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Abstract
The modeling framework of port-Hamiltonian systems is systematically extended to
linear constrained dynamical systems (descriptor systems, differential-algebraic equa-
tions) of arbitrary index and with time-varying constraints. A new algebraically and
geometrically defined system structure is derived. It is shown that this structure is
invariant under equivalence transformations, and that it is adequate also for the mod-
eling of high-index descriptor systems. The regularization procedure for descriptor
systems to make them suitable for simulation and control is modified to preserve
the port-Hamiltonian form. The relevance of the new structure is demonstrated with
several examples.

Keywords Port-Hamiltonian system · Descriptor system · Differential-algebraic
equation · Passivity · Stability · System transformation · Differentiation index ·
Strangeness-index · Skew-adjoint operator
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1 Introduction

Modeling packages such as modelica (https://www.modelica.org/),
Matlab/Simulink (http://www.mathworks.com) or Simpack [43] have
come to provide excellent capabilities for the automated generation of models describ-
ing dynamical systems originating in different physical domains that may include
mechanical, mechatronic, fluidic, thermic, hydraulic, pneumatic, elastic, plastic, or

Christopher Beattie: Supported by Einstein Foundation Berlin, through an Einstein Visiting Fellowship.
Volker Mehrmann: Supported by Einstein Foundation Berlin via the Einstein Center ECMath and by
Deutsche Forschungsgemeinschaft via Project A02 within CRC 1029 ’TurbIn’. Hongguo Xu : Partially
supported by Alexander von Humboldt Foundation and by Deutsche Forschungsgemeinschaft, through the
DFG Research Center MatheonMathematics for Key Technologies in Berlin.

B Volker Mehrmann
mehrmann@math.tu-berlin.de

Extended author information available on the last page of the article

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00498-018-0223-3&domain=pdf


   17 Page 2 of 27 Mathematics of Control, Signals, and Systems            (2018) 30:17 

electric components [1,17,23,40,41]. Due to the explicit incorporation of constraints,
the resulting systems comprise differential-algebraic equations (DAEs), also referred
to as descriptor systems in the system theory context. Descriptor systems may contain
hidden constraints, consistency requirements for initial conditions, and unexpected
regularity requirements. Therefore, these models usually require further regulariza-
tion to be suitable for numerical simulation and control, see [11,30,33]. Our focus
will be on linear time-varying descriptor systems, as they typically arise from the
linearization of nonlinear DAE systems along a (non-stationary) reference trajectory,
see [10]. These have the form

E(t)ẋ(t) = A(t)x(t) + B(t)u(t),

y(t) = C(t)x(t) + D(t)u(t), (1)

together with an initial condition x(t0) = x0. The coefficient matrices satisfy E, A ∈
C0(I,Rn,n), B ∈ C0(I,Rn,m), C ∈ C0(I,Rm,n), and D ∈ C0(I,Rm,m), where we
denote by C j (I,X ) j ∈ {0, 1, 2, 3, . . .} the set of j-times continuously differentiable
functions from a compact time interval I = [t0, t f ] ⊆ R to a vector space X . If
it is otherwise clear from the context, the argument t of the coefficient functions is
suppressed.

An important development in recent years has been to employ energy based
modeling via bond graphs [4,12]. This has been implemented recently in 20- sim
(http://www.20sim.com/), for example. The resulting systems have a port-
Hamiltonian (pH) structure, see e. g. [21,27,37,44,45], that encodes underlying
physical principles such as conservation laws directly into the structure of the sys-
tem model. The standard form for pH systems appears as

ẋ = (J − R)∇xH(x) + (B − P)u,

y = (B + P)T∇xH(x) + (S + N )u, (2)

where the function H(x) is the Hamiltonian, typically describing the distribution of
internal energy among energy storage elements of the system; J = −J T ∈ R

n,n is
the structure matrix describing energy flux among energy storage elements within the
system; R = RT ∈ R

n,n is the dissipation matrix describing energy dissipation/loss
in the system; B±P ∈ R

n,m are portmatrices, describing the manner in which energy
enters and exits the system; and S+N , with S = ST ∈ R

m,m and N = −NT ∈ R
m,m ,

describes the direct feed-through from input to output. It is necessary that

W =
[
R P
PT S

]
≥ 0, (3)

where we write W > 0 or W ≥ 0 to assert that a real symmetric matrix W is positive
definite or positive semidefinite, respectively. Port-Hamiltonian systems generalize
Hamiltonian systems, in the sense that conservation of energy for Hamiltonian systems
is replaced by the dissipation inequality:
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H(x(t1)) − H(x(t0)) ≤
∫ t1

t0
y(t)T u(t) dt . (4)

In the language of system theory,H(x) is a storage function associated with the supply
rate, y(t)T u(t). The inequality (4), describes a conservation property of the dynamical
system that is termed passivity [8]. Note that H(x) defines a Lyapunov function for
the unforced system, so minimal pH systems are implicitly Lyapunov stable [24].
Inequality (4) is an immediate consequence of (3) and holds even when the coefficient
matrices J , R, B, P , S, and N depend on x or explicitly on time t , see [34], or when
they are defined as linear operators acting on infinite-dimensional spaces [27,47].

The physical properties of pH systems are encoded in the algebraic structure of
the coefficient matrices and in geometric structures associated with the flow of the
differential equation. This leads to a remarkably robustmodeling paradigm that greatly
facilitates the combination and manipulation of pH systems. Note in particular that the
family of pH systems is closed under power-conserving interconnection (see [28]);
model reduction of pH systems via Galerkin projection yields (smaller) pH systems
[2,22,39]; and conversely, pH systems are easily extendable in the sense that new
state variables can be included while preserving the structure of (2). Thus, the range
of application of the model can be increased while ensuring that basic conservation
principles, as encoded in (4), remain in force.

When time-varying state constraints are included in a pH system, the result-
ing system is a port-Hamiltonian descriptor system (differential-algebraic equation)
(pHDAE). Such pHDAE systems arise also in singularly perturbed pH systems when
small parameters are set to zero, see [46]. Significantly, there is no systematic way
that has yet emerged to describe this problem class consistently, in a way that reflects
both the pH structure and the time-varying DAE structure appropriately from the point
of view of DAE modeling. For implicit pH systems, implicit formulations have been
studied in [19] relating to Dirac’s work from 1950s [14]. However, we will allow
general DAE system formulations and the first main topic of this paper is to propose
such a systematic pHDAE approach. This is a challenging task, in particular when
constraints of the DAE are ‘hidden,’ which is often signaled with the terminology
‘high-index DAE’ [5,30,33]. Such DAEs are not well suited for numerical simulation
and control and so, either a reformulation or a regularization of the model must first
be carried out [11,30]. We will briefly summarize the fundamentals of this technique
in Sect. 4.

OftenPort-HamiltonianDAEsare expected to beof differentiation index atmost one
(see, e.g., [46]). Such systems do not contain hidden constraints arising from deriva-
tives. By way of contrast, we describe here a class of pHDAEs that arise from common
modeling approaches that yield differentiation indices higher than one, making regu-
larization procedures necessary. Unfortunately, the usual regularization strategies do
not preserve pHDAE model structure and so the second main topic of this work paper
is how one should accomplish regularization while respecting the pHDAE structure.

