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Abstract. The feedback exponential stabilization to trajectories for semilinear par-
abolic equations in a given bounded domain is addressed. The controls take values
in a finite-dimensional space and are supported in a small region. Both internal and
boundary controls are considered.
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2 D.Phan and S. S. Rodrigues

1. Introduction.

We consider controlled parabolic equations, for time t ≥ 0, in a smooth domain Ω ∈ Rd

located locally on one side of its boundary Γ = ∂Ω, with d a positive integer, either of
the form

∂ty − ν∆y + f(y,∇y) +
M∑
i=1

uiΦi = 0; y |Γ = g; (1)

or of the form

∂ty − ν∆y + f(y,∇y) = 0; y |Γ = g +
M∑
i=1

uiΨi. (2)

In the variables (t, x, x̄) ∈ (0,+∞)×Ω×Γ, the unknown in the equation is the function
y = y(t, x) ∈ R. The diffusion coefficient ν > 0 is a positive constant; the functions
g = g(t, x̄) ∈ R and f : R× Rd → R are fixed.

In system (1) the functions Φi = Φi(x) are given and will play the role of actuators,
while in system (2) that role will be played by the given functions Ψi = Ψi(x̄). Finally,
M is a positive integer and, in either system, u = u(t) ∈ RM is a (control) vector function
at our disposal.

The problem we address here is the local exponential stabilization to trajectories for
systems (1) and (2). That is, given a positive constant λ > 0 and a solution ŷ(t) = ŷ(t, ·)
of the (uncontrolled) system with u = 0, we want to find a control function u such that
the solution y(t) := y(t, ·) of the system, supplemented with the initial condition

y(0) := y(0, x) = y0(x),

is defined on [0,+∞) and approaches ŷ(t) exponentially with rate λ
2
, provided y(0)− ŷ(0)

is small enough. In other words, for a suitable Banach space X and positive constants C
and ε, we want to have that

|y(t)− ŷ(t)|2X ≤ Ce−λt |y(0)− ŷ(0)|2X , provided |y(0)− ŷ(0)|X < ε (3)

with ε small enough. Notice that, the constants C and ε may depend on λ, but neither
on ŷ(0) nor on y(0).

We are particularly interested in actuators which are supported in a small domain:
either supp Φi ⊂ ω ⊆ Ω or supp Ψi ⊂ O ⊆ Γ, where ω and O are given open subsets of Ω
and Γ, respectively.

By following the arguments in [BRS11, KR15b, KR15a, BKR15] we shall conclude
that the answer is affirmative, for the case of system (1) under suitable conditions on
the family of internal actuators Cω = {Φi | i ∈ {1, 2, . . . ,M}}. Moreover the stabilizing
control can be taken in feedback form u(t) = Kt(y(t)− ŷ(t)).

For the case of system (2) the answer is less straightforward from the available results
in the Literature, however we shall show, by combining some of the arguments in [Bad09,
Rod14, Rod15a], that the answer is again affirmative provided suitable conditions are
satisfied by the family of boundary actuators CΓc = {Ψi | i ∈ {1, 2, . . . ,M}}. In this case,

the control can be taken in integral feedback form y |Γ (t) = υ0 +
∫ t

0
Kτ (y(τ) − ŷ(τ)) dτ ,

where υ0 may/must be taken in an appropriate space.
Considering finite-dimensional controls is important for applications because usually

we have at our disposal only a finite number of actuators which we can tune. Suppose
we can choose those (either internal or boundary) actuators from a family

C+∞ = {Θi | i ∈ N0},
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Stabilization to trajectories for parabolic equations 3

then we may ask how many of these actuators we need to stabilize the system. That
is, what is M such that CM = {Θi | i ∈ {1, 2, . . . ,M}} allow us to stabilize the system.
This question will be answered for suitable complete families. In this way we arrive to an
estimate on the number of actuators we need to stabilize the system.

We will start by considering the linearization of systems (1) and (2) around ŷ and
construct a feedback rule stabilizing globally the solution v of the linearized system to
zero. That is,

|v(t)(t)|2X ≤ Ce−λt |v(0)|2X . (4)

Another question we will address is how the constant C = C(λ), in (4), does depend
on λ. Some estimates will be given and the results of some numerical simulations will
be presented for Riccati based feedback. This is motivated by a sufficient condition
for exponential stabilization given in [BKR15] for the FitzHugh–Nagumo and Rogers–
McCulogh systems. Another motivation is that in general, the value ε in (3) will decrease
as C in (4) increases, that is the feedback control will work, for the nonlinear system, in
a bigger neighborhood for a smaller C.

The rest of the paper is organized as follows. In Section 2 we reduce our problem
to the stabilization to zero of the difference z = y − ŷ, and write the system for z in
an appropriate way. In Section 3 we deal with the internal stabilization to zero of the
linearized system for the difference. In Section 4 we deal with the internal stabilization
to zero of the nonlinear (full) system for the difference, under some conditions on the
nonlinearity. In Section 6, as an example, we check the conditions in Section 4 for
some nonlinearities of polynomial type. In Section 7 we deal with boundary controls.
Finally, Sections 8 and 9 are concerned with the discretization of our equations and the
presentation of the results of some numerical simulations.

Notation. We write R and N for the sets of real numbers and nonnegative integers,
respectively, and we define Ra := (a,+∞) for all a ∈ R, and N0 := N\{0}. We denote by
Ω ⊂ Rn, n ∈ N0, a bounded domain with a smooth boundary Γ = ∂Ω. Given a function
v : (t, x1, x2, . . . , xn) 7→ v(t, x1, x2, . . . , xn) ∈ R, defined in an open subset of R × Ω, its
partial time derivative ∂v

∂t
will be denoted by ∂tv.

We use the standard notation for Bochner spaces Lp(Ω, X) where Ω ⊆ Rn, n ∈ N0,
p ∈ [1,+∞], and X is a Banach space. The spaces Lp(Ω)m = Lp(Ω,Rm) will be denoted
by simply Lp whenever there is no ambiguity neither concerning the domain Ω nor the
superscript m ∈ N0.

Given an open interval I ⊆ R, and Banach spaces X and Y , we write W (I,X, Y ) :=
{f ∈ L2(I,X) | ∂tf ∈ L2(I, Y )}, where the derivative ∂tf is taken in the sense of
distributions. This space is endowed with the natural norm |f |W (I,X,Y ) :=

(
|f |2L2(I,X) +

|∂tf |2L2(I,Y )

)1/2
. The space of continuous linear mappings from X into Y will be denoted

by L(X, Y ). In case X = Y we write L(X) := L(X,X) instead. If the inclusion

X ⊆ Y is continuous, we write X ↪−→ Y ; we write X
d
↪−→ Y , respectively X

c
↪−→ Y , if the

inclusion is also dense, respectively compact. The kernel and range of a linear mapping
A : Z → W , between vector spaces Z and W , will be denoted KerA := {x ∈ Z | Ax = 0}
and RanA := {Ax | x ∈ Z}, respectively.
C [a1,...,ak] denotes a function of nonnegative variables aj that increases in each of its

arguments, and C,Ci, i = 1, 2, . . . , stand for positive constants.
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4 D.Phan and S. S. Rodrigues

2. Reduction to stabilization to zero

Let ŷ(t) solves the uncontrolled system. We we want the solution y(t) to go to the
reference trajectory ŷ(t) exponentially, thus it is natural to consider the dynamics of the
difference y − ŷ.

2.1. The case of internal controls. By direct computations, we find that z := y − ŷ
solves

∂tz − ν∆z + f(y,∇y)− f(ŷ,∇ŷ) +
M∑
i=1

uiΦi = 0, z |Γ = 0.

Writing (ξ1, ξ2) ∈ R× Rd we denote ∂1f := ∂f
∂ξ1

and ∂2f := ∂f
∂ξ2

. Formally, we can write

f(y,∇y)− f(ŷ,∇ŷ) =:
[
∂1f |(ŷ,∇ŷ) ∂2f |(ŷ,∇ŷ)

] [ z
∇z

]
+ Fŷ(z)

= âz +∇ · (b̂z)− N̂ (z).

with

â := ∂1f |(ŷ,∇ŷ) −∇ · ∂2f |(ŷ,∇ŷ) , b̂ := ∂2f |(ŷ,∇ŷ) , and N̂ (z) = −Fŷ(z), (5)

where N̂ (·) : R→ R is a nonlinear function if so is y 7→ f(y,∇y).

Rescaling time. By technical reasons, in order to use available results in the Literature
(for the case ν = 1), it is convenient to rewrite the system as

∂τ z̆ −∆z̆ + 1
ν
˘̂az̆ +∇ ·

(
1
ν

˘̂
bz̆
)

+
∑M

i=1
1
ν
ŭiΦi = 1

ν

˘̂N (z̆); z̆ |Γ = 0, (6)

which we can do by rescaling time t = τ
ν

and setting p̆(τ) := p( τ
ν
), for a function p defined

for t ≥ 0.

2.2. The case of boundary controls. As in the internal case, by direct computations
we find that z̆(τ) = (y − ŷ)( τ

ν
) solves

∂τ z̆ −∆z̆ + 1
ν
˘̂az̆ +∇ ·

(
1
ν

˘̂
bz̆
)

= 1
ν

˘̂N (z̆); z̆ |Γ =
∑M

i=1 ŭiΨi. (7)

2.3. Stabilization to zero. We can see that our goal (3) is to find the control u, in
either system (6) or system (7), such that

|z̆(τ)|2X ≤ Ce−λ̄τ |z(0)|2X , provided |z(0)|X < ε.

with λ̄ = λ
ν
, for suitable positive constants C = Cλ̄ and ε = ελ̄.

We will follow a standard procedure. We will start by proving the global stabilization

result for the linearized system, that is, in the case
˘̂N = 0. Then, the local stabilization

result will follow by a fixed point argument.

3. Internal stabilization of the linearized system

We consider a system in the form (6), without the nonlinearity. In order to study such
system we start by denoting the Hilbert space H := L2(Ω,R) which we will consider as a
pivot space, H ′ = H. We also denote V := H1

0 (Ω,R) and D(∆) := V ∩H2(Ω,R), which
are supposed to be endowed with the scalar products

(v, w)V := (∇v,∇w)L2(Ω,Rd) and (v, w)D(∆) := (∆v,∆w)H ,

and corresponding norms |v|V := (v, v)
1
2
V and |v|D(∆) := (v, v)

1
2

D(∆).
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Stabilization to trajectories for parabolic equations 5

Moreover we have the inclusions

D(∆)
d,c
↪−→ V

d,c
↪−→ H

d,c
↪−→ V ′

d,c
↪−→ D(∆)′,

the increasing sequence of repeated eigenvalues αi, i = 1, 2, . . . , of −∆ satisfy

0 < α1 < α2 ≤ α3 ≤ . . . , lim
i→+∞

αi = +∞

and we have

〈v, w〉V ′,V = (v, w)H , for all (v, w) ∈ H × V.

Boundedness assumption. For m ∈ N0, in order to simplify the writing we denote

WJ := L∞w (J, Ld(Ω,R)× L∞(Ω,Rd))
W := L∞w (R0, L

d(Ω,R)× L∞(Ω,Rd))
(8)

where J ⊆ (0,+∞) is an open interval.
We also fix a and b, which may depend on time and space, and a constant CW ≥ 0,

satisfying

|(a, b)|W :=
(
|a|2L∞(R0,Ld) + |b|2L∞w (R0,L∞)

) 1
2 ≤ CW . (9)

Remark 3.1. (A technical measurability detail). The space L∞w (R0, L
∞(Ω, R)) is the

Bochner-like notation for L∞(R0×Ω, R), where the subscript w stands for weak measur-
ability. Bochner spaces are usually defined for strongly measurable functions, see [Boc33,
Section 2]. The Bochner space L∞((a, b), L∞(Ω,R)) consisting of strongly measurable
functions is strictly contained in L∞w (R0, L

∞(Ω,R)) = (L1((a, b), L1(Ω,R)))′, see [Fat99,
Example 5.0.10]. This is due to the fact that L∞(Ω,R) is not separable. Recall also [Pet38,
Theorem 1.1] for a relation between strong and weak measurability. However, the norm
in L∞w ((a, b), L∞(Ω, R)) is essentially the usual norm of L∞((a, b), L∞(Ω, R)), see [Fat99,
Lemma 9.1.2 (ii)], [Fat05, Lemma 4.1.1], and the miscellaneous notes at the end of Sec-
tion 4.1 in [Fat05]. Hereafter, we are going to use some arguments from [Rod15a, KR15b,
KR15a], whose results should be understood with the subscript w in [Rod15a, Equa-
tion (2.2) and Remark 2.15], [KR15b, Equation (2.1)], and [KR15a, Equation (5)].

3.1. Weak solutions. Let us consider the interval I = (s0, s1) with 0 ≤ s0 < s1, whose
length we denote by |I| := s1 − s0. Here we recall some regularity results for the weak
solutions for systems as (6). We start considering the more general system

∂tz −∆z + az +∇ · (bz) + f = 0, (10a)

z |Γ = 0, z(0) = z0. (10b)

where the control is replaced by a general external force.

Lemma 3.2. We have, for z ∈ V

〈az, z〉V ′,V ≤ C |a|Ld |z|H |z|V , |az|V ′ ≤ C |a|Ld |z|
1
2
H |z|

1
2
V , for d ∈ {1, 2}.

〈az, z〉V ′,V ≤ C |a|Ld |z|H |z|V , |az|V ′ ≤ C |a|Ld |z|H , for d ≥ 3.

〈∇ · (bz), z〉V ′,V ≤ C |b|L∞ |z|H |z|V , |∇ · (bz)|V ′ ≤ C |b|L∞ |z|H , for d ≥ 1.

for a suitable constant C ≥ 0, depending only on (Ω, d).

Proof. Concerning the reaction term, in the case d = 1, and Ω = (l, r) with l < r, from
d

dx
|z|2R = 2z d

dx
z we can see that for z ∈ V and s ∈ Ω, since z(l) = z(r) = 0,

|z(s)|2R = |z(s)|2R − |z(l)|2R = 2

∫ s

l

z(τ) d
dx
z(τ) dτ ≤ 2 |z|L2(Ω,R)

∣∣ d
dx
z
∣∣
L2(Ω,R)

.
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6 D.Phan and S. S. Rodrigues

That is, we have the Agmon inequality

|z|L∞ ≤ 2
1
2 |z|

1
2
H |z|

1
2
V , for d = 1. (11)

Therefore, it follows that

〈az, w〉V ′,V ≤ |a|L1 |z|L∞ |w|L∞ ≤ 2 |a|L1 |z|
1
2
H |z|

1
2
V |w|

1
2
H |w|

1
2
V .

For the cases d ≥ 2, we will use suitable Sobolev embeddings (cf.[DD12, Corol-

lary 4.53]). For d = 2, from H
1
2 (Ω,R) ↪−→ L4(Ω,R) and an interpolation argument

(cf. [LM72a, chapter 1, section 9.1]), we find

〈az, w〉V ′,V ≤ |a|L2 |z|L4 |w|L4 ≤ C2 |a|L2 |z|
1
2
H |z|

1
2
V |w|

1
2
H |w|

1
2
V .

For d ≥ 3, from H1(Ω,R) ↪−→ L
2d
d−2 (Ω,R), we find

〈az, z〉V ′,V ≤ |a|Ld |z|L 2d
d−2
|z|L2 ≤ C3 |a|Ld |z|V |z|H .

Finally, writing 〈∇ · (bz), z〉V ′,V = (bz,∇z)L2(Ω,Rd), it will follow the estimates for the
convection term. �

Lemma 3.3. Given f ∈ L2(I, V ′) and z0 ∈ H, there is a weak solution z ∈ W (I, V, V ′)
for (10). Moreover z is unique and depends continuously on the data:

|z|2W (I,V,V ′) ≤ C [|I|,CW ]

(
|z(s0)|2H + |f |2L2(I,V ′)

)
.

The procedure is well known, yet we will recall some steps of the proof since some
estimates from the proof will be used later on.

Weak solutions for system (10) are understood in the variational sense. We will restrict
ourselves to the derivation of some a priori (like) estimates. In fact those estimates will
also hold for Galerkin approximations of the system, for example using a basis of eigen-
functions of the Laplace operator ∆, thus the estimates can be used to precisely derive
the existence of weak solutions. See [Lio69, Chapter 1, Section 6], [Tem95, Chapter 1,
Section 3], and [Tem01, Chapter 3, Sections 1.3, 1.4, and 3.2] for more details on the
procedure.

We start with the following auxiliary result.

Corollary 3.4. We have, for z ∈ V

2〈az +∇ · (bz), z〉V ′,V ≤ Drc,1 |(a, b)|2W |z|
2
H + 1

2
|z|2V ,

2〈az +∇ · (bz), z〉V ′,V ≤ Drc |(a, b)|2W |z|
2
H + 3

2
|z|2V .

for suitable constants Drc ≤ Drc,1 depending only on (Ω, d).

Proof. From Lemma 3.2, and for any α > 0, we have 2〈az +∇ · (bz), z〉V ′,V ≤ 2C(|a|Ld +

|b|L∞) |z|H |z|V ≤
1
α
C2(|a|Ld+|b|L∞)2 |z|2H+α |z|2V ≤

2
α
C2(|a|2Ld+|b|2L∞) |z|2H+2α |z|2V . �

Proof of Lemma 3.3. Multiplying (10a) by 2z, formally we find

d

dt
|z|2H + 2 |z|2V = 2〈az +∇ · (bz), z〉V ′,V + 2〈f, z〉V ′,V ,

from which, by appropriate Young inequalities, we can obtain

d

dt
|z|2H + |z|2V ≤ Drc,1 |(a, b)|2W |z|

2
H + 2 |f |2V ′ ; (12a)

d

dt
|z|2H ≤ Drc |(a, b)|2W |z|

2
H + 2 |f |2V ′ . (12b)
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Stabilization to trajectories for parabolic equations 7

By (12b) and the Gronwall inequality, it follows that for all s ∈ I

|z(s)|2H ≤ eDrc|(a,b)|2W (s−s0)
(
|z(s0)|2H + 2 |f |2L2(I,V ′)

)
, (13)

and integrating (12a),

|z(s)|2H + |z|2L2((s0,s),V ) ≤ |z(s0)|2H +Drc,1 |(a, b)|2W |z|
2
L2(I,H) + 2 |f |2L2(I,V ′) . (14)

From (10a) and Lemma 3.2 we can also derive

|∂tz|L2(I,V ′) ≤ |z|L2(I,V ) + C [CW ] |z|2L2(I,H) + |f |L2(I,V ′) ,

from which, using (13) and (14) we can conclude that

|z|2W (I,V,V ′) ≤ C [s1−s0,CW ]

(
|z(s0)|2H + |f |2L2(I,V ′)

)
.

Finally the uniqueness of z, follows from the fact that if z̃ is another weak solution, then
e = z− z̃, solves (10) with e(s0) = 0 and f = 0. From (13) it will follow that |e(s)|H = 0
for all s ∈ I. �

3.2. Null controllability. Here we recall the relation between null controllability of
system (10) and a suitable observability inequality for the adjoint system.

Consider, in the bounded cylinder I × Ω, I = (s0, s1), the controlled system

∂tz −∆z + az +∇ · (bz) +Bη = 0, (15a)

z |Γ = 0, z(s0) = z0, (15b)

where now our control is a function η ∈ L2(I,H) and B ∈ L(H) with adjoint denoted by
B∗. Let us also consider in I × Ω the adjoint system

− ∂tq −∆q + aq − b · ∇q = 0, (16a)

q |Γ = 0, q(s1) = q1 ∈ H, (16b)

and let z(z0, η)(t) := z(t) and q(q1)(t) := q(t) denote the solutions of (15) and (16), for
given data (z0, u) and q1, respectively. Notice that, proceeding as in section 3.1, we can
prove the existence of weak solutions q ∈ W (I, V, V ′) for system (16).

Definition 3.5. (i) We say that (15) is null controllable in I if there exists a fam-
ily {η(z0) | z0 ∈ H} ⊂ L2(I,H) such that z(z0, η(z0))(s1) = 0, for z0 ∈ H.
(ii) We say that (16) is B∗-observable in I if there exists a constant Cobs > 0 such that
for all q1 ∈ H we have that the corresponding weak solution q satisfies the inequality

|q(q1)(s0)|H ≤ Cobs |B∗q(q1)|L2(I,H) . (17)

The constant Cobs in (17) depends, in general, on Ω, ω, I, B, and also on the coefficient
functions a and b.

The following lemma, can be proven by a standard procedure. For details, we refer
to [AKBGBdT11, Section 2], [Cor07, Chapter 2].

Lemma 3.6. System (16) is B∗-observable in I if, and only if, system (15) is null
controllable in I and the family of controls {η(z0) | z0 ∈ H} can be chosen as a bounded
linear function of z0:

|η(z0)|L2(I,H) ≤ Cobs |z0|H , where Cobs is as in (17).
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8 D.Phan and S. S. Rodrigues

Controls supported in a subset. Given an open subset ω ⊆ Ω, then from [DZZ08, Theo-
rem 2.1] and [DFCGBZ02, Theorem 2.3] (e.g., reversing time in system (16)) we have that
there exists a constant Cω,Ω > 0, depending on ω and Ω, such that the weak solution q
for (16) satisfies

|q(0)|2H ≤ eCω,ΩΘ(|I|,|a|L∞(I,Ld)
,|b|L∞w (I,L∞),d) |q|2L2(I,L2(ω,R) .

with

Θ(r, θ1, θ2, d) := 1 + θ2
1 + dθ2

2 +
1

r
+ r

(
θ1 + dθ2

2

)
, (18)

for r > 0, θ1 ≥ 0 ≤ θ2, and d ∈ N0.
Therefore, in the case we take B = 1ω ∈ L(H) with

1ωη(x) :=

{
η(x), if x ∈ ω
0, if x ∈ Ω \ ω ,

then we have B∗ = B and |q|2L2(I,L2(ω,R)) = |B∗q|2L2(I,H), and we can conclude that (17)

holds with Cobs = eCω,ΩΘ(|I|,|a|L∞(I,Ld)
,|b|L∞w (I,L∞),d). Therefore we have the following.

Theorem 3.7. Let B = 1ω and let I = (s0, s1) be arbitrary, then, there exists a fam-
ily {η(z0) | z0 ∈ H} ⊆ L2(I,H) such that the solutions z(z0, η(z0)) to (15) satisfy

z(z0, η(z0))(s1) = 0 and, for a constant Ĉ = C(ω,Ω), we have that

|η(z0)|L2(I,H) ≤ eĈΘ |z0|H ,

with Θ = Θ
(
|I|, |a|L∞(R0,Ld) , |b|L∞w (R0,L∞) , d

)
given by (18).

