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Abstract

This work is concerned with existence of weak solutions to discon-

tinuous stochastic differential equations driven by multiplicative Gaus-

sian noise and sliding mode control dynamics generated by stochastic

differential equations with variable structure, that is with jump nonlin-

earity. The treatment covers the finite dimensional stochastic systems

and the stochastic diffusion equation with multiplicative noise.

1 Introduction

We consider here stochastic differential equations of the form

dX + AX dt+ f(X) dt = B(X) dW, t ∈ (0, T )
X(0) = x,

(1.1)

where A : D(A) ⊂ H → H is self-adjoint, positive definite such that A−1+δ

is of trace class for some δ ∈ (0, 1), W is a cylindrical Wiener process of the
form

W (t) =

∞∑

j=1

µj βj(t) ej. (1.2)

Here {ej} is an orthonormal basis inH , Aej = λj ej and {βj}
∞
j=1 is a mutually

independent system of Brownian motions in a probability space {Ω,F ,P}
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with filtration (Ft}t≥0. The operator f : H → H is Borel measurable and
locally bounded while B ∈ L(H,L2(H)) where L2(H) is the space of Hilbert-
Schmidt operators on H .

It should be said that under these general conditions equation (1.1) is
not well posed except the case of additive noise (B(X) = I) where (1.1) has
a unique weak (martingale) solution, see [5]. Equation (1.1) has however a
unique strong solution if f is Lipschitz or accretive and continuous, see [4],
or more generally if f is a maximal monotone graph in R× R with domain
D(f) = R (see [2]).

Equations of the form (1.1) with discontinuous f describe systems with
variable structure and, in particular, closed-loop control systems with “slid-
ing” mode behaviour. Here we shall study from this perspective two special
cases.
The first one is the finite dimensional system

dX + f(X) dt = σ(X) dW
X(0) = x

(1.3)

where W is a n-dimensional Wiener process and f ∈ L∞
loc(R

n,Rn), σ ∈
Lip(Rn, L(Rn,Rn)).
The second one is the stochastic partial differential equation

dX −∆X dt+ f(X) dt = b(X) dW, in (0, T )×O
X = 0, on (0, T )× ∂O
X(0, ξ) = x(ξ), ξ ∈ O

(1.4)

in a bounded and open domain O ⊂ R
d, d ≥ 1 with smooth boundary ∂O.

HereW is a cylindrical Wiener process of the form (1.2) inH = L2(O), where
{βj}

∞
j=1 is a system of independent Brownian motions in a filtered probability

space (Ω,F ,Ft,P), µj ∈ R, j = 1, 2, . . . and {ej} is an orthonormal basis in
L2(O) to be made precise later on. Here f ∈ L∞

loc(R) and b ∈ Liploc(R).
Like in deterministic case, for existence in equation (1.4) one must extend

it to a multivalued stochastic equation of the form

dX −∆X dt+ F (X) dt ∋ b(X) dW, in (0, T )×O
X = 0, on (0, T )× ∂O
X(0, ξ) = x(ξ), ξ ∈ O

(1.5)

where F : R → 2R is the Filippov map associated with f , that is (see [6], [7])

F (r) = [m(fr),M(fr)], ∀r ∈ R

m(fr) = lim
δ→0

ess inf
u∈[r−δ,r+δ]

f(u)

M(fr) = lim
δ→0

ess sup
u∈[r−δ,r+δ]

f(u).

(1.6)
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Roughly speaking, F is obtained from f by “filling” the jumps of f in dis-
continuity points. If f ∈ L∞

loc
(Rn,Rn), where n ≥ 1, the Filippov map

F : Rn → 2R
n

is defined as

F (r) =
⋂

δ>0

⋂

m(N)=0

convf(Bδ(r) \N) (1.7)

where m is the Lebesgue measure and Bδ(r) is the ball of centre r and
radius δ. Of course F (r0) = f(r0) in all continuity points r0 of f . Then
to get existence in (1.3) one should replace f by F given by (1.7). If f is
monotone and measurable then F is maximal monotone in R

n × R
n and

locally bounded in R
n, (see [1, Proposition 25]), and so, as shown in [2,

Theorem 2.2], equation (1.3) has a unique strong solution (see also [3]). In
the general case we consider here, the best that we can however expect is
only a martingale solution for (1.3) (see Theorem 2.1, in which in general we
do not have the uniqueness of the solution).

The main existence result for equation (1.3) is established in Section 2,
where it’s also given a “sliding mode” type result for this equation.

In Sections 3, 4 and 5 it is studied a similar problem for equation (1.5)
and also for a stochastic parabolic system.

Notation We use the standard notation for the Sobolev spaces Hk(O),
k = 1, 2, H1

0 (O) and the Lebesgue integrable function spaces on O ⊂ R
n.

The norm of H1
0 (O) is denoted by ‖ · ‖1 and the norm of Lp(O) by | · |p

(1 ≤ p ≤ ∞). The scalar product of L2(O) and the duality pairing between
H1

0 (O) and the dual space H−1(O) is denoted by the same symbol 〈·, ·〉2. We
denote by C([0, T ];H) the space of all continuousH-valued functions on [0, T ]
and we also refer to [4] for basic results pertaining stochastic processes with
values in Hilbert spaces. Finally, we denote by Ck

b
(R), k = 0, 1, the space

of functions of class Ck on R, with continuous and bounded derivatives up
to order k. The norm in R or R

n is denoted by the same symbol | · |, the
difference being clear from the context.

2 Weak solution and “sliding” mode for the

system (1.3)

We shall study here system (1.3) whereW is a n-dimensional Wiener process,
in a probability space (Ω,F ,P) and f ∈ L∞

loc
(Rn;Rn), σ ∈ Lip(Rn;L(Rn;Rn)).

We consider the Filippov map F : Rn → R
n associated with f which was in-

troduced in (1.7).
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Definition 2.1. The system (Ω,F ,P, (Ft)t≥0,W,X)) is said to be a mar-
tingale solution to (1.3) if (Ω,F , (Ft)t≥0,P) is a filtered probability space on
which it is defined an (Ft)t≥0-Wiener process W and X is an (Ft)t≥0-adapted,
R

n-valued, continuous process that satisfies P-a.s. the equation

X(t) +

∫ t

0

η(s) ds = x+

∫ t

0

σ(X(s)) dW (s), ∀t ≥ 0. (2.1)

Here η ∈ L∞((0, T )×Ω), for each T > 0, is an (Ft)t≥0-adapted process such
that

η ∈ F (X), a.e. in (0,∞)× Ω.

