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Abstract We consider an optimal internal control problem for the cubic nonlinear
Schrödinger (NLS) equation on the line. We prove well-posedness of the problem and
existence of an optimal control. In addition, we show first order optimality conditions.
Also the paper includes the proof of a smoothing effect for the nonhomogeneous
NLS, which is necessary to obtain the existence of an optimal control.
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1 Introduction

1.1 The physical model

Ever since the first working fiber-optical data transmission system demonstrated by
the German physicist Manfred Börner at Telefunken Research Labs in Ulm in 1965,
the development of high-bit-rate transmission over optimal fibers has increased enor-
mously its information-carrying capacity. However, there are limits on capacities im-
posed by various transmission impairments that distort and degrade the signal in a
number of ways ([2], [19]). One common source of impairments in light-wave com-
munication systems is the amplified spontaneous emission noise generated by the
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erbium-doped fiber amplifiers used to compensate loss in the fiber ([2], [19]). This ad-
ditive noise perturbs the propagating pulses, producing amplitude, frequency, timing,
and phase jitter, which can then lead to bit errors ([14], [15], [23]). The propagation
of pulses in an optical fiber free of noise is governed by the nonlinear Schrödinger
(NLS) equation ([16], [19], [25]) which in dimensionless units is

∂zu = i∂ 2
t u+ i|u|2u, z ∈ [0,ζ ], t ∈ R (1)

where z is the propagation distance, t is the retarded time (that is, the time in a ref-
erence frame that moves with the group velocity of the pulse), ζ is the length of the
optical fiber and u(z, t) is the slowly varying envelope of the electric field of an optical
pulse in a fiber, all quantities are in dimensionless units.

Note that in other contexts such as acoustics waves in plasma, quantum me-
chanics, solid state physics, condensed matter physics, quantum chemistry, etc., NLS
equation has the name of the variables exchanged.

In [26] the authors point out that Monte-Carlo simulations are not adequate to de-
termine the effect of the noise on a system because of the small error rates. Therefore
they propose a technique that concentrates Monte-Carlo simulation on those config-
urations that are most likely to lead to transmission errors. To do so, they use the
analytical knowledge about the behavior of the system that comes from soliton per-
turbation theory and linearize the NLS equation around the soliton solution.

The goal of this paper is to consider a completely different approach to analyze the
effect of the noise on the optical fiber transmission within the framework of optimal
control. By studying the immunity noise level (see section 1.2), we would be able to
find an upper bound for the error rate assuming that the distribution of the noise is
known.

Following [12] and [29], we consider the evolution of the optical field by the
non-homogeneous NLS equation

∂zu = i∂ 2
t u+ i|u|2u+g, z ∈ [0,ζ ], t ∈ R.

where the term g describes the amplified spontaneous emission noise generation.
Usually, noise is represented as circularly symmetric complex Gaussian noise with
autocorrelation function 〈g(z, t)ḡ(z′, t ′)〉= γ2δ (z− z′, t− t ′), where γ2 is a parameter
describing the noise power, 〈 〉 denotes an ensemble average and δ denotes a delta
function. Note that the autocorrelation function above implies infinite noise band-
width. Assuming that any physical system (or any numerical computation) necessar-
ily has a finite noise bandwidth, finite noise energy is considered (see [24], [26]).
Consequently we will study the additive noise g ∈ L2([0,ζ ],L2(R)).

It is known that for solitons in the absence of noise, the pulse shape remains fixed,
but in the presence of noise the pulse shape can be degraded. We will consider that
a pulse is degraded if it satisfies a certain restriction when it arrives at the end of the
line. More precisely, in this simplified model of signal transmission, we will consider
a prescribed (finite) set of possible sent pulses and their corresponding received ones.
In this context, we analyze the anomalous transmissions where the error could not be
detected, consisting with the reception of an admissible pulse not corresponding to
the sent one.
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In this framework, we consider g as a control and we will search for a control
that minimizes a given cost functional having two terms involving the L2 norm of the
control and also an alternative term minimizing the distance to a given target.

In this paper we prove the existence and first order necessary conditions for a
control satisfying the restriction at the end of the line that minimizes the given func-
tional.

In the case where we consider only the first term of this objective functional (see
the next subsection), minimizing the L2 norm of the control, we will have proved the
existence and first order necessary conditions of a control with minimum L2 norm
among all the controls that produces signal degradation. In this way we would know
that if the noise acting on the line has less L2 norm than the minimum noise, then it
would not produce signal degradation.

We will now describe the mathematical setting.

1.2 The mathematical model

We consider the following model of data transmission: given a set of pulses {u0,v0},
the received pulses at the end of the line without noise are the pulses {uζ ,vζ}. The
received pulses {uζ ,vζ} are the evaluation of u, the solutions of usual NLS equation
(1) with initial data u(0, t) = u0(t) and u(0, t) = v0(t) respectively, at z = ζ . In order
to differentiate each bit transmitted sequentially, a time window σ is used. Thus, let
us consider that the pulse sent is u0 if it is verified∫

R
|u(ζ , t)−uζ (t)|2σ

2(t)dt ≤ η ,

(similarly for v0) where u is the solution of

∂zu(z, t) = i∂ 2
t u(z, t)+ i|u(z, t)|2u(z, t)+g(z, t), (2a)

u(0, t) = u0(t), (2b)

and g∈ L2([0,ζ ],L2(R)) represents the noise on the line. The η level must be chosen
in order to distinguish between two pulses received without noise. For this, we choose

η <
1
2

∫
R
|uζ (t)− vζ (t)|2σ

2(t)dt (3)

and since {uζ ,vζ} are the received pulses free of noise, η only depends on {u0,v0}.
An error occurs when, due to noise, the solution of (2) verifies∫

R
|u(ζ , t)− vζ (t)|2σ

2(t)dt ≤ η .

The minimum noise that verifies this condition represents the noise immunity of the
line.

Note that even if the noise only changes the phase, u(ζ , t) ∼= eiθ uζ (t), the error
measure is written as∫

R
|u(ζ , t)−uζ (t)|2σ

2(t)dt ∼=
∫
R

2(1− cosθ)|uζ (t)|2σ
2(t)dt,
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which shows that perturbations of the phase are also considered in this approach.
With the aim of identifying the sequentially sent pulses, the receiver measures

the pulses in a given window of time. We will consider this window of time as a real
function σ localized around the predicted arrival time. For instance, we can take

σ(t) = ke−(
t−tr

τ )
2

where tr is the time of the arrival, τ the width of the window and k a normalizing con-
stant. More generally, we consider σ a real smooth function such that supt∈R |tσ(t)|<
+∞.

For u0 ∈ L2(R) and a complex value control g ∈ L2([0,ζ ],L2(R)), in section 3
we will prove the well posedness of equation (2) in C([0,ζ ],L2(R)). We will call u[g]
the solution associated to the control g. We introduce the set of admissible controls

Gad = {g ∈ L2([0,ζ ],L2(R)) : ‖σ
(
u[g](ζ )− vζ

)
‖2

L2 ≤ η}

and say that g is an admissible control if g ∈ Gad. Note that inequality (3) implies
0 /∈ Gad and, from continuous dependence of the solutions on the control, we have
g /∈ Gad for low noise levels. Our objective is to determine the minimum noise level
that could cause an error in the transmission.

In this article we will consider the variational problem

0≤J? = inf
g∈Gad

J (g) (4)

where

J (g) = ‖g‖2
L2([0,ζ ],L2)+κ‖σ

(
u[g](ζ )− vζ

)
‖2

L2(R),

with κ ≥ 0. Since g /∈ Gad if ‖g‖2
L2([0,ζ ],L2)

< ε , we see that J? > 0.
We could consider a finite set of sent pulses at the beginning of the line {u1,0, . . . ,un,0}

and {u1,ζ , . . . ,un,ζ} the pulses received at the end of the line without noise. Let u j[g]

be the solution of (2a) with initial data u j[g](0, t)= u j,0(t), define Gad =
⋃

1≤ j 6=k≤n G j,k
ad ,

where

G j,k
ad = {g ∈ L2([0,ζ ],L2(R)) : ‖σ

(
u j[g](ζ )−uk,ζ

)
‖2

L2 ≤ η}.

