consider the disjoint coding regiofis * (c§"71), et "t e Ex - x £ ,_;.
The total number of distinct symbol sequencq‘qﬁ?l Uk_s= ﬂ;;é Uk, Which must
be greater than or equal to the numbef distinct coding regions. Denote these cod-
ing regions byC!,...,C" and note thalfvgfl(x) C U ,C'. We can now rewrite the
control law in [Z.1R) as

uFTt=4%(C) if xeC, (2.13)

whereA*(C') = A(c$ 1) iff C' = —1(cgt™1).

We now construct the open coverof gvgfl(x) and the mapping sequenGe=

{Gk: a — U}}_3 required in the definition of the WTFE. To define first construct
an open cover oX as follows. Observe that for amy in regionC',

(DA*(Ci)(XS) E |nt|<7
where the left hand side denot%gm with the control law[(2.113). By the continuity

of fy (hence of®,. ¢iy) and the openness of Kt it then follows that for anys € C
there is an open s€(xs) that containss and is such that

Py (ciy(X) €IntK, Vx € O(Xs).
We can construct for eadfe [1,...,n] an open seb' = Uy.cciO(xs) so that
Py (@) (X) €intK, Yxe D',
which is equivalent to _
®peciy(D') CintK.
We then use the continuous rria@l = fvoylg\jojl to form the collectior{h;Oil(Di) n
of open sets irgvg,l(X). As gvg,l(X) is equipped with the subspace topology&f?,
each open sét;O%ll(Di) in gvg,l(X) can be expanded to an open kkin YS+1 so that
hvogl maps points ir' ﬂgvg,l(X) into D'. The open covea for gvgl(X) is defined
by a = {L!,...,L"}. Finally, construct the mapping sequei@en a by

Gk(L'") = thekth element ofA*(C') foreachl' € a and 0<k < T1—1.

Itis evident that constraint (C) (mvg’l, a,1,Gis satisfied.
The minimum cardinality\I(a|gv871(X)) of subcovers oftr does not exceed the
numbem of setsL' in a. From this we obtain

|092N(a|9\,371(x))

hy= inf
sV La.1G S+T
logzN(algys (X))
- S+T
< log,n
Tos+T

log, (Mr5 Hk) 1 1 17t
< — = < - .
< - S+Tk;|092llk_ Tk;k)gzllk
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From [Z.11) the last term of the right hand side is less RarE, sincer = g. Hence
R Z hW.

Achievability of the Lower Boundo prove that a data rate arbitrarily closehg
can be achieved, we show that any tu@ﬂ;algfl, a,1,G) that satisfies constraint (C)
yields an(s+ t1)-periodic coder-controller that rendefsweakly invariant in every
cycle.

Let

o |092N(a|9\,371(x)).
S+T
Recalling thatx is an open cover of the compact g@BLl(X), select a minimal sub-
cover ofa and denote it by{Al,..., A"}, wherem = N(a|gv371(X)). SincegVOH is
a homeomorphism froX ontogvgfl(X) andgvgfl(x) is equipped with the subspace
topology ofYs*1 we see tha{g\%}l(A‘) ", is afinite open cover ok. We construct

an (s+ 1)-periodic coding law using these overlapping sets as fdldw simplify
notation, the coding and control laws are described onlytfeffirst cycle.
For eachk € [0,s+ 7 — 1], setS = {1,...,m} if k=sandS = {0} otherwise.

Then let Lo
min{i:xp € g, (A if k=s
{ {is%0 € g (A)) .10

0 otherwise

The coding alphabet is of size = mwhenk = sand 1 otherwise.

The next step is to construct the controller from the inpuqtu&;asmcevg’1 and
mapping sequendd. For the firstsinstants of the cycle, the controller applies inputs
us ' = v At time s, the coder determines the initial statg= g;oil(yg). Upon

receiving the symbai that indexes an open sy}}l(Ai) containingxg, the controller
0

applies control inputs via the rul€"™* = G(A').