This definition extends verbatim to infinite dimensional equation (1.1).
In literature such a solution is also called weak solution. A martingale
solution which is F̄W

t -adapted, where F̄W
t is the completed natural filtration

of W is called strong solution, see [5].
We have

Theorem 2.1. Assume that f : Rn → R
n is measurable and that

|f(r)| ≤ a1 |r|+ a2, ∀r ∈ R
n (2.2)

where a1 ≥ 0, a2 ∈ R. Then for each x ∈ R
n there is at least one martingale

solution (Ω̃, F̃ , P̃, W̃ , X̃) to (1.3) which satisfies the estimate

Ẽ|X̃(t)|2 ≤ CT (|x|2 + 1), x ∈ Rn, t ∈ [0, T ]. (2.3)

Proof. Consider the approximating equation

dXε + fε(Xε) dt = σ(Xε) dW, t ∈ [0, T ]
X(0) = x

(2.4)

where fε is a smooth approximation of f given by

fε(r) =

∫

Rn

f(r − ε θ) ρ(θ) dθ, ∀ε > 0, r ∈ R
n. (2.5)

Here ρ ∈ C∞
0 (Rn) is any mollifier such that

ρ(r) ≥ 0, ρ(r) = ρ(−r), ρ(r) = 0 for |r| ≥ 1,

∫ ∞

−∞

ρ(r) dr = 1. (2.6)

Let Xε ∈ L2(Ω;C([0, T ];Rn)) be the strong solution to (2.4). By (2.2) and
Itô’s formula it follows that

d |Xε(t)|
2
2 ≤ C |Xε(t)|

2
2 dt+Xε(t) · σ(Xε(t)) dWt

4



and so by the Burkholder-Davis-Gundy theorem (see e.g., [4]) we have

E

[
sup

t∈[0,T ]

|Xε(t)|
2
]
≤ C (1 + |x|2), ∀ε > 0 (2.7)

(Here and everywhere in the following we shall denote by C several positive
constants independent of ε.)

We set Yε = (Xε,W ) and we consider νε = L(Yε) (the law of Yε) that is
νε(Γ) = P[Yε ∈ Γ] for each Borelian set Γ ⊂ C([0, T ];Rn)×C([0, T ];Rn). Let
us show that {νε} is tight in (C([0, T ];Rn))2 = C([0, T ];Rn)×C([0, T ];Rn).
This means that for each δ > 0 there is a compact subset Γ of (C([0, T ];Rn))2

such that νε(Γ
c) ≤ δ for all ε > 0. We take for r > 0, γ > 0,

Γ = Br,γ = {y ∈ (C([0, T ];Rn))2 : |y(t)| ≤ r, ∀t ∈ [0, T ],

|y(t)− y(s)| ≤ γ |t− s|
1
2 , ∀t, s ∈ [0, T ]}

Clearly, by the Ascoli-Arzelà theorem, Br,γ is compact in (C([0, T ];Rn))2.
On the other hand, by (3.4) we have via Itô’s formula applied to the process
t → |Xε(t)−Xε(s)|

2
2

1
2
E|Xε(t)−Xε(s)|

2 + E

∫ t

s

〈fε(Xε(θ)), Xε(θ)−Xε(s)〉 dθ

≤ C E

∫ t

s

|Xε(θ)|
2 dθ 0 ≤ s ≤ t ≤ T.

Taking into account estimate (2.7), we obtain via Gronwall’s lemma that

E|Xε(t)−Xε(s)|
2 ≤ C

∫ t

s

|Xε(θ)|
2 dθ ≤ C |t− s|. (2.8)

By estimates (2.7), (2.8) and by

ρ P[|Y | ≥ ρ] ≤ E|Y |, ∀ρ > 0,

we see that there are γ, r independent of ε such that νε(B
c
r,γ) ≤ δ, as desired.

Then by the Skorohod’s representation theorem there exist a probability
space (Ω̃, F̃ , P̃) and random variables X̃ , X̃ε, W̃ε, W̃ such that L(X̃ε, W̃ε) =
L(Xε,Wε) and for P̃-almost every ω ∈ Ω̃

W̃ε → W̃ , X̃ε → X̃ P-a.s. in C([0, T ];Rn)

σ(X̃ε) → σ(X̃) P-a.s. in C([0, T ];Rn)
(2.9)
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as ε → 0. We have also L(fε(X̃ε)) = L(fε(Xε)) and so by (2.2), (2.5) it
follows that on a subsequence, denoted {εn},

fεn(X̃εn) → η̃ weak-star in L∞((0, T )× Ω̃). (2.10)

Let us show that

η̃ ∈ F (X̃), a.e. in (0, T )× Ω̃. (2.11)

We have by (2.5),

fε(X̃ε(t, ω)) =

∫

Rn

f(X̃ε(t, ω)− ε θ) ρ(θ) dθ ∈ convf(Bε(X̃ε(t, ω))),

∀(t, ω) ∈ [0, T ]× Ω̃,

and this implies that

Σ(t, ω) =
{
lim
εn→0

fεn(X̃ε(t, ω))
}
⊂ F (X̃(t, ω)), ∀(t, ω) ∈ [0, T ]× Ω̃.

By (2.10), which implies of course also the weak convergence in L2((0, T )×Ω̃),
it follows by Mazur’s theorem (see e.g., [14, pag. 120]) that there is a convex
combination of fεn, that is

ϕn(t, ω) =
kn∑

i=1

α
(n)
i fεi(X̃εi(t, ω)),

∑kn
i=1 α

(n)
i = 1, 0 ≤ α

(n)
i ≤ 1, which is strongly convergent in L2((0, T )× Ω̃)

to η̃ and so on a subsequence again denoted {n},

lim
n→∞

ϕn(t, ω) = η̃(t, ω), a.e. (t, ω) ∈ (0, T )× Ω̃.

Since limn→∞ ϕn(t, ω) ∈ F (X̃ε(t, ω)) we obtain (2.11) as claimed.
If we define

F̃ ε
t = σ

(
X̃ε(s), W̃ε(s); 0 ≤ s ≤ t

)
, t ≥ 0,

F̃t = σ
(
X̃(s), W̃ (s); 0 ≤ s ≤ t

)
, t ≥ 0,

then it follows that (W̃ε, F̃
ε
t ) and (W̃ , F̃t) are Wiener processes and that

P-a.s.,

X̃ε(t) +

∫ t

0

fε(X̃ε(s)) ds = x+

∫ t

0

σ(X̃ε(s) dW̃ε(s), ∀t ∈ [0, T ].

6



Taking into account (2.10) and that P-a.s (see Lemma 3.1 in [8])

lim
ε→0

∫ t

0

σ(X̃ε(s)) dW̃ε(s) =

∫ t

0

σ(X̃(s)) dW̃ (s), ∀t ∈ [0, T ],

we obtain that P̃-a.s.

X̃(t) +

∫ t

0

η̃(s) ds = x+

∫ t

0

σ(X̃(s)) dW̃ (s), ∀t ∈ [0, T ].

This means that the system (Ω̃, F̃ , {F̃t}t≥0, P̃, W̃ (t), X̃(t)) is a martingale
solution to (1.3). The estimate (2.3) follows by (2.7) which in turn implies
that

E|X̃ε(t)|
2 ≤ C (1 + |x|2), ∀ε > 0, t ∈ [0, T ].

Such a process X̃ can be extended to all of (0,∞).