Notice that since (17) holds with Cobs = eĈΘ and B = 1ω. Proceeding as in [BRS11,

Section A.2] we can conclude that (17) also holds with Cobs = CχeĈχΘ ≤ eD̂Θ and B∗q :=

χ1ωq = 1ωχ1ωq, where D̂ = log(Cχ) + Ĉχ and χ ∈ C∞(Ω) is any given smooth function

with ∅ 6= ω ∩ suppχ. Here D̂ = D̂(χ, ω,Ω) > 0 depends only on (χ, ω,Ω). Notice
that Θ(r, θ1, θ2, d) ≥ 1.

Corollary 3.8. Theorem 3.7 holds in the more general case B = 1ωχ1ω, with D̂ in the

place of Ĉ.

3.3. Stabilization to zero by finite dimensional controls. Here we analyze the case
when stabilization of system (15) can be achieved by finite dimensional control action,

of the form
M∑
i=1

ui(t)Φi(x). Following the ideas in [KR15b, KR15a, BKR15], we consider

a family Ĉω = {Φ̂i ∈ H | i ∈ {1, 2, . . . ,M}} ⊂ H and denote by PM the orthogonal

projection in H onto SĈω := span Ĉω.

Let us also fix a positive constant λ̄ > 0 and consider, in Rs0 × Ω, the system:

∂tz −∆z + az +∇ · (bz) + 1ωχPM1ωη = 0, (19a)

z |Γ = 0, z(s0) = z0. (19b)

Definition 3.9. We say that (19) is exponentially stabilizable to zero, with rate λ̄
2
, if

there are a constant C > 0 and a family {η = η(z0) | z0 ∈ H} ⊆ L2(Rs0 , H) such that
the corresponding global solution z(t) = z(z0, η(z0))(t) satisfies

|z(t)|2H ≤ C e−λ̄(t−s0)|z0|2H , for all t ≥ s0.
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Notice that the stabilizing control in (19a) takes its values in the finite dimensional

space 1ωχSCω = span {1ωχΦ̂i ∈ H | i ∈ {1, 2, . . . ,M}}, for all t ∈ Rs0 .

1ωχPM1ωη = 1ωχ
M∑
i=1

ηiΦ̂i =
M∑
i=1

uiΦi

with ui := ηi and Φi := 1ωχΦ̂i, i ∈ {1, 2, . . . ,M}.

Remark 3.10. Without loss of generality we can suppose that the family Ĉω is linearly

independent and orthonormal. In that case ηi(t) =
(
η(t, ·), Φ̂i

)
H

.

In the following, the function Θ and the constant D̂ are as in Theorem 3.7 and Corol-
lary 3.8. Let χ ∈ C∞(Ω) satisfy ∅ 6= ω ∩ suppχ, and consider the system

∂tz −∆z + (a− λ̄
2
)z +∇ · (bz) + 1ωχ1ωη = 0, (20a)

z |Γ = 0, z(s0) = z0. (20b)

Lemma 3.11. Let I = (s0, s1). The solution of system (20), in I ×Ω, with the control η
given by Corollary 3.8, satisfies

|z(s0 + τ)|2H ≤ eDrc|(a− λ̄2 ,b)|
2

W
τ |z(s0)|2H

+ 2 |ι|2L(H,V ′) e
Drc|(a− λ̄2 ,b)|

2

W
τ+D̂Θ

(
|I|,|a|

L∞(R0,L
d)
,|b|L∞w (R0,L

∞),d
)
|z(s0)|2H ,

for all τ ∈ I, where ι : H → V ′ stands for the inclusion mapping ιz := z.

Proof. Straightforward, from (13). Notice that Corollary 3.8 still holds true with a − λ̄
2

in the role of a. �

Inspired by Lemma 3.11, and the procedure in [BKR15, KR15a], we consider the
function Ξ: (0,+∞)→ (0,+∞) defined by

Ξ(τ) :=7→ 2 |ι|2L(H,V ′) e
Drc|(a− λ̄2 ,b)|

2

W
τ+D̂Θ

(
|I|,|a− λ̄2 |L∞(R0,L

d)
,|b|L∞w (R0,L

∞),d

)

which we can extend to a function Ξex : [0,+∞]→ (0,+∞], by setting

Ξex(τ) :=

{
Ξ(τ), if τ ∈ (0,+∞),
lim
t→τ

Ξ(t), if τ ∈ {0,+∞}.

The minimum and minimizer of Ξex are denoted by Υ and T∗, respectively. From

dΞ
dτ

∣∣
τ=t

Ξ(t)
=

(
Drc

∣∣∣(a− λ̄
2
, b)
∣∣∣2
W

+ D̂

(
−t−2 +

∣∣∣a− λ̄
2

∣∣∣
L∞(R0,Ld)

+ d |b|2L∞w (R0,L∞)

))
,

we can conclude that T∗ > 0 can be defined by

T 2
∗ =

D̂

Drc

∣∣∣(a− λ̄
2
, b)
∣∣∣2
W

+ D̂

(∣∣∣a− λ̄
2

∣∣∣
L∞(R0,Ld)

+ d |b|2L∞w (R0,L∞)

) . (21)

Further T∗ = +∞ if, and only if, both a− λ̄
2

and b vanish.
Thus, if T∗ ∈ R0, we have that the minimum Υ = Ξex(T∗) is given by

Υ = 2 |ι|2L(H,V ′) e
Θ

(
|a− λ̄2 |L∞(R0,L

d)
,|b|L∞w (R0,L

∞),|(a− λ̄2 ,b)|W ,d
)
, (22a)

Preliminary version – September 28, 2018 – 15:46



10 D.Phan and S. S. Rodrigues

and, if T∗ = +∞ by

Υ = 2 |ι|2L(H,V ′) eD̂. (22b)

where

Θ(ξ1, ξ2, ξ3, d, ν) := D̂
(
1 + ξ2

1 + dξ2
2

)
+ 2(D̂)

1
2

(
Drcξ

2
3 + D̂

(
ξ1 + dξ2

2

)) 1
2
. (23)

The following result gives us a sufficient condition on the family Ĉω for the existence of
a stabilizing control. The proof can be done following the arguments in [KR15a, BKR15].

Theorem 3.12. Let us be given χ ∈ C∞(Ω) satisfying ∅ 6= ω ∩ suppχ. If

T∗ ∈ R0 and |1ωχ(1− PM)1ω|2L(H,V ′) ≤ Υ−1, (24)

with T∗ as in (21) and Υ as in (22a), then system (19) is stabilizable to zero with rate λ̄
2
.

Moreover, we can set the stabilizing control function η = η(z0) such that

|z(t)|2H ≤
(

Υ0 + Υ |BM |2L(H,V ′)

)
e−λ̄(t−s0) |z0|2H , for t ≥ s0,∣∣e λ̂2 ·η(z0)

∣∣2
L2(Rs0 ,H)

≤ 1

1−e(λ̂−λ̄)T∗
e2D̂Θ∗ |z0|2H , for λ̂ < λ̄,

with Υ0 := eDrc|(a− λ̄2 ,b)|
2

W
T∗ and Θ∗ := Θ(T∗,

∣∣∣a− λ̄
2

∣∣∣
L∞(R0,Ld)

, |b|L∞w (R0,L∞) , d).

If T∗ = +∞, then setting η = η(z0) = 0 the solution z of system (19) satisfies |z(t)|2H ≤
e−λ̄(t−s0) |z0|2H , for t ≥ s0.

3.4. The dimension of the control. Families Ĉω which satisfy (24) do exist, for
example in the case the control domain is an open nonempty rectangle ω = ωR :=∏n

j=1(lj,1, lj,2) ⊂ Ω. We give two examples

Ex1. 0 6= χ ∈ C∞(Ω) such that suppχ ⊆ ωR and Ĉω := {Ψ̂R,i | i ∈ {1, 2, . . . ,M}}
for big enough M , where {Ψ̂R,i | i ∈ N0} is a complete system of eigenfunctions of the
negative Laplacian −∆ in ωR with homogeneous Dirichlet boundary conditions, which are
ordered according to the increasing sequence of the (repeated) eigenvalues: 0 < λ̄i ≤ λ̄i+1,
limi→∞ λ̄i =∞.

Ex2. χ = 1Ω and we consider a family Ĉω = {Φi = 1Ri | i ∈ {1, 2, . . . ,M}} ∈ H where
the Ris are the sub-rectangles in a uniform partition of ωR, and

1O(x) :=

{
1, if x ∈ O,
0, if x ∈ Ω \ O,

for an open subset O ⊆ Ω.

That is, each interval (lj,1, lj,2) is divided into pj intervals: Ij,k = (lj,1 + kj
lj
pj
, lj,1 + (kj +

1)
lj
pj

), with kj ∈ {0, 1, . . . , pj − 1} and lj := lj,2 − lj,1. In this way, our rectangle is

divided into M =
∏d

j=1 pj sub-rectangles {Ri | i ∈ {1, 2, . . . ,M}} = {
∏n

j=1 Ij,kj | kj ∈
{0, 1, . . . , pj − 1}}.

Proceeding as in [BKR15, Example 2.14], we can see that in the case of example Ex1
above, condition (24) is satisfied provided that 4 |χ|2C1(Ω) (λ̄M + 1)−1 ≤ Υ−1, that is,

provided λ̄M + 1 ≥ 4 |χ|2C1(Ω) Υ. Furthermore, from [LY83, Corollary 1] we have the

asymptotic behaviour λ̄M ≥ DdM
2
d with

Dd = 4dπ2

(d+2)|wR|
2
d |Bd|

2
d
, (25)
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where |wR| =
∏d

j=1 l̄j is the volume of wR and |Bd| is the volume of the unit ball Bd :=

{x ∈ Rd | |x|Rd ≤ 1}, we can also arrive at the sufficient condition

M ≥ D
− d

2
d (4 |χ|2C1(Ω) Υ)

d
2 , (26)

which gives us an upper bound on the number M of actuators which are needed to
stabilize the system.

We recall that |B1| = 2, |B2| = π, and |B3| = 4
3
π, and in general |B2k| = πk

Γ (k+1)
= πk

k!
and

also |B2k+1| = πk+ 1
2

Γ (k+ 3
2

)
= 2(k!)(4π)k

(2k+1)!
, k ∈ N, where Γ stands for the Euler gamma function.

See [Fol01, Corollary] and [Bir13, Eq. (10)]. Notice that we can prove the last identity

by induction using Γ (k + 3
2
) = Γ (k + 1

2
+ 1) = (k + 1

2
)Γ ((k − 1) + 3

2
) and Γ (1

2
) = π

1
2 .

Proceeding as in [BKR15, Example 2.15], we can see that in the case of example Ex2,
condition (24) is satisfied provided that the partition is fine enough, so that (µMπ

2)−1 ≤
Υ−1 where µM = min

{
p2
j

l̄2j
| j ∈ {1, 2, . . . ,M}

}
. Notice that µMπ

2 is the smallest nonzero

eigenvalue of the (negative) Neumann Laplacian in each rectangle Rj. Thus (24) holds

provided
p2

l
2 ≥ Υ

π2 , where p := min{pj | j ∈ {1, 2, . . . ,M}} and l := max{lj | j ∈
{1, 2, . . . ,M}}. Then we conclude that M2

l̄2d
≥ Υd

π2d is sufficient for (24), and thus so is

M ≥
(
l
2

π2 Υ
) d

2
. (27)

Notice that, from (22) we can see that the above estimates for M depend exponentially

on
∣∣∣a− λ̄

2

∣∣∣
W

and |b|Wd . In the one dimensional case, in [KR15b] it is conjectured that

a better estimate might be possible (depending polynomially in
∣∣∣a− λ̄

2

∣∣∣
W

and |b|Wd , like

as in (28) below), and this conjecture is supported from the results of some numerical
simulations. Later on, we will present some further simulations, for the two dimensional
case, that again support this conjecture.

The particular case ω = Ω. Proceeding as in [KR15b, section 3.1] we can see that in case
there is no constraint in the support of the control, and we take χ = 1Ω, then we can
find a better estimate.

Theorem 3.13. Let (a, b) ∈ W and λ̄ > 0. Let us also take χ = 1Ω and a family

Ĉω := {Ψ̂i | i ∈ {1, 2, . . . ,M}}, where {Ψ̂i | i ∈ N0} is a complete system of eigenfunctions
of the negative Laplacian in Ω ordered as in example Ex1 above. If we take

M ≥ (Drce1(d+2)
dπ2 )

d
2 |Ω||Bd|

∣∣∣(a− λ̄
2
, b)
∣∣∣d
W
, (28)

then for any given z0 ∈ H, there is a control η = ηλ̄,a,b(s0, z0) ∈ L2(Rs0 , H) such that the
corresponding solution z of system (19), satisfies the inequality

|z(t)|2H ≤ 2
(

e
1
2 + 1

)
e−λ̄(t−s0)|z0|2H , t ≥ 0. (29)

Furthermore,∣∣∣e λ̂2 (·−s0)ηλ̄,a,b(s0, z0)
∣∣∣2
L2(Rs0 ,H)

≤ e
1
2

T∗(λ̄−λ̂)
|z0|2H , for all λ̂ < λ̄. (30)

Proof. We may proceed as in [KR15b, Section 3.1]. We just recall the main steps. The
main idea is to find a suitable time T∗ > 0, such that for all s0 ≥ 0 we can find a control

defined in (s0, s0 +T∗) such that at time s0 +T∗ > 0 we have
∣∣∣e λ̄2 T∗z(s0 + T∗)

∣∣∣
H
≤ |z(s0)|H .
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12 D.Phan and S. S. Rodrigues

For a given forcing f , let us consider the system

∂ty −∆y + (a− λ̄
2
)y +∇ · (by) + f = 0, y|Γ = 0, y(s0) = y0. (31)

Let w solve (31) in the time interval (s0, s0 + T ) with f = 0. Then, δ(t) := s0+T−t
T

w(t),

t ∈ [s0, s0 + T ], solves (31) with f = 1
T
w. Let δM solve (31) with f = 1

T
PMw where PM

stands for the orthogonal projection in H onto the space span{Ψ̂i | i ∈ {1, 2, . . . ,M}}
spanned by the first eigenfunctions of the Dirichlet Laplacian in Ω.

It follows that d = δ− δM solves (31) with f = 1
T

(1−PM)w and by (13) it follows that
for all s ∈ [s0, s0 + T ]

|d(s)|2H ≤
2
T 2 eDrc|(a− λ̄2 ,b)|

2

W
T |(1− PM)|2L(H,V ′) |w|

2
L2((s0,s0+T ),H)

≤ 2
T

e2Drc|(a− λ̄2 ,b)|
2

W
T |(1− PM)|2L(H,V ′) |y0|2H .

Therefore, setting T = T∗ minimizing the right hand side, that is, setting

T∗ = (2Drc

∣∣∣(a− λ̄
2
, b)
∣∣∣2
W

)−1,

we find

|d(s)|2H ≤ 4Drce
1
∣∣∣(a− λ̄

2
, b)
∣∣∣2
W
|(1− PM)|2L(H,V ′) |y0|2H , s ∈ [s0, s0 + T∗].

Hence, we will have

|δM(s0 + T∗)|2H ≤ |y0|2H ,
provided

|(1− PM)|−2
L(H,V ′) ≥ 4Drce

1
∣∣∣(a− λ̄

2
, b)
∣∣∣2
W
. (32)

Thus, from |(1− PM)|2L(H,V ′) = α−1
M+1 and [LY83, Corollary 1], see (25), we have that (32)

follows from

4dπ2

(d+2)|Ω|
2
d |Bd|

2
d
M

2
d ≥ 4Drce

1
∣∣∣(a− λ̄

2
, b)
∣∣∣2
W
,

that is, (32) follows from (28).
By (13) and (32), we can also obtain

|δM(s)|2H ≤ 2 |δ(s)|2H + 2 |d(s)|2H ≤ 2 |w(s)|2H + 2 |d(s)|2H

≤ 2eDrc|(a− λ̄2 ,b)|
2

W
T∗ |z0|2H + 2 |z0|2H = 2

(
e

1
2 + 1

)
|y0|2H , s ∈ [s0, s0 + T∗].

We observe that the control ηM := 1
T
w associated with δM satisfies

|ηM(s0, y0)|2L2((s0,s0+T∗),H) ≤
1
T∗

e
1
2 |y0|2H .

We also see that T∗ does not depend on s0. Then, for any given z0 ∈ H, we can define
the concatenated control η̃ = η̃λ̄,a,b(s0, z0) in the half line Rs0 = (s0,+∞) time interval
as follows{

η̃ |(s0,s0+T∗)
= ηM(s0, z0),

η̃ |(s0+iT∗,s0+(i+1)T∗)
= ηM(s0 + iT∗, y(z0, η̃ |(s0,s0+iT∗)

)(s0 + iT∗)), i ∈ N0,

where y(z0, η̃ |(s0,s0+iT∗)
)(t) stands for the solution of (31), with the setting (s0, y0, f) =

(s0, z0, η̃ |(s0,s0+iT∗)
).
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In this way we have that

|y(s0 + iT∗)|2H ≤ |y(s0)|2H , for all i ∈ N,

|y(s0 + iT∗ + τ)|2H ≤ 2
(

e
1
2 + 1

)
|y(s0)|2H , for all τ ∈ [0, T∗],

|η̃|2L2((s0+iT∗,s0+(i+1)T∗),H) ≤
1
T∗

e
1
2 |y(s0)|2H , for all i ∈ N.

Finally, we can conclude (29) and (30) from the fact that z = e−
λ̄
2

(·−s0)y solves (19)

in Rs0 with χ = 1 and ηλ̄,a,b = e−
λ̄
2

(·−s0)η̃. �

Also, concerning the example Ex2 above, again in the case ω = Ω and χ = 1, an
estimate similar to (28) will follow, for example, in the case Ω is convex and we take

piecewise constant controls related to a partition of Ω =
⋃M
i=1 Ωj into suitable small

convex sub-domains Ωi. Now, if D is the diameter of Ω we can cover Ω with nd copies
(obtained by suitable translations) of the rectangle

∏d
i=1[0, l], with l = D

n
, and whose

diameter is d
1
2 l. Taking the intersection of these rectangle copies with Ω we still have

that we can cover Ω with M ≤ nd convex domains {Ωi | i ∈ {1, 2, . . . , M}}, each with

diameter not bigger than d
1
2 l. Proceeding as in the proof of Theorem 3.13 we arrive to

the sufficient condition (32) for stabilization

|(1− PM)|−2
L(H,V ′) ≥ 4Drce

1
∣∣∣(a− λ̄

2
, b)
∣∣∣2
W
.

Now we follow [KR15a, Section IV.A] and [BKR15, Section 2.3, Example 2.15] to

compute |(1− PM)|−2
L(H,V ′). Let us set C =

{
Ψi = 1

|1Ωi|H
1Ωi | i ∈ {1, 2, . . . , M

}
∈ H,

ω = Ω, and χ = 1. For given v ∈ V and z ∈ H we find that

(1ω(1− PM)1ωz, v)V ′, V = ((1− PM)z, v)V ′, V = (z, (1− PM)v)H

=
(
z, v −

M∑
i=1

(v, Ψi)HΨi

)
H

=
M∑
i=1

(
z |Ωi , ϕi

)
L2(Ωi)

,

where ϕi := v |Ωi − (v |Ωi , Ψi |Ωi)L2(Ωi)Ψi |Ωi = v |Ωi −
1

|1|2
L2(Ωi)

(v |Ωi , 1)L2(Ωi) has zero aver-

age in Ωi. This allows to conclude that |∇ϕi|2L2(Ωi)n
≥ µ1,i |ϕi|2L2(Ωi)

, where µ1,i is the
first nonzero eigenvalue µ1,i of the Neumann Laplacian in Ωj. Recall that in this case,

from [PW60, Equation (1.9)], we know that µ1,i ≥ π2

l2d
. Thus, we find for z ∈ H and

v ∈ V with |z|H = 1, |v|V = 1 the estimates

(1ω(1− PM)1ωz, v)V ′, V ≤
M∑
i=1

µ
− 1

2
1,i

∣∣z |Ωi∣∣L2(Ωi)

∣∣∇v |Ωi∣∣L2(Ωi)
≤ d

1
2 lπ−1.

Therefore |(1− PM)|2L(H,V ′) ≤ l2π−2d, and we can conclude that

l−2 ≥ 4π−2dDrce
1
∣∣∣(a− λ̄

2
, b)
∣∣∣2
W

is a sufficient condition for stabilization. That is, the M ≤ nd = Ddl−d piecewise constant
actuators in C above are able to stabilize the system. That is, it is enough to take

M ≥ (4Drce1

π2 )
d
2Ddd

d
2

∣∣∣(a− λ̄
2
, b)
∣∣∣d
W

piecewise constant actuators as above to stabilize the system.
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3.5. Feedback stabilizing rule and Riccati equation. From Theorem 3.12 we know
that system (19) is stabilizable with rate λ̄

2
, provided (24) holds true. Here we recall that

in that case the control can be taken in feedback form, i.e.

η = Fλ̄(t)z = B∗MΠλ̄(t)z,

with

BM := 1ωχPM1ω. (33)

Actually, the procedure is standard. We have just to follow the arguments in [BRS11,
BKR15], by considering suitable minimization problems to conclude the following results.

Lemma 3.14. Let (M,R) = (1, 1) or (M,R) = ((−∆)
1
2 , 1), where 1 here stands for

identity operator. Then there exists a function Π: s 7→ Π(s), s ≥ 0, which belongs to

P :=

P ∈ L∞(R0,L(H))

∣∣∣∣∣∣
P (t) is self-adjoint positive definite for all t ≥ 0,
the family {P (t) | t ≥ 0} is continuous in the
weak operator topology


and satisfies the differential Riccati equation

Π̇ + ΠAa,b + Aa,b∗Π− ΠBMR−1B∗MΠ + λ̄Π +M∗M = 0, (34)

with Aa,bz := ∆z− az−∇ · (bz). Moreover, Π = Πλ̄ is the unique solution of (34) in the
class P. Furthermore there is a constant C[CW ,λ̄, 1λ̄ ] such that

|Πλ̄(s)|L(H) ≤ C[CW ,λ̄, 1λ̄ ], for all s ≥ 0. (35)

We recall that the obtained feedback control is the one that minimizes the cost function

J(η) = J(z(η), η) :=

∫ +∞

s0

|Mz(τ)|2H + (Rη(τ), η(τ))Hdτ. (36)

Let us now consider the closed-loop system

∂tz̃ −∆z̃ + (a− λ̄
2
)z̃ +∇ · (bz̃) +BMR−1B∗MΠλ̄z̃ = 0, (37a)

z̃ |Γ = 0, z̃(s0) = z0. (37b)

Theorem 3.15. Let χ and PM satisfy the conditions in Theorem 3.12, let (M,R) = (1, 1)

or (M,R) = ((−∆)
1
2 , 1), and let z0 ∈ H. Then the solution z̃ for (37) is defined for all

t ≥ s0, and it satisfies

|z̃|2W (Rs0 ,V,V ′)
≤ C[CW ,λ̄, 1λ̄ ] |z0|2H . (38)

Notice that that z̃ solves (37) if, and only if, z = e−(·−s0) λ̄
2 z̃(t) solves

∂tz −∆z + az +∇ · (bz) +BMR−1B∗MΠλ̄z = 0, (39a)

z |Γ = 0, z(s0) = z0. (39b)

Therefore we can conclude the next result.