The coder-controller thus constructed has pesied . By constraint (C) we have
Xs+1 € intK, hence weaks+ 1)-invariance is achieved.

By (2.12), the average data rate over the cycle is

q_ logm _ log, N(a|g,s-1(X))
Cos+T S+T

H.

As hy is the infimum ofH, for anye > 0 we can finc{s,vgfl, a,T1,G) yieldingH <
hw + €. HenceR < hy, + €. The result follows by observing th& < R by definition
(2.10) and then choosirgarbitrarily small.

3 Piecewise Continuous, Fully Observed Plants
In this section we introduce the notion mbust weak topological feedback entropy

for a class of piecewise continuous, fully observed plansthen establish the rele-
vance of this notion for bit-rate limited control.
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3.1 Robust Weak Topological Feedback Entropy

As before, letX be a compact topological space. We consider the fully olesgrv
piecewise continuous plant

Xer1 = F (%, Uk) € X, VK€ Zo, (3.1)

where the inputi is taken from a sdt). For simplicity writeF, := F (-, u) andFuE =
Fu, - - - Fuy- Assume that there exists a finite partitiofi of X and that each connected
component of any element @? has nonempty interior. For eache U the mapF,
is continuous on each element®f, i.e. F, is piecewise continuous.

Let K be a compact target set with nonempty interior, and imposéatowing
condition on the plant:

(RWI) The compact seK can be madeobustly weakly controlled invarianinderF:
there exists € N such that for any € X, there exists an open 98{x) containing
xand an input sequendély(x) tk;% inU that ensureg € intK for anyxp € O(x).

Note that this is stricter than the weak controlled invac&(WClI) condition in
the previous section. It restricts our focus to plants witites that can be driven
in finite time into the interior oK, despite an arbitrarily small error in the initial
state measurement. This requirement is not satisfied bysalbdtinuous plants, but
is reasonable if for instance the plant consists of an uypithgricontinuous system
with an ‘inner’ quantised control loop and an ‘outer’ comtiaop to be designed, i.e.
F(x,u) = f(x,w,u), where the inner control inpwt is a quantised function of. It
can be shown that if is continuous an& is WCI, then it is always possible to find
a sequence of quantis@int inputs(w, u) = (g1(x),g2(x)) that preserves WCI in the
presence of small state measurement errors. Condition)(ERf applies if the inner
loop control law is chosen to be such a robust tax). For reasons of space, details
are omitted.

We now introduce a feedback entropy concept for this sysidma key difference
from Sectiol P is that the output maps the identity and so the indesin condition
(Ob) there is 0. This leads to taking an open cavatirectly onX. We form a triple
(a,7,G), wheret € N andG = {Gy: a — U}]_} is a sequence afmaps that assign
input variables to all elements of. Let Z% be the set of all triplega, 7,G) that
satisfy the following constraint:

(RC) ForanyA € a andxo € A, the input sequendd(A) yieldsx; € intK, i.e.
Fo,_1(a) - - Foo(a) (A) CintK.

Proposition 3.1 If condition (RWI) is assumed, then constraint (RC) is felasi.e.
AE # 0.

Proof We give a complete proof to emphasise the difference fronséiting in Sec-
tion[2, cf. Proposition 2]1. Assume (RWI). We constr(t T, G) that satisfies (RC)
as follows. Setr equal tot in (RWI). By (RWI), for eachx € X there is an open set
O(x) that containx and is such thafy,_, () - - - Fryy( (O(X)) € intK. By rangingxin
X we form an open cover of, {O(x) : x € X}. The compactness of implies that
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there exists a finite subcover= {O(xq) };,_;. Construct the sequenGe= {Gk}zs
of T maps omx by