Remark 2.1. If f and σ are in L∞(Rn) and

n∑

i,j=1

(σ∗σ)ij(x) ξiξj ≥ α

n∑

i=1

ξ2i , ∀ξ = (ξi) ∈ R
n, (2.12)

then, as shown by A. Yu. Veretennikov [13], equation (1.3) has a unique
strong solution X . (On these lines see also [8].) It should be said however
that for the applications we have in mind, the nondegeneracy condition (2.12)
is too restrictive.

The sliding mode dynamics arises in differential systems with variable
structure of the form (1.3) and a typical case is that when f has the form

f(r) =

{
f1(r) if g(r) > 0

f2(r) if g(r) < 0
∀r ∈ R (2.13)

where g ∈ C2(Rn), f1,f2 ∈ C1(Rn,Rn) and σ ∈ Lip(Rn,L(Rn,Rn)) satisfy
the following conditions

|fi(r)| ≤ a1i |r|+ a2i, ∀r ∈ R
n, i = 1, 2 (2.14)

sup
r∈Rn

{|∇g(r)|+ |D2g(r)|} < ∞ (2.15)

∇g(r) · f1(r) ≥ α in {r ∈ R
n : g(r) > 0} (2.16)

∇g(r) · f2(r) ≤ −α in {r ∈ R
n : g(r) < 0} (2.17)

|D2g(r)||σ(r)|2 ≤ C∗ |g(r)|, ∀r ∈ R
n (2.18)

where α > 0. We have

7



Theorem 2.2. Under assumptions (2.14)–(2.18) for each x ∈ R
n there is a

martingale solution (Ω̃, F̃ , P̃, W̃ , X̃) to (1.3) with the following properties:
(i) if g(x) = 0 then P̃-a.s. g(X̃(t)) = 0, ∀t ≥ 0;
(ii) if g(x) 6= 0 and τ = inf{t > 0 : g(X̃(t)) = 0} then

P̃(τ > t) ≤
C̃

α
(1− e−C̃ t)−1 |g(x)|, ∀t > 0, (2.19)

where C̃ = C1C
∗, C1 a positive constant independent of g and σ. If C∗ = 0

then
P̃(τ > t) ≤ (α t)−1|g(x)|, ∀t > 0.

Theorem 2.2 amounts to say that the manifold Σ = {x : g(x) = 0} is
invariant for stochastic system (1.3) with f given by (2.13) and that for
x /∈ Σ the solution X̃ have reached the manifold Σ by time t with a proba-
bility greater or equal to 1− (α t)−1 |g(x)|. In the classical automatic control
terminology (see, e.g., [12]) this means that g(x) = 0 is a “sliding mode”
equation for system (1.3) and Σ is a switching surface for this system. As
a matter of fact this is typical “sliding” mode behaviour for the solution
X = X̃(t) and its dynamics has two phases: the first phase is on time inter-
val (0, τ) until X reaches surface Σ and the second one for t ≥ τ in which
X(t) evolves on sliding surface Σ. The reaching time τ = τ(ω) is a stopping
time determined by (2.19).

Proof of Theorem 2.2. We note first that the function f can be written as

f(r) = f1(r)H(g(r)) + f2(r)H(−g(r)), ∀r ∈ R
n

where H is the Heaviside function while the corresponding Filippov multi-
valued function F (see (1.7)) is just

F (y) = f1(y)H̃(g(y)) + f2(y)H̃(−g(y)), ∀y ∈ R
n

and H̃ is the multivalued Heaviside function

H̃(r) =





1 for r > 0

[0, 1] for r = 0

0 for r < 0.

(2.20)

In the following we shall use the notations

sgn(r) = H(r)−H(−r) =

{
1 for r > 0

−1 for r < 0

8



s̃gn(r) = H̃(r), ∀r ∈ R.

Let X̃ be the martingale solution to (1.3) given by (2.9) where f is as in
(2.13). In order to prove the theorem we need a few apriori estimates on the
solution Xε to (2.4) which will be obtained by applying Itô’s formula to the
function φλ(u) = ϕλ(g(u)), where ϕλ ∈ C2(R) is





ϕλ(0) = 0

ϕ′
λ(y) =

1
λ
y for |y| ≤ λ, λ > 0

ϕ′
λ(y) = 1 + λ for y ≥ 2λ

ϕ′
λ(y) = −1 − λ for y ≤ −2λ

|ϕ′′
λ(y)| ≤

C
λ
, for |y| ≤ 2λ.

(2.21)

On (0,∞) such a function can be taken as

ϕλ(y) =





1
2λ

y2 for 0 ≤ y ≤ λ

(1 + λ) y for 2λ ≤ y < ∞

pλ(y) for λ ≤ y < 2λ

where pλ is a fourth order polynomial conveniently chosen and extend it by
simmetry on (−∞, 0). As a matter of fact, ϕλ is a smooth approximation of
function y → |y| and as easily seen

|ϕ′
λ(y)− (s̃gn)λ(y)| ≤ C λ, ∀y ∈ R, y 6= 0,

where (s̃gn)λ is the Yosida approximation of s̃gn, that is

(s̃gn)λ(r) =





1
λ
|r| for |r| < λ

1 for r > λ

−1 for r < −λ.

We have therefore for all r ∈ R \ {0}

lim
λ→0

ϕ′
λ(r) = sgn(r)

Taking into account that, ∀u, v ∈ R
n, one has

∇ϕλ(u) = ϕ′
λ(g(u))∇g(u),

D2ϕλ(u)(v) = ϕ′′
λ(g(u))(∇g(u) · v)∇g(u) + ϕ′

λ(g(u))D
2g(u)(v)

we obtain that

dϕλ(g(Xε(t))) + ϕ′
λ(g(Xε(t)))fε(Xε(t)) · ∇g(Xε(t)) dt

=1
2
Tr[σ∗(Xε(t))σ(Xε(t))D

2φλ(Xε(t))] dt

+ σ(Xε(t)) dW (t) · ∇φλ(Xε(t)), t ∈ [0, T ].

(2.22)
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Now, taking into account that on {g(Xε(t)) 6= 0}

lim
λ→0

ϕ′
λ(g(Xε(t))) = sgn(g(Xε(t)))

and that in virtue of (2.18) and (2.21),

ϕ′′
λ(g(Xε)) = 0 on {|g(Xε)| > 2λ}

|ϕ′
λ(g(Xε))| ≤ 2 on {|g(Xε)| > 2λ}

|D2g(Xε)||σ(Xε)|
2 ≤ C∗ |g(Xε)| in (0, T )×O

|ϕ′′
λ(g(Xε))| ≤ C λ−1, ∀λ > 0,

letting λ → 0 in (2.22), we obtain that

d|g(Xε(t))|+ fε(Xε(t)) · ∇g(Xε(t)) sgn(g(Xε(t))1[|g(Xε(t))|>0] dt

=1
2
Tr[σ∗(Xε(t))σ(Xε(t))D

2g(Xε(t))]sgn(g(Xε(t)) dt

+ σ(Xε(t))dW (t) · ∇g(Xε(t))

(2.23)

By (2.5) and (2.13) we have

fε(Xε(t)) · ∇g(Xε(t)) sgn(g(Xε(t)))

