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Abstract

Invariance entropy is a measure for the smallest data rate in a noiseless digital channel
above which a controller that only receives state information through this channel is able to
render a given subset of the state space invariant. In this paper, we derive a lower bound
on the invariance entropy for a class of partially hyperbolic sets. More precisely, we assume
that @ is a compact controlled invariant set of a control-affine system whose extended tangent
bundle decomposes into two invariant subbundles E* and E°~ with uniform expansion on
ET and weak contraction on E°~. Under the additional assumptions that Q is isolated and
that the u-fibers of @ vary lower semicontinuously with the control u, we derive a lower bound
on the invariance entropy of @ in terms of relative topological pressure with respect to the
unstable determinant. Under the assumption that this bound is tight, our result provides a
first quantitative explanation for the fact that the invariance entropy does not only depend
on the dynamical complexity on the set of interest.
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1 Introduction

This paper is part of a major project with the aim to establish a hyperbolic theory of nonlinear
control systems, to some extent analogous to the hyperbolic theory of dynamical systems orig-
inating from works of Poincére, Hadamard, Smale, Anosov and many others. Insights of this
theory are used in control at least since the work of Ott, Grebogi and Yorke [37] on the subject
known as ‘control of chaos’, which uses properties of chaotic attractors to achieve stabilization
with low energy use. Different from this approach, our work is grounded on the topological theory
of Colonius-Kliemann [I0], which aims at the understanding of the global controllability structure
of a system using a dynamical systems view. More precisely, under appropriate assumptions, the
transition map of the control system is extended to a skew-product flow (called control flow),
where it becomes a cocycle over a shift flow defined on the space of all admissible control func-
tions. This construction is similar to the random dynamical systems view of stochastic ODEs.
With the skew-product flow at hand, one can associate maximal sets of controllability with maxi-
mal topologically transitive sets of the skew-product, and give control-theoretic interpretations to
other dynamical concepts such as chain transitive sets and supports of invariant measures.

The paper [8] was the first to examine uniformly hyperbolic structures on subsets of complete
controllability (known as control sets), using shadowing techniques to prove, e.g., that such sets
behave robustly under small perturbations. In [I3], it was shown that hyperbolic control sets
exist for a large class of invariant control systems on flag manifolds of semisimple Lie groups,
using extensively the semigroup theory developed by San Martin and coworkers [2] 4 [34] [35] [36].
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Moreover, it was shown that each maximal set of chain controllability (called a chain control set)
of such a system admits a continuous decomposition of its extended tangent bundle into three
invariant subbundles E—, E° and Et with uniform contraction on £~ and uniform expansion on
E*. Further results on uniformly hyperbolic sets were obtained in [12} [14] 23], and a survey of
such results was provided in [24].

An important application of the hyperbolic theory of control systems is related to problems aris-
ing in networked control. A networked control system is a spatially distributed system whose
components (sensors, controllers and actuators) can only communicate over a shared digital com-
munication network. Examples can be found, e.g., in automated traffic systems, underwater
communications for remotely controlled surveillance, rescue submarines and modern industrial
systems which combine industrial production with information and communication technology. A
fundamental problem in this context is to determine the minimal requirements on the communica-
tion network so that a given control objective can be achieved. In the simplest setup, this reduces
to the question about the smallest channel capacity, above which a system can be stabilized. For
linear control systems, it was shown by many authors under various different assumptions on the
components of the system, that the infimal channel capacity equals the logarithm of the open-
loop unstable determinant, which is known as the data-rate theorem (see [33] for a survey). The
fact that this value coincides with the (topological or measure-theoretic) entropy of the uncon-
trolled system led several researchers to the conclusion that methods from ergodic theory could
be useful to study more advanced setups involving nonlinear dynamics, more complicated network

topologies and also different control objectives, cf. [6, [7 16} 22, 25] 29, [32] [38] 40, [41].

The paper at hand provides a contribution both to the theory of networked control and to the
hyperbolic theory of control systems in that it extends a result obtained for the invariance entropy
of uniformly hyperbolic control sets to a class of partially hyperbolic controlled invariant sets.
Invariance entropy is a quantity that measures the smallest channel capacity of a noiseless digital
channel above which a compact controlled invariant set can be made invariant by a controller that
receives state information through this channel. This quantity, which is defined in a similar fashion
as topological entropy of dynamical systems, was first introduced in [32] for discrete-time systems
under the name topological feedback entropy (using an open-cover definition), and extended to
continuous time in [9] (using a spanning-sets definitions). As the results exposed in [9] [12] 22]
show, invariance entropy is closely connected to dynamical quantities such as Lyapunov exponents
and escape rates. In particular, in [I2] we provided a formula for the invariance entropy hiny (Q)
of a uniformly hyperbolic chain control set @ without center bundle, namely

1
hiny = inf  limsup = log J "¢, (z 1
(@) (ol ) i sup —log J T or, (z) (1)
with J* ¢, ,(z) denoting the unstable determinant of the spatial derivative of the transition map
o(T,z,u) = @rq(z) and

LQ)={(u,z) eU XM : pR,z,u) C Q},

where U is the set of admissible control functions. To prove the inequality ‘>’ in (), we only used
ideas from dynamical systems related to the computation of escape rates, cf. [39].

In this paper, we extend the lower estimate in (Il) to a class of partially hyperbolic controlled
invariant sets @ with trivial dynamics (i.e., vanishing Lyapunov exponents) on the center bundle.
Under the additional assumptions that @ is isolated and that the wu-fibers Q(u) := {z € @
o(R,z,u) C Q} depend lower semicontinuously on the control v (with the appropriate topology
on U), our main result shows that

hiny (Q) > _Sll];pptop(sp\L(Q); —log J T 1 u(2)). (2)

Here the supremum is taken over all shift-invariant Borel probability measures P on the base
space U of admissible control functions and Piop(+; -) denotes the topological pressure of the bundle



random dynamical system (briefly, a bundle RDS) that is obtained from the control flow restricted
to L(Q), when U is equipped with P. Observing that in the case of uniform hyperbolicity without
center bundle, the topological pressure above reduces to

Prop(L(@); — log Jto1u(z)) = — . (p}br[l)fwzp / log J @1 u(x)dp(u, ),
supppuCL(Q) u

the infimum taken over all invariant probability measures of the control flow that project to P
and are supported on L(Q), we are able to recover the lower bound in (1) as a special case. Here
we use that for a uniformly hyperbolic set without center bundle, the u-fibers of @ are finite (see
[23] for a proof), implying that the measure-theoretic entropy of the bundle RDS ¢ q) vanishes.

As in the uniformly hyperbolic case, examples to which our result can be applied, are provided
by invariant systems on flag manifolds on semisimple Lie groups. In the paper at hand, we only
discuss a special case, namely systems on projective space induced by bilinear systems on R%,
while the more general case is studied in [15].

The paper is organized as follows. In Section [2] we precisely formulate our main result, recalling
all the concepts involved. The proof is carried out in Section Bl through a series of lemmas and
propositions. Section @] provides a class of examples and Section [ discusses the contents of the
result and relates it to other problems, e.g., submanifold stabilization. Finally, some technical
results of independent interest, used in the proof, are collected in Section [l (Appendix).

Notation. We write N = {1,2,3,...} for the set of positive integers, Z for the set of all integers
and R for the set of real numbers. We also write K4 := {z € K: 2z > 0} for K € {Z,R}. For
x > 0, log x denotes the natural logarithm of z. If V, W are vector spaces, we write Hom(V, W) and
End(V) for the spaces of homomorphisms from V to W and endomorphisms on V', respectively.