Gk(O(Xg)) =Hk(%q) foreachl<g<randO<k<rt—1.
By construction we have thatife O(xq) for some 1< q <r then
FG(O(XCQ)(X) = F{Hk(xq)}ﬁ;é (X) €intK.
This confirms the feasibility of (RC) under (RWI). O

Motivated by Proposition 214, we introduce the followingcept:

Definition 3.1 Therobust weak topological feedback entropy (RWTBEhe plant
@d)is
i inf (0%N@)

3.2
(a,1,G6)ez¢ T ( )

Unlike TFE and the classical topological entropy, this dééin does not involve
pulling back and intersecting the setsarnto measure the rate at which initial state
uncertainty sets are refined. Thus it cannot be vieapdori as an index of the rate
at which the plant generates initial-state informationwdeer, such an interpretation
becomes plausible due to the results in the next subsection.

3.2 Robust Weak Invariance Under a Data-Rate Constraint

We now show the relevance of robust weak topological enttopye problem of
feedback control via a channel with finite bit-rate.

Consider the fully observed, piecewise continuous p[adl) (3Ve now introduce
a feedback loop with a coder-controller of the general f&2m@B)-[2.9), but with the
outputsy; replaced by states. The performance objective of the coder-controller
is to rendeK robustly weakly invariantthat is, to guarantee thag € N such that
Vxo € X, there is an open neighbourho@dxp) > %o with the property that the in-
put sequenc‘ﬂg’l generated by the coder-controllg,y,d) acting on % ensures
Fa1(X) € intK, ¥x € O(xo). In other words, we desire that the control inputs gen-

erated by[(2I8)E(2]19) for a plant with nominal initial stateshould still succeed in
achieving wealg-invariance if the true initial stateis sufficiently close.

Let Qw € N be the set of all the robust weak invariance tirges a given coder-
controller that achieves this objective. For egehQy, we can construct@periodic
coder-controller extension by ‘resetting the clock’ to@at timesq, 2q, ... As be-
fore, the (smallest) average data rate required by the emmgroller is then

19t
R=inf =Y lo i 3.3
40w g JZO 92 Hj (3.3)

The main result of this subsection follows:

3 See section |1l in[[11].
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Theorem 3.1 Consider the piecewise continuous, fully observed plad) @ith a
compact target set K having nonempty interior. Assume tiiiai states are in the
compact topological space X. Suppose that the robust wesgtiamce condition
(RW1) holds on FK,U.

For K to be made robustly weakly invariant by a coder-coénobf the form
(2.8)-[2.9), the feedback data rate R [n_{3.3) cannot be tleas the robust weak
topological feedback entroply (3.2):

R> hny.

Furthermore, this lower bound is tight: there exist codentrollers that achieve ro-
bust weak invariance at data rates arbitrarily close tq h

The rest of this subsection consists of the proof of thisltesu

Necessity of the Lower Boun®ick an arbitrarily smal¢ > 0. Given a coder-controller
(Sy,0) that achieves robust weak invariance, there exists a reobessk invariance
time g € N such that

19t

= log, ik <R+e.

a kZO

Sett = g and note that the symbol sequer!:éél is completely determined by the
initial statexo, i.e. there exist maps andA such that

9 =T 00)

=AY, 34

Now consider the disjoint regiorié*l(c{{l) C X as the symbol sequencéfl
varies over all possible sequencesSx --- x S;_1. The total number of distinct
symbol sequences m;& Uk, and hence the total numbeof distinct coding regions
does not exceed it. Denote these coding region€hy..,C" and note thaX =
U ,C'. We can then rewrite the control equation[in{3.4) as

uyt=4%(C") if xeC (3.5

by defining the ma@*(C') = A(cf 1) iff C' =T (¢l ™).