=

∫

[g(Xε(t)−εθ)>0]

f1(Xε(t)− εθ) · ∇g(Xε(t))ρ(θ) dθ

+

∫

[g(Xε(t)−εθ)<0]

f2(Xε(t)− εθ) · ∇g(Xε(t))ρ(θ) dθ

and so taking into account (2.14)–(2.16) we get

fε(Xε(t)) · ∇g(Xε(t)) sgn(g(Xε(t))) ≥ α− δ(ε)(1 + |Xε(t)|) ∀t ≥ 0

where δ(ε) → 0 as ε → 0. Taking into account (2.23) this yields

d|g(Xε(t))|+ α 1[|g(Xε(t))|>0](1− δ(ε)|Xε(t)|) dt

≤1
2
Tr[σ∗(Xε(t))σ(Xε(t))D

2g(Xε(t))]sgn(g(Xε(t))) dt

+ 1[|g(Xε(t))|>0]|g(Xε(t))|
−1∇g(Xε(t)) · σ(Xε(t)) dW (t)

and therefore, for 0 ≤ s ≤ t ≤ T , we have P-a.s.

|g(Xε(t))|+ α

∫ t

s

1[|g(Xε(θ))|>0](1− δ(ε)|Xε(θ)|) dθ

≤|g(Xε(s))|+

∫ t

s

1[|g(Xε(θ))|>0]|g(Xε(θ))|
−1∇g(Xε(θ)) · σ(Xε(θ)) dW (θ)

+ 1
2

∫ t

s

Tr[σ∗(Xε(θ))σ(Xε(θ))D
2g(Xε(θ))]sgn((g(Xε(θ))) dθ.
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The same inequality remains of course true for (X̃ε, W̃ ) and so letting ε → 0
we get that for X̃ given by (2.9), we have

|g(X̃(t))|+ α

∫ t

s

1[|g(X̃(θ))|>0] dθ

≤|g(X̃(s))|+ 1
2

∫ t

s

Tr[σ∗(X̃(θ))σ(X̃(θ))D2g(X̃(θ))]sgn((g(X̃(θ))) dθ

+

∫ t

s

1[|g(X̃(θ))|>0]∇g(X̃(θ)) · σ(X̃(θ)) dW (θ), 0 ≤ s ≤ t < ∞, ˜̃
P-a.s.

Taking into account (2.18) we get

|g(X̃(t))|+ α

∫ t

s

1[|g(X̃(θ))|>0] dθ

≤ C̃

∫ t

s

|g(X̃(θ))| dθ +

∫ t

s

1[|g(X̃(θ))|>0]∇g(X̃(θ)) · σ(X̃(θ)) dW (θ),

and so by the Gronwall lemma

e−C̃ t|g(X̃(t))|+ α

∫ t

s

e−C̃ θ
1[|g(X̃(θ))|>0] dθ ≤ e−C̃ s|g(X̃(s))|+

∫ t

s

e−C̃ θ
1[|g(X̃(θ))|>0]∇g(X̃(θ)) · σ(X̃(θ)) dW (θ), 0 ≤ s ≤ t < ∞.

(2.24)

In particular, it follows by (2.24) that if g(x) = 0 then g(X̃(t)) = 0 P̃-a.s.

for all t ≥ 0. Moreover, by (2.24) it follows that Z(t) = |g(X̃(t))|e−C̃ t is a
nonnegative super-martingale and therefore for any couple of stopping times
τ1 < τ2 we have Z(τ1) ≥ Z(τ2). This implies that if τ = inf{t > 0 : |Z(t)| =
0} we have that Z(t) = Z(τ), P̃-a.s. for t > τ . On the other hand, by (2.24)
and (2.18) it follows that

EZ(t) + α

∫ t

0

e−C̃ s
P̃(τ > s) ds ≤ |g(x)|+ C̃

∫ t

0

EZ(s) ds, ∀t ≥ 0

and therefore

P̃(τ > t) ≤
C̃

α
(1− e−C̃ t)−1 |g(x)|, ∀t > 0,

which is just (2.19). This shows that X̃(t) reaches the manifold Σ in stopping
time τ and remains there for t > τ with a probability P̃ greater or equal
C̃
α
(1− e−C̃ t)−1 |g(x)|. The proof is complete.
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Remark 2.2. If conditions (2.16), (2.17) are satisfied with α = 0 in Theorem
2.2 then only part (i) follows.

Theorem 2.2 can be used to design feedback controllers for stochastic
differential systems with a sliding mode dynamics on a given surface Σ =
{x : g(x) = 0}. Such an example is presented below.

Example 2.3. Consider the controlled stochastic second order system

Ẍ + a1 Ẋ = σ0(X, Ẋ)β̇ + u in (0,∞). (2.25)

We assume that σ0 ∈ Lip(R2).
Our aim is to find a feedback controller u = −f0(X, Ẋ) such that the

corresponding closed loop system

Ẍ + a1 Ẋ + f0(X, Ẋ) = σ0(X, Ẋ)β̇

X(0) = x0, Ẋ(0) = x1
(2.26)

has the sliding mode equation

a2X + Ẋ = 0, (2.27)

for some a2 ∈ R. Here β is a Brownian motion in a probability space (Ω,F ,P)
and β̇ is the associated white noise.

We choose

f0(r1, r2) = α sgn(a2 r1 + r2), ∀(r1, r2) ∈ R
2 (2.28)

where α > 0 and rewrite equation (2.26) as

dX1 −X2 dt = 0
dX2 + a1 X2 dt+ α sgn(a2 X1 +X2) dt = σ0(X1, X2) dβ

(2.29)

for t ≥ 0, where as us usually sgn(u) = u
|u|

for u 6= 0.

Equation (2.29) is a “jump” system of the form (1.3) where

f(r1, r2) =

(
−r2

a1 r2 + α sgn(a2 r1 + r2)

)
, ∀(r1, r2) ∈ R

2,

σ(r1, r2) =

(
0

σ0(r1, r2)

)
, ∀(r1, r2) ∈ R

2,

and so f is of the form (2.13) where

f1(r) =

(
−r2

a1 r2 + α

)
, f2(r) =

(
−r2

a1 r2 − α

)
, r = (r1, r2) ∈ R

2

g(r) = a2 r1 + r2, r = (r1, r2).

It is easily seen that conditions (2.14)–(2.18) hold and so Theorem 2.2 is
applicable to the present case. We get

12



Corollary 2.3. The stochastic closed loop system (2.29), equivalently (2.26),
(2.28), has the “sliding mode” (2.27). More precisely, for every (x0, x1) ∈ R

2

there is a martingale solution (X1(t), X2(t)) which reaches the surface Σ =
{(x1, x2) : a2 x1+x2 = 0} in time t with a probability ≥ 1−(α t)−1|a2 x0+x1|,
and remains P̃-a.s. on this surface after that time.