Corollary 3.16. Under the assumptions of Theorem 3.15, let Πλ̄ ∈ P be the unique
solution of (34). Then for any z0 ∈ H, the solution z of (39) is defined globally and
satisfies, for all t ≥ s0,

e(t−s0)λ̄ |z(t)|2H +

∫ t

s0

e(τ−s0)λ̄(|z(τ)|2V + |∂tz(τ)|2V ′) dτ ≤ C[CW,st,λ̄, 1λ̄ ] |z0|2H .
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3.6. Dependence of the transient bound on the exponential rate. From Theo-
rem 3.12 we have that, for a suitable open-loop control η, the solution of system (19)
satisfies

|z(t)|2H ≤ Cλ̄e
−λ̄(t−s0) |z0|2H , for t ≥ s0, (40a)

where

Cλ̄ ≤ eT0,2+T1,2λ̄2

, (40b)

for suitable positive constants T0,2 and T1,2, which can be taken independent of λ̄. Taking,

for example, λ̂ = λ̄
2
, again by Theorem 3.12, we have that J(z(η), η) ≤ C̃λ̄e

−λ̄(t−s0) |z0|2H ,

with C̃λ̄ ≤ eT̃0,2+T̃1,2λ̄2
and J as in (36). In particular, the solution of the closed-loop

system (37) also satisfies

|z̃(t)|2H ≤ Ĉλ̄ |z0|2H , Ĉλ̄ ≤ eT̂0,2+T̂1,2λ̄2

, (40c)

Remark 3.17. In the case a ∈ L∞(I, L∞) we have a slightly different observability inequal-

ity (cf. [DZZ08]), and we can also prove that we can take Υ0 = e(A1λ̄+B2)T∗ for suitable
constants A1 and A2, in Theorem 3.12. In this case we would arrive to an estimate in
the form Cλ̄ ≤ eT0,1+T1,1λ̄. Notice that in either case we have a term λ̄e with e ≥ 1.

Of course, the constants Cλ̄, C̃λ̄, and Ĉλ̄ above are related to each other.

We will prove that we can have (40b) with Cλ̄ ≤ e
T

0, 12
+T

1, 12
λ̄

1
2

. The motivations of this
study are the following:

• a sufficient condition, on the smallness of
Ĉλ̄
λ̄

, given in [BKR15] for the stabiliz-
ability of the FitzHugh–Nagumo system.

• we need to know the constant Ĉλ̄ to guarantee that at time t = τ > s0 we
will be closer to zero than we are at time t = s0, because from |z̃(τ)|2H ≤
Cλ̄e

−λ̄(τ−s0) |z̃(s0)|2H it follows that

|z̃(τ)|2H < |z̃(s0)|2H if τ > s0 +
log(Ĉλ̄)

λ̄
.

• as we will see, the value ε in (3) will decrease as Ĉλ̄ increases, that is the lin-
earization based feedback control will work, for the nonlinear system, in a bigger

neighborhood for a smaller Ĉλ̄ (cf. Remark 4.10 below).

Remark 3.18. Notice also that necessarily Ĉλ̄ ≥ 1. Then
Ĉλ̄
λ̄
→ +∞ as λ̄→ 0. It follows

that, if Ĉλ̄ ≈ e
T̂

0, 12
+T̂

1, 12
λ̄

1
2

for big λ̄, then the function
Ĉλ̄
λ̄

has a strictly positive minimum.

That is,
Ĉλ̄
λ̄

cannot be made arbitrarily small by the choice of λ̄.

Following [HPP01], since associated to a closed-loop system we will call the constant

Ĉλ̄ the transient bound associated to that system. The following Theorem is, however,
concerned with open-loop controls and with no restriction on the dimension of the control.

Theorem 3.19. There exist T∗∗ > 0 and nonnegative constants T0, 1
2
, and T1, 1

2
, such that

for a suitable control function η, the solution of system (15), with B = 1ω, satisfies for
all z0 ∈ H

|z(t)|2H ≤ e
T

0, 12
+T

1, 12
λ̄

1
2

e−λ̄(t−s0) |z0|2H , for t ≥ s0, (41)

and z(t) = 0 for all t ≥ s0 + T∗∗.
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16 D.Phan and S. S. Rodrigues

Proof. Given T > 0 and taking s1 = s0 + T , by Lemma 3.11 (extending the control by
zero for t > s1) we have

|z(t)|2H ≤ eDrc|(a,b)|2WIT |z(s0)|2H

+ 2 |ι|2L(H,V ′) e
Drc|(a,b)|2WIT+D̂Θ

(
T,|a|

L∞(R0,L
d)
,|b|L∞w (R0,L

∞),d
)
|z(s0)|2H

,

for all t > s0, and z(t) = 0 for all t ≥ s0 + T . Thus we can write

|z(t)|2H ≤ eρ0(1+ 1
T

)+ρ1(1+λ̄)T |z(s0)|2H

for suitable nonnegative constants ρ0 and ρ1 (depending on |(a, b)|W and d, but neither
on T nor on λ̄).

Taking the minimizer T∗∗ > 0 of e
ρ0(1+ 1· )+ρ1(1+λ̄)· is given by ρ0

T 2
∗∗

= ρ1(1 + λ̄), we find

|z(t)|2H ≤ eρ0+2(ρ0ρ1)
1
2 (1+λ̄)

1
2 e−λ̄(t−s0) |z0|2H ≤ eρ0+2(ρ0ρ1)

1
2 +2(ρ0ρ1)

1
2 λ̄

1
2 e−λ̄(t−s0) |z0|2H ,

for all t ≥ s0, and z(t) = 0 for all t ≥ s0 + T∗∗. �

3.7. Remark on the viscosity coefficient. In section 2 we have rescaled time to
normalize the viscosity parameter. We recall that the dimension of the stabilizing control
may depend on the viscosity parameter. If we are given the system

∂tz − ν∆z + az +∇ · (bz) +
M∑
i=1

uiΦi = 0; z |Γ = 0.

after rescaling time t = τ
ν

we arrive to system

∂τ z̆ −∆z̆ +
ă

ν
z̆ +∇ ·

(
b̆

ν
z̆

)
+

M∑
i=1

ŭiΦi = 0; z̆ |Γ = 0.

with f̆(τ) := f( τ
ν
). Then if we want to have

|z(t)|2H ≤ Ce−λ̄t |z(0)|2H ,

then we must have

|z̆(τ)|2H ≤ Ce−
λ̄
ν
τ |z(0)|2H .

From Theorem 3.12, condition (24) is sufficient for stabilization. That condition reads
now

|1ωχ(1− PM)1ω|L(H,V ′) ≤ 2 |ι|−2
L(H,V ′) e

−Θ

(
| ăν− λ̄

2ν |L∞(I,Ld)
,
∣∣∣ b̆ν ∣∣∣L∞w (I,L∞)

,
∣∣∣( ăν− λ̄

2ν
, b̆
ν

)
∣∣∣
WI

,d,ν

)

= 2 |ι|−2
L(H,V ′) e

−Θ

(
| aν− λ̄

2ν |L∞(I,Ld)
,| bν |L∞w (I,L∞)

,|( aν− λ̄
2ν
, b
ν

)|WI ,d,ν
)
,

with Θ as in (23). Therefore, PM must be closer to the identity operator for smaller ν.
This is natural, because for smaller ν the system is “less stable”. In other words, in
order to stabilize the system, we expect to need more controls as ν decreases. Recall the
estimates (26) and (27) in the examples in section 3.4.
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4. Local internal stabilization of the nonlinear system

Here we show that the feedback rule −BMR−1B∗MΠλ̄(t) constructed to stabilize expo-

nentially the linear system (39) to zero, with rate λ̄
2
, also stabilizes the nonlinear system

∂tz −∆z + az +∇ · (bz) +BMR−1B∗MΠλ̄z = N (z), (42a)

z |Γ = 0, z(s0) = z0. (42b)

to zero, with the same rate, provided z0 is small enough (cf. system(6)), and provided
the nonlinearity N satisfies suitable boundedness properties.

We follow a standard procedure by using a suitable fixed point argument. To deal with
the nonlinear system we will need to ask more regularity for the reference trajectory,
or more precisely to the function b we obtain in the convection part of the linearized
system (10a), after linearization around that reference trajectory.

This additional regularity will allow us to construct appropriate Banach spaces where
we can construct an appropriate contraction mapping, whose fixed point is the solution
of the nonlinear system (42).

Implicit boundedness assumption on the the reference trajectory. Consider the spaces

WJ
st :=

{
b ∈ WJ | ∇ · b ∈ L∞(J, L2(Ω,R))

}
,

Wst := {b ∈ W | ∇ · b ∈ L∞(R0, L
2(Ω,R))} , d ∈ {1, 2, 3}, (43a)

WJ
st :=

{
b ∈ WJ | ∇ · b ∈ L∞w (J, L∞(Ω,R))

}
,

Wst := {b ∈ W | ∇ · b ∈ L∞w (R0, L
∞(Ω,R))} , d ≥ 4, (43b)

(cf. (8)) which are supposed to be endowed, respectively, with the norms

|(a, b)|WJ
st

:=
(

(|(a, b)|2WJ + |∇ · b|2L∞(J,Lr)

) 1
2

;

|b|Wst
:=

(
(|(a, b)|2W + |∇ · b|2L∞w (R0,Lr)

) 1
2
.

with r = 2 for d ∈ {1, 2, 3}, and r =∞ for d ≥ 4. The spaces (43) are defined essentially
for us to be able to derive the existence of strong solutions. Notice that for 1 < r < +∞
we have L∞w (R0, L

r) = L∞(R0, L
r), because Lr and Lr∗ , with 1

r
+ 1

r∗
= 1, are both

separable. See [Fat99, Lemma 9.1.2] and [Fat05, Section 4.1].
Now, we have the following estimates for the convection term

|∇ · (bz)|H = |(∇ · b)z + b · ∇z|H ≤ |(∇ · b)|L2 |z|L∞ + |b|L∞ |z|V
and, by using the Agmon inequality (cf. (11) and [Tem97, chapter II, section 1.4]),

|∇ · (bz)|H ≤ C |(∇ · b)|L2 |z|
1
2
H |z|

1
2
V + |b|L∞ |z|V , for d = 1.

|∇ · (bz)|H ≤ C |(∇ · b)|L2 |z|
1
2
H |z|

1
2

D(∆) + |b|L∞ |z|V , for d = 2.

|∇ · (bz)|H ≤ C |(∇ · b)|L2 |z|
1
2
V |z|

1
2

D(∆) + |b|L∞ |z|V , for d = 3.

For d ≥ 4, the Agmon inequality does not allow us to bound the L∞-norm by the D(∆)-
norm. This is the reason we (need to) take different spaces in (43b). Notice that

|∇ · (bz)|H ≤ C |∇ · b|L∞ |z|H + |b|L∞ |z|V , for all d ≥ 1.

where C > 0 is a positive constant.

Remark 4.1. Considering (43) we will be able to treat a wide class of nonlinearities.
However, it may happen that we do not need to deal with strong solutions (see for
example the case of 1D Burgers equation considered in [KR15b]), or it may happen that
that we do not need to ask extra regularity for (a, b) to have strong solutions (see for
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18 D.Phan and S. S. Rodrigues

example the case the convection term takes the form b · ∇z as in [BKR15], suitable to
deal with Neumann boundary conditions). That is, depending on the particular system
we are dealing with, we may consider different (less regular) spaces (43).

Boundedness assumption on the nonlinearity. We suppose the nonlinearity N (z) in sys-

tem (42) satisfies for a suitable constant Ĉ ≥ 0, and all (z, z̃) ∈ D(∆) × D(∆), the
estimates

|N (z)−N (z̃)|2H ≤ Ĉ|z − z̃|2V (1 + |z|ε1V + |z̃|ε2V )
(
|z|2D(∆) + |z̃|2D(∆)

)
+ Ĉ|z − z̃|2D(A) (|z|ε3V + |z̃|ε4V ) , (44)

with {ε1, ε2} ∈ [0,+∞), and {ε3, ε4} ∈ [2,+∞). Notice that (44) implies that

(N (z)−N (z̃), z − z̃)H

≤ 2Ĉ
(
|z|ε3V + |z̃|ε4V +

(
|z|2V + |z̃|2V

)
(1 + |z|ε1V + |z̃|ε2V )

) (
|z|2D(∆) + |z̃|2D(∆)

)
|z − z̃|2H

≤ Ĉ1 (1 + |z|ε5V + |z̃|ε6V )
(
|z|2D(∆) + |z̃|2D(∆)

)
|z − z̃|2H , (45)

for suitable {ε5, ε6} ∈ [2,+∞).

4.1. Strong solutions for the linearized systems. We fix a and b, which may depend
on time and space, and a constant CW,st ≥ 0, satisfying

|a|W + |b|Wd
st
≤ CW,st. (46)

We present now some results, whose proofs can be done by following the arguments
in [BKR15, section 2].

By multiplying (10a) by −2∆z, instead of by 2z as in the proof of Lemma 3.3, we can
also obtain the following.

Lemma 4.2. Given f ∈ L2(I,H) and z0 ∈ V , there exists a strong solution z ∈
W (I,D(A), H) for system (10), which depends continuously on the data:

|z|2W (I,D(A),H) ≤ C[|I|,CW,st]

(
|z(s0)|2V + |f |2L2(I,H)

)
.

The next lemma shows a certain smoothing property of system (10).

Lemma 4.3. Given f ∈ L2(I,H) and z0 ∈ H, let z be the weak solution for system (10).
Then y(t) := (t− s0)z(t) is in W (I,D(A), H) and satisfies the estimates

|y|2W (I,D(A),H) ≤ C[|I|,CW,st]

(
(s1 − s0)2 |f |2L2(I,H) + |z|2L2(I,H)

)
≤ C[|I|,CW,st]

(
|z(s0)|2H + |f |2L2(I,H)

)
.

Definition 4.4. For f ∈ L2
loc(Rs0 , H) and y0 ∈ H the function z defined in Rs0 × Ω by

the property that z |(s0,τ) coincides with the weak solution of (10) in (s0, τ), for all τ > s0

is well defined. It is called the global weak solution of (10) in Rs0 × Ω.

We have the following property for the solutions of (10) on the infinite time inter-
val Rs0 = (s0,+∞), s0 ≥ 0.

Lemma 4.5. For f ∈ L2(Rs0 , V
′) and z0 ∈ H, let z be the global weak solution of (10)

in Rs0, with z(s0) = z0. If z ∈ L2(Rs0 , H), then z ∈ W (Rs0 , V, V
′), and

|z|W (Rs0 ,V,V ′)
≤ C[CW,st]

(
|z(s0)|2H + |f |2L2(Rs0 ,V ′)

+ |z|2L2(Rs0 ,H)

)
.
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Strong solutions for the closed-loop linear system. The above Lemmas allow us to conclude
the next result (cf. [BKR15, Corollary 2.19]).

Corollary 4.6. Under the assumptions of Theorem 3.15, let Π ∈ P be the unique solution
of (34), and let (a, b) satisfy (46). Then for any z0 ∈ V , the solution z of (39) is defined
globally and satisfies, for all t ≥ s0,

|z(t)|2V + |z|2L2((t,t+1),D(A)) ≤ C[CW,st,λ̄, 1λ̄ ]e
−(t−s0)λ̄ |z0|2V .

4.2. Fixed point argument. We start with the following result which follows from
Corollary 4.6 and Lemma 4.2.

Corollary 4.7. Under the assumptions of Corollary 4.6, with z0 ∈ V , the solution z
of (39) is defined globally and satisfies,

sup
t≥s0

∣∣∣eλ̄(·−s0)z(·)
∣∣∣2
W ((t,t+1),D(A),H)

≤ C[CW,st,λ̄, 1λ̄ ] |z0|2V .

Inspired from Corollary 4.7, taking s0 = 0, we define the Banach space

Z λ̄ :=
{
z ∈ L2

loc (R0, H)
∣∣∣ |z|Zλ̄ <∞}

endowed with the norm |z|Zλ̄ := supr≥0

∣∣∣eλ̄·z∣∣∣
W ((r,r+1),D(A),H)

. We also set

Z λ̄loc :=

{
z ∈ L2

loc (R0, H))
∣∣∣ ∣∣∣eλ̄·z∣∣∣

W ((r,r+1),D(A),H)
<∞, for all r ≥ 0

}
.

For a given constant % > 0 and z0 ∈ V we define the subset

Z λ̄% :=
{
z ∈ Z λ̄ | |z|2Zλ̄ ≤ %|z0|2V

}
,

and the mapping Ψ: Z λ̄% → Z λ̄loc, z̄ 7→ z, taking a given vector z̄ to the solution z of

∂tz − ν∆z + az +∇ · (bz) +BMR−1B∗MΠλ̄z = N (z̄), (47a)

z |Γ = 0, z(s0) = z0. (47b)

Lemma 4.8. Under the hypotheses of Corollary 4.7, there exists % > 0 such that the
following property holds: for any γ ∈ (0, 1) one can find a constant ε = εγ > 0 such

that, for any z0 satisfying and |z0|V ≤ ε, the mapping Ψ takes the set Z λ̄% into itself and
satisfies the inequality

|Ψ(z̄1)−Ψ(z̄2)|Zλ̄ ≤ γ|z̄1 − z̄2|Zλ̄ for all z̄1, z̄2 ∈ Z λ̄% . (48)

Proof. We sketch the proof into 3 main steps:

s© Step 1: a preliminary estimate. Consider the system

∂tz − ν∆z + az +∇ · (bz) +BMR−1B∗MΠλ̄z = f, (49a)

z |Γ = 0, z(0) = z0. (49b)

where f ∈ L2
loc(R0, H). If z is the solution of system (49) with f = 0, by Corollary 4.7,

sup
r≥0
|eλ̄·z(·)|2W ((r,r+1),D(A),H) ≤ C[CW,st,λ̄, 1λ̄ ]|z0|2V . (50)

Proceeding as in [BRS11, KR15b, BKR15, Rod15b], it follows that for nonzero f we
also have

sup
r≥0
|eλ̄·z(·)|2W ((r,r+1),D(A),H) ≤ C[CW,st,λ̄, 1λ̄ ]

(
|z0|2V + sup

k∈N

∫ k+1

k

e4λ̄s|f(s)|2H ds

)
. (51)
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s© Step 2: Ψ maps Z λ̄% into itself, if |z0|V is small. We will replace f by N (z̄) in (51).
From (44), with (z, z̃) = (z̄, 0), we find that

sup
k∈N

∫ k+1

k

e4λ̄s|N (z̄)(s)|2H ds

≤ sup
k∈N

sup
s∈[k,k+1]

Ĉ
(
|eλ̄sz̄(s)|2V + |eλ̄sz̄(s)|2+ε1

V + |eλ̄sz̄(s)|ε3V
)∫ k+1

k

|eλ̄sz̄(s)|2D(A) ds

≤ C1

(
|z̄|4Zλ̄ + |z̄|4+ε1

Zλ̄ + |z̄|ε3+2

Zλ̄

)
,

because W ((k, k + 1),D(∆), H) ↪−→ C([k, k + 1], V ) uniformly with respect to k ∈ N.

Thus, inequality (51) with f = N (z̄) and z̄ ∈ Z λ̄% gives us

|Ψ(z̄)|2Zλ̄ ≤ C[CW,st,λ̄, 1λ̄ ]

(
|z0|2V + C1

(
|z̄|4Zλ̄ + |z̄|4+ε1

Zλ̄ + |z̄|ε3+2

Zλ̄

))
≤ C2

(
1 + %2|z0|2V + %

4+ε1
2 |z0|2+ε1

V + %
ε3+2

2 |z0|ε3V
)
|z0|2V

and if we set % = 4C2 and ε < min

{
%−1, %

− 4+ε1
2(2+ε1) , %

− ε3+2
2ε3

}
, then we obtain

|Ψ(z̄)|2Zλ̄ ≤ C2

(
1 + %2ε2 + %

4+ε1
2 ε2+ε1 + %

ε3+2
2 εε3

)
≤ 4C2|z0|2V = %|z0|2V (52)

if |z0|V ≤ ε, which means that Ψ(z̄) ∈ Z λ̄% .

s© Step 3: Ψ is a contraction, if |z0|V is smaller. It remains to prove (48). Let us

take two functions z̄1, z̄2 ∈ Z λ̄% and let Ψ(z̄1) and Ψ(z̄2) be the corresponding solutions

for (47). Set e = z̄1 − z̄2 and dΨ = Ψ(z̄1) − Ψ(z̄2). Then dΨ solves (49) with dΨ(0) = 0
and f = N (z̄1)−N (z̄2). Therefore, by inequality (51), we have

|Ψ(z̄1)−Ψ(z̄2)|2Zλ̄ ≤ C[CW,st,λ̄, 1λ̄ ] sup
t≥0

∫ t+1

t

e4λ̄s|N (z̄1)(s)−N (z̄2)(s)|2H ds,

and from

e4λ̄s|N (z̄1)(s)−N (z̄2)(s)|2H

≤ |eλ̄se(s)|2V
(

1 +
∣∣∣eλ̄sz̄1(s)

∣∣∣ε1
V

+
∣∣∣eλ̄sz̄2(s)

∣∣∣ε2
V

)(∣∣∣eλ̄sz̄1(s)
∣∣∣2
D(∆)

+
∣∣∣eλ̄sz̄2(s)

∣∣∣2
D(∆)

)
+ |eλ̄se(s)|2D(A)

(
|eλ̄sz̄1(s)|ε3V + |eλ̄sz̄2(s)|ε4V

)
,

it follows that

|Ψ(z̄1)−Ψ(z̄2)|2Zλ̄ ≤ C3|e|2Zλ̄
(

1 + |z̄1|ε1Zλ̄ + |z̄2|ε2Zλ̄
)(
|z̄1|2Zλ̄ + |z̄2|2Zλ̄ + |z̄1|ε3Zλ̄ + |z̄2|ε4Zλ̄

)
,

and since z̄1 and z̄2 are both in Z λ̄% , we arrive to

|dΨ|2Zλ̄ ≤ C3|e|2Zλ̄
(

1 + %
ε1
2 |v0|ε1V + %

ε2
2 |v0|ε2V

)(
2%|v0|2V + %

ε3
2 |v0|ε3V + %

ε4
2 |v0|ε4V

)
,

Choosing ε > 0, smaller than the one in Step 2, such that

ε < min

{
%−1, %

− 4+ε1
2(2+ε1) , %

− ε3+2
2ε3 , %−

1
2 , ( γ2

18C3
)

1
2%−

1
2 , ( γ2

9C3
)

1
ε3 %−

1
2 , ( γ2

9C3
)

1
ε4 %−

1
2

}
,

then we have that Ψ maps Z λ̄% into itself and

|dΨ|2Zλ̄ ≤ C3|e|2Zλ̄
(

1 + %
ε1
2 εε1 + %

ε2
2 εε2

)(
2%ε2 + %

ε3
2 εε3 + %

ε4
2 εε4

)
< C3|e|2Zλ̄3 3γ2

9C3
,

Preliminary version – September 28, 2018 – 15:46



Stabilization to trajectories for parabolic equations 21

provided |z0|2V ≤ ε. That is (48) holds true: |Ψ(z̄1)−Ψ(z̄2)|2Zλ̄ < γ2|z̄1 − z̄2|2Zλ̄ .