We now construct the open coweiand the mapping sequen@e= {Gx: a — U }ﬁ;é
required in the definition of RWTFE. Before we defiag observe that for any in
coding regiorC',

(DA*(Ci)(X) S intK7
where the left hand side denotes the dynamical rﬁ%pl applied with the input

sequencd(315). By robust weak invariance, it then folldvas tor anyx € C' there is
an open seD(x) that containx and is such that

Pp(ciy (%) € INtK for anyxo € O(X).
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We can construct for each<i < nan open set' = U, O(x) so that
Dpe(ciy(Xo) €Nt for anyxg € L',

which is equivalent to _
(DA*(Ci)(LI) - intK.

AsC' C L' andX = U! ,C', we have an open cover= {L!,...,L"} for X. Finally,
construct the mapping sequer@®n a by

Gk(L") = thekth element ofA*(C')  foreachl' € @ and 0< k< 71— 1.

It is evident that constraint (RC) dimt, T,G) is satisfied.
By construction we know that(a) < nand we obtain

hwi= inf 12%N(@)
(a,1,G)e%€ T
§|092N(a)
T
<Iogzn
T

logp (Meco M) _ 17
< = =Y 7 — _ < .
< - TkZoIOgZ”k_ R+¢

Sincee was arbitrary, we have the desired result.

Achievability of the Lower Boundlo prove that data rate arbitrarily closehg, can
be achieved, we first show that any trigte, 7, G) that satisfies constraint (RC) with
K induces a coder-controller that rend&rsobustly weakly invariant. Given such a
triple, define
_ log,N(a)
= . )
Recalling thatr is an open cover of compact sétselect and denote dp?,...,D™}
a minimal subcover ofr, wherem= N(a).

We construct a-periodic coding law using these overlapping sets via tie ru

min{i:xpe D'} ifk=0
Sk:{ {i:x €D}

H:

<k<Tt-1

0 otherwise

The coding alphabet is of sizg = mwhenk = 0 and 1 otherwise.

The next step is to construct the controller from the mappeguenc&. Upon
receiving the symbaly = i that indexes an open sBt in the minimal subcover of,
containingxg, the controller applies the input sequence

&= 6(0)

By assumptior{a, T, G) satisfies constraint (RC). From this it is easy to seekhiat
robustly weakly invariant with the coder-controller andefined above.
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By (3.2), the average data rate over the cycle is

log,m log,N(a)
T T

R= =H.

As hyy is the infimum ofH, for anye > 0 we can find a, 1,G) yieldingH < h +&.
HenceR < hyy + €. The result follows by observing thRt< R by definition [3.8) and
then choosing arbitrarily small.

4 Conclusion

In this paper we used open set techniques to propose twosisof topological
feedback entropy (TFE) ; one is to continuous plants withtioolwus, partial obser-
vations, and the other to a class of discontinuous plants fult state observations.
In each case we showed that the extended TFE coincides weitbntiallest average
bit-rate between the plant and controller that allows weakiiance to be achieved,
thus giving these concepts operational meaning in commatioitlimited control.

Our focus here has been on formulating the concepts of TkEaqigly and show-
ing the fundamental limitations they impose on the commatioa rates needed for
control. Future work will focus on computing upper and loweunds on them for
various system classes, and on strengthening the weakanea objective to con-
trolled invariance.

Another important question left for future work is: how tonstruct a unified
notion of TFE for discontinuous, partially observed plai8ach a notion would be
an important step toward a theory of information flows for pexative nonlinear
control systems interconnected by digital communicatiwannels.