The paper is organized as follows. In Sect. 2, we give a definition of linear port-
Hamiltonian differential-algebraic systems and demonstrate that this is a relevant
class for many applications. The main properties of this new class of pHDAE systems
(such as stability and dissipativity) are discussed in Sect. 3. Section 4 recalls the
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index reduction procedure for DAEs. The analysis of ‘index at most one’ pHDAEs
is discussed in Sect. 5, while the structured regularization procedure for higher index
systems is discussed in Sect. 6.

2 Linear port-Hamiltonian differential-algebraic equations

In this section, we introduce a new definition of linear port-Hamiltonian descriptor
systems (pHDAEs). As discussed in the introduction, we would like to be able to
combine the pH structure and the DAE structure in a systematic way. Our first obser-
vation to achieve this goal is that for a quadratic HamiltonianH(x) = 1

2 x
T Q(t)x with

Q = QT , the operator d
dt − J (t)Q(t) : � ⊂ C1(I,Rn) → C0(I,Rn) is skew-adjoint,

so in order to extend this concept we first introduce linear skew-adjoint differential-
algebraic operators, see [32] for the corresponding self-adjoint case.

Definition 1 A linear (differential-algebraic) operator

L := E d

dt
− A : � ⊂ C1(I,Rn) → C0(I,Rn)

with coefficient functions E ∈ C1(I,Rn,n),A ∈ C0(I,Rn,n) is called skew-adjoint, if
ET (t) = E(t) and Ė(t) = −(A(t) + AT (t)) for all t ∈ I.

To further motivate this definition, observe that starting with vector functions
x1(t), x2(t) that are absolutely continuous on the interval I = (t0, t f ) each with
square integrable derivative and xi (t0) = xi (t f ) = 0 for i = 1, 2, and letting
〈x1, x2〉 = ∫ t f

t0
xT2 x1 dt denote the usual L2 inner product, we have

〈x1,L(x2)〉 = 〈x1, E ẋ2 − Ax2〉 = 〈x1, d

dt
(Ex2) − Ax2 − Ėx2〉

= xT2 ET x1|t ft0 − 〈ET ẋ1, x2〉 − 〈(AT + ĖT )x1, x2〉
= 〈−ET ẋ1 − (AT + ĖT )x1, x2〉 = 〈−E ẋ1 + Ax1, x2〉.

So, the adjoint operator L∗ formally satisfies L∗ = −L. Note that boundary terms
arising in partial integration will vanish under a wide variety of conditions that may
replace the requirement of zero end conditions on x1(t) and x2(t).

Remark 2 In the context of densely defined unbounded operators, recall that symmetric
operators are those with adjoints that are extensions of the original operator, so one
might use analogously the terminology skew-symmetric operator instead of skew-
adjoint operator here. To be consistent with the terminology in [32] where self-adjoint
DAE operators were introduced, we prefer to use its natural cousin, skew-adjoint
operator.

One further motivation for introducing skew-adjoint operators in this way is that we
would like to consider time-varying changes of basis and time-varying Galerkin pro-
jections. We show in the following result that linear skew-adjoint operators remain
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skew-adjoint under time-varying congruence transformations and Galerkin projec-
tions.

Lemma 3 Consider a linear skew-adjoint differential-algebraic operator

L := E d

dt
− A : � ⊂ C1(I,Rn) → C0(I,Rn)

with coefficient functions E ∈ C1(I,Rn,n) and A ∈ C0(I,Rn,n). Then for every
V ∈ C1(I,Rn,r ), the operator LV defined by

LV (x) := VT EV ẋ − (VTAV − VT EV̇)x

is again skew-adjoint, i.e., LV : � ⊂ C1(I,Rr ) → C0(I,Rr ) and L∗
V = −LV .

Proof Since VT EV = (VT EV)T , it remains to consider the coefficient of x . Using
ET = E and Ė = −(A + AT ), we have

d

dt
(VT EV) = V̇T EV + VT ĖV + VT EV̇

= V̇T EV − VT (A + AT )V + VT EV̇
= −(VTAV − VT EV̇) − (VTAV − VT EV̇)T .

�
Note that for any t ∈ I and x ∈ C1(I,Rn) we have LV (x(t)) = VT (t)L(V(t)x(t)).

Remark 4 In Lemma 3, V need be neither invertible nor square, and in particular

a time-varying compression V =
[

Ir
P(t)

]
will produce a permissible skew-adjoint

operator.

Skew-adjoint operators provide a natural extension of linear Hamilton operators
with variable coefficients, so we may now incorporate dissipation terms and ports that
lead us to a new definition of linear time-varying pHDAEs, which will be shown to be
invariant under time-varying changes of basis. Our new definition somewhat extends
related concepts discussed in [46].

Definition 5 A linear variable coefficient descriptor system of the form

Eẋ = [(J − R)Q − EK ] x + (B − P)u,

y = (B + P)T Qx + (S + N )u, (5)

with E, Q ∈ C1(I,Rn,n), J , R, K ∈ C0(I,Rn,n), B, P ∈ C0(I,Rn,m), S = ST , N =
−NT ∈ C0(I,Rm,m) is called port-Hamiltonian descriptor system (port-Hamiltonian
differential-algebraic system) (pHDAE) if the following properties are satisfied:
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(i) the differential-algebraic operator

L := QT E
d

dt
− (QT J Q − QT EK ) : D ⊂ C1(I,Rn) → C0(I,Rn) (6)

is skew-adjoint, i. e. we have that QT E ∈ C1(I,Rn,n) and for all t ∈ I,

QT (t)E(t) = ET (t)Q(t), and
d

dt
(QT (t)E(t)) = QT (t)[E(t)K (t) − J (t)Q(t)] + [E(t)K (t) − J (t)Q(t)]T Q(t);

(ii) the Hamiltonian function defined as

H(x) := 1

2
xT QT Ex : C1(I,Rn) → C1(I,R) (7)

is bounded from below by a constant,H(x(t)) ≥ h0 ∈ R, uniformly for all t ∈ I

and all solutions x of (5);
(iii) the matrix function

W :=
[
QT RQ QT P
PT Q S

]
∈ C0(I,Rn+m,n+m) (8)

is positive semidefinite, i. e., W (t) = WT (t) ≥ 0 for all t ∈ I.

Note that in Definition 5 no further properties of the differential-algebraic operator
are assumed. In particular, it is not assumed that it has a certain index as a differential-
algebraic equation.

Remark 6 The presence of the matrix function K in (5) and subsequent expressions
may be disconcerting, but note that a time-varying change of basis, x = P(t)x̃ , will
produce an additional term, E Ṗ , in the transformed system thatmust be accommodated
in order to retain the dissipation inequality. The matrix function K (t) allows for this,
and we include such a term from the beginning.

Remark 7 Note that in the special case that K (t) = 0 and QT J Q is skew-symmetric,
the skew-adjointness of L in (6) implies that E(t)T Q(t) is constant in time, which
is in accordance with the usual fact that for classical Hamiltonian systems ẋ =
J (x, t)∇xH(x) with quadratic Hamiltonian H(x) = 1

2 x
T Qx the matrix Q is con-

stant in time. The reason that we allow time-varying E, Q is that these would arise
when performing time-varying changes of basis, which will furthermore introduce a
term K �= 0 and make the coefficients time-varying.

Remark 8 Typically, pH systems are introduced via a Dirac structure D, and for
( f , e) ∈ D one has eT f + f T e = 0 if there is no dissipation. Typically, linear
dynamics is determined by choosing e = Qx , and f = ẋ . In the context of our new
definition, then efforts and flows are defined as e = Qx and f = Eẋ , respectively
and, if there is not dissipation and ET Q is constant in time, then this would lead still
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to d
dt (x

T ET Qx) = eT f + f T e = 0. Notice that in contrast to the usual formulation,
we allow for the possibility that both E and Q can be singular matrices.