Then, 0 /∈ Gad provided that

η <
1
2

min
1≤ j<k≤n

∫
R
|u j,ζ (t)−uk,ζ (t)|2σ

2(t)dt,

and then J? > 0, given that J? = inf
g∈Gad

J (g) = min
1≤ j 6=k≤n

inf
g∈G j,k

ad

J (g). Therefore, it

is sufficient to study the case initially considered.
There is a large amount of literature on controllability for the internal or bilin-

ear control problem of Schrödinger equations, for instance see the surveys [22] and
[30] and the references therein. However, optimal control problems for Schrödinger
equations have received recent attention in the last years. In [7], the authors prove
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necessary conditions for an optimal bilinear control problem for a Schrödinger equa-
tion with a Hartree type nonlinearity. In [5], an optimal bilinear control problem for a
linear Schrödinger equation with a Coulombian potential is studied. In [20] existence
of an optimal control and necessary optimality conditions are derived for an abstract
bilinear optimal control problem for a linear Schrödinger equation. In [18] the au-
thors study an optimal bilinear control problem of Gross-Pitaevskii equations. In this
setting the existence of an optimal control relies strongly on the fact that the energy
space is compactly embedded in L2(R). As well for the bilinear case, in [13] the
optimal control problem of a nonlinear Schrödinger equations is studied. In this ar-
ticle, the authors recover some kind of compactness of a minimizing sequence using
previous results. In [3] existence an necessary conditions are proved for an optimal
bilinear control problem for a nonlinear Schrödinger equation with Dirichlet condi-
tions in a interval. In [4] the authors derived necessary and sufficient conditions for
an abstract bilinear optimal control problem for a linear Schrödinger equation. As it
can be seen all of the previous works concern with bilinear optimal control. As far as
we know there are no previous results for a distributed optimal control for a nonlinear
Schrödinger equation as we present in this article.

On the other side, in most of the articles regarding optimal control for a Schrödinger
equation the objective functional consists of two terms, one describing the cost it
takes to obtain the desired outcome through the control process and the other being
the desired physical quantity (observable) to be minimized. In the present work, we
follow this idea and consider two terms, the first measuring the level of noise and the
second one (which could be omitted with κ = 0) related with the distance between
the pulse with noise at the end of the line and a desired signal.

In the present article, we prove existence of an optimal distributed control of a
nonlinear Schrödinger equation in the whole line with state constraints, as the limit
of a minimizing sequence.

In a future work, we hope to implement, from these results, a numerical method
that allows us to calculate the value of J? in a specific problem.

1.3 Organization of the paper

The rest of the work is organized as follows. Section 2 is devoted to preliminary
results which will be used to prove the well posedness and the compactness necessary
for the existence of a minimizer. In section 3 we prove the well posedness of the
non-homogeneous NLS and the Fréchet differentiability of the unique solution of the
state equation with respect to the control, required for the derivation of the first order
necessary conditions. In section 4 we begin by proving a regularizing effect of the
solution of the NLS which is essential to prove the compactness. Finally, in section 5
we prove our two main results: existence of a minimizer (Theorem 3) and first order
necessary conditions for an optimal control (Theorem 5) which we enunciate here
Theorem 3 Let gn ∈ Gad be a minimizing sequence. Consider g? ∈ L2([0,ζ ],L2(R))
and u? ∈Xζ ∩H1([0,ζ ],H−2(R)) given by Proposition 12. Then u? = u[g?], g? ∈Gad
and J (g?) = J?.
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Theorem 5 Let g? be an optimal solution of problem (4) and u? = u[g?] its associated
state. Then, there exists α ≥ 0 such that g? and u? satisfy the following equations

∂zu? = i∂ 2
t u?+ i|u?|2u?+g?

u?(0) = u0

∂zg? = i∂ 2
t g?+2i|u?|2g?− iu2

?ḡ?

g?(ζ ) =−
(

κ +
1
2

α

)
σ

2(u∗(ζ )− vζ )

‖σ(u?(ζ )− vζ )‖2
L2 ≤ η

α
(
η−‖σ(u?(ζ )− vζ )‖2

L2

)
= 0.

2 Preliminaries and notation

As usual, we call L2(R) the real Hilbert space of complex valued square-integrable
function on R, with the inner product

(g,h)L2 = Re
∫
R

g(t)h(t)dt = Re
∫
R

ĝ(ξ )ĥ(ξ )dξ ,

where ĝ is the Fourier transform of g. We define the Sobolev spaces Hs(R) as the
distributions g ∈S ′(R) verifying h = (1− ∂ 2

t )
s/2g ∈ L2(R), where h is defined by

ĥ(ξ ) =
(
1+ |ξ |2

)s/2 ĝ(ξ ). For any s ∈R, Hs(R) is a real Hilbert space with the inner
product

(g,h)Hs = Re
∫
R

(
1+ |ξ |2

)s
ĝ(ξ )ĥ(ξ )dξ .

It is known that Hs(R) = {g ∈ S ′(R) : g(k) ∈ L2(R),0 ≤ k ≤ s} if s ∈ N. We can
identify H−s(R) with the dual space of Hs(R) by the duality product

〈g,h〉H−s,Hs = ((1−∂
2
t )
−s/2g,(1−∂

2
t )

s/2h)L2

= Re
∫
R

(
1+ |ξ |2

)−s/2
ĝ(ξ )

(
1+ |ξ |2

)s/2
ĥ(ξ )dξ = Re

∫
R

ĝ(ξ )ĥ(ξ )dξ .

Let X be a Banach space and I ⊂ R an interval, for 1≤ p < ∞ we define the Banach
space Lp(I,X) as the completion of Cc(I,X) with the norm

‖ f‖Lp(I,X) =

(∫
I
‖ f (z)‖p

X dz
)1/p

.

Note that if X = Lp(R), then Lp(I,Lp(R))≡ Lp(I×R).
Given a weight function w ∈ C(R), w(t) > 0, we denote by L2

w(R) the Hilbert
space of square-integrable functions with respect to the measure ν(dt) = w(t)dt.
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In the next results we prove some compact embeddings which together with the
regularizing properties given in section 4 will provide us the compactness necessary
to prove the existence of a minimizer.

Although the following results are mostly known, we provide the proofs for com-
pleteness.

Lemma 1 If w is a weight function such that w(t)
|t|→∞−→ +∞, then H1/2(R)∩L2

w(R)
is compactly embedded in L2(R).

Proof Let Y ⊂ H1/2(R)∩L2
w(R) be a bounded set, for any ε > 0 there exists τ > 0

such that w(t)ε > 1 for |t|> τ , then∫
|t|>τ

|u(t)|2dt ≤ ε

∫
|t|>τ

|u(t)|2w(t)dt ≤ ε‖u‖2
L2

w
≤Cε.

Given h ∈ R, we define uh(t) = u(t−h), from Parseval’s identity we get

‖uh−u‖2
L2 =

∫
R
|e−ihξ −1|2|û(ξ )|2dξ ,

using |e−ihξ −1| ≤min{2, |hξ |} ≤ 21/2|h|1/2|ξ |1/2 we obtain

‖uh−u‖2
L2 ≤C|h|

∫
R
|ξ ||û(ξ )|2dξ ≤C|h|‖u‖2

H1/2(R),

thus ‖uh−u‖L2 ≤C|h|1/2, for all u ∈Y and h ∈R. Therefore, Y is relatively compact
in L2(R) (see [1] theorem 2.32.)

Corollary 1 L2([0,ζ ],H1/2(R) ∩ L2
w(R)) ∩W 1,1([0,ζ ],H−2(R)) is compactly em-

bedded in L2([0,ζ ],L2(R)).

Proof Since H1/2(R)∩L2
w(R)

c
↪→ L2(R) ↪→H−2(R), the result follows from Aubin–

Lions–Simon Lemma.

If L2
1(R) = L2

w1
(R), with w1(t) = (1+ t2), it holds L2

1(R) ↪→ L2(R) and

‖u‖2
L2

1
= ‖u‖2

L2 +‖t u‖2
L2 .

Proposition 1 The space L2
1(R) is compactly embedded in H−2(R).