This describes a typical “sliding-mode” behaviour for solutions X to
(2.26), namely

a1X(t) + Ẋ(t) = 0

on (t0,∞)×Ω0 where P̃ (Ω0) ≥ 1− (α t0)
−1|a2 x0+x1|. (We refer to [9], [10],

[11], for references and other significant results on “sliding-mode” behaviour
of stochastic differential systems).

3 Existence of a weak solution to heat equa-

tion (1.4)

The following hypotheses will be assumed throughout in the sequel.

i) f ∈ L∞
loc
(R) and |f(r)| ≤ a1|r|+ b1, ∀r ∈ R

ii) W is the cylindrical Wiener process (1.2) where {ej}
∞
j=1 is an orthonormal

basis in L2(Ω) given by −∆ej = λjej in O; ej = 0 on ∂O and

∞∑

j=1

µ2
j λ

2
j > ∞ (3.1)

iii) b ∈ C2(R)∩Lip(R).

Definition 3.1. Let x ∈ L2(O). We call weak (martingale) solution to
(1.1) a tuple (Ω,F , (Ft)t≥0,P,W,X), where (Ω,F , (Ft)t≥0,P) is a filtered
probability space where there are defined a (Ft)t≥0-Wiener process W and a
continuous (Ft)t≥0-adapted L2(O)-valued process X = (X(t))t≥0 such that,
P-a.s.,

X(t) = e−tAx+

∫ t

0

e−(t−s)Aη(s) ds+

∫ t

0

e−(t−s)A b(X(s)) dW (s), (3.2)

where η ∈ L∞((0, T )×O × Ω) is a (Ft)t≥0-adapted process such that

η ∈ F (X), a.e in (0, T )×O × Ω. (3.3)
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Here A = −∆ with D(A) = H1
0 (O)∩H2(O) and e−At is the C0-semigroup

on L2(O) generated by −A.
We note that the linear operator b(X) arising in (3.2) is defined by

b(X)h =

∞∑

j=1

µj b(X)〈h, ej〉2 ej, ∀h ∈ L2(O).

The construction of a weak (martingale) solution. We consider the
approximating equation

dXε −∆Xε dt+ fε(Xε) dt = b(Xε) dW, in (0, T )×O
Xε = 0, on (0, T )× ∂O
Xε(0, ξ) = x(ξ), ξ ∈ O

(3.4)

where ε > 0 and, as in the finite dimensional case (see (2.5)),

fε(r) =
1

ε

∫ ∞

−∞

f(s) ρ( r−s
ε
) ds =

∫ ∞

−∞

f(r − ε θ) ρ(θ) dθ, ∀r ∈ R. (3.5)

Here ρ ∈ C∞
0
(R) is such that

ρ(θ) ≥ 0 ρ(θ) = ρ(−θ), ρ(θ) = 0 for |θ| ≥ 1,

∫ ∞

−∞

ρ(θ) dθ = 1. (3.6)

Clearly by (i) we have

fε ∈ C1(R), |fε(r)| ≤ a1 |r|+ b1 + a1 ε, ∀r ∈ R, ε > 0. (3.7)

By standard existence theory for infinite dimensional stochastic equations
with Lipschitz nonlinearity it follows that (3.4) has a unique strong solution

Xε ∈ L2(Ω;C([0, T ];L2(O))) ∩ L2(Ω;L2(0, T ;H1
0(O))), (3.8)

see [4, pag.45]. By Itô’s formula we get P-a.s.

1
2
|Xε(t)|

2
2 +

∫ t

0

‖Xε(s)‖
2
1 ds+

∫ t

0

〈fε(Xε(s)), Xε(s)〉2 ds

= 1
2
|x|22 +

1
2

∫ t

0

∞∑

j=1

µ2
j |b(Xε(s)) ej|

2
2 ds+

∫ t

0

〈b(Xε(s))dW (s), Xε(s)〉2 ds,

∀t ∈ [0, T ],

and so by the Burkholder-Davis-Gundy formula we obtain by some calcula-
tion involving (i)–(iii)

E sup
t∈[0,T ]

|Xε(t)|
2
2 + E

∫ t

0

‖Xε(s)‖
2
1 ds ≤ C (|x|22 + 1), ∀ε > 0, (3.9)
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where C is independent of ε. By (3.7) we also have

E sup
t∈[0,T ]

|fε(Xε(t))|
2
2 ≤ C (|x|22 + 1).

Then on a subsequence, again denoted in the same way, we have for ε → 0

Xε → X weak-star in L∞(0, T ;L2(Ω;L2(O))

weakly in L2(0, T ;L2(Ω;H1
0 (O))

(3.10)

fε → η weak-star in L∞((0, T );L2(Ω;L2(O))) (3.11)

Xε(t) → X(t) weakly in L2(Ω;L2((0, T )×O)) (3.12)

b(Xε) → b∗ weakly in L2(Ω;L2((0, T )×O))

and
dX −∆X dt+ η dt = b∗ dW in (0, T )×O,
X(0) = x in O,
X = 0 on (0, T )× ∂O,

(3.13)

that is

X(t)−

∫ t

0

∆X(s) ds+

∫ t

0

η(s) ds = x+

∫ t

0

b∗(s) dW (s), ∀t ∈ [0, T ], P-a.s.

Assume now that x ∈ H1
0 (O). Then by an application of Itô’s formula in

(3.4) to the function x → 1
2
‖x||21 we get for some C1, C2 ≥ 0,

1
2
‖Xε(t)‖

2
1 +

∫ t

0

|∆Xε(s)|
2
2 ds ≤

1
2
‖x‖21 + C1

∫ t

0

(|∆Xε(s)|
2
2 + |Xε(s)|

2
2) ds

+1
2

∫ t

0

∞∑

j=1

µ2
j ‖σ(Xε) ej‖

2
1 ds+

∫ t

0

〈∆b(Xε(s)), dW (s)〉+ C2

and in virtue of (ii), (iii) this yields via Burkholder-Davis-Gundy formula

E sup
t∈[0,T ]

‖Xε(t)‖
2
1 + E

∫ t

0

|∆Xε(s)|
2
2 ds ≤ C(‖x‖21 + 1), ∀ε > 0. (3.14)

(Everywhere in the sequel we shall denote by C several constants independent
of ε.)
Then, in this case besides (3.10), (3.12), we also have

X ∈ C([0, T ];L2(O)) ∩ L2(Ω;L∞(0, T ;H1
0(O))) ∩ L2(Ω;L2(0, T ;H2(O))).

(3.15)

15



Since the weak convergences (3.10)-(3.12) are not sufficient to conclude that
(3.3) holds, then proceeding as in the proof of Theorem 2.1 we shall re-
place {Xε} by a sequence {X̃ε} of processes defined in a probability space
{Ω̃, F̃ , P̃, W̃} such that L(Xε) = L(X̃ε) where L is the law of the process.

To this end, consider the sequence {νε}ε≥0 of probability measures, νε =
L(Xε), that is νε(B) = P(Xε ∈ B) for any Borelian set B ⊂ C([0, T ];L2(O)).
We have

Lemma 3.1. Let x ∈ H1
0 (O). Then the sequence {νε}ε>0 is tight in the space

C([0, T ];L2(O)).