Assumption (ii) in Definition 5 can be refined as follows:

Lemma 9 Assumption (ii) in Definition 5 is equivalent to the assertion thatH(x(t)) ≥
0 uniformly for all t ∈ I and all solutions x of (5). In particular, the lower bound h0
can be replaced by 0.

Proof One direction is obvious. For the other direction suppose that H(x) is semi-
bounded for all solutions x of (5), but say with h0 < 0. Then, there is t̂ ∈ R and a
consistent initial condition x̂ for (5) at t = t̂ with u(t) ≡ 0, such thatH(x̂(t̂)) < 0. By

scaling x̂ by κ >
√

h0
H(x̂(t̂))

, κ x̂(t̂) is also a consistent initial condition for (5) at t = t̂

with u(t) ≡ 0, and we find that H(κ x̂(t̂)) = κ2H(x̂(t̂)) < h0 giving a contradiction,
so it must be that h0 ≥ 0. �
Lemma 9 shows that Assumption (ii) implies that QT E is positive semidefinite on the
solution set of (5), and so Q(t)T E(t) ≥ 0 for all t ∈ I is a sufficient condition for
Assumption (ii) to hold.

We proceed to illustrate the generality of this new definition with some examples.

Example 10 Consider the model of a simple RLC network, see e. g. [13,18], given by
a linear constant coefficient DAE

⎡
⎣GcCGT

c 0 0
0 L 0
0 0 0

⎤
⎦

︸ ︷︷ ︸
:=E

⎡
⎣ V̇
İl
İv

⎤
⎦ =

⎡
⎣−Gr R−1

r GT
r −Gl −Gv

GT
l 0 0

GT
v 0 0

⎤
⎦

︸ ︷︷ ︸
:=(J−R)I

⎡
⎣ V

Il
Iv

⎤
⎦ , (9)

with real symmetric constant matrices L > 0, C > 0, Rr > 0 describing induc-
tances, capacitances, and resistances, respectively that are present in the network.
Here, Gv is of full column rank, and the subscripts r , c, l, and v refer to edge quanti-
ties corresponding to resistors, capacitors, inductors, and voltage sources. V collects
voltage drops across network branches, while I collects the current fluxes through
corresponding network branches. This model has a pHDAE structure with vanishing
B, P, S, N , K ; the matrix Q is the identity; E = ET , J = −J T , QT RQ = R ≥ 0,
and

H =
⎡
⎣V
Il
Iv

⎤
⎦
T

E

⎡
⎣V
Il
Iv

⎤
⎦ =

[
V
Il

]T [
GcCGT

c 0
0 L

] [
V
Il

]
.

Note that the associated DAE has differentiation index 2, see [30]. �
Example 11 In [15,16] the propagation of pressure waves on acoustic time scales
through a network of gas pipelines is considered and an infinite-dimensional pHDAE
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is derived. A structure-preserving mixed finite element discretization leads to a block-
structured constant coefficient pHDAE system

Eẋ = (J − R)Qx + Bu,

y = BT Qx,

x(t0) = x0, (10)

with Q = I , P = 0, S + N = 0,

E =
⎡
⎣M1 0 0

0 M2 0
0 0 0

⎤
⎦ , J =

⎡
⎣ 0 −G̃ 0
G̃T 0 Ñ T

0 −Ñ 0

⎤
⎦ , R =

⎡
⎣0 0 0
0 D̃ 0
0 0 0

⎤
⎦ B =

⎡
⎣ 0
B̃2

0

⎤
⎦ , x =

⎡
⎣x1
x2
x3

⎤
⎦ ,

where the vector valued functions x1 : R → R
n1, x2 : R → R

n2 represent the
discretized pressure and flux, respectively, and x3 : R → R

n3 represents the Lagrange
multiplier for satisfying the space-discretized constraints. The coefficients M1 = MT

1 ,
M2 = MT

2 , and D̃ = D̃T are positive definite, and the matrix [G̃T Ñ T ]T has full row
rank. The Hamiltonian is given by H(x) = 1

2 x
T ET Qx = 1

2 (x
T
1 M1x1 + xT2 M2x2).

The associated DAE in this case also has differentiation index 2, see [16,30].

Definition 5 brings the pH modeling framework and the DAE framework together in
a structured way. It should be noted, however, that in a DAE we may have hidden
constraints that arise from differentiation, which are not explicitly formulated and the
representation of the DAE that is used in simulation and control is not unique. One can
for example add derivatives of constraints which lead to an overdetermined system;
then, one can add dummy variables or Lagrange multipliers to make the number of
variables equal to the number of equations or one can remove some of the dynamical
equations to achieve this goal, see [5,17,30,33] for detailed discussions on this topic. To
rewrite these different formulations in the pHDAE formulation is not always obvious.
Let us demonstrate this with an example from multibody dynamics.

Example 12 A benchmark example for a DAE system is the model of a two-
dimensional three-linkmobilemanipulator, see [6,25],which after linearization around
a stationary solution takes the form

M p̈ = −D ṗ − Sp + GT λ + B1u,

0 = −Gp, (11)

with symmetric positive definite matrices M, S and symmetric and positive semidef-
inite D.

Besides the explicit constraint, this system contains the first and second time deriva-
tive of −Gp = 0 as hidden algebraic constraints, see, e. g. [17,30]. There are several
regularization procedures that one can employ to make the system better suited for
numerical simulation and control. One possibility is to replace the original constraint
by its time derivative 0 = −G ṗ. In this case, the model equation can easily be written
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in a pHDAE formulation. Adding a tracking output of the form y = BT
1 ṗ, see, e. g.,

[26], and then transforming to first-order form by introducing

x =
⎡
⎣ x1
x2
x3

⎤
⎦ :=

⎡
⎣ ṗ
p
λ

⎤
⎦ ,

one obtains a linear pHDAE system Eẋ = (J − R)Qx + Bu, y = BT Qx , with

E :=
⎡
⎣ M 0 0
0 I 0
0 0 0

⎤
⎦ , R :=

⎡
⎣ D 0 0
0 0 0
0 0 0

⎤
⎦ , Q :=

⎡
⎣ I 0 0
0 S 0
0 0 I

⎤
⎦ ,

J :=
⎡
⎣ 0 −I GT

I 0 0
−G 0 0

⎤
⎦ , B :=

⎡
⎣ B1

0
0

⎤
⎦ , P = 0, S + N = 0.

The Hamiltonian in this case is given byH(x) = 1
2

[
x1
x2

]T [
M 0
0 S

] [
x1
x2

]
.

Since the Lagrange multipliers in the multibody framework can be interpreted as
external forces, it is also possible to incorporate them in the input (B− P)u to achieve
a pHDAE formulation as in Definition 5, but also other formulations are possible.
For example, we may keep the original algebraic constraint as well and use an extra
Lagrange multiplier for the first time derivative.

Besides explicit constraints, pHDAEs arise as a limiting situation in a singularly per-
turbed problem which has pH structure. Typical examples are mechanical multibody
systems where small masses are ignored.