If M is a smooth manifold, we write T, M for the tangent space to M at z € M. If f: M — N is
differentiable, D f(x) : To M — T ;)N denotes the derivative at x € M. If (M, g) is a Riemannian
manifold, we write | - | for the norm in each tangent space T, M, d(-,-) for the geodesic distance
and vol(+) for the Riemannian volume measure on M, respectively. Moreover, exp, denotes the
Riemannian exponential function.

If (X,d) is a metric space, we write B,(z) for the open ball of radius r > 0 centered at = € X.
Ifh)#AcC X and x € X, we write dist(z, A) := infyeca d(z,a). We let N.(A) denote the closed
e-neighborhood of A4, i.e.,

N.(A):={z e X : dist(z,A) <e}.

Furthermore, 14 stands for the indicator function of A and we write intA, clA and A for the
interior, the closure and the boundary of A, respectively. We further define the diameter of A by
diamA := sup, ,c 4 d(z,y). By du(A, B) we denote the Hausdorff distance between two nonempty
compact sets A, B C X. Finally, B(X) denotes the Borel-o-algebra on X.

If p is a Borel measure on X, we let suppp C X denote its support, and we write f.pu for the
push-forward of p under a measurable map f: X — X.

2 Assumptions and statement of the main result
We consider a control-affine system
#(t) = folw(®)) + Y uwi) fi(x(t), wel,
i=1

on a connected Riemannian manifold M of dimension d. We assume that the vector fields
fo, f1,- .., fm are of class C? and

U={u:R—R™ : umeasurable with u(t) € U a.e.},



where U C R™ is an infinite compact and convex set. We write o(t,x,u) = ¢4 () for the
trajectory through x € M, corresponding to the control function u € Y. Furthermore, we denote
by 0 : RxU — U, (t,u) — Ou = u(- + t), the shift flow on Y. With the weak*-topology
of L*(R,R™) = L'(R,R™)*, U becomes a compact metrizable space and 6 a continuous flow,
cf. [I0]. We fix a metric dy; on U, compatible with this topology.

Assuming w.l.o.g. that all trajectories are defined on R, the maps 6 and ¢ define the control flow
PR UXxM)=UXxM, O(u,x)=(0ru,p(t,x,u)),
which is a continuous skew-product flow. In particular, ¢ satisfies the cocycle property

ot +s,x,u) = @(t, (s, x,u),0su), Vt,seR, x€ M, uecl.

From the assumptions it follows that ¢ is twice differentiable in « and that the first and second
derivatives depend continuously on (u,x), see [22, Thm. 1.1].

Recall that the invariance entropy is defined as follows. Let ) # K C Q C M, K compact, such
that for every x € K there is u € U with p(Ry,z,u) C Q. For 7 > 0, a set S C U is called
(1, K, Q)-spanning if for every « € K there is u € S with ([0, 7], z,u) C Q. Writing ri,, (7, K, Q)
for the smallest cardinality of such a set, the invariance entropy of (K, Q) is defined by

1
hiny (K, Q) := limsup — log riny (1, K, Q) € [0, 00].

T—o00 T
Throughout the paper, we consider a compact set ) C M with the following properties:

(P1) Q is all-time controlled invariant, i.e., for every & € @) there exists u € U with p(R, z,u) C Q.
We write
LQ):={(u,z) eUx M : o(R,z,u) C Q}

for the lift of Q to U x M and note that L(Q) is a compact ®-invariant set.
(P2) For every (u,x) € L(Q) there exists a decomposition
T.M = E*(u,z) ® E° (u, x)
into two linear subspaces of constant dimensions such that
Dy (2)E'(u,2) = EY(®4(u,2)) for all t € R, (u,2) € L(Q) and i € {+,0-1},

and the following holds: there exists a constant A > 0 such that for every € > 0 there is
T > 0 with the following property. For all (u,z) € L(Q) and t > T,

Dy o (x)v] > M| if v € BT (u,z),
Dy o (x)v| < eflv| if v € B° (u, ).
(P3) The set-valued map, defined by
urr Qu) :={zeM : ¢(R,z,u) CQ},

from the space U of control functions into the space of compact subsets of @ is lower semi-
continuous. We call Q(u) the u-fiber of Q.

(P4) The set @ is isolated, i.e., there exists a neighborhood N C M of @ such that p(R, z,u) C N
implies (u,z) € L(Q) for any (u,z) € U x M.



Observe that in (P3) we can assume w.l.o.g. that Q(u) # 0 for all u € Y. Otherwise we replace
U with U* ;= {u e U : Q(u) # 0} in the whole proof, using that U* is closed and -invariant. In
Section M we will provide examples of sets ) satisfying all of the above assumptions.

Under these assumptions, we provide a lower bound on the invariance entropy hin (K, Q) for
compact sets K C @ of positive volume.

To explain our result, we introduce the set Mg, (L(Q)) of all Borel probability measures on L(Q),
invariant under the time-1 map ®; : U x M — U x M of the control flow. If 4 € Mg, (L(Q)) and
P = (pry)«p is the projection of u to U, then P is a Borel probability measure on U, invariant
under 6;. Observe that when U is endowed with P, ¢ can be regarded as a two-sided C?>-random
dynamical system over the base (U, B(U), P,61) (cf. [1, Def. 1.1.3]). In this case, the measure-
theoretic entropy h, () is defined by

hu (@) :=sup lim —/ M(\/ (p—l,A)dP (3)

A n—,oo N,

where the supremum is taken over all finite measurable partitions of M and {u, }uecy is the P-
almost everywhere defined family of sample measures on M so that du(u,x) = dp, (2)dP(u) (see

also [T, Sec. 1.4] and [3| [42]).
For (u,x) € L(Q) and ¢t € R, we write

T o1 u( ‘det Dot o)) B+ (u,a) ET(u,x) — E+(<I>t(u,x))‘ (4)

and note that the map (¢, u,z) — log J "¢ () is a real-valued continuous additive cocycle over
the restriction of ® to L(Q), i.e.,

log J @14 s.u(x) =log J T () +log JTps.0,u(@(t, z,u)), Vi se€R, (u,z) € L(Q).

The continuity of this cocycle follows from the fact that the exponential separation of the subbun-
dles E* and E°~ implies the continuity of E*(-,-) and E°~(-,-) (see, e.g., 22| Lem. 6.4]).

Now we can formulate our result:

2.1 Theorem: Under the assumptions on ) formulated above, for every compact set K C @Q
with vol(K') > 0 the invariance entropy satisfies

Riny (K, > inf / log Jt 1 o (z)dp(u, ) — h . 5
(K, Q) #EM%(L(Q))( o) g J " p1,u(z)dp(u, ) Nﬂ)) (5)

2.2 Remark: Observing that for a fixed 6;-invariant measure P on U, the quantity

m

sup (hu(w) - /L o log J*wl,u(a?)du(u,x)> :

the supremum taken over all ®;-invariant measures p with marginal P on U, equals the topo-
logical pressure of the random dynamical system ¢ over (U,B(U),P,01) w.r.t. the observable
—log J T 1. (x) by the variational principle for bundle RDS [42], we can also write (&) as

hinv(Kv Q) > — SI;P Ptop(@\L(Q); - 1Og JJF@l,u(x))'

3 Proof of the main result

We prove Theorem 2Tl through a series of lemmas and propositions. The whole proof is subdivided
into three subsections and proceeds along the following steps:



(1) In Subsection Bl we use the lower semicontinuity assumption (P3) to derive a first estimate
on hiny (K, Q) in terms of a quantity which can be regarded as a uniform escape rate from
the e-neighborhoods of the fibers Q(u), u € U (for arbitrary ). This estimate reads

hiny (K, Q) > lim sup in{{ —% logvol (Q(t,u,¢)), (6)

t—oo UE

where Q(t,u, ) is the set of all initial states x € M whose trajectories (s, x,u) under the
application of the control u stay e-close to the shifted fiber Q(fsu) at each time s € [0,1].
The proof is a modification of [I2, Thm. 4.5], where the fibers were assumed to be singletons
(and hence, the assumption of lower semicontinuity was trivially satisfied).