Proof Let {φn}n∈N ⊂ L2
1(R) be a bounded sequence. We will prove that there ex-

ists a subsequence convergent in H−2(R). Since 1− ∂ 2
t : Hk(R)→ Hk−2(R) is an

isomorphism, we have that (1− ∂ 2
t )
−1φn is bounded in H2(R). We shall see that

(1−∂ 2
t )
−1(φn) is bounded in L2

1(R). Therefore the result will follow from Lemma 1.
Let ψn = (1−∂ 2

t )
−1φn, then ψn = h∗φn, where h(t) = 1

2 e−|t|. We can write

t ψn(t) =
1
2

∫
R

t e−|t−t ′|
φn(t ′)dt ′

=
1
2

∫
R
(t− t ′)e−|t−t ′|

φn(t ′)dt ′+
1
2

∫
R

t ′ e−|t−t ′|
φn(t ′)dt ′,
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but h, t h ∈ L1(R) and φn ∈ L2
1(R), thus t ψn ∈ L2(R) and

‖ψn‖2
L2

1
= ‖ψn‖2

L2 +‖t ψn‖2
L2 ≤C‖φn‖2

L2
1
≤CM.

Corollary 2 The space C([0,ζ ],L2
1(R))∩H1([0,ζ ],H−2(R)) is compactly embed-

ded in C([0,ζ ],H−2(R)).

Proof Using L2
1(R)

c
↪→ H−2(R), the result follows from Arzelà–Ascoli theorem.

3 Well posedness

Although the well posedness of the homogeneous NLS has been widely studied (see
[9], section 4.6), in this section we study thoroughly the non-homogeneous problem
(2a)-(2b) aiming to obtain estimates of the solution and its derivatives. In particular,
we get an equation for the Fréchet derivative of the solution with respect to the control
variable (Proposition 6), which we use to obtain first order necessary conditions for
the optimal control. The proof of the next results are similar to the ones of cubic
NLS equation, using Strichartz estimates, which involves the spaces Lq(R,Lp(R))
for certain pairs of admissible exponents (p,q), i.e.

2
q
=

1
2
− 1

p
,

where 1≤ p≤ ∞. Note that (6,6) and (2,∞) are pairs of admissible exponents.
Let S(z) be the unitary group generated by i∂ 2

t . We recall the following classical
estimates needed for well posedness (see [9]).

Proposition 2 Let I ⊆ R be an interval. For any (p,q) pair of admissible exponent,
there exists Cp > 0 such that for any u0 ∈ L2(R) it holds that S(z)u0 ∈ Lq(I,Lp(R))
and

‖S(z)u0‖Lq(I,Lp(R)) ≤Cp‖u0‖L2(R).

Proposition 3 Let I ⊆ R be an interval and (p,q), (r′,γ ′) two pairs of admissi-
ble exponents. Then there exists Cp,r > 0 such that for g ∈ Lγ(I,Lr(R)) it holds
v ∈ Lq(I,Lp(R)) and

‖v‖Lq(I,Lp(R)) ≤Cp,r‖g‖Lγ (I,Lr(R)),

where

v(z) =
∫ z

0
S(z− z′)g(z′)dz′

and r,γ are the conjugate exponents of r′,γ ′ respectively.
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In what follows we deduce classical estimates for the cubic nonlinearity. If u ∈
L6([0,ζ ],L6(R)), then |u|2u ∈ L2([0,ζ ],L2(R)) and

‖|u|2u‖L2([0,ζ ],L2) = ‖u‖
3
L6([0,ζ ],L6)

. (5)

Using that |u|2u− |ũ|2ũ = (|u|2 + |ũ|2)(u− ũ)+ uũ(u− ũ) and Hölder’s inequality,
we obtain

‖|u|2u−|ũ|2ũ‖L2([0,ζ ],L2) ≤C
(
‖u‖2

L6([0,ζ ],L6)
+‖ũ‖2

L6([0,ζ ],L6)

)
×‖u− ũ‖L6([0,ζ ],L6).

(6)

and for any compact K ⊂ R

‖|u|2u−|ũ|2ũ‖L1([0,ζ ]×K) ≤C
(
‖u‖2

L4([0,ζ ]×K)+‖ũ‖
2
L4([0,ζ ]×K)

)
×‖u− ũ‖L2([0,ζ ]×K).

(7)

Let I ⊆R be an interval, consider the Banach space XI =C(I,L2(R))∩L6(I,L6(R))
with the norm

‖u‖Xz = ‖u‖C(I,L2)+‖u‖L6(I,L6).

Next, we prove local existence for a mild solution of (2) in the space Xz = X[0,z].

Theorem 1 Let u0 ∈ L2(R) and g ∈ L1([0,ζ ],L2(R)), if

r = max
{
‖u0‖L2 ,‖g‖L1([0,ζ ],L2)

}
,

then there exists z= z(r) ∈ (0,ζ ] and u ∈Xz solution of the integral equation

u(z) = S(z)u0 +
∫ z

0
S(z− z′)(i|u(z′)|2u(z′)+g(z′))dz′. (8)

There exists a constant C > 0 such that ‖u‖Xz ≤ Cr and u depends continuously
on u0 and g. Furthermore, there exists L = L(r) > 0 such that if ũ0 ∈ L2(R) and
g̃ ∈ L1([0,ζ ],L2(R)) are close to u0 and g respectively, then the solution ũ is defined
on [0,z] and satisfies

‖u− ũ‖Xz ≤ L
(
‖u0− ũ0‖L2 +‖g− g̃‖L1([0,ζ ],L2)

)
. (9)

Proof Let v(z) = S(z)u0 and w(z) =
∫ z

0 S(z−z′)g(z′)dz′, then from Propositions 2 and
3, it is obtained that

‖v+w‖Xz ≤C
(
‖u0‖L2 +‖g‖L1([0,ζ ],L2)

)
= R≤ 2Cr

for all z ∈ [0,ζ ]. Consider the map Γ : Xz→Xz defined by

(Γ u)(z) = v(z)+w(z)+ i
∫ z

0
S(z− z′)|u(z′)|2u(z′)dz′,
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and take BR(v+w) the ball in Xz of radius R centered at v+w. If u ∈ BR(v+w), it
holds |u|2u ∈ L2([0,ζ ],L2(R))⊂ L1([0,ζ ],L2(R)) and from Proposition 3 we have

‖Γ u− (v+w)‖Lq([0,z],Lp(R)) ≤C‖|u|2u‖L1([0,z],L2)

≤Cz1/2‖|u|2u‖L2([0,z],L2) =Cz1/2‖u‖3
L6([0,z],L6)

≤Cz1/2(‖v+w‖Xz +R)3 ≤ 8Cz1/2R3.

If z < δ/R4, where 8Cδ 1/2 < 1, Γ u ∈ BR(v+w). Moreover, if u, ũ ∈ BR(v+w), we
have

(Γ u)(z)− (Γ ũ)(z) = i
∫ z

0
S(z− z′)(|u(z′)|2u(z′)−|ũ(z′)|2ũ(z′))dz′,

form Strichartz estimates and (6), we obtain

‖Γ u−Γ ũ‖Xz ≤C‖|u|2u−|ũ|2ũ‖L1([0,z],L2)

≤Cz1/2‖|u|2u−|ũ|2ũ‖L2([0,z],L2) ≤CR2z1/2‖u− ũ‖Xz .

Thus, ‖Γ u−Γ ũ‖Xz ≤ γ‖u− ũ‖Xz with 0 ≤ γ < 1, and then there exists a unique
fixed point of Γ in BR(v+w) solution of (8), satisfying

‖u‖Xz ≤ ‖u− v−w‖Xz +‖v+w‖Xz ≤ 2R≤ C̃r.

Let z̃ ∈ [0,ζ ] and ũ ∈ Xz̃ be another solution of (8), Then there exists 0 < z′ ≤
min{z, z̃}, such that ‖ũ− v−w‖Xz′

< R, and therefore u(z) = ũ(z) for 0 ≤ z ≤ z′.
Consider

z1 = sup{0≤ z≤min{z, z̃} : u(z′) = ũ(z′),0≤ z′ ≤ z}.