Example 13 Finite element modeling of the acoustic field in the interior of a car, see
e. g. [36], leads to (after several simplifications) a large-scale constant coefficient
differential-algebraic equation system of the form

M p̈ + D ṗ + Kp = B1u,

where p is the coefficient vector associatedwith the pressure in the air and the displace-
ments of the structure, B1u is an external force,M is a symmetric positive semidefinite
mass matrix, D is a symmetric positive semidefinite matrix, and K is a symmetric pos-
itive definite stiffness matrix. Here, M is only semidefinite, since small masses were
set to zero, so M is a perturbation of a positive definite matrix. The resulting first-order
formulation yields the state equation of a pHDAE system, Eż = (J − R)Qz + Bu,
where

E :=
[
M 0
0 I

]
, J :=

[
0 −I
I 0

]
, R :=

[
D 0
0 0

]
, z :=

[
ṗ
p

]
,

Q :=
[
I 0
0 K

]
, B :=

[
B1
0

]
, P := 0,
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and the Hamiltonian is

H = 1

2
(zT ET Qz) = 1

2
( ṗT M ṗ + pT K p).

Note that this model is nonlinear originally, but simplifications carried out in the
modeling process, e. g. linearization and omission of nonlinear terms with small coef-
ficients, lead to a linear model. In this example, as long as M is invertible the implicit
pH formulation of [19] could be employed to transform the system to a usual pH sys-
tem; however, this approach would not be possible in the limiting situation and in the
context of numerical methods, the small masses problem behaves just as the singular
case.

Remark 14 A special case of (5) takes the following form:

Eẋ = (J − R)x + (B − P)u,

y = (B + P)T x + (S + N )u, (12)

where E = ET ∈ C1(I,Rn,n), R = RT , J ∈ C0(I,Rn,n), B, P ∈ C0(I,Rn,m),
S = ST , N = −NT ∈ C0(I,Rm,m) as before but now we require that

(i) the differential algebraic operator

L := E
d

dt
− J : D ⊂ C1(I,Rn) → C0(I,Rn) (13)

is skew-adjoint, so that we have for all t ∈ I,

d

dt
E(t) = −

[
J (t) + J (t)T

]
;

(ii) E(t) is bounded from below by a constant symmetric matrix E0.

(iii) W (t) :=
[
R(t) P(t)
PT (t) S(t)

]
≥ 0 for all t ∈ I.

The effective Hamiltonian is now

H(x) := 1

2
xT Ex : C1(I,Rn) → R. (14)

Notice that in this model description we have merged the roles of Q and E . This is
always possible when Q is pointwise invertible, see Sect. 3, but this formulation may
not be possible when Q is singular, see [35].

Our new definition of pHDAEs allows for somewhat greater flexibility in modeling
port-Hamiltonian systems with constraints. The non-uniqueness in the factorization
of the Hessian ET Q of the Hamiltonian allows one to incorporate singularities which
may otherwise be hard to deal with. In the next section, we will show that the classical
properties of pH systems are retained and that the pH structure remains invariant under
time-varying transformations.
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3 Properties of pHDAE systems

To analyze the properties of pHDAE systems, we first derive the dissipation inequality.

Theorem 15 Consider the linear time-varying system (5) and assume that this system
satisfies condition (i) of Definition 5. Then, its (classical) solutions satisfy

d

dt
H(x) = uT y −

[
x
u

]T

W

[
x
u

]
, (15)

where W is defined in (8).
Furthermore, we have the following properties.

(i) If W ≡ 0, then d
dtH = uT y.

(ii) If W ≥ 0 for all t ∈ I, then the system satisfies the dissipation inequality (4).

Proof By Definition 5, we have

d

dt
H = 1

2

[
ẋ T (QT E)x + xT

d

dt
(QT E)x + xT (QT E)ẋ

]

= 1

2
xT

d

dt
(QT E)x + xT QT (Eẋ)

= 1

2
xT

d

dt
(QT E)x + xT QT ([J Q − RQ − EK ]x + Bu − Pu)

= 1

2
xT

d

dt
(QT E)x + xT QT J Qx − xT QT RQx − xT QT EK x − xT QT Pu + uT BT Qx

= 1

2
xT

d

dt
(QT E)x + xT QT J Qx − xT QT RQx − xT QT EK x − xT QT Pu

+ uT (y − PT Qx − Su − Nu)

= uT y + 1

2
xT

d

dt
(QT E)x + xT QT J Qx − xT QT RQx − xT QT EK x

− xT QT Pu − uT PT Qx − uT Su

= uT y + 1

2

(
xT

d

dt
(QT E)x + xT [QT (J Q − EK ) + (J Q − EK )T Q]x

)

−
[
x
u

]T

W

[
x
u

]
.

From the skew-adjointness of L, we then have that

d

dt
H = uT y −

[
x
u

]T

W

[
x
u

]
.

Part i) then follows immediately from the assumptionW ≡ 0, while in Part ii) the fact
that W (t) ≥ 0 for all t ∈ I implies that for any t1 ≥ t0,

H(x(t1)) − H(x(t0)) =
∫ t1

t0

d

dt
H dt ≤

∫ t1

t0
yT u dt .

�
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Remark 16 Theorem15 connects structural features of pHDAEswith the assertion that
uT y bounds the instantaneous rate of change of theHamiltonian functionH(x), imply-
ing in turn that the dissipation inequality (4) holds. This is a conservation principle
that must hold notwithstanding particular interpretations of H(x) as system ‘energy’
(an interpretation which might otherwise require further qualification if there is time
variation in E(t)T Q(t)). Indeed, the strength of this new formulation is that it allows
retention of a general conservation principle even in the face of time-varying changes
of basis, which arise naturally in considering nonlinear systems that are linearized
along non-stationary solutions, when the solution manifold or constraints are moving
in time.

Remark 17 It follows from Theorem 15 with the formulation of flows and efforts as in
Remark 8 that ifW = 0, then we have the usual relationship for Hamiltonian systems
that eT f + yT u = 0.

Another important feature of our definition of pHDAE systems is that a change of
basis and a scaling with an invertible matrix function preserves the pHDAE structure
and the Hamiltonian.

Theorem 18 Consider a pHDAE system of form (5) with Hamiltonian (7). Let U ∈
C0(I,Rn,n) and V ∈ C1(I,Rn,n) be pointwise invertible in I. Then, the transformed
DAE

Ẽ ˙̃x = [( J̃ − R̃)Q̃ − Ẽ K̃ ]x̃ + (B̃ − P̃)u,

y = (B̃ + P̃)T Q̃x̃ + (S + N )u,

with

Ẽ = UT EV , Q̃ = U−1QV , J̃ = UT JU ,

R̃ = UT RU , B̃ = UT B, P̃ = UT P,

K̃ = V−1KV + V−1V̇ , x = V x̃

is still a pHDAE systemwith the equivalentHamiltonian H̃(x̃) = 1
2 x̃

T Q̃T Ẽ x̃ = H(x).

Proof The transformed DAE system is obtained from the original DAE system by
setting x = V x̃ in (5), by pre-multiplying with UT , and by inserting UU−1 in front
of Q. The transformed operator corresponding to L in (6) is

LV := Q̃T Ẽ
d

dt
− Q̃T ( J̃ Q̃ − Ẽ K̃ ).

Because

Q̃T Ẽ = V T QT EV , Q̃T J̃ Q̃ = V T QT J QV , Q̃T ẼV−1V̇ = V T QT EV̇ ,

by Lemma 3, LV is skew-adjoint, since L defined in (6) is skew-adjoint. Hence,
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Q̃T Ẽ = ẼT Q̃,

d

dt
(Q̃T Ẽ) = −Q̃T ( J̃ Q̃ − Ẽ K̃ ) − ( J̃ Q̃ − Ẽ K̃ )T Q̃.