(2) In Subsection[32] we use a version of the Bowen-Ruelle volume lemma [39] for skew-products
(proved in the Appendix) to show that the order of the limsup and the infimum in (@) can
be interchanged under the limit for € | 0, leading to

Riny (K, Q) > lim inf lim sup 1 log vol (Q(t, u,€)) . (7)
el uel 500 t
More precisely, we prove this for a time-discretized version of the control flow. The main idea
in the proof of (@) is to show that the mapping (¢,u) — logvol(Q(t, u,e)) can be approxi-
mated by subadditive cocycles over the shift on &. For continuous subadditive cocycles it is
known that infima and limits in such expressions can be interchanged. Here we do not have
continuity of the approximating cocycles, but continuity of logvol(Q(t,u,e)) with respect
to u, which suffices to carry out the proof. For the volume lemma used here, the partial

hyperbolicity assumption (P2) is essential. For the approximation result, also assumption
(P4) is needed.

(3) Finally, in Subsection B3 we show that the infimum over the controls u € U can be replaced
by an infimum over the shift-invariant probability measures P on U, more precisely:

hiny (K, @) > lim inf lim sup —% / log vol (Q(t,u,e)) dP(u). (8)

el0 P 500

The proof of () is based on ideas used in subadditive ergodic optimization. Observing that
the numbers .
lim sup - / log vol (Q(t,u,)) dP(u)

t—o00

are known as random escape rates in the theory of random dynamical systems, we can
apply techniques from the standard proof of the variational principle for pressure of random
dynamical systems to derive our main result from (8.

3.1 An estimate in terms of a uniform escape rate

We start with a simple observation.

3.1 Lemma: The map u — Q(u) from U into the space of nonempty compact subsets of @
is upper semicontinuous. Hence, by property (P3), this map is continuous with respect to the
Hausdorff metric.

Proof: Since @ is compact, it suffices to prove outer semicontinuity, i.e., for u,, — w in & and
Zn € Quy,) with 2, — 2 we have to show that x € Q(u). To this end, observe that the continuity
of ¢(t,-,-) for every t € R implies p(t, z,u) = lim, oo @(t, Tn,u,). Since o(t, z,,u,) € Q for
every n and @ is closed, ¢(t, z,u) € Q follows, implying that = € Q(u). O



We will now prove a generalization of the lower estimate for the invariance entropy in [I2]
Thm. 4.5]. To this end, for arbitrary ¢ > 0, u € U and £ > 0 we introduce the set

Qt,u,e) :={x e M : dist(o(s,z,u), Q(0su)) <e, 0<s <t} = m 05 uN=(Q(Ou)).
s€[0,t]

The following proposition only uses property (P3) to derive a first lower bound on hi,y (K, Q). In
particular, it holds if @Q(u) is a singleton for every u € U, since in this case v — Q(u) is trivially
lower semicontinuous. For this case, the proposition was proved in [12].

3.2 Proposition: For every compact subset K C @ of positive volume and every € > 0, the
invariance entropy satisfies

hiny (K, Q) > lim sup in{{ —% log vol (Q(t,u,¢)). (9)

t—oo UE

Proof: The proof proceeds in two steps.

Step 1. For each u € Y and 7 > 0 we define the two sets
Q(u,7):={xeM : p(t,xz,u) € Q, Vt €[0,7]}

and
Qi(u,T) ={xeM : ot,z,u) €Q, Vt € [-1,7]}.

Precisely the same way as in [12 Thm. 4.5] (where the fibers Q(u) were assumed to be singletons),
we can prove that

QF(u,7) = U Q(u”). (10)

u‘*[fT,T] =U|[—7,7]

Now let € > 0 and up € U. By continuity of u — Q(u) in the Hausdorff metric, there exists a
neighborhood V' of ug so that

Q) € Nep(Q(up)) and Q(ug) € Neya(Q(v)) for all v € V. (11)

By definition of the weak*-topology, we can choose this neighborhood of the form
V= {u eU : ‘/(u(t) —ug(t),z;(t))dt] <1, 1 <i< k}
R
for some 1, ..., 2, € L'(R,R™). We choose 79 > 0 so that

1
S(4)|dt L i=1,... k.
/]R\[TO,TO] |I ( )| < 2diamU !

Now let u € Vijp :={ueld : | [p(u(t) —uo(t),z;(t))dt| <1/2, 1 <i <k} and consider u* € U
with wf__ = u|[—ryz). We have

* . 1
/R<u (t) — u(t),a:i(t»dt‘ < dlamU/]R | (t)|dt < 2

\[—=70,70]

implying that for i =1,... k,

/R<u*(t) - uo(t),:vi(t»dt’ <

Aww—mm@@w'

—%Aw@—wmwﬁ»ﬂ<%+%_L




Hence, v* € V and thus Q(u*) C N¢/2(Q(uo)) by (). We also have Q(ug) C N./2(Q(u)) by
Vije €V and [). Hence, z € Q(u*) implies the existence of y € Q(ug) with d(z,y) < &/2 and
z € Q(u) with d(y, z) < /2. This yields © € N.(Q(w)), so by ([I0),

QF (u,70) C No(Q(u)) for all u € Vys.

Letting uo range through U, the open sets Vi = Vi 5(ug) cover Y. By compactness, we can
choose a finite subcover. This implies the existence of 7y > 0 with

QF(u,70) € No(Q(u)) forallucl.

Step 2. Now consider the invariance entropy. Since the desired estimate becomes trivial if
hiny (K, Q) = oo, we may assume that finite (7, K, Q)-spanning sets exist for all 7 > 0. If S
is a minimal (7, K, Q)-spanning set, then

K C U Qu, 7). (12)

ueS

The same arguments as used in [I2, Thm. 4.5] show that for every ¢ > 0 there is 7 > 0 so that for
all u e and t > 0,

Pru(@Qu.2r +1) C [ ©ih. Ne(QOsi7u) = Q(t,0,u,¢).
s€[0,t]

Writing v := 6,u, we thus obtain

vol(Q(u, 27 + t)) < vol (¢, Q(t,v,¢)) .

Since <pT ., does not influence the exponential behavior of the right-hand side as t — oo and (I2)
implies that for a minimal (27 4+ t, K, Q)-spanning set Sa,4; we have

0 < vol(K) < riny(27 + ¢, K,Q) - max vol(Q(u, 27 + 1)),

UES2r 4t

the desired estimate

hiny (K, Q) > limsup inf f =3 ! ; log vol (Q(t,u,e)) = limsup inf ! log vol (Q(t,u,€))
T

t—oo u€U t—oo UE

follows. O

3.2 Interchanging limit superior and infimum

Our goal in this subsection is to interchange the order of lim sup and infimum in the estimate ([@)).
To simplify matters, we will work with a time-discretized version of the control flow from now on.
We start with the following lemma.