The proof of Lemma 4.8 is complete. �

The following result says that the feedback control locally stabilizes exponentially the
nonlinear system (42), is locally exponentially stable with rate λ̄

2
.

Theorem 4.9. Under the hypotheses of Corollary 4.7, there is ε > 0 with the following
property: if |z0|V ≤ ε, then there exists a solution for the system (42), in R0 × Ω, which
belongs to L2

loc(R0,D(A)) ∩ C([0,+∞), V ), is unique, and satisfies

|z(t)|V ≤ Ce−λ̄(t−s0)|z0|V , for all t ≥ s0, (53)

for a suitable constant C independent of (ε, z0).

Proof. From Lemma 4.8 and the contraction mapping principle it follows that if z0 ∈ V
is sufficiently small, |z0|V < ε, then there exists a unique fixed point z = Ψ(z̄) = z̄ ∈ Zε%
for Ψ. It follows from the definitions of Ψ and Zε

% that z solves the system (47), with
z̄ = z. We can conclude that z solves (42).

Further, inequality (53) can be concluded from (52).
Finally, it remains to prove the uniqueness of the solution for (42) in the space Z :=

L2
loc(R0,D(A) × H) ∩ C([0,+∞), V × H) ⊃ Zε%. Let z1 and z2 be two solutions, in Z,

for (42). It turns out that e = z1 − z2 solves (49) with f = N (z1) − N (z2), Using (35)
and (45), we can obtain

〈BMR−1B∗MΠλ̄e, e〉V ′,V ≤ C[CW,st,λ̄, 1λ̄ ] |ev|
2
H ,

〈F(z1)−F(z2), e〉V ′,V ≤ Ĉ1 (1 + |z1|ε5V + |z2|ε6V )
(
|z1|2D(∆) + |z2|2D(∆)

)
|e|2H ,

from which we can derive, proceeding as in the proof of Lemma (3.3), that

d

dt
|e|2H ≤ C[CW,st,λ̄, 1λ̄ ,

1
ν ] (1 + |z1|ε5V + |z2|ε6V )

(
|z1|2D(∆) + |z2|2D(∆)

)
|e|2H .

Notice that the function

s 7→ G(s) := C[CW,st,λ̄, 1λ̄ ,
1
ν ] (1 + |z1(s)|ε5V + |z2(s)|ε6V )

(
|z1(s)|2D(∆) + |z2(s)|2D(∆)

)
is locally integrable, which allow us to write

|e(t)|2H ≤ e
∫ t
0 G(s) ds |e(0)|2H = 0, for all t ≥ 0.

That is, the uniqueness holds true: z1 − z2 = e = 0. �

Remark 4.10. Notice that from the proof of Lemma 4.8 we see that % increases and ε
decreases as the transient bound CCW,st,λ̄,

1
λ̄

in (50) increases.

5. Local internal stabilization to trajectories

As a straightforward corollary to Theorem 4.9 it follows the stabilization to trajectories
for system (1).

Let us be given a solution ŷ for the uncontrolled system (1) (with u = 0) with ŷ0 :=

ŷ(0) ∈ H and such that the vector functions in (5) are such that N̂ satisfies (44) and

(45), and (â, b̂) satisfies (46), for suitable nonnegative constants Ĉ and CW,st. Notice

that, recalling the notation in section 2, in this case N := 1
ν

˘̂N also satisfies (44) and (45),

and (a, b) = ( 1
ν
˘̂a, 1

ν

˘̂
b) also satisfies (46),
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We consider system (1)

∂ty − ν∆y + f(y,∇y) +BMR−1B∗M Π̂λ(y − ŷ) = 0;

y |Γ = g; y(0) = y0.
(54)

with Π̂λ solving

˙̂
Πλ + Π̂λAâ,b̂

ν + Aâ,b̂
ν

∗
Π̂λ − Π̂λBMR−1B∗M Π̂λ + λΠ̂λ +M∗M = 0, (55)

with Aâ,b̂
ν z := ν∆z − âz −∇ · (b̂z).

Observe that z̆(τ) := (y − ŷ)( τ
ν
) solves

∂τ z̆ −∆z̆ + az̆ +∇ · (bz̆) + 1
ν
BMR−1B∗M

˘̂
Πλz̆ = N (z̆);

z̆ |Γ = 0; z̆(0) = y0 − ŷ0,

and
˘̂
Πλ(τ) = Π̂λ(

τ
ν
) solves (34) with a different pair (R,M):

d
dτ

˘̂
Πλ +

˘̂
ΠλAa,b + Aa,b∗ ˘̂

Πλ −
˘̂
ΠλBM(νR)−1B∗M

˘̂
Πλ + λ

ν

˘̂
Πλ + (( 1

ν
)

1
2M)∗(( 1

ν
)

1
2M) = 0.

Therefore, from Theorem 4.9, we have that

|z̆(τ)|2V ≤ Ce−
λ
ν
τ |z̆(0)|2V , for all τ ≥ 0,

provided |z̆(0)|V is small enough. This implies that

|y(t)− ŷ(t)|2V ≤ Ce−λt|y0 − ŷ0|2V , for all t ≥ 0,

and we can conclude that the following theorem holds true.

Theorem 5.1. Under the hypotheses of Theorem 4.9, there exists ε > 0 with the following
properties. If y0 ∈ H is such that

y0 − ŷ0 ∈ V and |y0 − ŷ0|V < ε,

then the solution y of the system (54) goes exponentially to ŷ with rate λ
2
, that is,

|y(t)− ŷ(t)|2V ≤ Ce−λt|y0 − ŷ0|2V , for all t ≥ 0,

for a suitable constant C independent of (ε, y0 − ŷ0). Furthermore, the solution y is, and
is unique, in the affine space ŷ + L2

loc(R0,D(A)) ∩ C([0,+∞), V ).

Notice that the feedback control stabilizes the linearized system to zero globally, that
is, we have the following theorem.

Theorem 5.2. Under the hypotheses of Theorem 4.9, given z0 ∈ V , the solution of

∂tz − ν∆z + âz +∇ · (b̂z) +BMR−1B∗M Π̂λz = 0;

z |Γ = 0; z(0) = z0,
(56)

satisfies

|z(t)|2V ≤ Ce−λt|z0|2V , for all t ≥ 0,

for a suitable constant C independent of z0. Furthermore, the solution z is, and is unique,
in the space L2

loc(R0,D(A)) ∩ C([0,+∞), V ).
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6. Example. Polynomial nonlinearities

Many systems modelling real evolutions involve polynomial nonlinearities, for example
the Fisher-like equations [Fis37, VP09] modelling population dynamics and the Burgers-
like equations [KR15b, BRT15] modelling fluid (e.g., traffic) flow. Here we check the
previous assumptions for the case the function f(y,∇y) takes the form fr(y) + fc(y) · ∇y
where fr and fc = [fc1 fc2 . . . fcd]

>, are polynomials:

fr(y) =

p̄∑
j=0

r̄jy
j and fck(y) =

pk∑
j=0

rk,jy
j,

with r̄j and rk,j real numbers, and pk ∈ N for k ∈ {1, . . . , d}.
For illustration, we consider here the case d = 3. The following estimates will be also

valid for d ∈ {1, 2}, though in those cases better estimates may hold true. On the other
hand some of the following arguments will not work in dimension d ≥ 4, in that case
some changes are needed.

It is enough to analyze the case of monomials, with degree greater than or equal to 2:

f(y) = yn̄ with n̄ ≥ 2

and

f(y) = yn∂xk̄y = 1
n+1

∂xk̄y
n+1, with n ≥ 1 for some k̄ ∈ {1, . . . , d}.

In this case, recalling the notation in Section 2, for a given trajectory ŷ, we obtain
respectively either

â = n̄ŷn̄−1 and b̂ = 0,

or

â = 0 and b̂ = [b̂1 b̂2 . . . b̂d]
>, with b̂k =

{
0 if k 6= k̄,
ŷn if k = k̄.

Observe that in the case of a reaction nonlinearity f(y) = yn̄, condition (9) is satisfied
provided ŷ ∈ L∞(R0, L

3(n̄−1)). In the case of a convection nonlinearity f(y) = ∂xk̄y
n+1,

conditions (9) and (46) are satisfied provided ŷ ∈ L∞w (R0, L
∞) ∩ L∞(R0,W

1,3(Ω,R)).

The nonlinearity. Concerning (44), we need to be more careful, and need a bit more of
work. Again we consider only monomials. We also consider the case ŷ ∈ L∞w (R0, L

∞).

Example 6.1. In the case N (z) = ŷmz2, m ∈ N, (44) holds true. We may write

|N (z)−N (z̃)|2H = |ŷm(z − z̃)(z + z̃)|2H ≤ |z − z̃|
2
H |ŷ

m|2L∞ |z + z̃|2L∞ ,

and

|N (z)−N (z̃)|2H ≤ C |ŷm|2L∞ |z − z̃|
2
V

(
|z|2D(∆) + |z̃|2D(∆)

)
,

which shows that (44) holds true.

Example 6.2. In the case N (z) = ŷmzn, m ∈ N and n = {3, 4, 5}, (44) holds true. We
may write, for suitable nonzero constants rj,

N (z)−N (z̃) = ŷm(z − z̃)
n−1∑
j=0

rjz
j z̃n−1−j
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where in the sum we have monomials of degree n−1. For example for z1z̃n−2, by standard
(yet appropriate) Young, Hölder, Sobolev, and Agmon inequalities, we may write

∣∣(z − z̃)z1z̃n−2
∣∣2
H

=
∣∣(z − z̃)2z2z̃2n−4

∣∣
L1 ≤ |z − z̃|

2
L∞ |z|L∞ |z̃|L∞

∣∣zz̃2n−5
∣∣
L1

≤ C1 |z − z̃|V |z − z̃|D(∆) |z|
1
2
V |z|

1
2

D(∆) |z̃|
1
2
V |z̃|

1
2

D(∆) |z|L6 |z̃|2n−5

L
6(2n−5)

5

,

and, since H1(Ω,R) ↪−→ L6(Ω,R) ↪−→ L
6(2n−5)

5 (Ω,R),

∣∣(z − z̃)z1z̃n−2
∣∣2
H
≤ C1

2
|z − z̃|2V |z|D(∆) |z̃|D(∆) + C2 |z − z̃|2D(∆) |z|

3
V |z̃|

1+2(2n−5)
V

≤ C1

4
|z − z̃|2V

(
|z|2D(∆) + |z̃|2D(∆)

)
+ C3 |z − z̃|2D(∆)

(
|z|4n−6

V + |z̃|4n−6
V

)
.

For the other monomials we can obtain analogous estimates, which give us

|N (z)−N (z̃)|2H ≤ C4 |ŷm|2L∞ |z − z̃|
2
V

(
|z|2D(∆) + |z̃|2D(∆)

)
+ C4 |ŷm|2L∞ |z − z̃|

2
D(∆)

(
|z|4n−6

V + |z̃|4n−6
V

)
,

which shows that (44) holds true.

Example 6.3. In the case N (z) = ŷmz6, we were not able to derive (44). Proceeding as
above, for suitable nonzero constants rj,

N (z)−N (z̃) = ŷm(z − z̃)
4∑
j=0

rjz
j z̃5−j,

where in the sum we have now monomials of degree 5. If for example for z1z̃4, we proceed
as above and write

∣∣(z − z̃)z1z̃4
∣∣2
H

=
∣∣(z − z̃)2z2z̃8

∣∣
L1 ≤ |z − z̃|

2
L∞ |z|L∞ |z̃|L∞

∣∣zz̃7
∣∣
L1

≤ C1 |z − z̃|V |z − z̃|D(∆) |z|
1
2
V |z|

1
2

D(∆) |z̃|
1
2
V |z̃|

1
2

D(∆)

∣∣zz̃7
∣∣
L1 ,

we cannot bound the term |zz̃7|L1 by the V -norms of z and z̃ (for d = 3). Trying to use
again the D(∆)-norms, we were not able to arrive to (44) (the D(∆)-norms will appear
with a power strictly greater than 2).

Example 6.4. In the case N (z) = ∇ · (g(ŷ)zn), where n ∈ {2, 3} and g : R → R3 is a
smooth function, estimate (44) holds true provided g(ŷ) ∈ Wst. We consider only the
case n = 3. We write, for suitable nonzero constants rj,

N (z)−N (z̃) = ∇ ·
(
g(ŷ)(z − z̃)

2∑
j=0

rjz
j z̃2−j

)
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where in the sum we have monomials of degree 2. For example for zz̃ we find

|∇ · (g(ŷ)(z − z̃)zz̃)|2H
≤
∣∣(∇ · g(ŷ))2(z − z̃)2z2z̃2

∣∣
L1 + |g(ŷ)|2L∞

∣∣(∇((z − z̃)zz̃))2
∣∣
L1

≤ |(∇ · g(ŷ))|2L3 |z − z̃|2L6

∣∣z2z̃2
∣∣
L∞

+ |g(ŷ)|2L∞
(∣∣(∇(z − z̃))2

∣∣
L1

∣∣z2z̃2
∣∣
L∞

+ |z − z̃|2L∞
∣∣(∇(zz̃))2

∣∣
L1

)
≤ C |z − z̃|2V |z|

2
L∞ |z̃|

2
L∞ + C |z − z̃|V |z − z̃|D(∆)

(
|z|2V |z̃|

2
L∞ + |z|2L∞ |z̃|

2
V

)
≤ C1 |z − z̃|2V

(
|z|2V + |z|2V

) (
|z|2D(∆) + |z̃|2D(∆)

)
+ C1 |z − z̃|V |z − z̃|D(∆)

(
|z|2V |z̃|V |z̃|D(∆) + |z|V |z|D(∆) |z̃|

2
V

)
≤ C2 |z − z̃|2V

(
|z|2V + |z|2V + 1

) (
|z|2D(∆) + |z̃|2D(∆)

)
+ C2 |z − z̃|2D(∆)

(
|z|6V + |z̃|6V

)
.

We can obtain analogous estimates for the other monomials, and conclude that

|N (z)−N (z̃)|2H ≤ C3 |z − z̃|2V
(
|z|2V + |z|2V + 1

) (
|z|2D(∆) + |z̃|2D(∆)

)
+ C3 |z − z̃|2D(∆)

(
|z|6V + |z̃|6V

)
.

which shows that (44) holds true.

7. Boundary stabilization

We start by considering a linear system in the form (7), without the nonlinearity, which
we rewrite in the more general form

∂tz −∆z + az +∇ · (bz) = 0; z |Γ = BΓζ;

z(0) = z0.
(57)

where now our control is a function ζ ∈ Z, where Z is an Hilbert space, and BΓ ∈
L(Z, G1

loc(R0,Γ)) with

G1
loc(R0,Γ) :=

⋂
T>0

G1((0, T ),Γ),

G1((s0, s1),Γ) := W ((s0, s1), H1(Ω,R), V ′)|Γ := {v |Γ | v ∈ W ((s0, s1), H1(Ω,R), V ′)},

for all s1 > s0 ≥ 0.

7.1. Weak solutions. Let us consider the more general system

∂tz −∆z + az +∇ · (bz) + g = 0, (58a)

z |Γ = γ, z(0) = z0. (58b)

with an external body forcing g and where the control in (57) is replaced by a general
external boundary forcing γ.

Notice that for I = (s0, s1) and for given v ∈ W (I,H1(Ω,R), V ′), we have v |Γ = 0
if, and only if, v ∈ W (I, V, V ′). Therefore since v ∈ W (I, V, V ′) is a closed subspace of
W (I,H1(Ω,R), V ′) we have that the function

E1 : G1(I,Γ)→ W (I,H1(Ω,R), V ′);

γ 7→ E1γ ∈ W (I, V, V ′)⊥, with E1(γ)|Γ = γ
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is well defined. Notice also that in this case we can see that the trace space G1(I,Γ) is
an Hilbert space, with the scalar product

(γ, ξ)G1(I,Γ) := (E1(γ), E1(ξ))W (I,H1(Ω,R),V ′).

The corresponding induced norm corresponds to the trace norm (or range norm, cf. [Rod14,
Lemma 3.1])

|γ|G1(I,Γ) := inf
γ=v|Γ

|v|W (I),H1(Ω,R),V ′) .

Definition 7.1. We say that z is a weak solution for system (58) if y = z − E1γ is a
weak solution for the system (10) with f = g + ∂tE1γ −∆E1γ + aE1γ +∇ · (bE1γ), and
y(0) = z0 − E1γ(0).

Lemma 7.2. Given (a, b) ∈ W satisfying (9), g ∈ L2(I, V ′), γ ∈ G1(I,Γ) and z0 ∈ H,
there exists a weak solution z ∈ W (I,H1(Ω,R), V ′) for (10). Moreover z is unique and
depends continuously on the data:

|z|2W (I,H1(Ω,R),V ′) ≤ C [|I|,CW ]

(
|z(s0)|2H + |g|2L2(I,V ′) + |γ|2G1(I,Γ)

)
.

Proof. The proof is straightforward from Definition 7.1 and Lemma 3.3 (cf. [Rod14, The-
orem 3.2]). �

7.2. Strong solutions. In order to define strong solutions, we introduce

G2
loc(R0,Γ) :=

⋂
T>0

G1((0, T ),Γ),

G2((s0, s1),Γ) := W ((s0, s1), H2(Ω,R), H)|Γ ,

for all s1 > s0 ≥ 0, and consider the extension

E2 : G2((s0, s1),Γ)→ W ((s0, s1), H2(Ω,R), H);

γ 7→ E2γ ∈ W ((s0, s1),D(∆), H)⊥, with E2(γ)|Γ = γ.

The trace space G2((s0, s1),Γ) is endowed with the scalar product

(γ, ξ)G2((s0,s1),Γ) := (E2(γ), E2(ξ))W ((s0,s1),H2(Ω,R),H)

and induced norm

|γ|G2((s0,s1),Γ) := inf
γ=v|Γ

|v|W ((s0,s1),H2(Ω,R),H) .

Definition 7.3. We say that z is a strong solution for system (58) if y = z − E2γ is a
strong solution for the system (10) with f = g+ ∂tE2γ−∆E2γ+ aE2γ+∇ · (bE2γ), and
y(0) = z0 − E2γ(0) ∈ V .

Lemma 7.4. Given (a, b) ∈ Wst satisfying (46), g ∈ L2(I,H), γ ∈ G2(I,Γ) and z0 ∈
H1(Ω,R), with z0−E2γ(0) ∈ V , then there exists a strong solution z ∈ W (I,H2(Ω,R), H)
for (58). Moreover z is unique and depends continuously on the data

|z|2W (I,H2(Ω,R),H) ≤ C[|I|,CW,st]

(
|z(s0)|2H + |g|2L2(I,H) + |γ|2G2(I,Γ)

)
.

Proof. The proof is straightforward from Definition 7.3 and Lemma 4.2. �

Also in the case of nonhomogeneous boundary conditions, we have the following smooth-
ing property.
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Lemma 7.5. Let us be given (a, b) ∈ Wst satisfying (46), z0 ∈ H, g ∈ L2(I,H), and
γ ∈ G2(I,Γ)); then for the weak solution z of system (58), we have that (· − s0)z ∈
W (I,H2(Ω,R), H), and

(|(· − s0)z|2W (I,H2(Ω,R),H)) ≤ C[CW,st]

(
|z0|2H + |g|2L2(I,H) + |γ|2G2(I,Γ)

)
.

Proof. Since z solves (58), it turns out that also w = (· − s0)z does, with different data:

∂tw −∆w + aw +∇ · (bw) + (· − s0)g − z = 0,

w |Γ = (· − s0)γ, w(0) = 0.

Then, from Lemma 7.4, we can derive that

|w|2W (I,H2(Ω,R),H) ≤ C[|I|,CW,st]

(
|(· − s0)g|2L2(I,H) + |z|2L2(I,H) + |(· − s0)γ|2G2(I,Γ)

)
.

Thus, the result follows from |z|2L2(I,H) ≤ |z|2W (I,H1(Ω,R),H−1(Ω,R)) and from Lemma 3.3. �

Lemma 7.6. Let (a, b) ∈ Wst satisfy (46). Let z solve system (58), with g ∈ L2(R0, H)
and γ ∈ G2(R0,Γ). If z ∈ L2(R0, H), then z ∈ W (R0, H

1(Ω,R), H−1(Ω,R)), with

|z|2W (R0,H1(Ω,R),H−1(Ω,R)) ≤ C[CW,st]

(
|z0|2H + |z|2L2(R0,H) + |g|2L2(R0,H) + |γ|2G2(R0,Γ)

)
.

Proof. From Theorem 3.3 we find

|z|2W ((0,1),H1(Ω,R),H−1(Ω,R)) ≤ C[CW,st]

(
|z0|2H + |g|2L2((0,1),V ′) + |γ|2G1((0,1),Γ)

)
(59)

and, from Lemma 7.5 we have that for all t ≥ 1

|z(t)|2H1(Ω,R) ≤ C[CW,st]

(
|v(t− 1)|2H + |g|2L2((t−1,t),H) + |γ|2G2((t−1,t),Γ)

)
,

which allow us to obtain

|z|2L2(R1,H1(Ω,R)) =
+∞∑
n=1

|z|2L2((n,n+1),H1(Ω,R))

≤ C[CW,st]

+∞∑
n=1

∫ n+1

n

|v(t− 1)|2H + |g|2L2((t−1,t),H) + |γ|2G2((t−1,t),Γ) dt

≤ C[CW,st]

(
|z|2L2(R0,H) +

+∞∑
n=1

∫ n+1

n

|g|2L2((t−1,t),H) + |E2γ|2W 1((t−1,t),H2(Ω,R),H) dt

)

≤ C[CW,st]

(
|z|2L2(R0,H) +

+∞∑
n=1

|g|2L2((n−1,n+1),H) + |E2γ|2W 1((n−1,n+1),H2(Ω,R),H)

)
.

Hence, it follows

|z|2L2(R1,H1(Ω,R)) ≤ C[CW,st]

(
|z|2L2(R0,H) + 2 |g|2L2(R0,H) + 2|E2γ|2W 1(R0,H2(Ω,R),H)

)
≤ 2C[CW,st]

(
|z|2L2(R0,H) + |g|2L2(R0,H) + |γ|2G2(R0,Γ)

)
,

which, together with (59) gives us

|z|2L2(R0,H1(Ω,R)) ≤ C[CW,st]

(
|z0|2H + |z|2L2(R0,H) + |g|2L2(R0,H) + |γ|2G2(R0,Γ)

)
.