It is straightforward to show that H̃(x̃) = H(x) and

d

dt
H̃(x̃) = yT u −

[
x̃
u

]T

W̃

[
x̃
u

]
,

where

W̃ =
[
Q̃T R̃ Q̃ Q̃T P̃
P̃T Q̃ S

]
=

[
V T QT RQV V T QT P

PT QV S

]

=
[
V 0
0 I

]T

W

[
V 0
0 I

]
,

andW is defined in (8). BecauseW (t) is positive semidefinite for all t ∈ I, so is W̃ (t).
Therefore, for any t1 ≥ t0,

H̃(x̃(t1)) − H̃(x̃(t0)) ≤
∫ t1

t0
yT (t)u(t)dt,

which establishes the dissipation inequality. �
An important point to note is that the Hamiltonian stays invariant under time-varying
changes of basis and the operator LV , the Hamiltonian H̃(x̃), and the matrix function
W̃ are independent of the choice of the matrix function U .

Aswe have already pointed out, our definition of pHDAE systems has the extra term
−EK x on the right hand side which is needed to incorporate time-varying changes
of basis. Even if K = 0 in the original system, after the transformation given in
Theorem 18 the extra term −Ẽ K̃ with K̃ = V−1V̇ will appear. Note that if an
orthogonal change of basis is carried out in a system with K = 0 then the resulting
K̃ = V−1V̇ is skew-symmetric. However, even if K �= 0, this term can be removed
via a change of basis transformation which does not change the Hamiltonian.

Lemma 19 Consider a pHDAE system

Ẽ ˙̃x = [( J̃ − R̃)Q̃ − Ẽ K̃ )]x̃ + (B̃ − P̃)u,

y = (B̃ + P̃)T Q̃x̃ + (S + N )u

with Hamiltonian H̃(x̃) = 1
2 x̃

T Q̃T Ẽ x̃ , where K̃ ∈ C(I,Rn,n). If VK̃ ∈ C1(I,Rn,n)

is a pointwise invertible solution of the matrix differential equation V̇ = V K̃ (e. g.
with the initial condition V (t0) = I ), then defining

E = ẼV−1
K , Q = Q̃V−1

k ,
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J = J̃ , R = R̃, B = B̃,

P = P̃, x̃ = V−1
K x,

the system

Eẋ = (J − R)Qx + (B − P)u,

y = (B + P)T Qx + (S + N )u

is again pHDAE with the equivalent Hamiltonian H(x) = H̃(x̃) = 1
2 x

T QT Ex.

Proof For a given matrix function K̃ , the system V̇ = V K̃ always has a solution VK

that is pointwise invertible. The remainder of the proof follows by reversing the proof
of Theorem 18 with U = I and using that V̇K V

−1
K = −VK

d
dt (V

−1
K ). �

Note again that if K is real and skew-symmetric, then the matrix function VK in
Lemma 19 can be chosen to be pointwise real orthogonal.

Remark 20 Following Theorem 18, if E is pointwise invertible, then the original sys-
tem can be transformed into one with Ê = I , and so, into a standard port-Hamiltonian
system. Whenever Q is pointwise invertible, then the original system can be trans-
formed into the one with new Q̂ = I , see Remark 14. Which of these formulations
is preferable will depend on the sensitivity (conditioning) of these transformations.
In the context of numerical simulation and control methods, these transformations
should be avoided if they are ill-conditioned. The representation with E and Q also
has the advantage that it is more robust to perturbations as has been shown recently
for the constant coefficient case in [20] in the context of computing stability distances
and that it leads to structured canonical and condensed forms [35,42].

4 Regularization of DAEs

To study the DAE properties of pHDAES, in this section we briefly recall the index
reduction and reformulation procedure for DAE systems and then modify these results
to pHDAEs. We follow the general procedure derived in detail in [30] and rewrite our
system as a general descriptor system of the form

F(t, x, ẋ, u) := Eẋ − Ax − Bu = 0,

x(t0) = x0

y = G(t, x, u) := Cx + Du. (16)

Note that here, in contrast to the more general case in [11], we assume square systems
with an equal number of equations and variables and with an equal number of inputs
and outputs.

For the analysis and regularization procedure, we make use of the behavioral
approach [38], which introduces a descriptor vector v = [xT , uT ]T , and the behav-
ioral formulation

F(t, v, v̇) = 0, (17)
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together with a set of initial conditions c(v(t0)) = v0 which results from the original
initial condition. Then, one forms a derivative array, see [9],

Fμ(t, v, v̇, . . . , v(μ+1)) = 0, (18)

stacking the equation and its time derivatives up to level μ into one large system. We
denote partial derivatives ofFμ with respect to selected variables ζ fromvμ := (t, v, v̇,

. . . , v(μ+1)) by Fμ;ζ , and the solution set of the algebraic equation associated with
the derivative array Fμ for some integer μ (considering variables as well as their
derivatives as algebraic variables) by Lμ.

Themain assumption for the analysis is that theDAE satisfies the following hypoth-
esis, which in the linear case under some constant-rank assumptions can be proved as
a theorem, see [30].

Hypothesis 21 Consider the system of nonlinear DAEs (17). There exist integers
μ, r , a, d, and ν such that Lμ is not empty and such that for every v0μ =
(t0, v0, v̇0, . . . , v

(μ+1)
0 ) ∈ Lμ there exists a neighborhood in which the following

properties hold.

1. The setLμ ⊆ R
(μ+2)(n+m)+1 forms amanifold of dimension (μ+2)(n+m)+1−r .

2. We have rankFμ;v,v̇,...,v(μ+1) = r on Lμ.
3. We have corankFμ;v,v̇,...,v(μ+1) − corankFμ−1;v,v̇,...,v(μ) = ν on Lμ, where the

corank is the dimension of the corange and the convention is used that corank of
F−1;v is 0.

4. We have rankFμ;v̇,...,v(μ+1) = r − a on Lμ such that there exist smooth full rank
matrix functions Z2 and T2 of size (μ + 1)n × a and (n + m) × (n + m − a),
respectively, satisfying ZT

2 Fμ;v̇,...,v(μ+1) = 0, rank ZT
2 Fμ;v = a, and ZT

2 Fμ;vT2 =
0 on Lμ.

5. We have rankFμ;v̇T2 = d = n − a − ν on Lμ such that there exists a smooth full
rank matrix function Z1 of size n × d satisfying rank ZT

1 Fμ;v̇T2 = d.

The smallest μ for which Hypothesis 21 holds is called the strangeness-index of (17),
see [30]. It generalizes the concept of differentiation index [5] to over- and under-
determined systems, but in contrast to the differentiation index, ordinary differential
equations and purely algebraic equations have μ = 0 and for other systems the differ-
entiation index (if defined) isμ+1, see [30]. The quantity ν gives the number of trivial
equations 0 = 0 in the system. Of course, these equations can be simply removed and
so for our further analysis we assume that ν = 0.

If Hypothesis 21 holds then, in the original variables x and u locally (via the implicit
function theorem) there exists, see [29,30], a reformulation of the system (in the same
variables) and a partitioning of the projection matrix Z2 into two parts, so that the
system takes the form

F̂1(t, x, ẋ, u) = 0,

F̂2(t, x, u) = 0, (19)

F̂3(t, x) = 0,
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in which the first set of d equations (with F̂1 = ZT
1 F) form a (linear) projection of the

original set of equations representing the dynamics of the system, while the second
and third sets of equations contain all explicit and hidden algebraic constraints that
can be used to parameterize the solution manifold and to characterize when an initial
condition is consistent.