3.3 Lemma: Fixt > 0, e > 0 and r € N. Consider r 4+ 1 equi-distributed points 0 = sg < 51 <
- < s =t in [0,t] and define

Qt,u,e;m) ﬂ ©5 Q0s,u)).

0<i<r

Then the function u — vol(Q(t,u,e;r)) is continuous.



Proof: By Lemma [61] we have vol(ON:(Q(u))) = 0 for all u € U, which we will use later. For
brevity, we write A;(u) := N.(Q(0s,u)). Then

VOI(Q(ta U, €5 7‘)) = /N @ ]le(u) ($)1A1(u)(9051,u(x)) T ]lAr(u) (SDST,u(x))dx'

Again for brevity, we write Q° := N.(Q) and f;(u,x) := 14, (u)(@s;,u(2)). We fix u € U and prove
continuity of vol(Q(¢,wu,e;7)) at u. To this end, first observe that for arbitrary @ € U we have

[vol(Q(t, u, ;7)) — vol(Q(t, u, &;7))| <
‘/ . (fo(uv ‘T)fl(uvx) T fr(uvx) - fO(ﬂvx)fl(uvx) T fr(uv ‘T)) dx’
[ o falu) - f )~ fold ) i (0,0) fa )+ ()
_|_ P

[ @) foa @) w0) — fo(@o) - (@),

Now observe that we can estimate the above by

A —Ju ~7 dz.
l}_gﬁ/@g i, 2) = fi(@,2)lda
The integral
/ fi(u, ) = fi(a, z)|d :/ L) (Ps,0(®)) = Ly (#s,.a(@)) | da
1 QE

is not larger than the volume of the symmetric set difference

[on k(i) \ o3 (i@ | U [ o (A @)\ L (Ai ()] (13)
We show that the volumes of these two sets become arbitrarily small as u — w:

(i) We write the first term in ([I3]) as
e A\ o3 (A (@) = 97k (A)\ P el s (Ai(@)) )

Since w is fixed, it suffices to show that the volume of Az(u)\gpsu(ga;lﬂ(Az(ﬁ))) becomes
small as the distance di(t,u) becomes small. Using the notation I,(B) := {z € intB
dist(z,0B) > p} for any subset B C M, it is enough to show that

Ai(u)\@s, (5,5 (Ai(@))) € Ai(u)\Ip(Ai(w)

for arbitrarily small p as & — u. Here we use continuity of the measure and vol(0A;(u)) = 0.
The above inclusion is implied by

Psi,a O (p;}u(IP(Al(u))) C Ai(a)

Take x € I,(A;(u)) and let y € Q(0s,u) be a point that minimizes the distance d(z,y), i.e.,
d(z,y) = dist(z, Q(0s,u)). Let § € Q(6s,1) be chosen so that d(y,§) < du(Q(0s,1), Q(0s;u))-
Then

d((psi,ﬁ o (ps_:u(‘r)u Zj) < d((psmﬁ © Sps_fu(x)a ,T) + d(l‘, y) + dH(Q(esxﬂ’)v Q(Hslu))



If we can show that this sum becomes smaller than e (independently of the choice of x) if
dy (@, w) is chosen small enough, we are done. The third term becomes small by continuity
of Q(-) and 6. The first term becomes small by the continuity properties of ¢. Indeed,
©(84,+,-) is uniformly continuous on an appropriately chosen compact set, showing that
d(ps,,a(©5 (@), @5, u(ps () — 0 as @ — u, independently of the choice of z. Now
x € I,(A;(u)) implies that the second term is smaller than and uniformly bounded away
from e. This implies the result.

(ii) Consider now the second term in ([[3]). Writing
Pana(Ai @)\, 1 (Ai(w) = 051 (95,0 © 05,10 (Ai(@))\As (u)),

we see that it suffices to prove that the volume of s, , o ¢ u( i(1))\A;(u) tends to zero
as 4 — u. By the continuity properties of ¢ it follows that for any p > 0 we have

s © Py (Ai(W) C N,(Ai(a)),

provided that dy(@,u) is sufficiently small. Hence,

s © P (Ai(@)\Ai(w) C Npre(Q(05,0))\Ne(Q (05, 1))

From the Hausdorff convergence Q(6s,u4) — Q(s,u) it follows that N, .(Q(0s,a)) C
Nopio(Q(0s,u)) for diy(@, w) sufficiently small. Hence,

Psiu © Py, u( i(@)\Ai(u) C Napyie(Q(O5,u))\Ne(Q(O5,u)).

Now the volume of this set certainly tends to zero as p — 0 (by continuity of the measure).
We have proved that u — vol(Q(t,u, ;7)) is continuous for any r € N. O

3.4 Remark: It is easy to show, as a corollary, that also the function u — vol(Q(t,u,¢)) is
continuous for fixed ¢,e. However, we will not need this for our proof.

Since Q(t, u,e) C Q(t,u,e;r(t)) for any r(t) € N, Proposition[B2immediately implies the following
corollary.

3.5 Corollary: For every € > 0, the invariance entropy satisfies

hiny (K, Q) > limsup inf —— logvol (Qn—1,u,e5m—1)). (14)

N3n—oo UEU

We denote the set Q(n — 1,u,e;n — 1) by Qq(n,u,e) and study the properties of the functions
v NxU =R, v (u):=logvol(Qa(n,u,e)), &>0.

n

From Lemma we know that each v° is continuous. We would like to interchange the order of
the infimum and the limsup in ([I4). This would be possible if v¢ was a subadditive cocycle over
0, : U — U. In general, this is not the case. However, we can approximate v* by subadditive
cocycles, which we will describe in the following.

First observe that for any n € N, v € U and € > 0, the set
Qa(n,u,e) ={x e M : dist(p,.(z),Q0;u)) <e, 0<j<n}

is closed and bounded, hence compact if € is sufficiently small.

In the following, we will make use of a special version of the Bowen-Ruelle volume lemma. To
formulate this lemma, we introduce for n € N, 6 > 0 and (u,z) € U x M the set

B (x) :={y e M : d(e(j,z,u),0(j,y,u) <6, 0<j <n}, (15)
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which is called a Bowen-ball of order n and radius 6 centered at x. We say that a set ' C M

n,u

(n,u,d)-spans another set K C M if the Bowen-balls Bj""(x), x € F', form a cover of K. A set
E C M is (n,u,d)-separated if for all z,y € E with = # vy, d(¢(j,z,u), ¢(4,y,u)) > § holds for
some j € {0,1,...,n —1}.

The proof of the following lemma can be found in Subsection of the Appendix.

3.6 Lemma: For all sufficiently small € > 0 and dy > 0 the following holds. If w € U, n € N,
2 € Qa(n,u,e) and ¢ € (0,0¢], then

CglefncJ‘Lgon’u(:v)*l < vol(Bj"™"(x)) < Cge”CJngon,u(:E)*l,

where Cs > 0 is a constant only depending on §, ( > 0 is some small number, and (u,x)
J T pnu(x), for each n € N, is a continuous extension of the map (@) to a neighborhood of L(Q),
satisfying

J+<Pn+m.,u(x) = JJF‘Pn,u(I) ) JJF‘Pm-,Gnu(@(”v z,u)),

whenever both sides of this equation are defined. Moreover, ¢ can be chosen arbitrarily small in
dependence on ¢ and dg.