Since z solves system (58), we can obtain that

|∂tz|2L2(R0,H−1(Ω,R)) ≤ C[CW,st]|z|
2
L2(R0,H1(Ω,R)),

which finishes the proof. �
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7.3. Null controllability. Consider, in the bounded cylinder I × Ω, I = (s0, s1), the
controlled system (57). and also the adjoint system (16).

Let z(·) = z(z0, ζ)(·) and q(·) = q(q1)(·) solve (57) and (16), respectively. Thus,
integrating d

dt
(z, q), we find following the arguments in [Rod14, section 4] and in [Rod15a,

section 3.1] that

(z(s1), q1)H − (z0, q(s0))H = 〈n · ∇q, BΓζ〉G1((s0,s1),Γ)′,G1((s0,s1),Γ)

= 〈B∗Γ ◦ (n · ∇)q, ζ〉Z′,Z
where B∗Γ ∈ L(G1((s0, s1),Γ)′,Z ′) is the adjoint of BΓ, and the symbol ◦ stands for the
composition of two operators.

Also in the boundary case we have the following lemma (cf. Lemma 3.6).

Lemma 7.7. System (16) is B∗Γ ◦ (n · ∇) observable in I with

|q(q1)(s0)|H ≤ Cobs |B∗Γ ◦ (n · ∇)q(q1)|Z′ (60)

if, and only if, system (57) is null controllable in I and the family of controls {u(z0) |
z0 ∈ H} is a bounded linear function of z0:

|ζ(z0)|Z ≤ Cobs |z0|H , where Cobs is as in (60).

Controls supported in a subset. Given an open subset Γc ⊆ Γ, we define the spaces

G1
c((s0, s1),Γ) := {γ ∈ G1((s0, s1),Γ) | γ |Γ\Γc

= 0},
G2

c((s0, s1),Γ) := {γ ∈ G2((s0, s1),Γ) | γ |Γ\Γc
= 0}.

From the results in the section 3.2 and following the arguments in [Rod14, section 4] we
have that we can construct open subsets ω̃ with Ω∩ ω̃ = ∅ and Γ∩∂ω̃ = Γc leading to the
existence of a constant Cω̃,Ω > 0, depending on ω̃ and Ω, such that the weak solution q̃

for (16) in I × Ω̃ with Ω̃ = Ω ∪ ω ∪ Γc), that is, q̃ solving

∂tq̃ −∆q̃ + ãq̃ − b̃ · ∇q̃ = 0,

q̃ |Γ = 0, q̃(s1) = q̃1,

satisfies

|q̃(0)|2L2(Ω̃,R) ≤ eCω̃,ΩΘ(|I|,|a|L∞(I,Ld)
,|b|L∞w (I,L∞),d) |q̃|2L2(I,L2(ω̃,R) .

with Θ as in (18). Here the functions ã and b̃ are extensions of a and b by zero outside Ω.

By Lemmas 7.7 and 3.3 we can find a control η̃ ∈ L2(I, L2(Ω̃,R)) such that the corre-
sponding solution of the system

∂tz̃ −∆z̃ + ãz̃ +∇ · (b̃z̃) + 1ω̃η̃ = 0,

z̃ |Γ̃ = 0, z̃(s0) = z̃0,

where z̃0 is the extension of z0 by zero outside Ω, satisfies

|z̃|2W (I,H1
0 (Ω̃,R),H−1(Ω̃,R)) ≤ C [|I|,CW ]

(
1 + eCω̃,ΩΘ

)
|z̃(s0)|2L2(Ω̃,R) ,

Therefore z := z̃ |Ω solves (58) with γ = z̃ |Γ ∈ G1
c((s0, s1),Γ) satisfying

|γ|2G1
c((s0,s1),Γ) ≤ CC [|I|,CW ]

(
1 + eCω̃,ΩΘ

)
|z̃(s0)|2L2(Ω̃,R) ≤ C [|I|,CW ]e

Cω̃,ΩΘ |z(s0)|2H .

Since the choice of such subset ω̃ is at our disposal, and using Lemmas 3.6 and 7.7 we
can conclude that there exists a constant CΓc,Ω > 0 depending on Γc and Ω, such that

|q(0)|2H ≤ C [|I|,CW ]e
CΓc,ΩΘ(|I|,|a|L∞(I,Ld)

,|b|L∞w (I,L∞),d) |1Γc(n · ∇q(q1))|2G1
c((s0,s1),Γ)′ , (61a)

Preliminary version – September 28, 2018 – 15:46



Stabilization to trajectories for parabolic equations 29

if (a, b) ∈ W . Further, if (a, b) ∈ Wst (cf. [Rod15a, Remark 3.3]) we can derive that

|q(0)|2H ≤ C[|I|,CW,st]e
CΓc,ΩΘ(|I|,|a|L∞(I,Ld)

,|b|L∞w (I,L∞),d) |1Γc(n · ∇q(q1))|2G2
c((s0,s1),Γ)′ . (61b)

Thus, in the case we take BΓ = ιΓc ∈ L(G1
c((s0, s1),Γ), G1((s0, s1),Γ)), γ 7→ γ, as

the inclusion operator, then we have B∗Γ = 1Γc and we can conclude that (60) holds

with Cobs = CeCΓc,ΩΘ(|I|,|a|L∞(I,Ld)
,|b|L∞w (I,L∞),d). Therefore we have the following.

Theorem 7.8. Let (a, b) ∈ W and BΓ = ιΓc. Then, there exists a family {ζ̄(z0) | z0 ∈
H} ⊆ G1

c((s0, s1),Γ) such that the solutions z(z0, ζ̄(z0)) to (57) satisfy z(z0, ζ̄(z0))(s1) = 0

and, for a constant Ĉ = C(Γc,Ω) = C[CW ], we have that∣∣ζ̄(z0)
∣∣
G1

c((s0,s1),Γ)
≤ C [|I|,CW ]e

ĈΘ |z0|H ,

with Θ = Θ
(
|I|, |a|L∞(R0,Ld) , |b|L∞w (R0,L∞) , d

)
given by (18).

Furthermore, if (a, b) ∈ Wst then there exists a family {ζ̄(z0) | z0 ∈ H} ⊆ G2
c((s0, s1),Γ)

such that, still z(z0, ζ̄(z0))(s1) = 0, and we have∣∣ζ̄(z0)
∣∣
G2

c((s0,s1),Γ)
≤ C[|I|,CW,st]e

ĈΘ |z0|H .

Given a nonzero smooth function χΓ : Γ → R with suppχΓ ⊆ Γc, we also have the
following (cf. [Rod15a, section 3.3]).

Corollary 7.9. Theorem 7.8 holds in the more general case

BΓ = 1ΓcχΓ1Γc ∈ L(G1
c((s0, s1),Γ), G1((s0, s1),Γ)),

with D̂ = D̂(χΓ,Γc,Ω) > 0 in the place of Ĉ.

7.4. Stabilization to zero by finite dimensional controls. Now we consider the case

of finite dimensional controls, of the form
M∑
i=1

ui(t)Φi(x). Let us consider a family ĈΓ =

{Ψ̂i ∈ H
3
2 (Γ,R) | i ∈ {1, 2, . . . ,M}} satisfying 1ΓcχΓĈΓ ⊂ H

3
2 (Γ,R), and denote by PM

the orthogonal projection in L2(Γ,R) onto SĈΓ := span ĈΓ.

Let us also fix a positive constant λ̄ > 0 and consider, in Rs0 × Ω, the system:

∂tzλ̄ −∆zλ̄ + (a− λ̄
2
)zλ̄ +∇ · (bzλ̄) = 0, (62a)

zλ̄ |Γ = 1ΓcχΓPM1Γcζ, zλ̄(s0) = z0. (62b)

Definition 7.10. We say that (62) is exponentially stabilizable to zero, with rate 0, if
there are constants C1 > 0 and C2 > 0, and a bounded family {ζ = ζ(z0) | z0 ∈ H} ⊆
G1

c(R0,Γ),

|ζ(z0)|2G1
c(R0,Γ) ≤ C1 |z0|2H

such that the corresponding global solution zλ̄(t) = zλ̄(z0, ζ(z0))(t) satisfies

|zλ̄(t)|2H ≤ C2 |z0|2H , for all t ≥ s0.

Notice that we may write

1ΓcχΓPM1Γcζ = 1ΓcχΓ

M∑
i=1

ζiΨ̂i =
M∑
i=1

uiΨi

with ui := ζi and Ψi := 1ΓχΓΨ̂i, i ∈ {1, 2, . . . ,M}.
Henceforth we use the control operator

BΓ
M := 1ΓcχΓPM1Γc . (63)
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Further Θ and D̂ are as in Theorem 7.8 and Corollary 7.9.
Let zλ̄ solve (57) with BΓ = 1ΓcχΓ1Γc and (a − λ̄

2
) in the place of a, and with the

corresponding control ζ = ζ̄(z0) ∈ G2
c((s0, s1),Γ) given by Corollary 7.9, and let zM

solve (62) also with ζ = ζ̄(z0). Then, d = z − zM solves

∂td−∆d+ (a− λ̄
2
)d+∇ · (bd) = 0,

d|Γ = 1ΓcχΓ(1− PM)1Γcζ(z0), d(s0) = 0.

If (a, b) ∈ Wst satisfies (46), from Lemma 7.2 and Corollary 7.9 it follows

|d|2W (I,H1(Ω,R),V ′) ≤ ΞΓ(|I|) |1ΓcχΓ(1− PM)1Γc |
2
L(G2

c((s0,s1),Γ)),G1
c((s0,s1),Γ) |z0|2H

with

ΞΓ(τ) := C[|I|,CW,st]e
D̂Θ

(
τ,

∣∣∣∣a− λ̄
2

∣∣∣∣
L∞(R0,L

d)

,|b|L∞w (R0,L
∞),d

)
, τ > 0.

We can see that when (a− λ̄
2
, b) = (0, 0) then (62) is exponentially stabilizable to zero,

with rate 0, just by setting ζ(z0) = 0 for all z0 ∈ H. Therefore from now we consider the

case (a− λ̄
2
, b) 6= (0, 0) where we can see that it holds

lim
τ→+∞

ΞΓ(τ) = +∞ and lim
τ→0

ΞΓ(τ) = +∞.

Hence we can set T∗ > 0 such that ΞΓ(T∗) = min
τ>0

ΞΓ(τ) =: ΥΓ.

This allow us to derive the following result on a sufficient condition on the family ĈΓ

for the existence of a stabilizing control. The proof can be done following the arguments
used in the internal controls case as in in [KR15a, BKR15].

Theorem 7.11. Let us be given a nonzero χΓ ∈ C∞(Ω) satisfying suppχΓ ⊆ Γc. If

|1ΓcχΓ(1− PM)1Γc |
2
L(G2

c((s0,s1),Γ)),G1
c((s0,s1),Γ) ≤ Υ−1

Γ , (64)

then system (62) is stabilizable to zero with rate 0.

7.5. Feedback stabilizing rule and Riccati equation. Here we follow the ideas
from [Bad09, Rod15b], by considering a suitable extended system. This is done in order
to be able to use the Dynamical Programming Principle.

Here we suppose that (64) holds true, so that from Theorem 7.11 we know that there
exists ζ ∈ G2

c((s0, s1),Γ) stabilizing system (62) to zero with rate 0. Writing

1ΓcχΓPM1Γcζ =
M∑
i=1

ui1ΓcχΓΨ̂i,

we know that E21ΓcχΓPM1Γcζ ∈ W 1((s0, s1), H2(Ω,R), H), but we do not have necessarily
that ui ∈ H1((s0, s1),R), for each i ∈ {1, 2, . . . ,M}. Though, we can say that ui ∈
H

3
4 ((s0, s1),R), see [LM72b, chapter 4, section 2.2].
Since we would like to follow the procedure in [Rod15b] we need ui ∈ H1((s0, s1),R).

This regularity in time could be guaranteed (for a suitable class of actuators) by follow-
ing the arguments based on suitable truncated observability inequalities, in both space
and time variable, from [Rod15a, section 4.3], see also [Shi11]. Skiping those techni-
cal details, we would arrive to the following result for a suitable projection P t

M̃
defined

in L2((s0, s1),R), with range contained in H1((s0, s1),R).

Proposition 7.12. Let us be given χΓ as in Theorem 7.11. If∣∣1ΓcχΓ(1− P t
M̃
PM)1Γc

∣∣2
L(G2

c((s0,s1),Γ)),G1
c((s0,s1),Γ)

≤ Υ−1
Γ , (65)

then system (62), with P t
M̃
PM in the place of PM , is stabilizable to zero with rate 0.
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Remark 7.13. A characterization of G2
c((s0, s1),Γ) in terms of fractional Sobolev spaces

can be found in [LM72b, chapter 4, section 2.2]. However, we do not know a similar
characterization of G1

c((s0, s1),Γ). Thus, we cannot follow word by word the procedure
in [Rod15a, section 4.3], but we can use the main idea. Starting by writing 1−P t

M̃
PM =

1− PM + (1− P t
M̃

)PM , we find (using the identity PM = PMPM)∣∣1ΓcχΓ(1− P t
M̃
PM)1Γc

∣∣
L(G2

c((s0,s1),Γ)),G1
c((s0,s1),Γ)

≤ |1Γcχ(1− PM)1Γc |L(G2
c((s0,s1),Γ)),G1

c((s0,s1),Γ)

+
∣∣1Γcχ(1− P t

M̃
)PM

∣∣
L(G2

c((s0,s1),Γ)),G
3
2
c ((s0,s1),Γ)

|PM1Γc|L(G
3
2
c ((s0,s1),Γ)),G1

c((s0,s1),Γ)

≤ |1Γcχ(1− PM)1Γc|L(G2
c((s0,s1),Γ)),G1

c((s0,s1),Γ)

+ CχΓ,M

∣∣(1− P t
M̃

)
∣∣
L(H

3
4 ((s0,s1),R)),H

2
3 ((s0,s1),R))

|PM1Γc|L(G
3
2
c ((s0,s1),Γ)),G1

c((s0,s1),Γ)
,

where G
3
2
c ((s0, s1),Γ) := [G2

c((s0, s1),Γ), G1
c((s0, s1),Γ)] 1

2
is an interpolation space in the

sense of [LM72a]. If PM satisfies (64) with, say,
Υ−1

Γ

2
in the place of Υ−1

Γ , then we can

set P t
M̃

(i.e., set M̃ big enough) such that (65) holds true. Finally, notice that with

X = W 1((s0, s1), H2(Ω,R), H) and Y = W 1((s0, s1), H1(Ω,R), H−1(Ω,R)) we have (us-
ing some results from [LM72b, chapter 4, section 2.2])

G
3
2
c ((s0, s1),Γ) = [X, Y ] 1

2
|Γ ,

G2
c((s0, s1),Γ)

c
↪−→ G

3
2
c ((s0, s1),Γ)

c
↪−→ G1

c((s0, s1),Γ),

W 1((s0, s1), H
3
2 (Ω,R), H)|Γ = L2((s0, s1), H1(Γ,R)) ∩H

2
3 ((s0, s1), L2(Γ,R)),

W 1((s0, s1), H
3
2 (Ω,R), H)|Γ = [X,W 1((s0, s1), H1(Ω,R), H)] 1

2
|Γ

↪−→ G
3
2
c ((s0, s1),Γ),

H
3
4 ((s0, s1),R)

c
↪−→ H

2
3 ((s0, s1),R).

7.5.1. The auxiliary extended system. Once we have that ui ∈ H1((s0, s1),R), for each
i ∈ {1, 2, . . . ,M}, then we can rewrite (62) in the variables (yλ̄, κλ̄) = (zλ̄ − BΨκλ̄, κλ̄),
as the extended system

∂tyλ̄ −∆yλ̄ + (a− λ̄
2
)yλ̄ +∇ · (byλ̄)−∆BΨκλ̄ + aBΨκλ̄ +∇ · (bBΨκλ̄) + ς̄BΨκλ̄ = BΨκλ̄,

∂tκλ̄ − λ̄
2
κλ̄ + ς̄κλ̄ = κλ̄, (66)

yλ̄(s0) = y0 = z0 −BΨκ0, κλ̄(s0) = κ0, yλ̄ |Γ = 0,

where BΨ : RM → H2(Ω,R) is given by

BΨκ :=
M∑
i=1

κiΨ̃i, with Ψ̃i ∈ H2(Ω,R), Ψ̃i |Γ = Ψi := 1ΓcχΓΨ̂i, (67)

where the extensions Ψ̃i of the Ψis are fixed. Recall that by assumption Ψi ∈ H
3
2 (Γ,R) =

H2(Ω,R)|Γ for all i ∈ {1, 2, . . . ,M}. Furthermore, ς̄ ∈ R is a parameter at our disposal,
notice that it does not appear in (62).

From Proposition 7.12 we can conclude that there exists κ = u ∈ H1((s0, s1),RM) such
that system (66) is stabilizable to zero with rate 0, provided (65) holds true.
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Hereafter we will use a particular extension, namely, the given actuators Ψi, defined

on the boundary Γ, are extended to Ψ̃i, defined in Ω, by solving the elliptic system

−∆Ψ̃ + ς̄Ψ̃i = 0, Ψ̃i |Γ = Ψi. (68)

The following discretization is valid only for this particular extension, which as we see
leads to suitable simplifications on the corresponding Riccati equations, namely the 2nd
order space derivatives term −∆BΨ̃κ disappears in (66), because (Aa,b + ς̄)BΨ̃ reduces
to aBΨ̃ + ∇ · (bBΨ̃). To simplify the exposition, we rewrite system {(66),(68)}, for
(y, κ) ∈ H × RM , as

∂t

[
yλ̄
κλ̄

]
+

[
−∆ +Ka,b,λ̄ Ka,b,0

0 ς̄λ̄

] [
yλ̄
κλ̄

]
−
[
BΨ

1

]
κλ̄ = 0,

[
yλ̄(s0)
κλ̄(s0)

]
=

[
y0

κ0

]
,

where ς̄r and Ka,b,r ∈ L(V +BΨRM , V ′), for r ≥ 0, are given by

ς̄r := ς̄ − r
2
, Ka,b,rw := aw +∇ · (bw)− r

2
. (69)

As in the internal case we can prove that the control can be taken in feedback form,

κλ̄ = Fλ̄(t)(yλ̄, κλ̄) = −BΓ
M

∗
ΠΓ
λ̄(t)(yλ̄, κλ̄),

with BΓ
M =

[
BΨ

1

]
, with adjoint BΓ

M
∗

=
[
B∗Ψ 1

]
. Furthermore the operator ΠΓ

λ̄
can be

chosen to satisfy a differential Riccati equation

d

dt
ΠΓ
λ̄ + ΠΓ

λ̄A
a,b

λ̄,ς̄
+ Aa,b

λ̄,ς̄

∗
ΠΓ
λ̄ − ΠΓ

λ̄B
Γ
MR−1BΓ

M

∗
ΠΓ
λ̄ +M∗M = 0, (70)

with

Aa,b

λ̄,ς̄
= −

[
−∆ +Ka,b,λ̄ Ka,b,0

0 ς̄λ̄

]
,

and for suitable R ∈ L(RM) andM∈ L(V ×RM → V ′×RM). In this case, the obtained
feedback control is the one that minimizes∫ +∞

s0

∣∣∣∣M [
yλ̄(τ)
κλ̄(τ)

]∣∣∣∣2
H×RM

+ κλ̄(τ)>Rκλ̄(τ)dτ.

For example we can take R = 1 and M =

[
(−∆)

1
2 0

0 1

]
as in [BRS11, KR15b]. From

Lemma 7.6 we can also take M =

[
1 0
0 1

]
instead (cf. [Rod15b, BKR15]).

It follows (cf. Theorem 3.15 and Corollary 3.16) that the solution (yλ̄, κλ̄) of the system

∂t

[
yλ̄
κλ̄

]
−Aa,b

λ̄,ς̄

[
yλ̄
κλ̄

]
+

[
BΨ

1

] [
B∗Ψ 1

]
ΠΓ
λ̄

[
yλ̄
κλ̄

]
= 0,

[
yλ̄(s0)
κλ̄(s0)

]
=

[
y0

κ0

]
, (71)

remains bounded: |(yλ̄, κλ̄)|
2
H×RM ≤ C[CW ,λ̄, 1λ̄ ] |(y0, κ0|2H×RM . Therefore, the solution of

∂t

[
y
κ

]
+ Aa,b

0,ς̄

[
y
κ

]
+

[
BΨ

1

] [
B∗Ψ 1

]
ΠΓ
λ̄

[
y
κ

]
= 0,

[
y(s0)
κ(s0)

]
= e−

λ̄
2
s0

[
y0

κ0

]
, (72)

goes exponentially to 0 with rate λ̄
2
. Notice that (yλ̄, κλ̄) solves (71) if, and only if,

(y, κ) = e−
λ̄
2
t(yλ̄, κλ̄) solves (72).
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7.5.2. From the auxiliary to the original system. Once we have the feedback rule

ΠΓ
λ̄ =:

[
ΠΓ,λ̄

1,1 ΠΓ,λ̄
1,2

ΠΓ,λ̄
1,2

∗
ΠΓ,λ̄

2,2

]
∈ L(H × RM)

we observe that

κ = −
[
B∗Ψ 1

]
ΠΓ
λ̄

[
y
κ

]
= −(B∗ΨΠΓ,λ̄

1,1 + ΠΓ,λ̄
1,2

∗
)y − (B∗ΨΠΓ,λ̄

1,2 + ΠΓ,λ̄
2,2 )κ,

and that zλ̄ = yλ̄ +BΨκλ̄ solves for time t ≥ s0

∂tzλ̄ −∆zλ̄ + (a− λ̄
2
)zλ̄ +∇ · (bzλ̄) = 0, zλ̄(s0) = y0 +BΨκ0, (73a)

zλ̄ |Γ = BΓ
Ψ

(
e−ς̄tκ0 −

∫ ·
s0

e−ς̄(·−s) [B∗Ψ 1
]

ΠΓ
λ̄(s)

[
yλ̄(s)
κλ̄(s)

]
ds

)
, (73b)

and remains bounded. Here BΓ
Ψ : RM → span 1ΓcχΓĈΓ stands for the mapping

BΓ
Ψu 7→

M∑
i=1

ui1ΓcχΓΨ̂i.

Notice that, without loss of generality, we can suppose that the functions Ψi are linearly
independent. In this case, we have that V ∩ BΨRM = ∅. Thus, since for a.e. t ≥ s0

we have z(t) ∈ V + BΨRM , we can write z(t) = yz(t) + BΨκ
z(t) = 0 in a unique

way, with (yz(t), κz(t)) ∈ V × RM . That is, yλ̄(s) and κλ̄(s) appearing in (73) can be
constructed from zλ̄(s).

A procedure to construct the mapping z 7→ (yz, κz) is the following: we orthonormalize

(e.g., by applying Gram–Schmidt procedure) the family Ψ̃i, say in the H-scalar product.