If z1 < min{z, z̃}, we can define u(1)(z) = u(z+z1) and ũ(1)(z) = ũ(z+z1), solutions
of (2) defined on [0,min{z, z̃}− z1]. Since u(1)(0) = ũ(1)(0), arguing as before, there
would exist δ > 0 such that u(1)(z) = ũ(1)(z), for 0≤ z < δ , contradicting that z1 was
the supreme. Therefore u(z) = ũ(z), for all z ∈ [0,min{z, z̃}].

Finally, let ũ0 ∈ L2(R) and g̃ ∈ L1([0,ζ ],L2(R)) be near to u0 and g respectively,
and let ψ̃ , ṽ, Γ̃ be the functions and operator associated to ũ0 and g̃. Then Γ̃ is a
contraction and therefore there exists ũ ∈Xz a unique fixed point of Γ̃ . It holds

‖u− ũ‖Xz = ‖Γ u− Γ̃ ũ‖Xz ≤ ‖Γ u−Γ ũ‖Xz +‖Γ ũ− Γ̃ ũ‖Xz

≤ γ‖u− ũ‖Xz +C(‖u0− ũ0‖L2 +‖g− g̃‖L1([0,ζ ],L2))

and thus

‖u− ũ‖Xz ≤
C

1− γ
(‖u0− ũ0‖L2 +‖g− g̃‖L1([0,ζ ],L2)),

proving the continuous dependence of the solution with respect to u0 and g.

Following, we obtain an estimate of the L2 norm of the solution of (8), which
allows us to prove the global existence.
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Proposition 4 Given u0 ∈ L2(R) and g∈ L1([0,ζ ],L2(R)), let u∈Xz be the solution
of (8) given by Theorem 1, then u satisfies

‖u‖C([0,z],L2) ≤ ‖u0‖L2 +2‖g‖L1([0,ζ ],L2). (10)

Proof Let u0 ∈ H2(R) and g ∈C([0,ζ ],H2(R)), it is easy to see that the solution of
(8) verifies u ∈C([0,z],H2(R))∩C1([0,z],L2(R)). Then

d
dz
‖u‖2

L2 = 2
(
u, i∂ 2

t u+ i|u|2u+g
)

L2 = 2(u,g)L2 ≤ 2‖u‖L2‖g‖L2 , (11)

integrating in [0,z] for 0≤ z≤ z, we obtain

‖u(z)‖2
L2 ≤ ‖u0‖2

L2 +2‖u‖C([0,z],L2)

∫ z

0
‖g(z′)‖L2 dz′

≤ ‖u0‖2
L2 +2‖u‖C([0,z],L2)‖g‖L1([0,ζ ],L2).

Then m = ‖u‖C([0,z],L2) satisfies

m2 ≤ ‖u0‖2
L2 +2m‖g‖L1(0,ζ ,L2),

from where we get that m satisfies (10).
Since H2(R) and C([0,ζ ],H2(R)) are dense in L2(R) and L1([0,ζ ],L2(R)) re-

spectively, from the continuous dependence, we extend the estimation for u0 ∈ L2(R)
and g ∈ L1([0,ζ ],L2(R)).

Next, we prove the global existence.

Theorem 2 Given u0 ∈ L2(R) and g∈ L1([0,ζ ],L2(R)), there exists a unique u∈Xζ

solution of (8), which satisfies

‖u‖Xζ
≤C

(
ζ ,‖u0‖L2 ,‖g‖L1([0,ζ ],L2)

)
. (12)

Furthermore, u ∈W 1,1([0,ζ ],H−2(R)),

‖u‖W 1,1([0,ζ ],H−2) ≤C
(

ζ ,‖u0‖L2 ,‖g‖L1([0,ζ ],L2)

)
(13)

and the equation (2a) is satisfied (or posed) in H−2 for almost all z ∈ [0,ζ ].

Proof Given u0 ∈ L2(R) and g ∈ L1([0,ζ ],L2(R)), from Theorem 1, there exists u ∈
Xz a local solution of (8) with z∈ (0,ζ ]. Let ζ ∗≤ ζ be the maximal time of existence
of solution u. From inequality (10), we have that

‖u(z)‖L2 ≤ ‖u0‖L2 +2‖g‖L1([0,ζ ],L2) for all z ∈ [0,ζ ∗).

Let r = ‖u0‖L2 +2‖g‖L1([0,ζ ],L2) and z′ ∈ (0,ζ ] be the minimum time of existence of
the solution of (8) given by Theorem 1, with initial data u1 such that ‖u1‖L2(R) ≤
r. If ζ ∗ < ζ , taking ζ1 ∈ (ζ ∗− z′,ζ ∗) and initial data u1 = u(ζ1), we would have
an extension of the solution u to the interval [0,ζ1 + z′], with ζ1 + z′ > ζ ∗, which
contradicts the maximality of ζ ∗. Therefore ζ ∗ = ζ and ‖u‖C([0,ζ ],L2) ≤ r.
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Let n = [ζ/z′]+1 and z j = jζ/n with j = 0, . . . ,n, then z j−z j−1 < z′. Since u j =
u(z j) satisfies that ‖u j‖L2(R) ≤ r, we have that ‖u‖L6([z j−1,z j ],L6) ≤Cr and therefore

‖u‖6
L6([0,ζ ],L6)

=
n

∑
j=1
‖u‖6

L6([z j−1,z j ],L6)
≤ nCr6 ≤ ζCr6/z(r),

proving (12).
Now, considering the operator A = ∂ 2

t : D(A)→ X , D(A) = H2(R), X = L2(R),
using remark 1.6.1 (i) from [9] for f = |u|2u− ig, we obtain that the solution u of
the integral equation (8) is in W 1,1([0,ζ ],H−2(R)) and satisfies the equation (2a) for
almost all z ∈ [0,ζ ]. Finally, since

‖∂ 2
t u‖C([0,ζ ],H−2)+‖|u|

2u‖L2([0,ζ ],L2) ≤C
(
‖u‖Xζ

+‖u‖3
Xζ

)
,

from (12) and equation (2a) we obtain the estimation (13).

Given u0 ∈ L2(R), for any g ∈ L1([0,ζ ],L2(R)), we define u[g] ∈Xζ as the solution
of (8). We will prove g 7→ u[g] is a Fréchet differentiable map from L1([0,ζ ],L2(R))
to Xζ .

We begin with a lemma that will provide the global existence of a family of linear
Schrödinger equations.

Lemma 2 Let B : Xζ → L2([0,ζ ],L2(R)) be a bounded linear operator. Assume that
there exists C > 0 such that for 0≤ a < b≤ ζ

‖By‖L2([a,b],L2) ≤C‖y‖X[a,b]
. (14)

Let h ∈ L1([0,ζ ],L2(R)). Then, for y0 ∈ L2(R) there exists y ∈Xζ solution of the
linear integral equation

y(z) = S(z)y0 +
∫ z

0
S(z− z′)

(
By(z′)+h(z′)

)
dz′, (15)

such that ‖y‖Xζ
≤ C

(
‖y0‖L2 +‖h‖L1([0,ζ ],L2)

)
. Moreover, y ∈W 1,1([0,ζ ],H−2(R))

and satisfies the differential equation

∂zy = i∂ 2
t y+By+h,

y(0) = y0.

Proof We begin by proving a local existence, that is we will prove that there exists
δ > 0 such that for any a ∈ [0,ζ ) and ya ∈ L2(R), there exists a unique mild solution
y ∈X[a,a+δ ] of the linear integral equation

y(z) = S(z−a)ya +
∫ z

a
S(z− z′)

(
By(z′)+h(z′)

)
dz′.

In order to do this, we define Γ : X[a,a+δ ]→X[a,a+δ ] given by

Γ (y)(z) = S(z−a)ya +
∫ z

a
S(z− z′)

(
By(z′)+h(z′)

)
dz′.
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Since B is bounded, from Cauchy Schwarz, we deduce that if y ∈X[a,a+δ ], then

‖By‖L1([a,a+δ ],L2) ≤ δ
1/2‖By‖L2([a,a+δ ],L2) ≤Cδ

1/2‖y‖X[a,a+δ ]
(16)

and therefore, from Strichartz estimates we have that Γ (y) ∈ X[a,a+δ ]. Moreover,
since B is a linear operator, from (16)

‖Γ (y)−Γ (ỹ)‖X[a,a+δ ]
≤Cδ

1/2‖y− ỹ‖X[a,a+δ ]
.