Let A = (A;)32, be a sequence so that A; is an open cover of the compact set N-(Q(0;u)) (i.e.,
a collection of open sets in M whose union contains N.(Q(6;u))). We write

n—1
A" = \/ ga;i(Aj), n € N.
§=0

This is the collection of all sets of the form
Aoﬁ@it(Al)m'~-0907:£1yu(14n—1)7 Aj E.Aj.
Observe that A™ is an open cover of the compact set Qq4(n,u,e). We define
ws A (u) := log inf { Z sup J ¢, ()7 : v is a finite subcover of A" for Qq4(n, u, 5)} . (16)
Aca z€A

Moreover, we write A(n) for the shifted sequence A, A,11, Anta, - -

Now let « be a finite subcover of A" for Qq4(n,u,e) and § a finite subcover of A(n)™ for
Qa(m,bpu,e). Then

sug J+80n+m,u(z)_1 = Z Sug [J-i_(pn,u(z)_l : J+(pm)9nu((pn)u(z))_l}
Ceaverh(g) *€ Ceaverh(p) *C
< Y [swdtena@ ] [sup S emo,ul) ]
(A,B)eaxp “E€A yeb
- [Z sup JJF‘Pn,u(fE)il} ’ [Z sup J+90m,9nu(y)7l]
AGQIGA Bep yeB

Hence, if we take subcovers o and 3 so that the corresponding sums are close to the infimum, we
see that

wifon () < wiA (u) + wi A Ou). (17)
Here we use that a V ¢, 1, (8) is a subcover of A"*™ for Qa(n + m,u,e).
For small 6 > 0, we define

wi (u) = wip A (w),

where A(u) is the unique sequence so that A(u); consists of all (6/2)-balls in M that have a
nonempty intersection with N.(Q(6;u)). Observe that then J*p, ,(z) in (I8 is defined.
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3.7 Proposition: The functions w*° have the following properties:

(i) For alln,m € N and u € U,

£,0
n+m

Wi (1) < wi® (u) + wi? (),

€9 js a subadditive cocycle over 61 : U — U.

ie., w

(ii) For alln € N and u € U it holds that
vg, (u) < n¢ +log Cs + w2 (u),

where Cs and ( are the constants in the Bowen-Ruelle volume lemma.

(iii) For every a > 0 there exists 6 > 0 (independent of €) so that
ws2(u) = n(a + ¢) — log Cyja < w5/ (u)

for all w € U and n € N.

(iv) For every sufficiently small 6 > 0 there exists N € N such that for all w € U and n > 2N,
V() < C(e) + 5 g (B )
with a constant C(e) € R.

Proof: (i) This is immediately clear from (7).

(ii) Let A := A(u) and let E C Qq(n,u,e) be a maximal (n, u, §)-separated set. Then each member
of A™ contains at most one element of E. Indeed, if there were two such elements 1 and x5, then

d(e(j,z1,u), (4, 22,u)) <§ for j=0,1,...,n—1,
a contradiction. Hence, for every finite subcover a of A",
Z Tt onu(z) ™t < Z sup J T ()7t
zeE Aca z€A
Since every maximal (n,u, §)-separated set is also (n,u, d)-spanning, Lemma [B.6] implies

v5 (u) = logvol(Qa(n, u,e)) < log Z Cse™ T o u(2) ™ < n¢ + log Cs 4w (u).
reE

(iii) For the given number o > 0 choose § > 0 small enough so that

J+<P1 u(xl)
R A 18
Jroru(ze) (18)

for all 21,z in a compact neighborhood of @ satisfying d(x1,z2) < 6 and all v € Y. This is
possible by the uniform continuity of (u,z) — J 1 . (x) on compact sets.

Let A := A(u) and consider a finite (n,u,d/2)-spanning set F for Qq4(n,u,e), contained in
Qa(n,u,e). For each z € F consider sets A;(z) € Aj so that Bss(¢(j,2,u)) = Aj(z) for
7=0,1,...,n—1. Let
n—1
Cl2) = () ¢julAj(2)) € A™
j=0

The definition of C'(z) together with (I8) implies

sup J+90n,u(x>_1 <e. J+<Pn,u(z)_l-
zeC(z)
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Since the sets C'(z), z € F, form a finite subcover of A™ for Qq4(n,u,¢),

wsA (1) < na + log Z T pnu(z)t.
zeF

Since a maximal (n, u, §/2)-separated set is also (n, u, §/2)-spanning and the corresponding Bowen-
balls of radius §/4 are disjoint and contained in Qq(n,u,e + 6/4), Lemma B implies

wi A (u) < nla+ () +1og Csa + 057 (u).

(iv) We claim that for sufficiently small § > 0 the following holds: for every sufficiently small £ > 0
there exists N € N so that for all u € & and x € M it holds that

max dist(p(j, z,u), Q(0;u)) <e+6 = dist(z,Qu)) <e. (19)
—N<j<N
To prove this claim, suppose to the contrary that there exists € > 0 so that for every N € N there
are uy € U and xy € M with
dist(¢(j, zn,un), Q(O;un)) <e+d for — N <j <N and dist(zn,Qun)) >¢

By compactness of U we may assume uy — u € U and by compactness of small closed neighbor-
hoods of @), we may assume xy — x € M.

For arbitrary j € Z we have dist(¢(j, zn, un), Q(8;un)) < € +0 whenever N > |j|. Since ¢(j, -, ),
Q(-) and dist(-, -) are continuous functions, this implies dist(¢(j, , u), Q(0;u)) < e+ for all j € Z.
For the same reason, dist(z, Q(u)) > . By continuity of ¢ it follows that (R, x,u) is contained
in some é-neighborhood of @, where & tends to zero as € + § tends to zero. Hence, if € and § are
small enough so that Nz(Q) is contained in an isolating neighborhood of @), then Property (P4)
implies (u,x) € L(Q), in contradiction to dist(z, Q(u)) > e.

Now choose N according to ([I9) for given £, > 0 and pick z € Qq(n,u,e + ) for some n > 2N.
We want to show that

onu(z) € Qa(n — 2N, 0yu,e),
which is equivalent to dist(o(N + i,2,u), Q(Oniu)) < e for 0 < i < n — 2N. To show this, let
x; = (N +i,z,u) for 0 <i < n— 2N and observe that

dist(p(f, Ti, Ontiu), Q00N 1iu)) = dist(p(N + i+ j, z,u), Q(On+itju)) < e+

for —-N < j < N,since 0 < N+i+j < N+(n—2N)+(N—1) = n—1. Hence, dist(z;, Q(On+iu)) < &
for 0 <i <n—2N,implying on . (z) € Qa(n—2N,Onu, ). It follows that ¢y ,(Qa(n,u,e+0)) C
Qd(n — 2N, oN’UJ, E), SO

v (u) < O+ vp oy (Ovu)

for the constant C' := max(, ;) log | det Dgp]_v)lu(xﬂ, the maximum taken over U x N.(Q). O

3.8 Remark: Note that it is totally unclear if w®?° is continuous or even measurable. Observe
that the properties of v, are similar to those of an asymptotically subadditive cocycle, as defined
and studied in [I§].

Observe that Lemma in the Appendix can be applied to v := w*° : Nx U — R, (n,u)

w20 (u), and f = 0;. (To obtain a subadditive cocycle on Z, x X, one might define vy(u) := 0.)
Indeed, by the preceding proposition, for all n € N, choosing 6 = é(«a) sufficiently small, we have

1 1 1 1
Ewi";(u) < gvff‘s/Q(u) +a+(+ - log Cs/0 < E(C(;/g +vol(No45/2(Q))) + o+ <oo. (20)
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Moreover, the definition of w®® implies that for an appropriately chosen compact neighborhood
V of Q,

1 £,0 1 —

—w,; > —i i + Liall. }

—wy (u) > - 1nf{10g || 4 log i JTon u(x) a
0<j<n

1 1

:—1 1 + n.u -1 —1 f 1 .