In this way we arrive to the orthonormal family C̆ = {Ψ̆i | i ∈ {1, 2, . . . ,M}}, Now we

can write v = w +
∑M

i=1 ξiΨ̆i, with ξi := (v, Ψ̆i)H . Finally, we construct σ by a matrix of

change of coordinates
∑M

i=1 σiΨ̃i :=
∑M

i=1 ξiΨ̆i, and still have v = w +
∑M

i=1 σiΨ̃i. That
is, denoting yz = w and κz = σ, the mapping z(t) 7→ (yz(t), κz(t)) is well defined and we
can rewrite the integral feedback rule in (73) as

z |Γ = BΓ
Ψ

(
e−ς̄tκ0 −

∫ ·
s0

e−ς̄(·−s) [B∗Ψ 1
]

ΠΓ
λ̄(s)

[
yz(s)

κz(s)

]
ds

)
, (73c)

which underlines the (integral) feedback nature of the control, also as a boundary control.

7.6. The nonlinear systems. As we have done for the case of internal controls, under
suitable conditions on the nonlinear function N we can derive also that the local sta-
bilization result holds for nonlinear system in the form (73) with N as a perturbation

∂tzλ̄ + Aa,bzλ̄ − λ̄
2
zλ̄ = N (zλ̄), zλ̄ |Γ = BΓ

Ψκλ̄, zλ̄(s0) = yλ̄(s0) +BΨκλ̄(s0), (74a)

∂tκλ̄ − λ̄
2
κλ̄ + ς̄κλ̄ = −

[
B∗Ψ 1

]
ΠΓ
λ̄

[
yλ̄ −BΓ

Ψκλ̄
κ

]
, κλ̄(s0) = κ0, (74b)

The procedure is analogous to the one in section 4 (cf. [Rod15b]), so we will not repeat
the details here. However, it is important to recall that since we need (in general) strong
solutions to deal with the nonlinearity, it is important that the initial condition satisfies
the compatibility condition z(s0) = z0 ∈ V + BΨRM (cf.Lemma 7.4). This means that
when dealing with stabilization to trajectories (cf. section 5, for the internal controls
case), we need the compatibility condition

(y(s0)− ŷ(s0))|Γ ∈ B
Γ
ΨRM = span{1ΓcχΓΨ̂i}. (75)
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At this point we also recall that the solutions given in Lemmas 7.2 and 7.4 do not depend
on the extension E1 and E2, respectively. See [Rod14, Remark 3.2].

Similar estimates on the transient bound, and on dimension of the control like (26)
and (27), depending exponentially on the data, can also be derived.

It turns out that, in both internal and boundary cases, numerical simulations do suggest
that a better estimate on the number of needed actuators might exist, like the one in (28)
depending polynomially on the data. So, we would like to finish this section with two
very particular questions:

• Can we find a particular case, in the boundary setting, leading to an estimate
like (28)?
• How does the observability constant Cobs in (60) “looks like” when the control

acts on all the boundary? Can we get, in this case, a constant which is “better”
than those in (61)?

Remark 7.14. Though the closed-loop systems {(73a), (73c)} and (74) are formally equiv-
alent, the latter may have some advantages for numerical simulations, because the dy-
namical equation in (74b) is relatively easier to discretize than the integral equation
in (73c). Hereafter, we will consider only the discretization of (74).

7.7. Back to original time. Stabilization to trajectories. Let us be give a solution ŷ
for the uncontrolled system (2) (with u = 0) with ŷ0 := ŷ(0) ∈ H and such that the vector

functions in (5) are such that N̂ satisfies (44) and (45), and (â, b̂) satisfies (46), for suitable

nonnegative constants Ĉ and CW,st. Notice that, recalling the notation in section 2, in

this case N := 1
ν

˘̂N also satisfies (44) and (45), and (a, b) = ( 1
ν
˘̂a, 1

ν

˘̂
b) also satisfies (46),

We consider system (2) with a dynamical feedback as follows

∂ty − ν∆y + f(y,∇y) = 0, y |Γ = g −BΓ
Ψκ, (76a)

∂tκ+ ςκ = −
[
B∗Ψ 1

]
Π̂Γ
λ

[
y − ŷ −BΓ

Ψκ
κ

]
, y(0) = y0, (76b)

with Π̂λ solving

d
dt

Π̂Γ
λ + Π̂Γ

λA
â,b̂,ν
λ,ς + Aâ,b̂,ν

λ,ς

∗
Π̂Γ
λ − Π̂Γ

λB
Γ
MR−1BΓ

M
∗
Π̂Γ
λ +M∗M = 0, (77)

with R and M as in (70) and with

Aâ,b̂,ν
λ,ς = −

[
−ν∆ +K â,b̂,λ K â,b̂,0

0 ςλ

]
, (78)

and K â,b̂,r and ςλ defined as in (69).
Observe that (z̆, κ̆)(τ) := (y − ŷ, κ)( τ

ν
) solves, with

∂τ z̆ −∆z̆ + az̆ +∇ · (bz̆) = N (z̆); z̆ |Γ = −BΓ
Ψκ̆,

∂tκ̆+ ς
ν
κ̆ = −

[
B∗Ψ 1

] ˘̂
ΠΓ
λ

[
z̆ −BΓ

Ψκ̆
κ̆

]
, z̆(0) = y0 − ŷ0,

and
˘̂
ΠΓ
λ(τ) = Π̂Γ

λ( τ
ν
) solves (70) with a different pair (R,M). Indeed, from (77), we obtain

that for (λ̄, ς̄) = (λ
ν
, ς
ν
),

d
dτ

˘̂
ΠΓ
λ +

˘̂
ΠλAa,b,1

λ̄,ς̄
+ Aa,b,1

λ̄,ς̄

∗ ˘̂
Πλ −

˘̂
ΠλBM(νR)−1B∗M

˘̂
Πλ + (( 1

ν
)

1
2M)∗(( 1

ν
)

1
2M) = 0.

Therefore, we can conclude that

|z̆(τ)|2V ≤ Ce−λ̄τ |z̆(0)|2V , for all τ ≥ 0,
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provided |z̆(0)|V is small enough. This implies that

|y(t)− ŷ(t)|2V ≤ Ce−λt|y0 − ŷ0|2V , for all t ≥ 0,

and we can conclude that the following theorem holds true. Recall the operators (63)
and (67).

Theorem 7.15. Under the hypotheses of Proposition 7.12, with

RanPM = span
{

Ψ̂i | i ∈ {1, 2, . . . ,M}
}
⊂ H

3
2 (Γ,R),

there exists ε > 0 with the following properties: if y0 ∈ H is such that

y0 − ŷ0 ∈ V +BΨRM and |y0 − ŷ0|V < ε,

then the solution y of the system (76) goes exponentially to ŷ with rate λ
2
, that is,

|y(t)− ŷ(t)|2V ≤ Ce−λt|y0 − ŷ0|2V , for all t ≥ 0,

for a suitable constant C independent of (ε, y0 − ŷ0). Furthermore, the solution y is, and
is unique, in the affine space ŷ + L2

loc(R0,D(A) +BΨRM) ∩ C([0,+∞), V +BΨRM).

Notice that the feedback control stabilizes the linearized system to zero globally, that
is, we have the following theorem.

Theorem 7.16. Under the hypotheses of Proposition 7.12, with

RanPM = span
{

Ψ̂i | i ∈ {1, 2, . . . ,M}
}
⊂ H

3
2 (Γ,R),

given (z0, κ0) ∈ H × RM , the solution of

∂tz − ν∆z + az +∇ · (bz) = 0, z |Γ = −BΓ
Ψκ, (79a)

∂tκ+ ςκ = −
[
B∗Ψ 1

]
Π̂Γ
λ

[
z −BΓ

Ψκ
κ

]
,

[
z(0)
κ(0)

]
=

[
z0

κ0

]
. (79b)

satisfies

|z(t)|2H ≤ Ce−λt|z0|2H , for all t ≥ 0,

for a suitable constant C independent of z0. Furthermore, the solution z is, and is unique,
in the space L2

loc(R0,D(A) +BΨRM) ∩ C([0,+∞), V +BΨRM).

8. Discretization of the linear systems

We explain how we discretize a linear parabolic equation with nonhomogeneous Dirich-
let boundary conditions. We will focus our simulations on the 2D case, considering our
domain to be the unit ball Ω = D := {(x1, x2) ∈ R2 | x2

1 + x2
2 < 1}.

Here, we focus on the approximation of the linearized closed-loop systems (56) and (79)
perturbed with the reaction term λ

2
z:

∂tz − ν∆z + (â− λ
2
)z +∇ · (b̂z) + F in

λ z = 0,

z(0) = z0,

z |Γ = 0,
(80)

and

∂tz − ν∆z + (â− λ
2
)z +∇ · (b̂z) = 0, z |Γ = BΓ

Ψκ, (81a)

∂tκ+ (ς − λ
2
)κ+ Fbo

λ (z −BΨκ, κ) = 0, (z(0), κ(0)) = (z0, κ0), (81b)

with F in
λ z := BMR−1B∗M Π̂λz and Fbo

λ (z −BΨκ, κ) :=
[
B∗Ψ 1

]
Π̂Γ
λ

[
z −BΨκ

κ

]
.
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Remark 8.1. Notice that we want to observe that the solutions of (56), respectively (79)
go to zero exponentially with rate λ

2
. Thus we want the solutions of (80) and (81) to

remain bounded. Indeed z solves (56), respectively (z, κ) solves (79), if and only if e
λ
2 ·z

solves (80), respectively e
λ
2 ·(z, κ) solves (81).

8.1. Discretization in space. The simulations are done in MATLAB. We approxi-
mate Ω by a polygonal domain ΩD and consider a partition of ΩD into nonoverlapping
triangles. For this we use the function initmesh from MATLAB. This function gives us
a mesh triple (p, e, t) where

• the point matrix p contains (information about) all the vertices of all triangles of
the partition.
• the edge matrix e contains (information about) all the boundary segments of ΩD.
• the triangle matrix t contains (information about) the triangles of the partition.

Recall that given a triangle tk with vertices (ptk(1),ptk(2),ptk(3)), then any point x ∈
tk (inside or on the boundary of the triangle tk) can be written uniquely as a convex
combination: there are nonnegative xtk(1), xtk(2), and xtk(3) such that

1 = xtk(1) + xtk(2) + xtk(3),

x = xtk(1)ptk(1) + xtk(2)ptk(2) + xtk(3)ptk(3).

Any continuous function z ∈ C(Ω,R) can, and will, be approximated by a sum

z(x) ≈ z̃(x) :=

sp∑
i=1

z(pi)φ̂i(x), for all x ∈ ΩD,

where sp is the total number of points in the mesh; {pi | i = 1, 2, . . . , sp} is the set of all

mesh points and the φ̂is are the classical piecewise linear hat functions defined as

φ̂i(x) :=


1, if x = pi;

0, if x = pj with j 6= i;∑3
l=1 x

tk(l)φ̂i(ptk(l)), if x ∈ tk.

Notice that the support of φi consists of the triangles with the common vertex pi. We
will denote the finite-dimensional space

VD := span{φ̂i | i ∈ {1, 2, . . . , sp}}.
In other words the function z can be approximated by the evaluation vector

z :=
[
z(p1) z(p2) . . . z(psp)

]> ∈Msp×1,

where A> stands for the transpose matrix of A.
The weak discretization matrix LD of a given operator L ∈ L(H1 → V ′), is defined so

that (for smooth functions)

v>LDu := (Lũ, ṽ)H = (ṽ, Lũ)H ,

that is, the entry in the ith row and jth column of LD is (LD)(i,j) = (φ̂i, Lφ̂j)H .
We recall the so called mass M and stiffness S matrices are defined as

M(i,j) = (φ̂i, φ̂j)H and S(i,j) := (∇φ̂i,∇φ̂j)H .
Notice that M = (Id)D where Id : v 7→ v is the identity/inclusion operator, and that S
is related to the Laplacian: for smooth (u, v) ∈ H1(Ω)×H1

0 (Ω) we have 〈−∆u, v〉V ′,V =
(∇u,∇v)H ≈ (∇ũ,∇ṽ)H = v>Su.

We refer to [Che05, Section 1.3 to 1.5] for further details.
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8.1.1. Discretization of the heat equation. We are ready to semi-discretize the system

∂tz − ν∆z + f = 0, (82a)

z |Γ = g, z(0) = z0, (82b)

provided the functions f and g are known (and continuous in space variable).
Inspired from Lemma 7.2 we look for a solution in W (I,H1, V ′), thus we look at (82a)

as an identity in L2(I, V ′). Therefore, it is enough to test this equation with elements
w in the dual L2(I, V ). Replacing z by z̃ and testing with a function w̃ ∈ C(I, VD)
with w̃ |Γ = 0, we find that z̃ ∈ L2(I, V ) and (∆z̃, w̃) = −w>Sz, and we arrive to

w>∂tMz + νw>Sz + w>Mf = 0, z |Γ = g.

Reordering the mesh points. The vector p contains both interior and boundary points
of Ω (or ΩD). We define the permutation matrix Pib such that the boundary points will
appear at the end of the vector (and the relative order of interior (resp. boundary) points
is unchanged). We can find which indices correspond to the boundary points from the
information we have in the edge vector e. In the new coordinates z∗ = Pibz we can write

z∗ =:

[
z∗i
z∗b

]
where the vector z∗i correspond to the values at the interior points and z∗b

to the values at the boundary points. Thus we arrive at

w>∗ ∂tM∗z∗ + νw>∗ S∗z
>
∗ + w>∗M∗f ∗ = 0, z∗b = g;

with M∗ = PibMPib> and S∗ = PibSPib>. Notice that the inverse and transpose of a
permutation matrix do coincide. Writing M∗ and S∗ in blocks notation

M∗ =:

[
M∗ii M∗ib
M∗bi M∗bb

]
and S∗ =:

[
S∗ii S∗ib
S∗bi S∗bb

]
,

and recalling that w>∗b = 0 we obtain

w>∗i∂t
[
M∗ii M∗ib

] [z∗i
z∗b

]
+ νw>∗i

[
S∗ii S∗ib

] [z∗i
z∗b

]
+ w>∗i

[
M∗ii M∗ib

] [f ∗i
f ∗b

]
= 0.

Remark 8.2. In what follows we will work in the new coordinates and for simplicity we
will skip the subscript ∗.

Therefore, taking into account Remark 8.2, we arrive to the semi-discrete system

∂tMiizi = −νSiizi − νSibzb − ∂tMibzb −
[
Mii Mib

]
f, (83)

which underlines that when ḡ (i.e., zb) is known then the number of unknowns (i.e., the
entries of zi) is reduced to the number of interior points sp − se, where se is the total
number of points in the boundary.

Remark 8.3. In the elliptic case, ∂tMz = 0, we see that (83) reduces to νSiizi = −νSibzb−[
Mii Mib

]
f which are the system we find in [FGP83, section 2] when zb is given. See

also [FGP83, section 1] for references to other methods to deal with nonhomogeneous
boundary conditions.

8.1.2. Discretization of a composition of linear operators. In order to discretize sys-
tems (80) and (81) we follow a simple idea. See, for example, [KR15b, Section 5.1].

Given two operators L1 ∈ L(H1, Z) and L2 ∈ L(Z, V ′), where Z ⊂ H1 is an Hilbert
space then the composition L2 ◦ L1 is in L(H1, V ′). Suppose we know the discretization
matrix (L2)D and also an evaluation matrix L1 which approximates L1, that is, L1v ≈ L1v.
Then we may write

w>(L2 ◦ L1)Dz ≈ (L2 ◦ L1z, w)H ≈ w>(L2)DL1z.
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Analogously if we know the discretization matrix (L1)D and an evaluation matrix L∗2 of
the adjoint L∗2, we may write

w>(L2 ◦ L1)Dz ≈ (L2 ◦ L1z, w)H ≈
(

(L2)∗w
)>

(L1)Dz.

Therefore we have two candidates to approximate (L2 ◦ L1)D:

(L2)DL1 ≈ (L2 ◦ L1)D ≈ (L2)∗
>

(L1)D.

Further notice that (L∗)D = L>D and that

L∗
>
M ≈ LD ≈ML, L ≈M−1LD, L∗

> ≈ LDM−1.

8.1.3. Discretization of the linear reaction and linear convection operators. We can con-
struct the discretization matrices Gxk := (∂xk)D, (Gxk)ij := (φi, ∂xkφj)H , of the direc-
tional derivatives operators, k ∈ {1, 2}, in the same way as we construct the mass and
stiffness matrices. Then for a function w, we set w· := Dw, where Dv stands for the
diagonal matrix whose diagonal is v. Observe that 2w· = ιV ◦ (w·) + (w·) ◦ ιV . Finally
for the linear reaction and convection operators, we take

((â− λ
2
)·)D ≈ 1

2

(
MD

â−λ
2

+ D
â−λ

2

M
)

and (∇ · (b̂·))D ≈ Gx1Db̂1 + Gx2Db̂2 .

Notice that w· = (w·)∗ and by taking the semi-sum above as an approximation for (w·)D
we preserve the symmetry. We must say, however that in our simulations we did not
observe much difference when we have simply taken (w·)D ≈MDw.

Notice also that the above discretization idea would lead us to take (b̂ ·∇·) ≈ D
b̂1

Gx1 +

D
b̂2

Gx2 , and that looking at the operators as L(H1, V ′), we need to test the operators

with functions/vectors vanishing at the boundary. Now, for either v |Γ = 0 or w |Γ = 0,
the definition of Gxk , gives us (ṽ, ∂xkw̃)H = −(∂xk ṽ, w̃)H , that is, v>Gxkw = −w>Gxkv.
Now our approximations give v>(Gx1Db̂1 + Gx2Db̂2)w = w>(D

b̂1
G>x1

+ D
b̂2

G>x2
)v =

w>(−D
b̂1

Gx1 −Db̂2Gx2)v. Therefore, (Gx1Db̂1 + Gx2Db̂2)> = −D
b̂1

Gx1 −Db̂2Gx2 , which

agrees with the fact that we have (w, ∇ · (b̂v))H = (−b̂ · ∇w, v)H .

Remark 8.4. In some situations, for example when the viscosity coefficient is small and
the exact solution is known to have some big magnitude directional space derivatives,
it may be the case that the numerical solution present some oscillations. For solving
such problems with a reasonable number of mesh points, avoiding or minimizing the
oscillations, we may need more sophisticated numerical discretizations. We refer to [JS08]
and to [JK07, JK08] for such discretizations.

Remark 8.5. Below, we will consider the stabilization to a trajectory ŷ (given a priori)
whose first order derivatives are not too big, which is also motivated from the discussion
in Section 5. Therefore, remaining close to ŷ the solutions will not present big first order
derivatives and we may expect that no big oscillations will be observed on the numerical
solution. From the control point of view, if some small oscillations do appear, then we
could thing of them as small perturbations of the solution and, since the control will
be given in feedback form, we may expect the control to be able to respond to such
perturbations. Roughly speaking, we could see those small perturbations as a further
test for the robustness of the control.
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8.1.4. Discretization of the feedback control. We start by recalling that the feedback de-
pends on the solution Π of the corresponding Riccati equation and is self-adjoint, that
is, we know that ΠD is symmetric. We look for an approximation of ΠD by solving a
suitable matrix Riccati equation

∂tΠD + ΠDX + X>ΠD − ΠDRR>ΠD + C>C = 0, t > 0, (84)

For r ≥ 0, let us introduce the matrices

Kr(t) := M−1
(
Gx1Db̂1(t)

+ Gx2Db̂2(t)

)
+Dâ− r

2
(t) =:

[
Kr,ii(t) Kr,ib(t)
Kr,bi(t) Kr,bb(t)

]
.

Internal feedback. For system (80) we need to solve (55). Since z |Γ = 0, we look for
matrices in M(sp−se)×(sp−se).

We choose the matrices Cin = ν
1
2 Sii,c and Xin

λ = Xin
λ (t) = −νM−1

ii Sii − Kλ,ii(t),

where Sii,c is the Cholesky factor of Sii, which gives us
(
Cin
)> (

Cin
)

= νSii. To con-
struct the matrix Rin we set R = 1 in (55) and observe that we must have

ΠDRinRin>ΠD ≈ (Π1ωχPM1ωR1ωPMχ1ωΠ)D.

We will also take actuators {Φi | i ∈ 1, 2, . . . ,M} which are supported in ω, thus
since PM stands for the orthogonal projection onto span{Φi | i ∈ 1, 2, . . . ,M}, we may
write

(Π1ωχPM1ωR1ωPMχ1ωΠ)D ≈ ΠD1ωχPMχ1ωΠ

and observe that the natural evaluation matrix of the multiplication 1ωχ· = χ1ω· is just
the diagonal matrix Dχ1ω when we identify χ1ω with the function that takes the value 1
if x ∈ ω ∩ suppχ and the value 0 otherwise. To construct an evaluation matrix of the
H-orthogonal projection PM , we start by orthonormalizing, in the Mii-scalar product,
the family of actuators {Φii | i ∈ 1, 2, . . . ,M}. Then we denote the orthonormal family
by {Φi

o | i ∈ 1, 2, . . . ,M} and set

PM = PM := SMS
>
MMii, with SM :=

[
Φ1

o
Φ2

o
. . . ΦM

o]
,

which leads us to

(Π1ωχPM1ωR1ωPχ1ωΠ)D ≈ ΠDDχ1ωSMS
>
MMiiD1ωχΠ ≈ ΠDDχ1ωSMS

>
MD1ωχΠD

and this is the reason we propose to take the matrix

Rin := Dχ1ωSM . (85)

Therefore, as the approximation evaluation matrix of the feedback control rule we set

F in
λ :=

(
Rin
) (

Rin
)>

ΠD.

We refer to [KR15b, section 5.3.3] for a different choice of Rin, namely the less simple

expression
(
Mii,cPMDχ1ωM

−1
ii

)>
.

Boundary feedback. For system (81) we need to solve (77). Notice that (70) is related
with the extended system (66) whose state belongs to V ×RM , thus we look for matrices
in M(sp−se+M)×(sp−se+M).

First of all we given the boundary actuators Φ we construct the extensions Φ̃, defined
in Ω, by solving (numerically) the elliptic system

−ν∆Ψ̃ + ςΨ̃i = 0, Ψ̃i |Γ = Ψi.

(which is equivalent to (68), with ς̄ = ς
ν
).
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We choose the matrices Cbo and Xbo
λ = Xbo

λ (t) as

Cbo =

[
ν

1
2 Sii,c 0
0 IM

]
and Xbo =

[
Xin
λ −K0,ii[BΨ̃

]i
0 −ςIM

]
,

where IM ∈MM×M is the identity matrix and B
Ψ̃

:=
[
Ψ̃1 Ψ̃2 . . . Ψ̃M

]
=:

[
[B

Ψ̃
]i

[B
Ψ̃

]b

]
.

To choose an appropriate operator Rbo we start again by setting R = 1 and, looking
at the nonlinear term of the Riccati equation we can formally write(

Π

[
BΨ

IM

] [
B∗Ψ IM

]
Π

)
D

≈ ΠD

[
BΨ

IM

] [
B∗Ψ IM

]
Π.