Proof. This means that for each δ > 0 there is a compact subset B of
C([0, T ];L2(O)) such that νε(B

c) ≤ δ for all ε > 0. We take for r > 0,
γ > 0,

B = Br,γ = {y ∈ C([0, T ];L2(O)) : |y(t)|2 ≤ r, ∀t ∈ [0, T ],

‖y‖L∞(0,T ;H1

0
(O)) ≤ r, |y(t)− y(s)|2 ≤ γ |t− s|

1
2 , ∀t, s ∈ [0, T ]}

Clearly, by Ascoli-Arzelà theorem, Br,γ is compact in C([0, T ];L2(O)). On
the other hand, by (3.4) we have via Itô’s formula applied to the process
t → |Xε(t)−Xε(s)|

2
2

1
2
E|Xε(t)−Xε(s)|

2
2 + E

∫ t

s

〈∇Xε(θ),∇(Xε(θ)−Xε(s))〉2 dθ

+E

∫ t

s

〈fε(Xε(θ)), Xε(θ)−Xε(s)〉2 dθ ≤ C E

∫ t

s

|Xε(θ)|
2
2 dθ 0 ≤ s ≤ t ≤ T.

Taking into account estimates (3.7), (3.9) we obtain via Gronwall’s lemma
that

E|Xε(t)−Xε(s)|
2
2 ≤ C

∫ t

s

(|Xε(θ)|
2
2 + |∇Xε(θ)|

2
2) dθ ≤ C |t− s|. (3.16)

By estimates (3.9), (3.14), (3.16) and taking into account that

ρ P[|Y | ≥ ρ] ≤ E|Y |, ∀ρ > 0,

we infer that there are γ, r independent of ε such that νε(B
c
r,γ) ≤ δ, as

desired.

Then by the Skorohod theorem (see, e.g., Theorem 2.4 in [4]) there are
a probability space (Ω̃, F̃ , P̃) and the stochastic processes X̃ , {X̃ε}ε>0 on
(Ω̃, F̃ , P̃) such that the law L(X̃ε) of X̃ε coincides with L(Xε) and P-a.s.

X̃ε → X̃ in C([0, T ];L2(O)) (3.17)
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as ε → 0. We have also L(X) = L(X̃). Since L(fε(Xε)) = L(fε(X̃ε)),
L(σ(Xε)) = L(σ(X̃ε)) by (3.17) and (3.5) we see that

fε(X̃ε) → η̃,

b(Xε) → b(X̃),
a.e. in (0, T )×O × Ω̃, (3.18)

where L(η̃) = L(η) and

η̃ ∈ F (X̃), a.e. in (0, T )×O × Ω̃. (3.19)

The latter follows as in the proof of Theorem 2.1 taking into account that in
this case F is given by (1.5), but we omit the details.
We set

Mε(t) = Xε(t)− x−

∫ t

0

∆Xε(s) ds+

∫ t

0

fε(Xε(s)) ds, t ∈ [0, T ] (3.20)

and

M̃ε(t) = X̃ε(t)− x−

∫ t

0

∆X̃ε(s) ds+

∫ t

0

fε(X̃ε(s)) ds, t ∈ [0, T ]. (3.21)

It turns out that M̃ε is a square integrable martingale on (Ω̃, F̃ , P̃) with
respect to the filtration Ft = σ{X̃s; s ≤ t} because since L(M̃ε) = L(Mε)
and Mε is a square integrable martingale on (Ω,F ,P) we have

E
[
(X̃ε(t)− X̃ε(s)−

∫ t

s

∆X̃ε(θ) dθ +

∫ t

s

fε(X̃ε(θ)) dθ)χ(X̃ε)
]
= 0 (3.22)

for any bounded continuous function χ and all 0 ≤ s ≤ t ≤ T .
Passing to the limit in (3.20) and taking into account (3.17)–(3.19) one ob-
tains that the process

M̃(t) = X̃(t)− x−

∫ t

0

∆X̃(s) ds+

∫ t

0

η̃(s) ds, t ≥ 0

is an L2(O)-valued martingale with respect to filtration F̃t = σ{X̃(s), s ≤ t},
t ∈ [0, T ], with finite quadratic variation, see [4, pag.234]. Then by the

representation theorem 8.2 in [4] there is a larger probability space ( ˜̃Ω, ˜̃F , ˜̃P),

a filtration { ˜̃Ft}t≥0 and an L2(O)-cylindrical Wiener process ˜̃W (t) on it such

that, ˜̃P-a.s.,

M̃(t) =

∫ t

0

b(X̃(s)) d ˜̃W (t), t ∈ [0, T ].

This means that the system ( ˜̃Ω, ˜̃F , { ˜̃Ft}t≥0,
˜̃
P, ˜̃W (t), X̃(t)) is a martingale

solution to (1.1). We have proved therefore
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Theorem 3.2. Under Hypotheses (i), (ii), for each x ∈ H1
0(O), there is at

least one martingale solution ( ˜̃Ω, ˜̃F , { ˜̃Ft}t≥0,
˜̃
P, X̃) to equation (1.1) and X̃

is given by (3.17). Moreover, we have

X̃ ∈ L2( ˜̃Ω;L∞(0, T ;H1
0(O))) ∩ L2( ˜̃Ω;L2(0, T ;H2(O))). (3.23)

We note that (3.23) follow by (3.14) and (3.17).

Remark 3.1. Under additional assumptions on b (for instance if it is in-
dependent of X) it turns out that the martingale solution X̃ is the unique
strong solution, see [5]. (See also Remark 2.1)

4 Sliding mode control of the stochastic heat

equation

For parabolic stochastic equations of the form (1.1) a “sliding” mode dynamic
arises for discontinuous (“jump”) functions f : R → R of the form (2.13), that
is

f(r) =

{
f1(r) for g(r) > 0

f2(r)) for g(r) < 0
, r ∈ R (4.1)

where g, f1, f2 are given continuous functions.
As in the previous finite dimensional case, the objective of the “sliding-

mode” control is to design for the linear time invariant system

dX −∆X dt = du
X = 0
X(0) = x

in (0, T )×O
on (0, T )× ∂O
in O

(4.2)

a stochastic feedback controller of the form

du = −f(X) dt+ b(X) dW (4.3)

such that the “sliding” motion occurs on the manifold Σ = {X : g(X) = 0}
which is also referred as “sliding” or “switching” surface. Roughly speaking,
this means that any trajectory of the closed loop system (4.2)-(4.3), which
starts from initial state x, reaches the sliding surface Σ at a certain time
t0 and remains there for t ≥ t0. As a matter of fact, this last phase of the
dynamics is called “sliding mode”.
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Of course in virtue of Theorem 3.2 a weak solution X to (4.2) in the sense
of Definition 3.1 exists for the extended multivalued closed loop system

dX −∆X dt+ f1(X)H̃(g(X)) dt

+f2(X)H̃(−g(X)) dt = σ(X) dW
X = 0
X(0) = x

in (0, T )×O
on (0, T )× ∂O
in O.