Llog min T Ton (@) + —inf{loglaf s a ..}
0<j<n

> —log max JTppu(z) > —o0.
(z,u")eV xU

The next proposition shows that the limsup and the infimum in (@) can indeed be interchanged
if we additionally let € become arbitrarily small.

3.9 Proposition: The invariance entropy satisfies

1
hiny (K, Q) > — lim sup lim inf — log vol (Qq(n, u, €)) .

el0 yeyy o0 N
Proof: As a consequence of Proposition [3.2] for sufficiently small € > 0, we have

1
hiny (K, Q) > — liminf sup —u}, (u). (21)
n—oo uelU n

We define .
S = sup{)\ €R : Ju, €U, np — oo with A = lim —vflk(uk)}
k—o00 N

This number is finite and independent of € (as long as € is sufficently small). Finiteness follows from
(20) and the inequality in Proposition B7(ii). By Proposition B7|(iv), there exists N = N(§) € N
so that v¢ (u) < v5T0(u) < C +v5_,n(Oyu) for all w € U and n > 2N. This easily implies the
independence of S on €.

Fix @ > 0 and choose § = §(a) > 0 according to Proposition B7(iii). Now consider a sequence
pr 4 0 and sequences uy € U, ny, — 0o so that

1
n_wi’,f(uk) >SS —(—pr forall k>0,
k
which is possible by Proposition B(ii). We put gy := 1/\/n;. By Lemma [62] we find times

ny < ny so that
%w?’é(ﬁnzuk) >8—C—pp—pr for 0<I<ng—nj,

where ny —nj > \/ni/(2w) and w is defined as in 28). By Proposition BZiii), this implies

1

l

1 e+6/2

7 (Onzur) > S — (2¢+ @) — px — pr — 7 log Cy /5.

We put
Up = anuk, NnE =Ny — nz — OQ.

By compactness, we may assume that uj converges to some u € Y. Fix n € N and p > 0. Then,

for k large enough, n < 7y and, by continuity of vj /%,

0572 (@) — ot (@) < p.

We obtain

n

Locvsoiay L cis/o - (1 e+5/20\ L eqs/2, - )
~up (@) =~ (@) + (on™ 7 (@) = —op ™% ()

- 1
>5—(2C+04)—Pk—pk—g10g05/2—g-
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This implies
1
lim inf —v5%/2(a) > S — (2¢ + o).

n—oo N

Now choose for each n > 0 some u;, € U with sup,,¢;, v (u)/n = vg(uw))/n, which is possible, since

vy, is continuous. Then

1
liminf sup —v¢ (u) = liminf —v¢ (v
minf sup 07 (u) = Lim nf 05 ()

1
<8 < 2¢ + o+ liminf —v5+/2(0)

n—oo N

1
< 2¢ + a + sup lim inf —vS+9/2(u)

uelU n—oo N

1
< 2¢ + o+ supliminf — (C' + v _,n(0nu))

weld n—oo N

1
= 2( + a + sup lim inf — o, (u).

weld n—oo N

Since o was chosen arbitrarily, this shows that

1 1
lim inf sup —vf, (u) < 2¢ + sup lim inf =7, (u).

n—o0 weld n weld n—oo N

Now, as ¢ tends to zero, also ¢ can be chosen arbitrarily small. Combining this with (1), the
proof is complete. O
3.3 Relation to random escape rates and proof of the main result

In the following, we use the notation My for the set of all T-invariant Borel probability measures,
where T': X — X is a continuous map on a compact metric space.

3.10 Proposition: The invariance entropy satisfies

hine(K, Q) > —lim sup liminf 1 /logvol (Qa(n,u,e))dP(u).
n

el0 PGMGI n—o0
Proof: Pick an arbitrary u € U and let

1
B = liminf —v; (u).
n—oo N

Consider the sequence of Borel probability measures defined by

1 n—1
P, :=— .
n n Z 50ku
k=0

Since U is compact, there exists a weak*-limit point P of (P,)nez, . With standard arguments,
one shows that P is #;-invariant. We claim that

liminfi /vfndP > B, (22)

m—oo M

which obviously proves the assertion. To prove (22)), fix @ > 0 and choose § = d(«) according
to Proposition B7(iii). Then consider the following chain of identities and inequalities for an
arbitrary but fixed m > 1:

1
B = liminf —v}, (u)
n—oo N
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1
< ¢+ liminf —ws%/2 (u)

n—,oo M
1 n—m
< ¢ 4 lim inf — =9/2 (9,
< ¢+ liminf — ;wm (Oiu)

n—1

= ( + liminf = Z wE2(0;u)

n—oo Nnm

1=0
log C, 1=
<+ at 2 | fiminf— S gt/ (0,u)
log C 1
=2(+a+ 28T | Yiminf — vEH/Adp,.

n—oo M

The second line follows from Proposition Br7|(ii) and the fifth from statement (iii) of the same
proposition. The fourth line uses that wf;’/? is bounded on U (see ([20)) and the last line just
uses the definition of P,. It remains to show the third line. To this end, for each ¢ in the range
0 <4 < m let us choose integers ¢;,r; such that n =144 g;m +r; with ¢; > 0 and 0 <r; <m. We

have (see Lemma [G3))

m—1¢g;—1 n—m
N 0 = 5 w0,
i=0 j=0 =0
Hence, using subadditivity (Proposition B.7(i)), we find
m—1 qi—1

muwi®’? (u) <

0]

(w52 () 4+ 3 Wi Bugmn) + 05O
j=0

n—m m_l
w2 (w) 4 3w 0) + 3w ().
i=0 =0

—

3

Il
=]

i

Dividing both sides by mn and taking the liminf for n — oo completes the proof of the third line
above. We have shown that for every o > 0 there exists § > 0 such that for all m > 1,

1 log C
lim inf — /U;+5/4dpn >pB—-(20+a)— M,
n—oo m m
implying (by continuity of vi o/ 4)
1 log C
- /vfj‘s/‘ldP >pB— (2 +a)— o8&/
m m

According to Proposition[37(iv) choose N € N so that vi o/ (u) < C+v5, oy (Onu) for m > 2N,

which yields
c 1 log C,
—+—/vfn,2NdP25—(2g+a)—¥,

m - m

where we use that P is 6;-invariant. Letting m — oo and subsequently « | 0, with Proposition
we arrive at

1
hine (K, Q) > —hm(2<+ sup liminf - / vgdP).
el0 PeMy, n—eo N

Since ¢ can be chosen arbitrarily small as ¢ tends to zero, the proof is complete. 0

3.11 Remark: The main ideas in the above proof are taken from [31, Lem. A.6].
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Observe that the numbers

lim inf ! /log vol (Qa(n,u,e)) dP(u)

n—,oo N
are random escape rates (cf., e.g., [26]) and can be related to metric entropy and Lyapunov
exponents by standard techniques, which we will now do.

In the following, we regard the discretized control flow ®,, : U x M — U x M, n € Z, as a
smooth random dynamical system over the base (U, B(U), P,01), where P is a 6;-invariant Borel
probability measure on U, as explained in Section We will use the convention to denote 6;-
invariant measures on Y by P and ®;-invariant measures on U x M by pu.

We can finally prove our main result (announced as Theorem 2] in Section 2]):

3.12 Theorem: The invariance entropy satisfies
hinv (K, Q) > inf (/ log J "1 (z)dp(u, x) — h#(<p)> ,
n
where the infimum is taken over all ®;-invariant measures p with suppu C L(Q).