From (BΨκ, y)H =
∑M

j=1 κj(Ψ̃j, y)H we may also set B∗Ψ = BΨ
>
M = B>

Ψ̃
M. For

given y ∈ V and j ∈ {1, 2, . . . ,M} we obtain

(Ψ̃j, y)H ≈ Ψ̃j

>
My = Ψ̃j

> [
Mii Mbi

]
yi =

(
Ψ̃j

>

i + Ψ̃j

>

b MbiM
−1
ii

)
Miiyi

=
(

Ψ̃j i + M−1
ii MibΨ̃jb

)>
Miiyi.

and this is why, looking at BΨ as an operator in L(RM , V ′), we take

BΨ =
[
BΨ(1,1) BΨ(1,2) . . . BΨ(1,M)

]
and B∗Ψ = BΨ

>
Mii,

with BΨ(1,j) := Ψ̃j i + M−1
ii MibΨ̃jb.

Therefore, we arrive to(
Π

[
BΨ

IM

] [
B>Ψ IM

]
Π

)
D

≈ ΠD

[
BΨ

IM

] [
BΨ
>

IM

] [
Mii 0
0 IM

]
Π.

Since

[
Mii 0
0 IM

]
Π ≈ ΠD we propose to take the matrix

Rbo :=

[
BΨ

IM

]
and, as the approximation evaluation matrix of the feedback control rule, we set

Fbo
λ :=

(
Rbo

) (
Rbo

)>
ΠD.

8.1.5. The semidicrete systems. We are now ready to present the semidiscrete versions
of the linear closed-loop systems. Introducing the matrices

Lλ = L(â−λ
2
,b̂) := 1

2

(
MD

â−λ
2

+D
â−λ

2

M
)

+ Gx1Db̂1 + Gx2Db̂2 , Lλ =:

[
Lλ,ii Lλ,ib

Lλ,bi Lλ,bb

]
,

system (80) is approximated by

∂tMiizi = −νSiizi − Lλ,iizi −MiiF in
λ zi, (86)

and system (81), setting ςλ = ς − λ
2
, is approximated by

∂tκ = −ςλκ−Fbo
λ,b

[
zi

κ

]
, (87a)

∂tMiizi = −νSiizi −
[
Lλ,ii Lλ,ib

]
z − (νSib + ∂tMib)BΓ

Ψ
κ, (87b)

with Fbo
λ,b :=

[
0M×(sp−se) IM

]
Fbo
λ

[
Isp−se −BΨ

0 IM

]
.
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8.2. Discretization in time. Now to be able to solve numerically (86) and (87) in a
given time interval [0, T ], with T > 0, we need to discretize [0, T ]. We introduce a uniform
mesh [0, T ]D consisting of Nt + 1 ≥ 3 points

[0, T ]D := (0, kT, 2kT, · · · , (Nt − 1)kT, T ) , (88)

where k := T
Nt

is the time step. Any function z ∈ C([0, T ] × Ω) will be approximated

by the values zji := z(jk, pi) taken in [0, T ]D × ΩD, that is, we essentially approximate

z = z(t, x) by a matrix [z] = [z(i,j)] ∈ MNp×(Nt+1), z(i,j) := zji . Notice that in the jth

column, denoted zj, we have an approximation of z at time t = jk, zj = z(jk, ·) ≈ z(jk, ·).
We will use the Crank-Nicolson scheme taking, for tf > ti, ∂tz | ti+tf

2

≈ z(tf )−z(ti)
tf−ti

and

z(
ti+tf

2
) ≈ z(tf )+z(ti)

2
. For system (86), we obtain

Mii

k
(zj+1

i − zji ) = −ν Sii

2
(zj+1

i + zji )−
Ljλ,iiz

j
i +Lj+1

λ,ii z
j+1
i

2
− MiiFj,inλ zji +MiiFj+1,in

λ zj+1
i

2
,

where, recalling that Lλ,ii and F in
λ (may) do depend on time, we denote Lj

λ,ii := Lλ,ii(jk)

and F j,inλ := F in
λ (jk). We wish to find zj+1

i once zji is known, Since zj+1
i is unknown we

make the following linear extrapolations

Lj+1
λ,ii z

j+1
i ≈ 2Lj

λ,iiz
j
i − Lj−1

λ,ii z
j−1
i and F j+1,in

λ zj+1
i ≈ 2F j,inλ zji −F

j−1,in
λ zj−1

i . (89)

Defining A⊕ii := (2Mii + kνSii) and A	ii := (2Mii − kνSii), we obtain the system

A⊕ii z
j+1
i = A	ii z

j
i − k(3Lj

λ,iiz
j
i − Lj−1

λ,ii z
j−1
i )− kMii(3F j,inλ zji −F

j−1,in
λ zj−1

i ), (90)

which we invert to obtain zj+1
i . To start the loop we define, at the “ghost” time instant

t = −kT , the terms L−1
λ,iiz

−1
i := L0

λ,iiz
0
i and F−1,in

λ z−1
i := F0,in

λ z0
i .

Remark 8.6. Notice that since Mii and Sii are symmetric and positive definite, then A⊕ii
is symmetric and positive definite (at least for small enough k). Notice also that the
idea in (89) is proposed in [KR15b, section 5.4], but with an extrapolation as Lj+1 ≈
(1 + k)Lj − kLj−1, which approaches a zero order extrapolation as k decreases to 0.
With the linear extrapolation, we observed a better accuracy/convergence performance in
some tests. Finally, the feedback part of the control in [KR15b, section 5.4] is treated in a
different way using a preliminary “uncontrolled guess” zj+1

G for zj+1
i by solving the system

with no control, the idea is to use the fact that we know F j+1,in. We do not use this fact
with the linear extrapolation above. However, in the 2D boundary case, the extrapolation
seems to work better in our simulations, this is why we take the extrapolation in both
cases. Furthermore, the extrapolation approach is cheaper because we need to solve the
system only once (at each time step).

Analogously, system (87a) is approximated by

(2 + kςλ)κ
j+1 = (2− kςλ)κj − k

(
3F j,bo

λ,b

[
zji
κj

]
−F j−1,bo

λ,b

[
zj−1

i

κj−1

])
, (91a)

with F−1,bo
λ,b

[
z−1

i

κ−1

]
:= F0,bo

λ,b

[
z0

i

κ0

]
, from which we obtain κj+1. Then, system (87b) is

approximated by

A⊕ii z
j+1
i = A	ii z

j
i − kνSibB

Γ
Ψ

(κj+1 + κj)− 2MibB
Γ
Ψ

(κj+1 − κj)
− kLj+1

λ,ii z
j+1
i − kLj

λ,iiz
j
i − kL

j+1
λ,ibB

Γ
Ψ
κj+1 − kLj

λ,ibB
Γ
Ψ
κj.
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Extrapolating again for the unknown Lj+1
λ,ii z

j+1
i , with L−1

λ,iiz
−1
i := L0

λ,iiz
0
i , we arrive to

A⊕ii z
j+1
i = A	ii z

j
i − (A⊕ib + kLj+1

λ,ib)BΓ
Ψ
κj+1 + (A	ib − kL

j
λ,ib)BΓ

Ψ
κj

− k3Lj
λ,iiz

j
i + kLj−1

λ,ii z
j−1
i ,

(91b)

which we invert to obtain the interior component zj+1
i of zj. Notice that the boundary

component is given by zj+1
b = BΓ

Ψ
κj+1.

8.2.1. Solving the Riccati systems. It remains to explain how we compute the the feed-

backs F in
λ and Fbo

λ we need in (90) and (91a). That is, to explain how we solve the Ricatti
system (84), backwards in time and in an bounded interval of time [0, T ]. We follow the
procedure in [KR15b, sections 5.3.2 and 5.3.3], with some changes.

Internal feedback. Firstly, we look for a solution ΠT
D of the agebraic Riccati equation

ΠT
DXin

λ (T ) + Xin
λ (T )>ΠT

D − ΠT
DRR>ΠT

D +
(
Cin
)> (

Cin
)

= 0,

with R = H0 = M−1
ii,c as the Cholesky factor of M−1

ii . The main idea is to have H0H
>
0 =

Mii which corresponds to taking the identity as control operator (see [KR15b, 5.3.3] where
it is chosen H0 = (Mii,cM

−1
ii )>).

Secondly, we connect H0 to Rin by an homotopy. In the case where we have finite-
dimensional controls Rin is a rectangular matrix, so we add the enough zero columns to
obtain a square matrix, and we consider

Hτ = (1− τ)2H0 + τ 2
[
Rin 0

]
, τ ∈ [0, 1]. (92)

Discretizing the homotopy interval [0, 1]D = [0, l, 2l, . . . , (Nh−1)l, 1], Nh ∈ N0 and l = 1
Nh

,
we compute the solution corresponding to R = Hml from those corresponding to R =
H(m−1)l, m ∈ {1, 2, . . . , Nh}, following [KR15b]. Let ΠT

D be the solution corresponding
to H1, then since H1H

>
1 = RinRin>, ΠT

D is the solution corresponding to R = Rin.
Finally, we solve the equation (84) as in [KR15b], with the final condition ΠD(T ) = ΠT

D

and using Crank-Nicolson discretization in time variable, by transforming the equation
into an algebraic Riccati equation at each time step.

To solve the algebraic Riccati equations we use the software in [Ben] (see also [Ben06]).

Remark 8.7. Notice that in [KR15b] the solution ΠT
D is found in three steps and R is

always set to be a square matrix, this is because we need to connect two matrices by an
homotopy. Here we find ΠT

D in two steps and we implicitly connect the square matrix H0

to the rectangular one Rin by connecting H0 to
[
Rin 0

]
. We have used the homotopy (92)

because in some situations we observed that we need less homotopy steps than with the
convex combination (1− τ)H0 + τ

[
Rin 0

]
like as in [KR15b], but we cannot say a priori

which homotopy is better.

Boundary feedback. We proceed as in the internal case to find a final condition for the
differential Riccati equation. At final time t = T we start by solving the system

ΠT
DXbo

λ (T ) + Xbo
λ (T )>ΠT

D − ΠT
DRR>ΠT

D +
(
Cbo

)> (
Cbo

)
= 0

and then set H0 =

[
M−1

ii,c 0
0 IM

]
and Hτ = (1− τ)2H0 + τ 2

[
Rbo 0

]
, τ ∈ [0, 1].
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9. Numerical examples

We present some results of numerical simulations which we have performed concerning
the stabilization of systems (80) with internal feedback control or (81) with boundary
feedback control to zero. Below, zu,0 stands for the solution of the uncontrolled discretized
systems (i.e., without the feedback term and λ = 0), and zλ stands for the solution of
the discretized systems under the action of a discretized feedback control. We focus on
the 2D case and our domain is the unit ball. In the internal feedback control case, we
define a rectangle subdomain ω :=

(
0, 1

2

)
×
(
0, 1

3

)
. Then, we take a regular partition of

into M = mn subrectangles

ωl1,l2 :=
(
l1−1
2m

, l1
2m

)
×
(
l2−1
3n
, l2

3n

)
, (l1, l2) ∈ {1, 2, . . . ,m} × {1, 2, . . . , n}.

We take the M actuators 1ωl1,l2 , thus in each subrectangle ωl1,l2 the control is constant.
As an illustration, we plot a linear combination of 4 piecewise-constant actuators in
Figure 1(a), corresponding to the arrangement (m,n) = (2, 2). For the boundary control
case, our boundary, once parametrized by arc length, is Γ = [0, 2π). We use boundary
actuators whose form is

Ψi(θ) = 1(θ0,θ1) sin

(
i(θ − θ0)

θ1 − θ0

)
. (93)

with θ0 = π and θ1 = 5π
4

. As an illustration, the boundary actuator Ψ2 is plotted in
Figure 1(b).
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(a) A linear combination off 4 piecewise-constant
internal actuators.
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(b) The boundary actuator Ψ2.

Figure 1. Internal and boundary actuators.

9.1. Testing with a family of functions (â, b̂). We set λ = 2, ν = 1
4
, , χ = 1ω. Next,

we choose a family of functions â, b̂1, and b̂2 as follows

â(t, x) = − sin(t) cos(ix1) + sin(5t) sin(jx2)− 3,

b̂1(t, x) = cos(t) sin(−kx1)− cos(3t) cos(lx2),

b̂2(t, x) = sin(−t) sin(mx1)− cos(2t) sin(nx2).

(94)

We will test firstly with 6 piecewise-constant actuators, corresponding to (m,n) = (3, 2),
and then with 6 boundary actuators Ψi, i ∈ {1, 2, . . . , 6}. The initial condition is set
v0(x) := sin(2x1) cos(x2) and the time-interval is set [0, 8]. In Figures 2(b) and 2(c), we
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(b) With internal feedback.
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(c) With boundary feedback.

Figure 2. Stabilization rate is provided by the feedback control.

can observe that both internal and boundary feedback control is able to stabilize the
system with the desired rate λ

2
= 1 for some parameters (i, j,k, l,m,n) ∈ P , with

P := {(1, 1, 1, 1, 1, 1), (1, 2, 2, 1, 1, 1), (2,−1, 1,−3, 5, 1),

(−1, 5, 3, 1, 1, 5), (1, 2, 3, 4, 5, 6), (6,−2, 5, 3, 4, 1)} .

In Figure 2, as well in following ones, the squared norm |z|2H is understood as the discrete
approximation z>Mz. We would like to emphasize that without any control, the system
is unstable for these parameters defined by P as we can see from Figure 2(a).

9.2. Increasing the number of actuators. We compare the results we obtain by
changing the number of actuators. With no surprise, we see that with more actuators
we obtain better results. We will take one element of the family in (94), namely the one
corresponding to (i, j,k, l,m,n) = (2,−1, 1,−3, 5, 1) and also take λ = 2.

9.2.1. Internal feedback control. In Figure 3, we present the results for some rearrange-

ments (m,n). We observe that the cost (Πz(t), z(t))H , understood as z(t)
⊥

ΠD(t)z(t),
decreases as the number of controls increase, as we can see in Figure 3(b).

Notice that we cannot say a priori which among (m,n) = (2, 2) and (m,n) = (4, 1) is
better because one set of actuators does not include the other. However, for the considered
example we observe that (2, 2) is better than (4, 1).

The case (m,n) = (+∞,+∞) in Figure 3 should be understood as the case we do not
impose any restriction on number of actuators. That is, to the case we take PM = 1,
or in other words in the case our control operator in (33) is just 1ωχ1ω. In this case
Rin = Dχ1ω in (85).
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(a) Controlled solution.
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(b) Cost function.
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(c) Control.

Figure 3. The convergence rate of the solution, the cost function and the control.
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Recall that our control can be written as η(t, x) =
m∑
l1=1

n∑
l2=1

ηl1,l2(t)1ωl1,l2 (x). For exam-

ple, in the left column of Figure 4, we plot the value of the feedback control, in the case
of a single actuator, at two time instants t = 4.5 and t = 6.5. We refer also to Figure 5(a)
for this value at all time instants t ∈ [0, 8]. Notice that, the “cusps” in Figure 3(c), in the
case (m,n) = (1, 1), are due to the fact that the control vanishes at the corresponding
time instants. In the case we take only one actuator a “cusp” will appear when the
control changes sign, because the plotted function “takes” the value −∞ if the control
vanishes, see also Figure 5(a).

In Figure 4, we plot the control at two time instants t = 4.5 and t = 6.5. In Figure 5
we plot the value of each actuator for all time instants for some rearrangements (m,n).
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Figure 4. Feedback control at t ∈ {4.5, 6.5} for (m,n) ∈ {(1, 1), (2, 1), (2, 2)}.

9.2.2. Boundary feedback control. Now we consider the reference function in 9.1 corre-
sponding to (i, j,k, l,m,n) = (6,−2, 5, 3, 4, 1) and we take λ = 2 and ς = 10. We
take a family of actuators {Ψi | i ∈ {1, 2, . . . ,M}}, as in (93). We compare the re-
sult in the cases M ∈ {1, 2, 4, 6}. With no surprise, from Figure 6(a), taking more
actuators leads to better results. The boundary feedback control here can be written
as ηM(t) =

∑M
i=1 κi(t)Ψi. In Figures 6(b,c) we plot the functions κi = κi(t,M) for the

cases M ∈ {1, 6}.

9.3. Comparing with another placement of the actuators. We consider another
placement of the actuators and compare the controlled solutions. We recall one member
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(a) (m,n) = (1, 1), 1 actuator.
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(b) (m,n) = (2, 1), 2 actuators.
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(c) (m,n) = (2, 2), 4 actuators.

Figure 5. The magnitude(s) of the internal actuator(s).
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(a) The cases M ∈ {1, 2, 4, 6}.
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(b) Magnitude for 1 actuator.
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(c) Magnitudes for 6 actuators.

Figure 6. Convergence rate of solutions and the magnitude(s) of the
boundary actuator(s).

of the family in (94), namely the one corresponding to (i, j,k, l,m,n) = (1, 2, 2, 1, 1, 1)
and also set λ = 2.

9.3.1. Internal feedback control. Instead of defining all actuators in one rectangle ω =(
0, 1

2

)
×
(
0, 1

3

)
as in Figure 1(a), we define 4 piecewise-constant actuators in 4 rectangles ωi

away from each other as in Figure 7(a). We want to say that the sum of the areas of the
four separated rectangles ωi equals the area of ω, that is,

∑4
i=1 |ωi| = |ω|. Comparing

Figures 7(b) and 3(a), we see that the latter placement is more effective than the former
one (for this example).

9.3.2. Boundary feedback control. Here, we set ζ = 10 and we use 4 boundary actuators.
Instead of defining as in (93), see Figure 1(b), using 4 frequencies of the sinus functions
in an interval

(
π, 5π

4

)
, we now define the new actuators in domains away from each other

as in Figure 8(a), where each actuator is as in (93) with i = 1. Comparing Figures 8(b)
and 6(a) we see that the latter placement seems to be better than the former one (for
this example).

9.4. Dependence of the transient bound on the desired decreasing rate. Here we
consider the case of internal controls with no restriction in the dimension of the control,
we take PM = 1, χ = 1 and Rin = Dχ1ω in (85). We want to check whether the transient

bound Ĉλ associated to the Riccati based feedback control does depend on the desired
exponential rate λ ≥ 0 as

Cλ ≈ eT0,α+T1,αλα (95)

(cf. Section 3.6), for a suitable α ≥ 0. As we will see, the answer is not clear.
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Figure 7. Compare two placements of internal actuators.
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Figure 8. Compare two placements of the boundary actuators.

We set ν = 1
2
, â = −10+2x1 +cos x2, b̂ = (−x2

1,− sinx2), and we impose no restriction
on number of actuators.

Notice that (â, b̂) is independent of time. In the stationary case, we have “just” to
solve an algebraic Riccati equation for each λ. Up to our best knowledge, even in the
stationary case it is not known how precisely the constant Cλ depends on λ, for Riccati
based stabilizing feedback.

Figure 9 shows that the system can be stabilized with rate λ ∈ [0, 30], the figure also
shows that the constant Cλ increases with λ.

Let us observe that starting at time t = s0 < T , if for all t ∈ [s0, T ] we have |z(t)|2H ≤
Cλ,s0e−λ(t−s0)|z(s0)|2H , then we obtain the lower bound estimate

Cλ ≥ Cλ,s0 ≥ max
t∈[s0,T ]

eλ(t−s0) |z(t)|2H
|z(s0)|2H

,
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Figure 9. Stabilization rate of the solution is achieved under feedback control.
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and, considering all s0 ∈ [0, T ) we obtain

logCλ ≥ mλ := max
s0≥0

max
t∈[s0,T ]

(
λ(t− s0) + log

(
|z(t)|2H
|z(s0)|2H

))
= max

s0≥0
max
t∈[s0,T ]

(rλ(t)− rλ(s0)) ,

with rλ(t) := λt + log
(
|z(t)|2H
|z0|2H

)
. In Figure 10 we plot the function mλ, which suggests

that (95) might hold with α ∈ (0, 1], but we cannot confirm that (41) will hold for “big λ”,
actually we cannot even say whether λ = 30 is big. Notice that for λ ∈ [20, 30] the figure
suggests that α = 1 is the best fitting parameter. We must however say that we expect
the magnitudes of control and solution to increase as λ does, so we must be careful in
reading the results for big λ, because the mesh used was the same for all λ, and for
bigger λ the numerical error will be more significant.

We present another example in the nonautonomous case. Notice that, this case is quite
expensive, because we need to solve a differential Riccati equation for each λ. Here, we
set ν = 1

4
, â = −10 + 2x1 + sin 2t cosx2, b̂ = (−x3

1 cos 3t,− sin t sinx2), and we impose
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Figure 11. Stabilization rate of the solution is achieved under feedback control.
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no restriction on number of actuators. Figures 11 and 12 show that the system can
be stabilized with rate λ ∈ [0, 40] and the constant Cλ increases with λ. Again the
Riccati feedback we use seems not to provide the behaviour (41) “for big λ”. So one
question still remain: how small can we make the transient bound Cλ and/or the ratio
Cλ
λ

(cf. Section 3.6). Which feedback (Riccati based or not) makes the ratio smaller?

In conclusion, the dependence of the transient bound Ĉλ, associated to the Riccati
based feedback control, on the desired exponential rate λ ≥ 0 is not clear yet. This
could be the subject of further researh and more simulations must be done, in particular
for finer meshes. This is however not trivial, because solving the Riccati equations is
numerically quite demanding for fine meshes. However, the simulations strongly suggest

that (unfortunately) Ĉλ depends exponentially-like on λ, which suggests us that to treat
the nonlinear system we should take λ relatively small, because ε in (3) will decrease

as Ĉλ increases (cf.Remark 4.10).

9.5. On the parameter ς. Here we consider the case of boundary controls. With ν
and (â, b̂) as in Section 9.4, we try to understand the influence of the choice of the
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Figure 13. Increasing the parameter ς.

parameter ς in the extended system (81). Notice that ς does not appear in the “original”
system (81a), it is a parameter which we can choose in the dynamics of the extension
variable κ in (81b).

We will take 6 boundary actuators and fix λ = 2. Figure 13 suggests that taking a
bigger parameter ς, we obtain a boundary feedback control providing a faster stabilization
of the linear system to zero. However, we must say that taking a bigger parameter ς, the
free dynamics solution of (81b) (without the feedback control) will go faster to zero, which
suggests that for bigger ς we may need to take smaller time step k in the discretization (87)
to get a good approximation of the real dynamics, which will make the simulations more
expensive.

9.6. On the feedback nature of the control. Here, we remark the importance to
have the control in a feedback form, because closed loop controls are known to be able
to respond to small disturbances. We consider the stationary case with ν = 1

2
, â =

−10 + 2x1 + cosx2, b̂ = (−x2
1,− sinx2) as in Section 9.4 and with λ = 2. However,

here we consider 4 boundary actuators and set ζ = 10. The initial condition here is

v0(x) = 3 +
4∑
i=1

1
2
Ψ̃i(x)

In Figure 14(a), we plot the results:

• for the case of the “original” close-looped system (81),
• for the case of the corresponding extended close-loop system (71) (with (λ, ς)

in the role of (λ̄, ς̄) and with Aâ,b̂,ν
λ,ς as in (78) in the role of Aa,b

λ̄,ς̄
), and then

recovering z = yλ +BΨκλ, and
• for the case where we save the κλ obtained for system (71) and plug it in the

system (81a) as an open-loop control.