(4.4)

Here H̃ is the multivalued Heaviside function (2.20) on R. To begin with we
shall prove first an invariance result for the manifold Σ = {X : g(X) = 0}.

Theorem 4.1. Let g ∈ C2(R), f1, f2 be continuous functions which satisfy
assumption (i) and let b, satisfying (iii), be such that

b2(r)(g g′′ + (g′)2)(r) ≤ C g2(r), ∀r ∈ R (4.5)

g(r) g′′(r) + (g′(r))2 ≥ 0 ∀r ∈ R (4.6)

f1(r) g
′(r) ≥ 0 for g(r) > 0 (4.7)

f2(r) g
′(r) ≤ 0 for g(r) < 0. (4.8)

for some C > 0. Then, for all x ∈ H1
0 (O) such that g(x) = 0 on O, there is

a martingale solution ( ˜̃Ω, ˜̃F , { ˜̃Ft}t≥0,
˜̃
P, X̃) to system (4.4) such that

g(X̃(t)) = 0, ∀t ∈ [0, T ], ˜̃
P-a.s.. (4.9)

Proof. We start with the approximating equation (3.4). We apply the Itô
formula to function x → g2(x) and get

d

∫

O

g2(Xε(t, ξ)) dξ + 2

∫

O

(g g′′ + (g′)2)(Xε(t, ξ))|∇Xε(t, ξ)|
2 dξ dt

+2

∫

O

fε(Xε(t, ξ))g(Xε(t, ξ))g
′(Xε(t, ξ)) dξ dt =

∞∑

j=1

µ2
j

∫

O

|b(Xε(t, ξ)) ej|
2|(g g′′ + (g′)2)(Xε(t, ξ))| dξ dt

+

∞∑

j=1

µj

∫

O

b(Xε(t, ξ))g(Xε(t, ξ))g
′(Xε(t, ξ)) ej dξ dβj(t)
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Taking into account (3.5),(3.7), we obtain that

∫

O

fε(Xε)g(Xε)g
′(Xε) dξ =

∫
ρ(θ)

( ∫

[g(Xε−εθ)>0]

f1(Xε − εθ)(gg′)(Xε − εθ) dξ+

∫

[g(Xε−εθ)<0]

f2(Xε − εθ)(gg′)(Xε − εθ) dξ
)
dθ + ζε(t), ∀t ∈ [0, T ],

where

ζε(t) ≤ C̃ ε

∫

O

(|Xε(t, ξ)|+ 1) dξ

with C̃ = C1C, C1 > 0; thus, by (4.5)–(4.7), this yields

E

∫

O

g2(Xε(t, ξ)) dξ ≤ C E

∫ t

0

∫

O

g2(Xε(t, ξ)) dξ ds

+ δ(ε)E

∫ t

0

∫

O

(Xε(t, ξ)
2 + 1) dξ ds, ∀t ∈ [0, T ].

where limε→0 δ(ε) = 0 and the constant C is independent of ε.
This yields via Gronwall’s lemma,

E

∫

O

g2(Xε(t, ξ)) dξ ≤ δ(ε) exp(C t), ∀t ∈ [0, T ]. (4.10)

If X̃ε is defined as in the proof of Theorem 3.1, that is L(X̃ε) = L(Xε) and
(3.17) holds, we get by (4.10) that

Ẽ

∫

O

g2(X̃ε(t, ξ)) dξ ≤ δ(ε) exp(C t), ∀t ∈ [0, T ], ∀ε > 0

where Ẽ is the expectation in probability space (Ω̃, F̃ , P̃). Hence, letting

ε tend to zero we get g2(X̃) = 0, dt × dξ × ˜̃
P-a.e. in (0, T ) × O × ˜̃Ω as

claimed.

Remark 4.1. In the particular case where the function

F (r) ≡ f1(r)H(g(r)) + f2(r)H(−g(r)), r ∈ R

is a maximal monotone graph in R × R with R(F ) = D(F ) = R, equation
(4.4) has a unique strong solution X . This happens for instance if fi, i = 1, 2,
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are monotonically nondecreasing continuous functions such that f1 ≥ f2 on
R and g(x) = x (see [2]). Then the corresponding system (4.4)

dX −∆X dt+ (f1(X)H(X) + f2(X)H(−X)) dt =

b(X) dW, in (0, T )×O

X = 0, on (0, T )× ∂O,

(4.11)

has the invariant manifold X = 0.

Under stronger assumptions on g and b it turns out that the closed loop
system (4.2)–(4.3) (equivalently (4.11)) has a “sliding” mode dynamics with
the switching manifold Σ = {X : g(X) = 0}. Namely, we assume that

Hypothesis 4.2. fi, i = 1, 2 satisfy assumption (i) and g ∈ C2
b (R), b ∈

C2(R) ∩ Lip(R) are such that

|g′′(r)| |b(r)|2 ≤ C∗ |g(r)|, ∀r ∈ R, (4.12)

f1(r) g
′(r) ≥ α if g(r) > 0; f2(r) g

′(r) ≤ −α if g(r) < 0 (4.13)

g′, g′′ ∈ L∞(R), g′′ sgn(g) ≥ 0 on R, (4.14)

where α > 0.

We note that by Theorem 3.2, equation (4.11) has a martingale solution
X̃ given by (3.17).

Theorem 4.3. Under Hypothesis 4.2, for each x ∈ H1
0 (O) there is a mar-

tingale solution ( ˜̃Ω, ˜̃F , ˜̃P, ˜̃W, X̃) to (4.2), (4.3) such that for τ = inf{t :
|g(X̃(t))| = 0} we have

˜̃
P(τ > t) ≤

C̃

α
(1− e−C̃ t)−1 |g(x)|2. (4.15)

where C̃ = C1C
∗. Moreover, if g(x) = 0 a.e. in O, then g(X̃(t)) = 0 for all

t ≥ 0.

Proof. The proof is very similar to that of Theorem 2.2, so it will be sketched
only. If Xε is the solution to equation (3.4) and X̃ε such that L(Xε) = L(X̃ε),
we get via Itô’s formula applied to function x → ϕλ(g(x)) and after letting
λ → 0

d |g(X̃ε(t))|2 + α1[|g(X̃ε(t))|>0]dt ≤ 〈b(X̃ε(t))dW (t), g′(X̃ε(t)) sgn(g(X̃ε(t))〉2

+1
2

∞∑

k=1

µ2
k

∫

O

|b(Xε) ek|
2|g′′(Xε)| dξ
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where ϕλ is the function introduced in the proof of Theorem 2.2 (see (2.21)).
We have used here condition (4.14) which in virtue of (2.21) yields

lim
λ→0

∫

O

∆X̃ε(t, ξ)) · ϕ
′
λ(g(X̃ε(t, ξ)))g

′(X̃ε(t, ξ)) dξ

= − lim
λ→0

∫

O

∇X̃ε(t, ξ)) · ∇
(
ϕ′
λ(g(X̃ε(t, ξ)))g

′(X̃ε(t, ξ))
)
dξ ≤ 0,

(4.16)

and also assumption (4.13) which, as we have seen in the proof of Theorem
2.2, implies that

fε(X̃ε) g
′(X̃ε) sgn g(X̃ε) ≥ α− δ(ε)(1 + |X̃ε|).