It should also be noted that although formally also derivatives of u have been used
to form the derivative array, no derivatives of u appear in the regularized system
(19). This has been shown in various contexts [7,30,31] and is due to the fact that only
derivatives of algebraic equations that cannot be influencedby the control (non-impulse
controllable equations) are needed to generate (19) leading to the third equation of
(19).

System (19) has the property that it can be made to be of differentiation index at
most one by an appropriate feedback.

Asmentioned in the introduction, it is a common expectation that port-Hamiltonian
DAEs will have a differentiation index at most one (i.e., they satisfy Hypothesis 21
with μ = 0). Example 10 gives a typical illustration of a system that violates this
expectation, in this case modeling a simple electrical circuit. Indeed, in Example 10
we have ZT

2 = [
0 0 I

]
and obtain that

⎡
⎣GcCGT

c 0 0
0 L 0

−GT
v 0 0

⎤
⎦

is clearly not invertible, except if both the last row and column are absent. The same
matrix Z2 can be used in Example 11 and yields that

⎡
⎣M1 0 0

0 M2 0
0 Ñ 0

⎤
⎦

is also not invertible except if both the last row and column are absent. Due to this
special structure, both systems have μ = 1, i. e., both have differentiation index
two, when the input is chosen to be 0. The analysis of Example 12 with the original
constraint 0 = −Gp has μ = 2 (differentiation index three), and the formulation as
pHDAE in Example 12 has μ = 1 (differentiation index two) if GGT is invertible,
see e. g. [5,30].

Adding the output equations to the system, in the linear time-varying case (and also
locally in the nonlinear case), we obtain a system of the form

Ê1 ẋ = Â1x + B1u,

0 = Â2x + B2u,

0 = Â3x,

x(t0) = x0,

y = Cx + Du. (20)
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Note that the first two equations in (20) can be obtained directly from the original
system and, as stated before, they contain the ordinary differential equations as well
as the equations for which one can find an initial feedback u = Kx + ũ so that the
matrix function

⎡
⎣ Ê1

Â2 + B2K
Â3

⎤
⎦

is pointwise invertible; the resulting system is strangeness-free (of differentiation index
one) considered as a system with input ũ = 0, see [3,11] for a detailed analysis and
regularization procedures. In the following, we assume that this reinterpretation has
been done, see [30].

Furthermore, there exists a partitioning of the variables so that the first three equa-
tions in (20) take the form

⎡
⎣ Ê11 Ê12 Ê13

0 0 0
0 0 0

⎤
⎦

⎡
⎣ ẋ1
ẋ2
ẋ3

⎤
⎦ =

⎡
⎣ Â11 Â12 Â13

Â21 Â22 Â23

Â31 Â32 Â33

⎤
⎦

⎡
⎣ x1
x2
x3

⎤
⎦ +

⎡
⎣ B̂1

B̂2
0

⎤
⎦ u (21)

with the special property that Â33 is invertible and the reduced system obtained by
solving for x3 is strangeness-free (of differentiation index at most one) when setting
u = 0.

The regularization procedure described here holds for general DAEs, but it does
not reflect or maintain the underlying port-Hamiltonian structure, so in the next two
sections we modify this approach for systems with a pHDAE structure to rectify this
shortcoming.

5 PHDAEs of differentiation index at most one

In this section, we characterize linear time-varying pHDAE systems of differentiation
index at most one (μ = 0). In this case, Hypothesis 21 implies that the matrix function
E(t) has constant rank. Then, see e. g., Theorem 3.9 in [30], there exist pointwise
orthogonal matrix functions Ũ and Ṽ such that

Ũ T EṼ =
[
E11 0
0 0

]
=: Ẽ,

where E11 is pointwise invertible. Because QT E is real symmetric, setting

Ũ T QṼ =
[
Q11 Q12
Q21 Q22

]
,
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one has QT
11E11 = ET

11Q11 and also Q12 = 0. Partition in the same way

Ũ T JŨ =
[
J̃11 J̃12
J̃21 J22

]
, Ũ T RŨ =

[
R̃11 R̃12

R̃T
12 R22

]
,

Ũ T (J − R)Ũ =
[
J̃11 J̃12
J̃21 J22

]
−

[
R̃11 R̃12

R̃T
12 R22

]
=:

[
L̃11 L̃12

L̃21 L22

]
,

K̃ = Ṽ T (K Ṽ + ˙̃V ) =
[
K̃11 K12

K̃21 K22

]
.

Since the system has differentiation index at most one, the block L22Q22 either does
not occur (in this case we have an implicitly defined standard pH system) or it must
be pointwise invertible, see [30], i. e., both L22 and Q22 are pointwise invertible. Let
U = ŨT , where

T :=
[

I 0
T21 I

]
, T21 = −L−T

22 (L̃12 − E11K12Q
−1
22 )T .

Then, a transformation of the original pHDAE with U and Ṽ yields a transformed
pHDAE system, where K̃ is defined above,

Ẽ = UT EṼ = Ũ T EṼ , Q̃ = U−1QṼ =
[
Q11 0
Q̃21 Q22

]
, S̃ = S, Ñ = N ,

J̃ = UT JU =
[
J11 J12
J21 J22

]
, R̃ = UT RU =

[
R11 R12

RT
12 R22

]
,

L̃ = J̃ − R̃ =
[
J11 J12
J21 J22

]
−

[
R11 R12

RT
12 R22

]
=

[
L11 L12
L21 L22

]
,

and

L̃ Q̃ − Ẽ K̃ =
[
L11Q11 + L12 Q̃21 − E11 K̃11 0
L21Q11 + L22 Q̃21 L22Q22

]
,

that is,
(J12 − R12)Q22 − E11K12 = 0. (22)

Performing another change of basis to make Q̃ (block) diagonal with a transformation
matrix

T̃ :=
[

I 0
−Q−1

22 Q̃21 I

]
,
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then setting V = Ṽ T̃ and transforming the original system with U , V we obtain that
any pHDAE of differentiation-index one can be transformed to the form

[
E11 0
0 0

] [
ẋ1
ẋ2

]
=

([
L11 L12
L21 L22

] [
Q11 0
0 Q22

]
−

[
E11K11 E11K12

0 0

]) [
x1
x2

]

+
[
B1 − P1
B2 − P2

]
u,

y = [
(B1 + P1)T (B2 + P2)T

] [
Q11 0
0 Q22

] [
x1
x2

]
+ (S + N )u,

(23)

where (22) holds, with

K11 = K̃11 − K12Q
−1
22 Q̃

−1
21 ,

[
B1 P1
B2 P2

]
= UT [

B P
]
.

Following Theorem 18, this transformation will not change the Hamiltonian, and (23)
is still a pHDAE of index at most one. Note that these transformations should not be
performed in a numerical integration or control design technique, since the inversion
of the matrices Q22 and L22 may be highly ill-conditioned. However, from an analytic
point of view we have the following theorem.