Choosing Cδ 1/2 < 1/2, using a fixed point argument, we can prove the local existence
and continuous dependence in X[a,a+δ ] for δ small depending only on the Strichartz
constants. Moreover, since

‖y‖X[a,a+δ ]
≤C

(
‖ya‖L2 +δ

1/2‖y‖X[a,a+δ ]
+‖h‖L1([0,ζ ],L2)

)
we obtain that

‖y‖X[a,a+δ ]
≤ 2C

(
‖ya‖L2 +‖h‖L1([0,ζ ],L2)

)
. (17)

Finally, let n = [ζ/δ ] + 1 and z j = jζ/n with j = 0, . . . ,n, then z j − z j−1 < δ and
yz j = y(z j) for j ≥ 1. From (17) we obtain that

‖y(z1)‖L2 ≤ ‖y‖X[0,z1 ]
≤ 2C

(
‖y0‖L2 +‖h‖L1([0,ζ ],L2)

)
,

from where inductively we deduce that

‖y‖X[z j ,z j+1 ]
≤C j

(
‖y0‖L2 +‖h‖L1([0,ζ ],L2)

)
.

Using that, there exists a constant C > 0 such that

‖y‖Xζ
≤C

n−1

∑
j=0
‖y‖X[z j ,z j+1 ]

we have that ‖y‖Xζ
≤C

(
‖y0‖L2 +‖h‖L1([0,ζ ],L2)

)
.

Using the same argument as in Theorem 2, we get that y ∈W 1,1([0,ζ ],H−2(R))
and satisfies the differential equation.

Following we prove some previous results that will be used to prove the Fréchet
differentiability of u[g] in Proposition 6 and the continuous dependence of the solu-
tions of the state equation (8) given by Theorem 2.

Corollary 3 Let B j : Xζ → L2([0,ζ ],L2(R)) for j = 1,2 be two bounded linear op-
erators verifying (14) and y1,y2 ∈Xζ the solutions of (15) given by Lemma 2. Then,
it holds

‖y1− y2‖Xζ
≤C‖(B1−B2)y j‖L1([0,ζ ],L2).
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Proof Let w = y1− y2 and h = (B1−B2)y1, we can write

w(z) =
∫ z

0
S(z− z′)

(
B2 w(z′)+h(z′)

)
dz′,

using Lemma 2 we obtain the result.

Lemma 3 Let u1,u2 ∈Xζ and B j : Xζ → L2([0,ζ ],L2(R)) the operators defined by

B j y = 2iRe(u j y)u j + i|u j|2y

for j = 1,2. Then B j satisfies (14) and

‖(B1−B2)y‖L2([0,ζ ],L2) ≤C(‖u1‖Xζ
+‖u2‖Xζ

)‖u1−u2‖Xζ
‖y‖Xζ

(18)

Proof Let y ∈Xζ , then for all 0≤ a < b≤ ζ

‖B jy‖L2([a,b],L2) = ‖2iRe(u j y)u j + i|u j|2y‖L2([a,b],L2)

≤C‖u j‖2
L6([0,ζ ],L6)

‖y‖L6([a,b],L6),

therefore inequality (14) is satisfied. Inequality (18) follows analogously.

Proposition 5 Let u0, ũ0 ∈ L2(R), g, g̃ ∈ L1([0,ζ ],L2) and u, ũ ∈Xζ the solutions
given by Theorem 2. There exists C =C(ζ ,u0, ũ0,g, g̃)> 0 such that

‖ũ−u‖Xζ
≤C

(
‖ũ0−u0‖L2 +‖g̃−g‖L1([0,ζ ],L2)

)
.

Proof Let δu0 = ũ0−u0, δg = g̃−g and δu = ũ−u, it is verified

δu(z) = S(z)δu0 +
∫ z

0
S(z− z′)(Bδu(z′)+δg(z′))dz′,

where By = i(|ũ|2 + |u|2)y+ iu ũ ȳ. From Lemma 2, using inequality (12) we have the
result.

Proposition 6 Let u0 ∈ L2(R) and g ∈ L1([0,ζ ],L2), then u[·] is Fréchet differen-
tiable and y = Dgu[g](δg) ∈Xζ is the solution of the linear integral equation

y(z) =
∫ z

0
S(z− z′)(2iRe(u[g]y)u[g]+ i|u[g]|2y+δg)(z′)dz′. (19)

Moreover, y ∈W 1,1([0,ζ ],H−2(R)) and satisfies the differential equation

∂zy = i∂ 2
t y+2iRe(u[g]y)u[g]+ i|u[g]|2y+δg,

y(0) = 0.
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Proof We begin by proving the existence of the solution of equation (19). Given
u0 ∈ L2(R) and g ∈ L1([0,ζ ],L2), let u = u[g] ∈Xζ . We consider the linear operator
B : Xζ → L2([0,ζ ],L2(R)) given by

By = 2iRe(uy)u+ i|u|2y.

From Lemma 3, B satisfies (14). Since δg ∈ L1([0,ζ ],L2(R)), from Lemma 2 there
exists y ∈Xζ solution of the linear non homogeneous equation (19).

Let u = u[g], ũ = u[g+δg] and δu = ũ−u, using that

|ũ|2ũ−|u|2u = 2Re(uδu)u+ |u|2δu+ |δu|2u+2Re(uδu)δu+ |δu|2δu,

we have that

δu(z) =
∫ z

0
S(z− z′)(i|ũ|2ũ− i|u|2u+δg)(z′)dz′

=
∫ z

0
S(z− z′)

(
2iRe(uδu)u+ i|u|2δu+δg+ρ[g,δg]

)
(z′)dz′,

where ρ[g,δg] = (i|δu|2u+ i2Re(uδu)δu+ i|δu|2δu). Then

(δu− y)(z) =
∫ z

0
S(z− z′)(i2Re(u(δu− y))u+ i|u|2(δu− y)+ρ[g,δg])(z′)dz′.

Since ρ[g,δg] ∈ L2([0,ζ ],L2(R)) and ‖ρ[g,δg]‖L2([0,ζ ],L2(R)) ≤C‖δu‖2
Xζ

, Lemma 2
implies

‖δu− y‖Xz ≤C‖δu‖2
Xζ

. (20)

Finally, from (9) we have that ‖δu‖Xζ
≤C‖δg‖L1([0,ζ ],L2) proving that u is Fréchet

differentiable.

4 Regularizing properties

During the past several years there have been a number of papers concerning local
smoothness properties of linear and nonlinear Schrödinger equations (see [17], [21]
and references in therein). Adapting the ideas of [27] for Benjamin-Ono equation, in
[28] and [11] local regularizing properties of Schrödinger equation are proved. In this
section, we consider a similar problem with the non homogeneous term g. We will
use the smoothness of solutions to obtain compactness.

Let H be the Hilbert transform given by (̂Hϕ)(ξ ) = −isign(ξ )û(ξ ). If we set
the operators P± = 1

2 (1± iH) we have that P++P− = 1, P+−P− = iH, and using
that H2 = −1, we obtain HP± = ∓iP± and [H,∂t ] = [P±,∂t ] = 0. We will prove the
following

Proposition 7 Let u ∈Xζ be the solution of equation (2), for any ω ∈S (R), it is
verified ω u ∈ L2([0,ζ ],H1/2) and

‖ω u‖2
L2([0,ζ ],H1/2)

≤C(ω,ζ ,‖u0‖L2 ,‖g‖L1([0,ζ ],L2)) (21)
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Proof Let Ω be a primitive function of |ω|2, then Ω ∈ L∞(R). We will show the
result for u0 ∈ H2(R), g ∈ C([0,ζ ],H2(R)), and therefore u ∈ C([0,ζ ],H2(R))∩
C1([0,ζ ],L2(R)), for any z ∈ [0,ζ ] we have

1
2

d
dz

(ΩP±u(z),P±u(z))L2 =
(
iΩP±∂

2
t u(z),P±u(z)

)
L2 +

(
iΩP±|u(z)|2u(z),P±u(z)

)
L2

+(iΩP±g(z),P±u(z))L2 = I±1 (z)+ I±2 (z)+ I±3 (z).