Now using (4.12) and letting ε → 0 we get

|g(X̃(t))|2 + α

∫ t

s

1[|g(X̃(θ))|>0]dθ ≤ |g(X̃(s))|2 + C̃

∫ t

s

|g(X̃(θ))|2 dθ+

∫ t

s

〈b(X̃(θ))dW (θ), g′(X̃(θ)) sgn(g(X̃(θ))〉2 for 0 ≤ s ≤ t

for some constant C̃ > 0.
This yields (see (2.24))

e−C̃ t|g(X̃(t))|2 + α

∫ t

s

e−C̃ θ
1[|g(X̃(θ))|>0] dθ ≤ e−C̃ s|g(X̃(s))|2+

∫ t

s

e−C̃ θ
1[|g(X̃(θ))|>0] 〈g

′(X̃(θ))sgn(g(X̃(θ))), σ(X̃(θ)) dW (θ)〉2,

0 ≤ s ≤ t < ∞.

Here Z̃ = |g(X̃(t))|2 e
−C̃ t is a nonnegative supermartingale and so Z̃(t) =

Z̃(τ) ˜̃
P-a.s. for t > τ = inf{t > 0 : |Z̃(t)| = 0}. Taking expectation, we get

EZ̃(t) + α

∫ t

0

e−C̃ s ˜̃
P[τ > s] ds ≤ |g(x)|2 + C̃

∫ t

0

EZ̃(s) ds

which implies the desired estimate (4.15).

By (4.14) we see that g is convex on [g > 0], concave on [g < 0] and that
[r : g(r) = 0] = [α1, α2] is a closed interval.
Hence the switching manifold Σ = {X : g(X) = 0} is of the form

Σ = {X ∈ L2(O) : α1 ≤ X ≤ α2}

and so under the assumptions (4.12)–(4.14) the closed loop system (4.2)–
(4.3) has for each x ∈ H1

0 (O) a martingale solution which reaches the set Σ
(that is the interval [α1, α2]) by time t with probability estimated by (4.15)
and remains in this interval after that time.
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5 “Sliding” mode control of a stochastic pa-

rabolic systems

Consider here the parabolic system

dX −∆X dt+ f1(X, Y ) dt = b1(X, Y ) dW1, in (0, T )×O
dY −∆Y dt+ f2(X, Y ) dt = b2(X, Y ) dW2, in (0, T )×O
X(0) = x(ξ), Y (0) = y(ξ), ξ ∈ O
X = Y = 0, on (0, T )× ∂O

(5.1)

where fi ∈ C(R2) satisfy assumption (i), bi ∈ C2(R) ∩ Lip(R), i = 1, 2 and
W1, W2 are Wiener processes of the form (1.2) in the space H = L2(O) ×
L2(O). Let g : R2 → R, g ∈ C2(R2) be given.

Arguing as in the proof of Theorem 3.2 it follows that for each (x, y) ∈
H1

0 (O)×H1
0 (O), system (5.1) has a martingale solution (X̃, Ỹ ) obtained as

limit of solutions (X̃ε, Ỹε) to corresponding approximating system

d
(X
Y

)
+
(−∆ 0

0 −∆

)(X
Y

)
dt+ Fε

(X
Y

)
dt =

(b1(X, Y ) dW1

b2(X, Y ) dW2

)

(
X
Y

)
(0) =

(
x
y

) (5.2)

where F : R2 → R
2 is given by

F =

{
f1 in [g > 0],

f2 in [g < 0].

and

Fε(r1, r2) =

∫

R2

ρ(r − εθ)F (θ) dθ, (r1, r2) ∈ R
2, ε > 0.

Assume further that

|D2g(r)|
(
|b1(r)|

2 + |b2(r)|
2
)
≤ C |g(r)|, ∀r ∈ R

2 (5.3)

f1(r) gr1(r) ≥ α in [r : g(r) > 0] (5.4)

f2(r) gr2(r) ≤ −α in [r : g(r) < 0] (5.5)

where α > 0 and (gr1, gr2) = ∇g,

gr1r1 sgn g ≥ 0, (g2r1r2 − gr1r1gr2r2) sgn g ≤ 0. (5.6)

We have
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Theorem 5.1. Under assumptions (5.3)–(5.6) for each (x, y) ∈ H1
0(O) ×

H1
0 (O) there is a martingale solution { ˜̃Ω, ˜̃F , ˜̃P, ˜̃W, (X̃, Ỹ )} to (5.1) such that

if τ is the stopping time τ = inf{t : g(X̃(t), Ỹ (t)) = 0} then

˜̃
P[τ > t] ≤

C

α
(1− e−C t)−1|g(x, y)|(L2(O))2 (5.7)

for some constant C > 0.

The proof is exactly the same as that of Theorem 2.2 where the approxi-
mating equation (3.4) is replaced by (5.2). We note that in this case the
corresponding inequality (4.16) is a consequence of hypothesis (5.6). The
details are omitted.

A particular example is

g(r1, r2) = α1 r1 + α2 r2, ∀r1, r2 ∈ R

which, for f1 and f2 satisfying condition

α1 f1(r) ≥ α in {α1 r1 + α2 r2 > 0}
α2 f2(r) ≤ −α in {α1 r1 + α2 r2 < 0}

where α > 0, imply that system (5.1) has a martingale solution (X̃, Ỹ ) that
reaches the linear manifold

Σ = {α1 X̃ + α2 Ỹ = 0}

in a time t with probability ˜̃
P ≥ 1 − C t−1|α1 x + α2 y|(L2(O))2 and remains

on this manifold afterwards.
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equations via approximations, Probab. Theory Related Fields, 105 n. 2,
143-158 (1996)

[9] K-C. Hsu, Sliding mode controllers for uncertain systems with input non-
linearities, Journal of Guidance, Control, and Dynamics, July, Vol. 21,
No. 4 : pp. 666-669 (doi: 10.2514/3.22105)

[10] P. Shi, Y. Xia, G. P. Liu, D. Rees, On designing of sliding-mode control
for stochastic jump systems, IEEE Transactions on Automatic Control,
vol. 51, no. 1, pp. 97-103, 2006

[11] D.J.W. Simpson, R. Kuske, Stochastically perturbed sliding motion in
piecewise-smooth systems, Discrete Contin. Dyn. Syst. Ser. B, 19 (9),
2889-2913 (2014)

[12] V. Utkin, Sliding Modes in Control and Optimization, Springer-Verlag,
Berlin (1992)

[13] A. Yu. Veretennikov, On strong solution and explicit formulas for solu-
tions of stochastic integral equations, Math. USSR Sbornik, 39, 387-403
(1981)

[14] K. Yosida, Functional Analysis, Springer-Verlag, Berlin-Heidelberg-New
York (1980)

25