A Proof for Proposition .1]

Assume (Ob) and (WCI). Suppose trsaandvﬁl satisfy (Ob). We construat, 7,G that satisfy (C) as
follows. Sett equal tot in (WCI). For a, we first observe the following. By (WCI), the continuity of
fu, and openness of ikt for any xs € X there is an open s&(xs) in X that contains and is such
that fiy | (x) -+ froxs) (O(Xs)) C intK. By rangingxs in fv(sfl(x) we obtain an open coveiO(xs) : Xs €

fvgfl(x)} of fv(s)—l(x) in X.
. . 71 . .
We then use the continuous mb\%fl = fvaflgvaf1 to form the collection of open sets gq,OH(X),
71 . . 71 . . .
{hVOH(O(xS)) IXs € fvafl(x)}. Note that the union of 5913@1(0(&)) is gVOH(X). Smcegvafl(x) is
equipped with the subspace topology¥st !, each open sét;il(o(xs)) in gvafl(x) can be expanded to
0

an open se8/(xs) in YS! so thathvoH maps points irS(xs) ﬂgvgfl(X) into O(xs). Now {S(xs) : Xs €
fvgfl(x)} is an open cover chOH(X) inYsti,

The open coverr of g,s1(X) in Ys+1is then chosen to be a finite subcoyer, ..., L"} of {S(xs)}.
The existence of a finite subcover is guaranteed by the cdnmogvafl (X) as the image of the compact
setX under the continuous maRs 1. Letxd be the point infv(s;l(x) such that 9 = S(xd), and let

Gu(LY) =Hk(xd), 1<g<r,0<k<t-1
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By construction we have thatx g;jl(Lq) then
0

fv§15<Lq)()(o) = fVO}I{Hk(Xg)}i;é (Xo) € intK.

This confirms the feasibility of (C) under (Ob) and (WCI).

B Proof for Proposition 2.2

The openness @; is confirmed by writing it as

a1 -1 41 -1 p-1 41
Bj = g\%*l(AO) n ‘DG<AO)9\,3—1(A1) NPsia) ‘DG<A1)9\,3—1(A2) N
-1 -1 ~1
=N CDG(AO) (DG(Aj,z)gVO%l(Aj’l)’
where®g ) = fVOHG(A) is a continuous map. )
. . ) . Uil ) _ .
Slncegvog is continuous and is an open cover qjvog (X)inYStt, the collectlon{gvOH (A):Aea}
is an open cover oX. Hence anyg € X must be in somg;sfl(Ao), Ag € a. Then constraint (C) implies
0
that thes+ 1 inputsv(TlG(Ao) forcesxs,r € intK C X. Repeating this process indefinitely, we see that
for any xp € X there is a sequencly,A;,... of sets ina such thatxugm S g\;{l(Ai) when the input
0

(i+1)(s+1)

sequences; ) 1 are used.

C Proof for Lemma 2.1

For eachj,k € N, the collectionB;jk consists of all sets of the form

Bj+k = 9;8%1 (AO) N ‘1’&10)9;8%1 (Al) n---N ‘D(g(%%) ‘175&172)9;8%1 (Ajfl)
-1 -1 —1 X -1 —1 .
NPy P,y (G2 (A1) N Py Gt (A )1
~1 ~1 ~1
AL R S P Ak

where dg ) = fvg’lG(A) with Ay, ...,Aj k-1 ranging overa. Note that the expression inside the square
brackets runs over all sets f§), while the expression inside the large parentheses runsativeets in
Bk Constrain{A}{;& to index sets in a minimal subcovgf of Bj, and{Ai}ijijk’l to those in a minimal
subcoverf;, of B¢. Denote the constrained family of s&sg, « thus formed b)ﬁj*+k.

We claim thatBj*+k is still an open cover foK. To see this, observe that ary< X must lie in a set
B} € Bj indexed by some sequen¢s }ij;g in a. Furthermore ®ga, ,) ... Dg(ay) (%0) € INtK C X and
thus lies in some s, in the minimal subcovep,. Hencexg € tbgéo) ‘Dé(kj,l)(BL) and soB;, is
still a cover forX. As there areN(f3j) sets inBj/, and to each there correspoNdf) possible sets iy,
the number of distinct elements B, is less than or equal td(j)N(). By the definition of minimal
subcovers we have that for afiyk € N,

N(Bj+k) < N(B;j)N(B).

Take logarithm with base 2 on each side of the inequality.
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