Proof: Fix some P € My, and a sufficiently small ¢ > 0. For every n € N and u € U let
E,(u) C Qa(n,u,e) be a maximal (n,u,d)-separated set for some sufficiently small § > 0. Then
E, (u) also (n,u,e)-spans Qq4(n,u,e) and hence, by the volume lemma,

vi(u) <log D vol(By(z)) <logCs+log Y emelos s enule), (23)
z€E (u) TEL, (u)

We define sequences of probability measures on M by

log J*
" E mEEn(u) e"C log J Wn,u(m)am
N, = o T @ neN, uel,
E wEEn(u) enC og Pn,ulT

and
1 n—1
. —1.0_;
V:f = E ZO (p(—l, " U)* 17777, “
o

To obtain an invariant measure for the discretized control flow on & x M with marginal P on U,
we apply Lemma (see Appendix) with @7 in place of ® and random measures o, given by
do,, = dn“dP(u). With the same arguments as used in the proof of the variational principle for
pressure of random dynamical systems (cf. [3] [42]) one can choose the sets E,(u) such that n¥
depends measurably on wu, i.e., such that ¢, is a random measure for each n. Then

1 n—1 1 n—1
- Z(‘I)Z—)*Jn =— Zan od;
1=0 1=0

]lq);l(A)(’U,, x)dn, (2)dP(u)

Il
S|
ol
S~
—

= M
1 n—1 ' .
“n |, [, 1ato etz wyani@ar
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n—1
Z%El//ﬂﬂwﬂmw%mmﬁwmaw>
- _Z// La(v,9)d [0(i, -, 0_0)un ] (y)dP(v)

_LAﬂAmmﬁwﬂwy
n—1

Consequently, the measures vy, v € U, are the sample measures of (1/n)> " (®;).0n, and
Lemma [6.4] shows that any hmlt point of this sequence is a ®;-invariant measure with marginal
P. We fix such a limit point p that is obtained from a subsequence (n;).

We can choose a finite measurable partition P = {Pi,...,P;} of M with diamP < ¢ and
Prap(0F;) = 0 for 1 <i <k (see, e.g., [21]). Since Prypu(0F;) = [ puu,(0P;)dP(u), we have
wu(0FP;) =0 P-as.

Put a,(u,z) := n{ — logJt e, u(z) and S := D reB (u) e@n(w®)  Since each element of

ViZ 01 ¢(i,+,u)"'P contains at most one element of F,(u), we obtain for P-almost every u € U
that

con(wr) o (u)

n—1
Hyu (\/ so(z',.,u)w) _/(—an(u,x))dnﬁ(:v) =- Z z log 3 = log S.

=0 z€E, (u)

Using precisely the same arguments as in [3, Thm. 6.1], with (23]) we can conclude that

/log > e ndp(u /H ., ( ' -,u)—17>> dP(u)—i—/aldu

zE€FE, (u)

for every n € N. Taking the liminf for n — oo and using that h,(¢; P) < h,(p), we arrive at

n—oo N

lim inf ! /Ufl(u)dP(u) < hu(p) — /log J o1 u(2)dp(u, x) + C.

Since ¢ can be chosen arbitrarily small as € tends to zero, we end up with the desired estimate for
the invariance entropy. It only remains to show that suppu C L(Q). To show this, observe that

supppt, C No(Q)  for all u € U.

Furthermore, we have the identities p(n, -, u)sity = po, for all n € Z P-almost surely
(cf. [, Thm. 1.4.5]), implying ¢(n,suppp,,u) = Supppe,.. Since @ is isolated, this yields
suppuu C Q if 5 is chosen sufficiently small, and hence suppp, C @Q(u). Consequently,

= [ #tu(Q(u))dP(u) = 1, implying suppu C L(Q). O

4 Examples

Examples for the application of our result can be found among invariant systems on flag manifolds
of noncompact semisimple Lie groups (i.e., systems induced by control-affine systems on the Lie
group whose drift and control vector fields are all either right- or left-invariant). Since the treat-
ment of such systems necessitates sophisticated tools from Lie theory, we do not include it in this
paper. Instead, we only consider a special subclass of such systems that can be described without
using Lie theory. Starting with a bilinear system

— (AO + i ui(t)Ai)a:(t), wel, (24)
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on R¥1 we can study the system induced on the d-dimensional real projective space RP%. In the
case when trA; = 0 fori = 0,1, ..., m, this corresponds to a right-invariant system on SL(d+1,R),
however, we can in fact do without this assumption.

The control flow ®; : U x R¥*T! — Y/ x R4+t € R, of [@4) can be regarded as a linear flow on
the trivial vector bundle & x R*!, hence it induces a flow on the projective bundle I/ x RP?. It
is easy to see that this induced flow, which we denote by ®F = (6, "), is the control flow of the
control-affine system on RP? with vector fields fo, f1,. .., fm, given by fi(Px) = DP(x)A;x, where
P : R¥1\{0} — RP? denotes the canonical projection.

Since the shift flow @ acting on the base U is chain transitive (cf. [I0, Prop. 4.1.1]), we can apply
Selgrade’s theorem (cf. [I0, Thm. 5.2.5]) and obtain a decomposition

UXRd+1:W1€B"'@WT

into exponentially separated invariant subbundles, each of which corresponds to a chain recurrent
component on U x RP? and hence a chain control set on RPY. (The chain control sets are the
projections of the chain recurrent components of the control flow to the state space, cf. [10].) The
chain recurrent component associated with W? is given by

L(Qi) = {(u,Pz) e U x RP? : z# 0 and (u,x) € W'}. (25)

The chain control sets Q1, . .., @, are the canonical projections of L(Q1),..., L(Q,) to RP?. They
satisfy assumption (P1) of our main result by definition. Now we fix ¢ € {1,...,7} and put

LQ):=L(Q;), V=W, Vi=Wa oWl Vv =wtae . .ow,

where we assume that the exponentially separated subbundles W are ordered by increasing growth
rates. Then, for each (u,Pz) € L(Q), we put

E°(u,Pzx) := DP(x)WV°(u), E*(u,Pz):= DP(z)WE(u).
By [22, Prop. 7.8 and Prop. 7.9], we have the following result.

4.1 Proposition: The following assertions hold:

(i) E°(u,Pz) and E*(u,Px) are well-defined linear subspaces of Tp,RP?. Their dimensions are
constant on L(Q) with

dim E°(u, Pz) = tkV° — 1, dim E* (u, Pz) = rkV*.

(ii) For each (u,Px) € L(Q), we have a direct sum decomposition

Tp.RP? = E~ (u,Pz) & E°(u,Pz) & ET (u, Px).

(iii) The spaces E°(u,Pz) and E*(u,Px) are the fibers of subbundles E° — L(Q) and E* —
L(Q), and satisfy

Dy}, (Pz)E’ (u,Px) = E*(®) (u,Pz)), teR, i€ {—,0,+}.

(iv) The restriction of the derivative Dgplg’,),) to E~ is uniformly contracting and the corresponding

restriction to Et is uniformly expanding. In particular, if tkV? = 1, then Q is uniformly
hyperbolic without center bundle.

Hence, we can easily describe a class of chain control sets on RP? which satisfy the partial hyper-
bolicity assumption (P2) of our main result with E°~ := E° @& E~. These are precisely the chain
control sets with subexponential growth rates on E°. (A Lie-algebraic characterization in terms
of the so-called flag type of the control flow will be presented in [15].)