Theorem 22 Suppose that the pHDAE system (5) is of differentiation index at most
one (i.e., it satisfies Hypothesis 21 with μ = 0) that ν = 0, and that E(t) has constant
rank. Assume further that the system is transformed to form (22)–(23). Then for any
input function u and x1(t0) = x1,0, the first component of the solution and the output
of (23) are given by reduced implicit pHDAE system

E11 ẋ1 = [(J11 − R11)Q11 − E11K11]x1 + (B̂ − P̂)u, x1(t0) = x1,0,

y = (B̂ + P̂)T Q11x1 + (Ŝ + N̂ )u, (24)

with Hamiltonian Ĥ(x1) = 1
2 x

T
1 QT

11E11x1 = H(x), and coefficients

B̂ = B1 − 1

2
(J T21 − R12)L

−T
22 (B2 + P2),

P̂ = P1 − 1

2
(J T21 − R12)L

−T
22 (B2 + P2),

Ŝ = S − 1

2
[(B2 + P2)

T L−1
22 (B2 − P2) + (B2 − P2)

T L−T
22 (B2 + P2)],

N̂ = N − 1

2
[(B2 + P2)

T L−1
22 (B2 − P2) − (B2 − P2)

T L−T
22 (B2 + P2)].

Furthermore, the second part of the state x2 is uniquely determined by the algebraic
constraint

L22Q22x2 = −L21Q11x1 − (B2 − P2)u, (25)

123



   17 Page 20 of 27 Mathematics of Control, Signals, and Systems            (2018) 30:17 

and there is a consistency constraint for the initial condition

L22(t0)Q22(t0)x2(t0) = −[(L21(t0))Q11(t0)]x1(t0) − (B2(t0) − P2(t0))u(t0). (26)

Proof Equation (25) follows directly from the second state equation in (23). Since
B̂ − P̂ = B1 − P1, we see that x1 satisfies the state equation in (24). The output
equation is obtained directly by substituting (25) in the output equation of (23).

It remains to prove that (24) is port-Hamiltonian. Since (23) is a pHDAE system,
it follows that

QT
11E11 = ET

11Q11 (27)

and

d

dt
QT

11E11 = QT
11[E11K11 − J11Q11] + [E11K11 − J11Q11]T Q11,

0 = −QT
11(J12 + J T21)Q22 + QT

11E11K12,

0 = QT
22 J22Q22 + QT

22 J
T
22Q22. (28)

Combining (27) with the first equation of (28) gives that the operator QT
11E11

d
dt −

QT
11(J11Q11 − E11K11) is skew-adjoint.
Furthermore, since Ŝ is symmetric and N̂ is skew-symmetric, system (24) is of

form (5), and thus Theorem 15 gives that (15) is satisfied. So

d

dt
Ĥ(x1) = d

dt
xT1 QT

11E11x1 = yT u −
[
x1
u

]T

Ŵ

[
x1
u

]
(29)

with

Ŵ =
[
QT

11R11Q11 QT
11 P̂

P̂T Q11 Ŝ

]
.

On the other hand, since (5) is a pHDAE system, we have that

d

dt
H(x) = yT u −

[
x
u

]T

W

[
x
u

]
, (30)

where

W =
⎡
⎣ Q11 0 0

0 Q22 0
0 0 I

⎤
⎦
T ⎡

⎣ R11 R12 P1
RT
12 R22 P2

PT
1 PT

2 S

⎤
⎦

⎡
⎣ Q11 0 0

0 Q22 0
0 0 I

⎤
⎦ .

Weknow that for the same input and initial statewith x2(t0) satisfying (26) the solutions
of the two systems are the same, and furthermore, we have that

H(x) = xT QT Ex = xT1 QT
11E11x1 = Ĥ(x1),
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and that (25) holds. Thus, from (29) and (30) we obtain that

[
x1
u

]T

Ŵ

[
x1
u

]
=

⎡
⎣ x1
x2
u

⎤
⎦
T

W

⎡
⎣ x1
x2
u

⎤
⎦ =

[
x1
u

]T

WX

[
x1
u

]
, (31)

where WX = XTW X with

X =
⎡
⎣ I 0

−Q−1
22 (L−1

22 (J21 − RT
12)Q11) −Q−1

22 L
−1
22 (B2 − P2)

0 I

⎤
⎦ .

Since (31) has to hold for all x1 and u, we find that Ŵ = WX , which could also be
obtained by straightforward (but tedious) calculation. Since W is symmetric positive
semidefinite, so is Ŵ , and hence the reduced system in x1 is still port-Hamiltonian
with Hamiltonian Ĥ(x1). �

Note that for the numerical integration or in the control context, as for general
DAEs, it is sufficient to carry out the transformation with pointwise orthogonal Ũ
from the left and the insertion of I = ŨŨ T before Q. In this way, a differentiation
of a computed transformation matrix can be avoided and the pHDAE structure is
preserved nonetheless. However, no explicit separation of the parts x1 and x2 would
be obtained in this way and this separation has to be carried out by the numerical
solver in the context of the numerical integration method.

Remark 23 For nonlinear pHDAE systemswith differentiation index at most one (μ =
0), the corresponding local result follows directly via the implicit function theorem
and application of Theorem 22 to the linearization.

6 Regularization of higher index pHDAE systems

In this section, we discuss how to modify the regularization procedure discussed for
general DAEs in Sect. 4 to preserve the pHDAE structure. Again, we consider the
linear time-varying case (5) and set L := J − R. Suppose that the state equation
with u = 0 already satisfies Hypothesis 21, so that as discussed in Sect. 4, no rein-
terpretation of variables or initial feedbacks are necessary. It has been shown in [7]
that the extra constraint equations (hidden constraints) that arise from derivatives are
uncontrollable, because otherwise the index reduction could have been done via feed-
back. This means that these extra (uncontrollable) constraint equations are of the form
Â3x = 0 which corresponds to F̂3(t, x) = 0 in the nonlinear case, see (20). We add
just these constraint equations to our original pHDAE and obtain an overdetermined
strangeness-free system, see [30].

Let us make the weak assumption that E(t) has constant rank. This is a restriction
that, however, holds in all examples that we have encountered so far, and it can be
removed by considering the system in a piecewise fashion, see [30]. Then, there exist
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real orthogonal matrix functions U1, V1 ∈ C1(I,Rn,n) such that

UT
1 EV1 =

[
Ẽ11 0
0 0

]
=: Ẽ

with pointwise invertible Ẽ11.
Perform a transformation of pHDAE (5) as in Theorem 18 and also form Â3V1 =[
Â31 Â32

]
partitioned accordingly. Since the equations Â3x = 0 donot have a control,

they cannot contribute to making the system strangeness-free via feedback, so these
equations include all the equations that are needed to make the system strangeness-
free. Since Ẽ11 is invertible these extra equations must arise from the full row-rank
part of Â32, which we assume to be of constant rank (by considering the problem
piecewise if necessary). Then, there exist real orthogonal matrix functions U3 and V2
such that

UT
3 Â32V2 =

[
0 A33
0 0

]

with A33 pointwise invertible. The equations in UT
3 Â3x = 0 corresponding to the

second row of this factorization cannot contribute to making the system strangeness-
free, so they can be just omitted. We may therefore assume that Â32 has full row rank,
and that Â32V2 = [