We drop the z dependence in the rest of the proof for readability. We begin by ana-
lyzing the first term, integrating by parts we derive

I±1 =− (i|ω|2P±∂tu,P±u)L2 − (iΩP±∂tu,P±∂tu)L2 .

The integrand in the second term is pure imaginary and thus its real part is zero. Since
iP± =∓HP±, commutating ω and H we obtain

I±1 =± (|ω|2H∂tP±u,P±u)L2

=± (ωHω∂tP±u,P±u)L2 ∓ (ω[H,ω]∂tP±u,P±u)L2 ,

from the product rule, we have

I±1 =± (ωH∂t(ωP±u),P±u)L2 ∓ (ωH(∂tω)P±u,P±u)L2

∓ (ω[H,ω]∂tP±u,P±u)L2 .

Being ω ∈W 1,∞(R) and P±,H, [H,ω]∂t bounded operators in L2(R) (see [6]), we
can estimate

|(ωH(∂tω)P±u,P±u)L2 |+ |(ω[H,ω]∂tP±u,P±u)L2 | ≤C‖ω‖2
W 1,∞‖u‖2

L2 .

Since H∂t = D, where D̂u(ξ ) = |ξ |û(ξ ), we deduce

(ωH∂t(ωP±u),P±u)L2 =(H∂t(ωP±u),ωP±u)L2

=(D(ωP±u),ωP±u)L2 = ‖D1/2
ωP±u‖2

L2 .

We conclude that I±1 = ±‖D1/2ωP±u‖2
L2 + J±1 , with |J±1 | ≤ C‖ω‖2

W 1,∞‖u‖2
L2 . Using

Cauchy–Schwarz inequality we have that

|I±2 | ≤‖Ω‖L∞‖P±|u|2u‖L2‖P±u‖L2 ≤ ‖Ω‖L∞‖u‖3
L6‖u‖L2

|I±3 |=|(iΩP±g,P±u)L2 | ≤ ‖Ω‖L∞‖g‖L2‖u‖L2 .

Then

3

∑
j=1

I±j =±‖D1/2
ωP±u‖2

L2 + J±1 + I±2 + I±3 .

If Q = (ΩP+u,P+u)L2 − (ΩP−u,P−u)L2 , it holds that |Q| ≤C‖u‖2
L2 and

1
2

d
dz

Q =‖D1/2(ωP+u)‖2
L2 +‖D1/2(ωP−u)‖2

L2 +K, (22)
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where K = J+1 − J−1 + I+2 − I−2 + I+3 − I−3 . Integrating (22) in [0,ζ ], we obtain

1
2
(Q(ζ )−Q(0)) =

∫
ζ

0
‖D1/2(ωP+u)‖2

L2 +‖D1/2(ωP−u)‖2
L2dz+

∫
ζ

0
Kdz.

Being |K| ≤C(Ω)(‖u‖L2‖g‖L2 +‖u‖2
L2 +‖u‖6

L6), from (12) we have∣∣∣∣∫ ζ

0
Kdz

∣∣∣∣≤C(ω,ζ ,‖u0‖L2 ,‖g‖L1([0,ζ ],L2)),

and using ‖D1/2(ωu)‖L2 ≤ ‖D1/2(ωP+u)‖L2 +‖D1/2(ωP−u)‖L2 , we get

‖D1/2(ωu)‖2
L2([0,ζ ],L2) ≤C(ω,ζ ,‖u0‖L2 ,‖g‖L1([0,ζ ],L2))

what proves the desired result. Since the right hand side of the last estimate depends
only on ‖u0‖L2 and ‖g‖L1([0,ζ ],L2), using a continuous dependence argument, we ob-
tain the general result.

Remark 1 In Proposition 7, we have used only the fact that ω ∈ L2(R)∩W 1,∞(R).
For instance, if ω(t) = (1+ t2)−α with α > 1/4, estimate (21) holds.

In order to study the existence of minimizer, we will consider a minimizing se-
quence which will be bounded in L2([0,ζ ],L2(R)). Then we will need to prove that
this sequence and the sequence of associated controls converge. Consider {gn}n∈N a
minimizing sequence and un = u[gn] the corresponding solutions given by Theorem
2. We will prove the existence of a subsequence of {gn}n∈N, such that the associated
solutions are convergent in different senses.

Proposition 8 Assume {gn}n∈N is a bounded sequence in L1([0,ζ ],L2(R)), then
there exists a subsequence {gn j} j∈N and u? ∈Xζ such that the associated solutions
un j = u[gn j ] converge weakly to u? in L2([0,ζ ],L2(R)) and also in L6([0,ζ ],L6(R)).

Proof From Theorem 2, {un}n∈N is bounded in Xζ . Being L2([0,ζ ],L2(R)) and
L6([0,ζ ],L6(R)) reflexive Banach spaces, the result is a consequence of Banach–
Alaoglu Theorem.

Under the same assumptions of Proposition 8 we can now prove convergence in
L2([0,ζ ],L2

loc(R)).

Proposition 9 Assume {gn}n∈N is a bounded sequence in L1([0,ζ ],L2(R)), then
there exists a subsequence {gn j} j∈N and u? ∈ L2([0,ζ ],L2(R))∩ L6([0,ζ ],L6(R))
such that the associated solutions un j = u[gn j ] converge to u? in L2([0,ζ ],L2

loc(R)),
that is

lim
j→∞

∫
ζ

0

∫
τ

−τ

|un j(z, t)−u?(z, t)|2dtdz = 0, (23)

for all τ > 0.
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Proof Let {gn}n∈N be a bounded sequence in L1([0,ζ ],L2(R)) and {un}n∈N the se-
quence of associated solutions in Xζ given by Theorem 2, which is also bounded in
Xζ . From Proposition 8, without loss of generality we can assume that un converge
weakly to u?. Let ω ∈C∞

c (R) be such that 0 ≤ ω ≤ 1, ω ≡ 1 in the interval [−1,1]
and supp(ω) ⊂ (−2,2). We define ωk(t) = ω(t/k), then we have that ωk un = un
if |t| < k and supp(ωk un) ⊂ (−2k,2k). For each k ∈ N, the sequence {ωk un}n∈N
is bounded in L2([0,ζ ],L2

1(R)), from Proposition 7 we have that is bounded in the
space L2([0,ζ ],H1/2(R)∩L2

1(R)) and from Theorem 2 is also bounded in the space
W 1,1([0,ζ ],H−2(R)). Then, from Corollary 1, there exists a subsequence {u1,n}n∈N
and v1 ∈ L2([0,ζ ],L2(R) such that {ω1u1,n}n∈N converges to v1 in L2([0,ζ ],L2(R)).
Let ϕ ∈ C([0,ζ ]×R) such that supp(ϕ) ⊂ [0,ζ ]× [−1,1], since ω1u1,n = u1,n in
[−1,1], we have∫

ζ

0

∫
R

u?(z, t)ϕ(z, t)dtdz = lim
n→∞

∫
ζ

0

∫ 1

−1
u1,n(z, t)ϕ(z, t)dtdz

= lim
n→∞

∫
ζ

0

∫ 1

−1
ω1 u1,n(z, t)ϕ(z, t)dtdz

=
∫

ζ

0

∫ 1

−1
v1(z, t)ϕ(z, t)dtdz.

Therefore, u1,n
∣∣
[0,ζ ]×[−1,1]→ v1

∣∣
[0,ζ ]×[−1,1] = u?

∣∣
[0,ζ ]×[−1,1] in L2([0,ζ ]× [−1,1]). Ap-

plying an inductive argument, from the sequence {uk−1,n}n∈N, we can construct a
subsequence {uk,n}n∈N such that

uk,n
∣∣
[0,ζ ]×[−k,k]→ u?

∣∣
[0,ζ ]×[−k,k], in L2([0,ζ ]× [−k,k]).

Taking the diagonal sequence {un,n}n∈N, we get un,n
∣∣
[0,ζ ]×[−k,k] → u?

∣∣
[0,ζ ]×[−k,k] for

all k ∈ N.