Notice that, we do not expect that the numerical solutions obtained by solving the original
closed-loop system will coincide with the recovering from the solution of the extended
closed-loop system (as Figure 14(a) could suggest), but we do expect that they will be
close to each other, this facts are confirmed in Figure 14(b).

For a short period of time we do not see much difference among the three procedures.
For a longer period of time, the closed-loop controls are able to stabilize the corresponding
systems (81) and (71) while, the open-loop control is not able to stabilize the original
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Figure 14. The “real” feedback to stabilize the system.

one (81a), even though it stabilizes the “equivalent” extended system. This is due to the
fact that the discretizations errors in the original and extended systems are different, the
difference between these two errors could be seen as a small disturbance to which the
open-loop control cannot respond.

The conclusion is that it is important to have a control in feedback form in the original
system (81). It is not enough (at the discrete level) to find the control for an “equivalent”
auxiliary system, like (71), and plug it in (81a).

9.7. Switching the control off/on. With the same setting as in Section 9.6, here we
perform an experiment to emphasize the importance of feedback control to stabilize the
system. We set T = 6.

In Figure 15 we plot the results for the 3 cases the control is switched on for time
in [0, 6], for time in [0, 3] ∪ [4, 6], and for time in [0, 3].

Switching the control off at time instant t = 3, we observe that the norm of the
solution increases, and will (likely) not remain bounded. Notice that at time t = 3 we
have |z(3)|2H ≤ e−10−3λ|z0|2H < 1.2× 10−7|z0|2H is already quite small. We also see that by
switching on the control again, from time t = 4 on, then we recover the stability of the
system.

Notice that at time t = 3 and t = 4, that is, we do not know the “analytical” expressions
for z(3) and z(4) which come from the numerical solution. Therefore, in some sense, z(3)
and z(4) can be seen as “random” “initial” conditions showing the instability of the
system and the stabilizing property of the feedback control.

9.8. A nonlinear example. We consider the following nonlinear parabolic equation, for
time t ∈ [0, T ], again in the unit ball Ω = D = {x = (x1, x2) ∈ R2 | x2

1 + x2
2 < 1}.

∂ty − ν∆y + c3y
3 + c2y

2 + c1y +
1

2
∇ ·
(
y2, y2

)
+ f0 = 0, y |Γ = g,

y(0, x) = y0(x),
(96)

where c1, c2, and c3 are constants in R, and f0 is a fixed appropriate function.
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Figure 15. Switch on and switch off the feedback control.

Let us fix a smooth function ŷ which we will take as our reference trajectory. Then, as
external forces, we (must) take the functions

f0 = f0(ŷ) = −
(
∂tŷ − ν∆ŷ + c3ŷ

3 + c2ŷ
2 + c1ŷ +

1

2
∇ ·
(
ŷ2, ŷ2

))
,

g = g(ŷ) = ŷ |Γ ,
(97)

We will also set the parameters

ν = 0.2, (c1, c2, c3) = (−2,−1,−3), λ = 1.

Remark 9.1. In order to make a smooth function ŷ(t, x) a solution of (96), we have just to
set the appropriate external forces f0 and g as in (97). Thus, to test with other reference
trajectories, we would just have to take the corresponding f0 and g.

9.8.1. Discretization. Given a triangular mesh D = (p, e, t) of D and a time step k > 0,
we discretize system (96) as if it were the heat equation, simply looking at the nonlinearity
as an external forcing, that is, writing

f1(y,∇y) = c3y
3 + c2y

2 + c1y +
1

2
∇ ·
(
y2, y2

)
,

f = f(y,∇y) = f1(y,∇y) + f0,

since f0 and g are smooth we can take at each time step jk, as approximations of f0(jk)

and g(jk) the corresponding evaluation vectors f0(jk) and g(jk) at the points p of D.
For the nonlinear terms, at each time step, we take the aproximations

(cry
r)j := crM(yj)r ≈ cry

r(jk), 1
2

(
Gx1(yj)2 + Gx2(yj)2

)
≈ 1

2
∇ · (y2(jk), y2(jk)) ,

where (yj)r means that we take the r-th power of each coordinate of yj. Hence, given
vector solution yj, at time jk, we approximate the nonlinearity, as a function from V
into V ′, as

N1,D(yj) := M
(
c3(yj)3 + c2(yj)2 + c1y

j
)

+ 1
2

(
Gx1(yj)2 + Gx2(yj)2

)
. (98)

We arrive to a semi-discretization analogously to (83):

∂tMiiyi = −νSiiyi − νSibg − ∂tMibg −
[
Mii Mib

]
f 0 − (N1,D(y))i .
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where (N1,D(y))i stands for the coordinates of the vector N1,D(y) corresponding to the

interior points of the mesh. As before y =

[
yi

yb

]
=

[
yi

g

]
.

Then, with Crank-Nicolson scheme, and with the notations as in (91b), we find

A⊕ii y
j+1
i = A	ii y

j
i −A⊕ibg

j+1 + A	ibg
j − k

[
Mii Mib

] (
f
j+1

0 + f
j

0

)
− k

((
N1,D(yj+1)

)
i
+
(
N1,D(yj)

)
i

)
.

(99)

Knowing yji , the only unknown term in the right hand side is (N1,D(yj+1))i. To approxi-
mate this term, we take again the linear extrapolation

(N1,D(yj+1))i = 2(N1,D(yj))i−(N1,D(yj−1))i, j ≥ 0, with (N1,D(y−1))i := (N1,D(y0))i.
(100)

Therefore we arrive to the scheme

A⊕ii y
j+1
i = A	ii y

j
i −A⊕ibg

j+1 + A	ibg
j − k

[
Mii Mib

] (
f
j+1

0 + f
j

0

)
− k

(
3(N1,D(yj))i −N1,D(yj−1))i

)
,

(101)

which we can invert to obtain yj+1
i .

9.8.2. Local feedback stabilization. With the setting as in (9.8), we take T = 8 and the
reference trajectory

ŷ(t) = (2x3
1 + x2

2) sin t,

which solves (96), provided we take the “fixed” external forces as in (97).
We will confirm that the feedback control is able to stabilize locally system (96) to the

targetted trajectory ŷ (see Theorems 5.1 and 7.15) with exponential rate λ
2
. That is, the

solutions of the systems

∂ty − ν∆y + f1(y,∇y) + f0 +BMB
∗
M Π̂λ(y − ŷ) = 0, y |Γ = g,

y(0) = y0,
(102)

and

∂ty − ν∆y + f1(y,∇y) + f0 = 0, z |Γ = BΓ
Ψκ, (103a)

∂tκ+ ςκ+ Fbo(y − ŷ −BΨκ, κ) = 0, (y(0), κ(0)) = (y0, κ0). (103b)

go exponential to ŷ, with rate λ
2
, provided the initial condition y0 is close enough to ŷ0.

On the other hand, yu is the solution of systems (102) and (103) without any feedback
control.

The feedback control is found to stabilize, respectively, the linearized systems (80)
and (81). That is, respectively, by solving the differential Riccati equations (55) and (77),

with â and b̂ as in (5).
Departing from (101), and proceeding as for the systems (90) and (91), by taking a

suitable linear extrapolations at time t = (j+1)k, we arrive to the following discretizations
of the systems (102) and (103).

In the internal case we arrive to

A⊕ii y
j+1
i = A	ii y

j
i −A⊕ibg

j+1 + A	ibg
j − k

[
Mii Mib

] (
f
j+1

0 + f
j

0

)
− k

(
3(N1,D(yj))i −N1,D(yj−1))i

)
− kMii(3F j,inyji −F j−1,inyj−1

i ).
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In the boundary case we arrive to

(2 + kς)κj+1 = (2− kς)κj − k
(

3F j,bo
b

[
yji
κj

]
−F j−1,bo

b

[
yj−1

i

κj−1

])
,

A⊕ii y
j+1
i = A	ii y

j
i −A⊕ib

(
gj+1 +BΓ

Ψ
κj+1

)
+ A	ib

(
gj +BΓ

Ψ
κj
)

− k
[
Mii Mib

] (
f
j+1

0 + f
j

0

)
− k

(
3(N1,D(yj))i −N1,D(yj−1))i

)
,

where N1,D(yj) is as in (98) and the feedback rules F in = F in
λ and Fbo = Fbo

λ computed
as in Section 8.1.4.

The case of internal controls. For system (102), we take the initial condition in the
form y0 = y0(x) = ŷ0(x) + εv0(x), with v0 chosen as

v0(x) :=

{
1, if x < −1

3
,

0, otherwise.

We take 6 piecewise constant actuators, as in Section 9.2.1, supported in the rectangular
subset ω corresponding to the arrangement (m,n) = (3, 2).

In Figure 16(a), with some values of ε in [−0.577, 0.495], we see that the system is
stable under the feedback control action. However, in Figure 16(b,c), feedback control
can not stabilize anymore the system for ε ∈ {−0.578, 0.496}.

In Figure 17, we see that uncontrolled solution is not stable. Actually, we observe that
even for small ε the solution explodes at some time in (0, 8). We would like to recall that
such blowing-up is somehow expected. We refer to [Bal77, Section 3].
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(b) With ε = 0.496.
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(c) With ε = −0.578.

Figure 16. Internal feedback control. Convergence rate to ŷ holds for small ε.
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Figure 17. Uncontrolled solution.
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Notice that, Theorem 5.1 holds for v0 ∈ V . The above choice does not satisfy this
requirement, though the numerical results show that, in this example, the feedback is
still stabilizing the system locally. Next, with the same actuators, we perform another
simulation with v0 ∈ V being the (numerical) solution of the elliptic system

−µ∆v0 + βrv0 +∇ · (βcv0) + h = 0, v0 |Γ = 0,

observing the analogous behaviour. Here, we choose

µ = 0.5, βr(x1, x2) = sin(x1) + x2, βc(x1, x2) = (2x1x2, −2 sin(x2)) ,

and h(x1, x2) = cos2(3y) + sin(x) + 2.
(104)

In Figure 18(a), we plot the solution v0 of the equation above. Again, in Figure 18,
we observe that for small ε ∈ [− 0.14, 0.1511] the feedback control is able to stabilize the
system. In Figure 19, the uncontrolled system is still unstable and exploding.

v0

-2.5

1

-2

-1.5

0.5

-1

-0.5

0

0

-1
-0.5-0.5

0
0.5

-1
1

(a) The function v0.

0 1 2 3 4 5 6 7 8

time t
-4

-2

0

2

4

6

8

λt+ log(|y(t)− ŷ(t)|2H/|ǫv0|
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(b) With ε ∈ [− 0.14, 0.1511].
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Figure 18. Internal feedback control. Convergence rate to ŷ holds for small ε.
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Figure 19. Uncontrolled solution.

The case of boundary controls. Next, we use 6 boundary actuators as in Section 9.2.2,
see (93). Here in order to guarantee the compability condition (75), we take y0 = ŷ0 + εv0

where v0 is obtained by solving an elliptic equation

−µ∆v0 + βrv0 +∇ · (βcv0) + h = 0, v0 |Γ =
M∑
i=1

%iΨi,

with µ, βr, βc, and h as in (104) and with % =
[
1 1 0 0.5 0 0

]>
. In Figure 20(a),

we plot the function v0 that we get by solving the system above.
Again, solving our system for different values of ε, in Figures 20(b) we observe that

under the boundary feedback control, is stable for small ε. The feedback fails to stabilize
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the system for bigger ε, as we see in Figure 20(c). In this case we take κ0 = κ(0) = ε%
in (91a).

In Figure 21 we see that the uncontrolled solution is not stable, and it even explodes
for small ε.
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2
H)

ǫ = −0.008
ǫ = −0.01
ǫ = 0.01
ǫ = 0.02
ǫ = 0.033
ǫ = 0.041

λ = 1, ς = 8,
6 boundary actuators.

(b) With ε ∈ [− 0.008, 0.041].

0 0.5 1 1.5 2 2.5

time t
0

1

2

3

4

5

6

7

8

9

log(|y(t)− ŷ(t)|2H/|ǫv0|
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Figure 20. Boundary feedback control. Convergence rate to ŷ holds for small ε.

0 0.5 1 1.5 2 2.5 3 3.5

time t
-5

0

5

10

15

20

25

30

35

log(|yu(t)− ŷ(t)|2H/|ǫv0|
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Figure 21. Uncontrolled solution.

9.9. The discretization error. Here we take the time interval [0, 5] and consider the
function

ŷ(x1, x2) =
(
t2 − 2t

)
x3

1 sin2(x2).

Of course we expect the discrete solution vector ȳ to get closer to ¯̂y as the triangular mesh
in D gets finer and the timestep gets smaller. Here we show, just through a simulation
that this is the case for the discretization we propose.

We check the error that we obtain as the mesh pair (D, k) is refined. We start with a
pair (D1, k1) where D1 is a triangular mesh of the cylinder D, where each edge of each
triangle in the mesh has a length bounded above by h1 = 0.6, and k1 = 0.01 is the time
step. More precisely D1 was generated by the MATLAB function initmesh with the
input Hmax = 0.6.

Recursively, we construct the finer pair (Dr+1, kr+1) by refining regularly the triangu-
lation Dr (by connecting the middle points of the edges of each triangle), and by dividing
the time-step by 2, kr+1 = kr

2
. Hence, we want the solution y[r] obtained with (Dr, kr)

to converge to ŷ as r increases.
We will also compare our approach with a Newton and a Heun based approach. The

methods differ in the way we solve (99).
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Remark 9.2. We follow [Ros08, Section 7.2.2] and [McD07, Section 4.1.2] for the termi-
nology “Heun approach” or “Heun method”. However, in different references the termi-
nology may vary, for example we find “Modified Euler method” in [BF10, Section 5.4],
or “Explicit Trapezoidal method” in [AP98, Section 4.1].

The Heun based approach. Here instead of the extrapolation (100) it is used an explicit
Euler step, see [McD07], to find a preliminary guess y∗i for yj+1

i as

Miiy
∗
i = (Mii − kνSii) y

j
i + (Mib − kνSib) gj

−Mibg
j+1 − k

[
Mii Mib

]
f
j

0 − k
(
N1,D(yj)

) (105)

By defining yG =

[
y∗i
gj

]
, we arrive to the scheme

A⊕ii y
j+1
i = A	ii y

j
i −A⊕ibg

j+1 + A	ibg
j − k

[
Mii Mib

] (
f
j+1

0 + f
j

0

)
− k

(
(N1,D(yG))i +

(
N1,D(yj)

)
i

)
.

The Newton based approach. We solve (99), by a fixed point iterative procedure, see [BF10,
Section 10.2]. We write (99) in the form

F (yj+1
i ) = 0,

with

F (w) := −A⊕iiw − k
(
N1,D

([
w
gj+1

]))
i

+Hj,

Hj := A	ii y
j
i −A⊕ibg

j+1 + A	ibg
j − k

[
Mii Mib

] (
f
j+1

0 + f
j

0

)
− kN1,D(yj)i.

Next, we take the derivative of F at a given vector w0:

dFw0 := −A⊕ii − k

(
M

(
3c3

[
w0

gj+1

]2

+ 2c2

[
w0

gj+1

]
+ c1

)
+ Gx1

[
w0

gj+1

]
+ Gx2

[
w0

gj+1

])
i

= ANw0
+B(gj+1),

with

ANw0
:= −A⊕ii − k

(
Mii

(
3c3(w0)2 + 2c2w

0 + c1

)
+ Gx1,iiw

0 + Gx2,iiw
0
)
,

B(gj+1) := −k
(
Mib

(
3c3(gj+1)2 + 2c2g

j+1 + c1

)
+ Gx1,ibg

j+1 + Gx2,ibg
j+1
)
,

where the powers of vectors are understood to be taken coordinate-wise.
Now we find yj+1

i iteratively, see [GT74] or [BF10, Section 10.2], as (or close to) the
limit of

wn+1 = wn − [F ′(wn)]
−1
F (wn).

By a continuity argument, if the time-step is small enough, we can expect the method
to converge when we take the starting vector w0 = yji . Another option, see [McD07,
page 88], is to take w0 = y∗i as in (105), which may allow us to reduce the number of
iterations. We used the latter in the simulations presented here. The stopping criteria
which we used was

i. |wn+1 − wn|L∞ < tol.

ii.
|wn+1−wn|

L∞
|wn|L∞

< tol.

iii. F (wn+1) < tol.
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with tolerance tol = eps, where eps ≈ 10−16 is the MATLAB’s epsilon (i.e., “zero”) for
double precision. Figure 22(a), shows the L2-norm, |y[r]− ŷ|L2((0,5),L2(Ω,R)) in the cylinder,

of the discretization error with r ∈ {1, 2, 3, 4, 5}. The Bochner norm |v|L2((0,5),L2(Ω,R)) is
to be understood as the discrete approximation

(
|v|H

)>
Mt|v|H ≈

∫ 5

0
|v(t)|H |v(t)|H dt = |v|2L2((0,5),L2(Ω,R)) ,

where |v|H is a column vector with Nt + 1 components where each component is the

discrete approximation of the norm |v(jk)|H , that is,
(
|v|H

)
j

:=

√(
vj
)>

Mvj; and Mt

is the mass matrix associated with the regular time mesh as in (88), with T = 5. That
is, (cf. [KR15b, Section 5.1])

Mt :=
k

6



2 1 0 0 . . . 0
1 4 1 0 . . . 0

0 1 4 1
. . .

...
...

. . . . . . . . . . . . 0
0 . . . 0 1 4 1
0 . . . 0 0 1 2


.

In the Figure 22(b) we can see that the rate of convergence approaches 4 (i.e., second
order convergence) for all the three approaches.

It is clear that the cheapest method is the one which we propose, and that the Newton
method is the more expensive one. Of course the Newton based approach is expected to
be the most accurate. However, we observe in the Figure 22 that, for this example, the
results of these two approaches do seem to match each other.

To find a difference between these two approaches, we have to take a bigger time step.
We also take the bigger time interval [0, 6] and h = 0.1. In Figure 23(a) and 23(b), we can
see that with only 60 time nodes, the Newton approach gives already almost the same
result as with 240 time nodes. While, we can clearly see that there is an error associated
with the time step for the approach that we propose using a linear extrapolation. Notice,
however that the approach we use can be less expensive for 240 time nodes than the
Newton approach with 60 time nodes, depending on the number of Newton iterations
at each time step, which is expected to increase with the time step (in our experiment
with 60 time nodes the average number of iterations was 5.233).

Another advantage of our method is that we can invert the system (101) iteratively,
as we have done in our simulations by using the conjugate gradient method. With the
Newton approach the associated linearization matrices, at a given time t = jk, may be
not symmetric and so we may need to use a direct solver, for this in our simulations we
have used the backslash “\” solver from MATLAB.

The main disadvantage of the Heun method is the fact that it uses an extrapolation
based on an explicit Euler guess for the solution yj+1 at time t = (j+1)k, which may lead
to some oscillations/fluctuations in time if the time step is not small enough. With 60
time nodes, we observed that Heun approach fails, that is, the numerical solution has
exploded. As we increase the number of time nodes to 240, in Figure 23(b) we can see
that the solution obtained by Heun approach is still the worst one. In Figure 23(c), with
a large enough number of time nodes, more precisely 600, we cannot see a remarkable
difference among the three approaches.
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Figure 22. The discretization error for the mesh pairs (Dr, kr).
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Extrapolation approach with 600 time nodes
Newton approach with 600 time nodes
Heun approach with 600 time nodes

(c) With 600 time nodes.

Figure 23. Comparing the three approaches for different time steps.
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Altenbergerstraße 69, A-4040 Linz.
e-mails: duy.phan-duc@oeaw.ac.at,sergio.rodrigues@oeaw.ac.at

Preliminary version – September 28, 2018 – 15:46

http://dx.doi.org/10.1137/140958979
http://dx.doi.org/10.1007/978-3-642-65161-8
http://dx.doi.org/10.1007/978-3-642-65217-2
http://dx.doi.org/10.1007/BF01213210
http://www.engr.uky.edu/~acfd/lecturenotes1.html
http://www.engr.uky.edu/~acfd/lecturenotes1.html
http://dx.doi.org/10.1090/S0002-9947-1938-1501970-8
http://dx.doi.org/10.1007/BF00252910
http://dx.doi.org/10.1016/j.na.2013.09.003
http://dx.doi.org/10.1051/cocv/2014045
http://dx.doi.org/10.1051/cocv/2014045
http://arxiv.org/abs/1508.00829
http://arxiv.org/abs/1508.00829
http://arxiv.org/abs/1508.00829
http://dx.doi.org/10.1007/978-3-540-79519-3
http://dx.doi.org/10.1007/978-3-540-79519-3
http://arxiv.org/abs/1110.0596
http://arxiv.org/abs/1110.0596
http://arxiv.org/abs/1110.0596
http://dx.doi.org/10.1137/1.9781611970050
http://dx.doi.org/10.1007/978-1-4612-0645-3
http://dx.doi.org/10.1007/978-1-4612-0645-3
http://www.ams.org/bookstore-getitem/item=CHEL-343-H
http://www.ams.org/bookstore-getitem/item=CHEL-343-H
http://dx.doi.org/10.1016/j.plrev.2009.10.002

	1. Introduction.
	2. Reduction to stabilization to zero
	2.1. The case of internal controls
	2.2. The case of boundary controls
	2.3. Stabilization to zero

	3. Internal stabilization of the linearized system
	3.1. Weak solutions
	3.2. Null controllability
	3.3. Stabilization to zero by finite dimensional controls
	3.4. The dimension of the control
	3.5. Feedback stabilizing rule and Riccati equation
	3.6. Dependence of the transient bound on the exponential rate
	3.7. Remark on the viscosity coefficient

	4. Local internal stabilization of the nonlinear system
	4.1. Strong solutions for the linearized systems
	4.2. Fixed point argument

	5. Local internal stabilization to trajectories
	6. Example. Polynomial nonlinearities
	7. Boundary stabilization
	7.1. Weak solutions
	7.2. Strong solutions
	7.3. Null controllability
	7.4. Stabilization to zero by finite dimensional controls
	7.5. Feedback stabilizing rule and Riccati equation
	7.6. The nonlinear systems
	7.7. Back to original time. Stabilization to trajectories

	8. Discretization of the linear systems
	8.1. Discretization in space
	8.2. Discretization in time

	9. Numerical examples
	9.1. Testing with a family of functions (,).
	9.2. Increasing the number of actuators
	9.3. Comparing with another placement of the actuators
	9.4. Dependence of the transient bound on the desired decreasing rate
	9.5. On the parameter 
	9.6. On the feedback nature of the control
	9.7. Switching the control off/on
	9.8. A nonlinear example
	9.9. The discretization error

	References