0 A33
]
with A33 pointwise invertible. Performing a change of

variables of the pHDAE with U1 and

V := V1

[
I 0
0 V2

] ⎡
⎣ I 0 0

0 I 0
− Â31A

−1
33 0 I

⎤
⎦

we obtain a pHDAE of the form

Ẽ

⎡
⎣ ẋ1
ẋ2
ẋ3

⎤
⎦ = L̃ Q̃

⎡
⎣ x1
x2
x3

⎤
⎦ − Ẽ K̃

⎡
⎣ x1
x2
x3

⎤
⎦ + (B̃ − P̃)u,

y = (B̃ + P̃)T Q̃

⎡
⎣ x1
x2
x3

⎤
⎦ + (S + N )u, (32)

where K̃ = V−1(KV + V̇ ), L̃ = UT
1 LU1, Q̃ = UT

1 QV , B̃ = UT
1 B, and P̃ = UT

1 P ,
together with the constraint 0 = A33x3, i. e. x3 = 0.

Partition

Q̃ =
⎡
⎣ Q̃11 Q̃12 Q̃13

Q̃21 Q̃22 Q̃23

Q̃31 Q̃32 Q̃33

⎤
⎦
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and assume further that the matrix function

⎡
⎣ Q̃11 Q̃12

Q̃21 Q̃22

Q̃31 Q̃32

⎤
⎦

has constant rank. There exists a pointwise real orthogonal matrix function U2 such
that

UT
2

⎡
⎣ Q̃11 Q̃12 Q̃13

Q̃21 Q̃22 Q̃23

Q̃31 Q̃32 Q̃33

⎤
⎦ =

⎡
⎣ Q11 Q12 Q13
Q21 Q22 Q23
0 0 Q33

⎤
⎦

Transforming pHDAE (32) with U2 and I , we get a pHDAE of the form

⎡
⎣ E11 0 0
E21 0 0
E31 0 0

⎤
⎦

⎡
⎣ ẋ1
ẋ2
ẋ3

⎤
⎦ =

⎡
⎣ L11 L12 L13
L21 L22 L23
L31 L32 L33

⎤
⎦

⎡
⎣ Q11 Q12 Q13
Q21 Q22 Q23
0 0 Q33

⎤
⎦

⎡
⎣ x1
x2
x3

⎤
⎦

−
⎡
⎣ E11 0 0
E21 0 0
E31 0 0

⎤
⎦

⎡
⎣ K11 K12 K13
K21 K22 K23
K31 K32 K33

⎤
⎦

⎡
⎣ x1
x2
x3

⎤
⎦ +

⎡
⎣ B1 − P1
B2 − P2
B3 − P3

⎤
⎦ u,

y = [
(B1 + P1)T (B2 + P2)T (B3 + P3)T

]
⎡
⎣ Q11 Q12 Q13
Q21 Q22 Q23
0 0 Q33

⎤
⎦

⎡
⎣ x1
x2
x3

⎤
⎦

+ (S + N )u, (33)

together with the constraint 0 = x3.
By Theorem 18, system (33) is still a pHDAE system and the Hamiltonian is

unchanged. Furthermore, adding the constraint x3 = 0 does not change the solution
since it describes all the uncontrollable equations of higher index, and with this con-
straint system (33) is strangeness-free. Thus, we have that the subsystem given by the
first two block rows of (33) (which by construction is also port-Hamiltonian) is an
index at most one pHDAE which (together with output equation) has the form

[
E11 0
E21 0

] [
ẋ1
ẋ2

]
=

[
L11 L12
L21 L22

] [
Q11 Q12
Q21 Q22

] [
x1
x2

]

−
[
E11 0
E21 0

] [
K11 K12
K21 K22

] [
x1
x2

]
+

[
B1 − P1
B2 − P2

]
u,

y = [
(B1 + P1)T (B2 + P2)T

] [
Q11 Q12
Q21 Q22

] [
x1
x2

]

+ (S + N )u, (34)

To this system, we can apply the results of the previous section and obtain that the
system can be further reduced to an implicit standard pH system.
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Example 24 To illustrate the regularization procedure consider again the semidis-
cretized Example 11. In this example, we know directly from the structure what the
constraints are and how the procedure can be carried out analytically, since the system
is almost in the form that would be obtained from the derivative array. For this reason,
we present a simplified version of the regularization procedure. It has been shown in
[16] that for a (permuted) singular value decomposition (SVD) of Ñ T

Ñ T = UT
N

[
0
�

]
VN ,

with real orthogonal matrices UN , VN and a nonsingular diagonal matrix � ∈
R
n3,n3 . Transforming (10) with U = V = diag(I ,UT

N , V T
N ), and setting UN x2 =[

xT2,2 xT2,3
]T
, VN x3 = x̃3, as well as x02 = VN

[
x02,2

T
x02,3

T
]T

we obtain a transformed
system

⎡
⎢⎢⎣
M1 0 0 0
0 M2,2 M2,3 0
0 MT

2,3 M3,3 0
0 0 0 0

⎤
⎥⎥⎦ d

dt

⎡
⎢⎢⎣

x1
x2,2
x2,3
x̃3

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0 G1,2 G1,3 0
−GT

1,2 D2,2 D2,3 0
−GT

1,3 DT
2,3 D3,3 −�

0 0 � 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1
x2,2
x2,3
x̃3

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

0
B2,2

B3,2

0

⎤
⎥⎥⎦ u.

(35)
In this form, the noncontrollable index two constraints are given by the fourth block
row and it follows immediately that x2,3 = 0. which in particular the initial condition
x02,3 has to satisfy. The vectors x1, x2,2 are solutions of the implicit ordinary pH system

[
M1 0
0 M2,2

]
d

dt

[
x1
x2,2

]
+

[
0 G1,2

−GT
1,2 D2,2

] [
x1
x2,2

]
=

[
0

B2,2

]
u, (36)

with initial conditions x1(0) = x01 , x2,2(0) = x02,2, so they are well-defined continu-
ously differentiable functions for any piecewise continuous u and any choice of the
initial conditions.

Finally, we get the component x3 (the Lagrange multiplier) via

x3 = V T
N �−1(MT

2,3
d

dt
x2,2 − GT

1,3x1 + DT
2,3x2,2 − B3,2u), (37)

and this is the implicit index one constraint in theDAE. Since both types of (the explicit
and the hidden) constraints have to be satisfied for the initial condition, it means that
the transformed initial condition also has to satisfy the consistency condition

x3(0) = V T
N �−1(MT

2,3
d

dt
x2,2(0) − GT

1,3x1(0) + DT
2,3x2,2(0) − B3,2u(0)) (38)

Condition (38) leads to a relationship between the input u and the state at t = 0, which
is a constraint that has to be satisfied to have a classical solution. Furthermore, we see
immediately that to obtain a continuous x3 the function B3,2u has to be continuous and
u has to be such that B2,2u leads to a continuous MT

2,3
d
dt x2,2. The implicit ordinary
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pH system (36) describes the dynamics of the system, while the other two equations
describe the constraints.

Remark 25 For nonlinear pHDAE systems satisfying Hypothesis 21 with μ > 0, the
corresponding local result follows directly via linearization and the implicit function
theorem.

7 Conclusion

A new definition of port-Hamiltonian descriptor systems has been introduced. It has
been shown that this formulation retains the classical properties of port-Hamiltonian
systems, such as the dissipation inequality and invariance under Galerkin projection,
that it is invariant under time-varying changes of basis and that it is valid also for DAEs
of differentiation index larger than one. It has been demonstrated that under some
additional weak constant-rank assumptions, any such pHDAE can be reformulated as
an implicitly defined standard PH system plus an algebraic constraint that describes
the manifold where the dynamics of the system takes place and that also describes
the consistent initial conditions. Just as for standard DAEs, the reformulated system
is well suited for numerical integration and control, since all constraints are available.
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