Under the same conditions of the last two propositions, we are now in position to
prove that the cubic nonlinearity converges weakly in L2([0,ζ ],L2(R)).
Proposition 10 Assume {gn}n∈N is a bounded sequence in L1([0,ζ ],L2(R)), then
there exists a subsequence {gn j} j∈N and u? ∈ L2([0,ζ ],L2(R))∩ L6([0,ζ ],L6(R))
such that the associated solutions un j = u[gn j ] verify that |un j |2un j ⇀ |u?|2u? in
L2([0,ζ ],L2(R)).

Proof From Theorem 2, {un}n∈N is bounded in Xζ , then from (5) we have that
|un|2un ∈ L2([0,ζ ],L2(R)) is bounded and therefore converges weakly to some func-
tion ψ ∈ L2([0,ζ ],L2(R)). Since L2([0,ζ ]×R) ↪→ D ′((0,ζ )×R), we have that
|un|2un converges to ψ in D ′((0,ζ )×R). Using (7) and Hölder inequality, we ob-
tain

‖|un|2un−|u?|2u?‖L1([0,ζ ]×[−τ,τ]) ≤C(ζ ,‖un‖Xζ
,‖u?‖Xζ

)

×‖un−u?‖L2([0,ζ ]×[−τ,τ]).

Being {un}n∈N bounded in Xζ , from (23) it holds that |un|2un
D ′−→ |u?|2u?, and there-

fore ψ = |u?|2u?.
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5 Variational problem

We go back to consider the variational problem

0≤J? = inf
g∈Gad

J (g) (24)

with

J (g) = ‖g‖2
L2([0,ζ ],L2)+κ‖σ(u[g](ζ )− vζ )‖2

L2 (25)

for κ ≥ 0, and Gad is the space of controls g ∈ L2([0,ζ ],L2(R)) such that the solution
u[g] ∈Xζ of equation (8) satisfies∫

R
σ

2|u[g](ζ , t)− vζ (t)|2dt ≤ η . (26)

It is clear that since the control g is not localized, we can reach any target we want.
For instance, consider ũ0, ṽζ ∈ H2(R) and ũ ∈ C1([0,ζ ],H2(R)) such that ũ(0) =
ũ0, ũ(ζ ) = ṽζ . If we define g ∈ C([0,ζ ],L2(R)) as g = ∂zũ− i(∂ 2

t ũ+ |ũ|2ũ), then
obviously ũ is the solution of (2a) with initial data ũ0 and control g. Given ε > 0,
from the continuous dependence, there exists δ > 0 such that if ‖u0− ũ0‖L2 < δ , it
holds that the solution u of (2) verifies that ‖u− ũ‖Xζ

< ε . Then, ‖u(ζ )− vζ‖L2 ≤
‖u− ũ‖Xζ

+‖ṽζ − vζ‖L2 < 2ε , provided ‖ṽζ − vζ‖L2 < ε . Therefore, the admissible
set of controls Gad is not empty.

Since it holds the continuous inclusion L2([0,ζ ],L2(R)) ↪→ L1([0,ζ ],L2(R)) with

‖g‖L1([0,ζ ],L2) ≤ ζ
1/2‖g‖L2([0,ζ ],L2),

from now on we will consider g ∈ L2([0,ζ ],L2(R)) which is a Hilbert space and
all previous results are valid. In this case, the solution u of equation (8), given by
Theorem 1, satisfies u ∈ H1([0,ζ ],H−2(R)) and

‖∂zu‖L2([0,ζ ],H−2) ≤C(ζ ,‖u0‖L2 ,‖g‖L2([0,ζ ],L2)).

Proposition 11 Let gn ∈ Gad be a minimizing sequence of the variational problem,
then the function u? ∈ L2([0,ζ ],L2(R))∩ L6([0,ζ ],L6(R)) given by Proposition 8
satisfies u? ∈ H1([0,ζ ],H−2(R)).

Proof Since {gn}n∈N is bounded in L2([0,ζ ],L2(R)), from inequality (13) we have
that {un}n∈N is bounded in H1([0,ζ ],H−2(R)). Therefore there exists a subsequence,
that we will keep on calling un, weakly convergent. Recall that {un}n∈N ⊂Xζ . Let
θ ∈C1

c ([0,ζ ],H
2(R)), then∫

ζ

0
〈∂zun,θ〉H−2,H2 dz =−

∫
ζ

0
〈un,∂zθ〉H−2,H2 dz =−

∫
ζ

0
(un,∂zθ)L2 dz,

passing to the limit we get

lim
n→∞

∫
ζ

0
〈∂zun,θ〉H−2,H2 dz =−

∫
ζ

0
(u?,∂zθ)L2 dz =−

∫
ζ

0
〈u?,∂zθ〉H−2,H2 dz.

Therefore u? ∈ H1([0,ζ ],H−2(R)) and ∂zun ⇀ ∂zu? in L2([0,ζ ],H−2(R)).
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Next, we will prove that the function u? ∈C([0,ζ ],L2(R)) and that there exists a
control g? associated to u?.

Proposition 12 Let gn ∈ Gad be a minimizing sequence of the variational problem.
Consider the function u? ∈ L2([0,ζ ],L2(R))∩L6([0,ζ ],L6(R))∩H1([0,ζ ],H−2(R)),
given by Proposition 8 and Proposition 11. Then there exists g? ∈ L2([0,ζ ],L2(R))
such that

∂zu? = i∂ 2
t u?+ i|u?|2u?+g?, (27)

and u? ∈C([0,ζ ],L2(R)).

Proof Since {gn}n∈N is bounded in L2([0,ζ ],L2(R)), there exists a subsequence of
{gn}n∈N, which we call {gn}n∈N, and g? ∈ L2([0,ζ ],L2(R)) such that gn ⇀ g?. From
Proposition 8, we have that un converges weakly to u? in L2([0,ζ ],L2(R)). Further-
more, from Proposition 10, |un|2un ⇀ |u?|2u? in L2([0,ζ ],L2(R)). From Proposi-
tion 11, we obtain that ∂zun ⇀ ∂zu? in L2([0,ζ ],H−2(R)). Since it is verified that
0 = ∂zun− i∂ 2

t un− i|un|2un− gn in L2([0,ζ ],H−2(R)), passing to the limit we de-
duce

0 = ∂zu?− i∂ 2
t u?− i|u?|2u?−g?.

Since u? ∈ L2([0,ζ ],L2(R)), there exists z0 ∈ [0,ζ ] such that u?(z0) ∈ L2(R), using
Proposition 4.1.9 from [10] (with X = H−2(R), D(A) = L2(R) and f = i|u?|2u?+g?)
we obtain that u? verifies

u?(z) = S(z− z0)u?(z0)+
∫ z

z0

S(z− z′)(i|u?(z′)|2u?(z′)+g?(z′))dz′.

Since f ∈ L2([0,ζ ],L2(R)), using Lemma 4.1.5 from [10] (with X = L2(R)) we ob-
tain that u? ∈C([0,ζ ],L2(R)).

Proposition 13 Let ω ∈W 2,∞(R) be such that supt∈R |tω(t)|<∞, {gn}n∈N a bounded
sequence in L2([0,ζ ],L2(R)) and {un}n∈N the sequence given by Proposition 9 that
converges to u? in L2([0,ζ ],L2

loc(R)), Then, there exists a subsequence of {un}n∈N
such that ωun converges to ω u? in C([0,ζ ],H−2(R)).

Proof Being {un}n∈N a bounded sequence in C([0,ζ ],L2(R)), {ωun}n∈N is bounded
in C([0,ζ ],L2

1(R)) and in H1([0,ζ ],H−2(R)). Then, from Corollary 2 there exist a
subsequence and a function ψ ∈C([0,ζ ],H−2(R)) such that ωun converges to ψ in
C([0,ζ ],H−2(R)). In particular, ωun ⇀ ψ in L2([0,ζ ],H−2(R)). Since ωun ⇀ ωu?
in L2([0,ζ ],L2(R)), we obtain ψ = ωu?.

Theorem 3 Let gn ∈ Gad be a minimizing sequence. Consider g? ∈ L2([0,ζ ],L2(R))
and u? ∈Xζ ∩H1([0,ζ ],H−2(R)) given by Proposition 12. Then u? = u[g?], g? ∈Gad
and J (g?) = J?.
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Proof From Proposition 12, there exists g? ∈ L2([0,ζ ],L2(R)) satisfying equation
(27) with u? ∈ C([0,ζ ],L2(R))∩H1([0,ζ ],H−2(R)). To see that u? = u[g?] it re-
mains to prove that u?(0) = u0. Let ω > 0 be such that hypothesis from Proposi-
tion 13 are satisfied, then ωu0 = ωun|z=0 → ωu?|z=0, therefore u?|z=0 = u0, from
where we obtain that u? = u[g?]. Using once more Proposition 13 we deduce that
σun|z=ζ → σu?|z=ζ en H−2(R). From the inequality ‖σ(un(ζ )− vζ )‖2

L2 ≤ η , we
have that ‖σun(ζ )‖L2 is bounded, then there exists a function ψ ∈ L2(R) such that
σun(ζ )⇀ ψ and therefore ψ = σu?(ζ ). Then, σ(un(ζ )− vζ )⇀ σ(u?(ζ )− vζ ) and
‖σ(u?(ζ )−vζ )‖2

L2 ≤ η . Thus, g? ∈ Gad. Finally, since gn ⇀ g? and σ(un(ζ )−vζ )⇀
σ(u?(ζ )− vζ ) we obtain that

J? ≤ κ‖σ(u?(ζ )− vζ )‖2
L2 +‖g?‖2

L2([0,ζ ],L2)

≤ liminf
n→∞

κ‖σ(un(ζ )− vζ )‖2
L2 +‖gn‖2

L2([0,ζ ],L2) = J?

proving the optimality of g?.

Remark 2 From the continuity of u[g] with respect to g, we have that for κ = 0,
‖σ(u?(ζ )− vζ )‖2

L2 = η .

Theorem 4 (Casas 1993 [8]) Let G ,Y be Banach spaces, C ⊂Y a convex subset, C
with nonempty interior. If g? is a solution of the problem{

minJ (g),
g ∈ G , Λ(g) ∈ C ,

where J : G → R and Λ : G → Y are Gateaux differentiable function on g?. Then,
there exist λ ≥ 0 and µ? ∈ Y ∗ such that

λ +‖µ?‖Y ∗ > 0, (28a)
〈µ?,θ −Λ(g?)〉Y ∗,Y ≤ 0, for all θ ∈ C , (28b)
〈λJ ′(g?)+(DΛ(g?))∗µ?,g−g?〉G ∗,G ≥ 0, for all g ∈ G . (28c)

We define the operator Λ(g) = σ(u[g](ζ )− vζ ) , where σ is a continuous function
such that supt∈R |tσ(t)| < +∞. In proposition 6 we have proved that the operator
u[g] is Fréchet differentiable which provides us the differentiability of Λ(g). In the
following proposition we will derive the adjoint operator of DΛ(g) in order to apply
the previous theorem.

Proposition 14 Let g ∈ L2([0,ζ ],L2(R)), u = u[g] ∈Xζ . Given µζ ∈ L2(R), then
(DΛ(g))∗µζ = µ , where µ ∈Xζ is the mild solution of

∂zµ = i∂ 2
t µ +2i|u|2µ− iu2

µ, (29a)
µ(ζ ) = σ µζ , (29b)
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Proof Considering B : Xζ → L2([0,ζ ],L2(R)), the bounded linear operator given by
B(µ) = 2i|u|2µ− iu2µ , and using the reversibility of the Schrödinger group S, from
Lemma 2 we get that there exists a solution of the integral equation

µ(z) = S(z−ζ )σ µζ −
∫

ζ

z
S(z− z′)

(
2i|u(z′)|2µ(z′)− iu2(z′)µ(z′)

)
dz′

proving the existence of a mild solution of (29). Given δg ∈ L2([0,ζ ],L2(R)), let
θ = Dg[u](δg) ∈ Xζ ∩W 1,1([0,ζ ],H−2(R)) be the solution of (19) and therefore
DΛ(g)δg = σθ(ζ ). Suppose u ∈ C([0,ζ ],H2(R)) and δg ∈ C([0,ζ ],L2(R)), us-
ing Theorem 4.8.1 and Remark 1.6.1 from [9], we have that θ ∈C([0,ζ ],H2(R))∩
C1([0,ζ ],L2(R)). Therefore, it holds(

µζ ,DΛ(g)δg
)

L2 =
(
µζ ,σθ(ζ )

)
L2

=〈σ µζ ,θ(ζ )〉H−2,H2 =
∫

ζ

0

d
dz
〈µ,θ〉H−2,H2dz

=
∫

ζ

0
〈∂zµ,θ〉H−2,H2 +(µ,∂zθ)L2 dz =

∫
ζ

0
(µ,δg)L2 dz.

Using a density argument from Corollary 3 and Lemma 3, we obtain the latter equal-
ity for u ∈Xζ and δg ∈ L2([0,ζ ],L2(R)) and therefore (DΛ(g))∗µζ = µ .

Theorem 5 Let g? be an optimal solution of problem (4) and u? = u[g?] its associated
state. Then, there exists α ≥ 0 such that g? and u? satisfy the following equations

∂zu? = i∂ 2
t u?+ i|u?|2u?+g? (30)

u?(0) = u0 (31)

∂zg? = i∂ 2
t g?+2i|u?|2g?− iu2

?ḡ? (32)

g?(ζ ) =−
(

κ +
1
2

α

)
σ

2(u∗(ζ )− vζ ) (33)

‖σ(u?(ζ )− vζ )‖2
L2 ≤ η (34)

α
(
η−‖σ(u?(ζ )− vζ )‖2

L2

)
= 0. (35)

Proof Take G = G ∗ = L2([0,ζ ],L2(R)), Y = Y ∗ = L2(R), the convex set C = {θ ∈
L2(R) : ‖θ‖2

L2 ≤ η}, the functional J (g) = κ‖u[g](ζ )− vζ‖2
L2

σ

+‖g‖2
L2([0,ζ ],L2)

and
the operator Λ(g) = σ(u[g](ζ )− vζ ). Then, from Theorem 4 there exists λ ≥ 0 and
µ? ∈ L2(R), satisfying (28). That is,

λ +‖µ?‖L2 > 0, (36a)
(µ?,θ −Λ(g?))L2 ≤ 0, for all θ ∈ C , (36b)(
λJ ′(g?)+(DΛ(g?))∗µ?,g−g?

)
L2([0,ζ ],L2)

≥ 0, for all g ∈ L2([0,ζ ],L2(R)).
(36c)
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From (36c) we obtain λJ ′(g?)+(DΛ(g?))∗µ? = 0. Assume λ = 0, then we would
have DΛ(g?)∗µ? = 0 and from Proposition 14 we would get µ? = 0 contradicting
(36a). Thus we can take λ = 1. Moreover, since

J (g) = ‖g‖2
L2([0,ζ ],L2)+κ‖Λ(g)‖2

L2

we obtain

J ′(g?)(δg) = (2g?,δg)L2([0,ζ ],L2)+(2κΛ(g?),DΛ(g?)(δg))L2

= (2g?+(DΛ(g?))∗(2κΛ(g?)),δg)L2([0,ζ ],L2),

and then

g? =−
1
2
(DΛ(g?))∗(2κΛ(g?)+µ?). (37)

Since Λ(g∗)∈C , from (36b) we get that (µ?,Λ(g?))L2 = max(µ?,θ)L2 for all θ ∈C
and therefore there exists α ≥ 0 such that µ? = αΛ(g?) (for µ? 6= 0, we have α > 0
and for µ? = 0 we take α = 0). Also, if inequality (34) is strict (Λ(g?) is in the interior
of C ), from (36b) we have µ?= 0 and therefore α = 0, from where we obtain equation
(35). Moreover, from (37) and Proposition 14, we obtain equations (32) and (33).

Remark 3 Note that for κ = 0, if we assume α = 0, from (33) we would have g? = 0,
which is not admissible from condition (3). Then, for κ = 0, we have α > 0, therefore
µ? 6= 0 and ‖σ(u?(ζ )− vζ )‖2

L2 = η (see remark (2)). Thus, from (33)

g∗(ζ )
σ

=−1
2

αΛ(g∗)

and therefore α = 2
η1/2 ‖g?(ζ )/σ‖L2 .
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