Now we show that each chain control @; also satisfies the assumptions (P3) and (P4).
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4.2 Proposition: The following statements hold for the chain control set QQ = Q;:

(i) The set-valued mapping u +— Q(u) is lower semicontinuous.

(i) Q is isolated, i.e., there exists a neighborhood N C RP? of Q so that ¢ (R,Px,u) C N
implies ¢* (R, Pz, u) C Q for any (u,Pz) € U x RP9.

Proof: (i) First notice that the sets Q(u) are all nonempty. In fact, we can write
Qu) =PW'(u) = {Pz € RP? : z € W (u)\{0}}. (26)

Indeed, if (R, Pz, u) C Q, then (u, IP’x) € L(Q) and ([27) implies (u,z) € W, which is equivalent
to z € Wi(u). Conversely, if 0 # x € W¥(u), then ¢, (z) € Wi(6;u) for all t € R by invariance
of Wi This implies ¢t ,,(Pz) = Py (z) € PWH(0u) C Q;, using [25) again. Now it suffices to
prove that u — @Q(u) is inner semicontinuous, since this mapping is compact-valued with values
in a compact metric space. Pick u € U and Pz € Q;(u). We have to show that for any sequence
ur, — w in U there are Pxy, € Q;(uy) with Pz, — Pz. First note that x € Wi(u) by (8]). Since
W is a vector bundle, we find zy € Wi (uy,) with x;, — z. Hence, Pxj, — Pz and Py, € Q;(ug).

(ii) We use that the sets L(Q1),...,L(Q,) form a Morse decomposition for the control flow on
U x RP? (since they are the chain recurrent components and r < oo). We have Q = Q; =
mppa (L(Q;)). Now consider some (u,Px) € U x RP?, not contained in a Morse set. Then the a-
and w-limit sets a(u,Pz) and w(u,Px) are contained in some L(Q;,) and L(Q;,) with i # is,
respectively. Hence, their projections to RP? are contained in the corresponding (disjoint) chain
control sets Q;, and @Q;,. Consequently, if o* (R, Px,u) is contained in a neighborhood of @; whose
closure intersects no other chain control set, then ¢F (R, Pz, u) C Q;. (I

Actually, for the systems on RP? our lower bound simplifies, since the entropy term hu(gop) always
vanishes.

4.3 Theorem: IfQ = Q; is a chain control set on RPY, which satisfies assumption (P2), then for
any K C @ of positive volume,

hiny (K, Q) > inf/logJJr(pru(x)du(u,x) inf  limsup — logJJr(pTu(:zr). (27)
a ) (u,2)€EL(Q) T—00 T ’

Proof: To show the inequality in (27), it suffices to prove that hu(cpp) = 0 for all u. To this
end, observe that h,(¢%) is bounded from above by the topological entropy hiop(¢F) of the corre-
sponding bundle RDS on L(Q), following from the variational principle for bundle RDS (cf. |20,
Thm. 1.2.13]). We show that hop(¢F) = 0 for each fixed invariant measure P on the base space U.
To this end, equip RP? with the standard metric induced by the round metric on the unit sphere
in R, Consider two points Pz, Py on the same fiber Q(u), u € U. The fibers are projections
of linear subspaces by (20]), hence they are totally geodesic submanifolds. Now take a shortest
geodesic 7 : [0,1] — Q(u) from Pz to Py and let n € N. Then

(o o (Px), ¢, ., (Py)) < length(e), ,, / 1Dy, (Y(£)3(t)|dt

< sup |D90n,u (]P)Z)’LU| ' length(’}/)
PzeQ(u), weTp.Q(u), |w|=1

Now observe that length(y) = d(Px, Py) and Tp.Q(u) = E°(u,Pz). By assumption (P2) we can
thus choose n large enough (independently of u, Pz and w) so that [Deg, , (Pz)w| < e*"|w|. Hence,

(¢, (Pz), ¢, (Py)) < ed(Pz, Py).

By standard methods, one shows that this implies h¢op(¢") < dim Q(u) - €, and since € > 0 was
chosen arbitrarily, hop(¢") = 0 follows. The equality in 1) follows from the general theory of
continuous additive cocycles, see, e.g., [35]. O
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According to [12] [I3], the lower bound in the above theorem coincides with the actual value of
hinv (K, @) in the case when @ is a uniformly hyperbolic (without center bundle) chain control set
and the Lie algebra rank condition holds on int@. In the more general case, when (P2) is satisfied,
it is very likely that we also have equality in (27), since the results of [I2] (in the case when @ is
the closure of a control set) already imply

1

hiny (K, Q) < inf limsup —log J Tt (),
(w,z) 700 T ’

the infimum taken over all (u,z) € L(Q) so that u € inty~U and p(Ry,z,u) contained in a

compact subset of int@, cf. [I2, Thm. 3.5].

5 Remarks, interpretation and further directions

Relation to submanifold stabilization. A problem, different from set-invariance, that seems
to be closely connected to the analysis in this paper is the stabilization of a control system to an
embedded submanifold of the state space. Traditionally, in control theory only the stabilization
to equilibrium points or periodic solutions is studied. However, there are important applications,
including synchronization, path following and pattern generation, where the desired control ob-
jective is actually the stabilization to a submanifold invariant under some constant control input.
The works [1I7, 27, 28] 0] studied feedback stabilization to submanifolds. So far, it seems that
stabilization to submanifolds has not been studied in a networked control setup, where the con-
troller only has quantized state information available. This first necessitates a precise definition
of the stabilizability to a submanifold via open-loop controls, which can be formulated as follows.

5.1 Definition: A control-affine system 3. is open-loop stabilizable to an embedded submanifold
S of its state space M if for every neighborhood N C M of S there is a neighborhood N’ C
N so that the following holds: For every x € N’ there is w € U with p(Ry,z,u) C N and
dist(p(t, z,u), S) = 0 as t — co.

Observing that the fibers Q(u) of the chain control set can be submanifolds (which is the case in
the examples of the preceding section), the proof of our main result suggests that the following
conjecture holds.

5.2 Conjecture: Consider a control-affine system Y with state space M and assume the following:

(i) There exists a compact embedded submanifold S C M, invariant under a constant control
function with value u,. € intU. (We let (¢¢)ier denote the flow associated with u..)

(ii) X is open-loop stabilizable to S.
(iii) There exists a D¢i-invariant decomposition

T.M = E" () ® Et(z), VxeS.

(iv) There exists a constant A > 0 such that for every € > 0 there is T > 0 with the following
property. For allz € S andt > T,

Dy (x)v| > M| ifv e ET(2),
Doy (x)v] < etlv| ifve E'(x).

Then the smallest data rate above which stabilization to S can be achieved by a controller receiving
state information over a noiseless digital channel, satisfies

Ry > —Piop((¢1))5; — log J T 1 ().
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The assumption of lower semicontinuity. The assumption (P3) that the fiber map u — Q(u)
is lower semicontinuous seems to be quite strong. In general, we do not see any reason why a par-
tially hyperbolic controlled invariant set or a chain control set should satisfy such an assumption.
Even in the uniformly hyperbolic case (with one-dimensional center bundle), shadowing techniques
can only show that u — Q(u) is lower semicontinuous w.r.t. the L>°-topology on Y. The assump-
tion of lower semicontinuity is needed though in the proof of Proposition B:2] and to us it seems
that there is no way around it. Fortunately, the chain control sets of the systems on RP? induced
by bilinear systems, and more general, of invariant systems on flag manifolds of semisimple Lie
groups, satisfy this assumption and we are still looking for a deeper reason or hidden mechanism
which causes the lower semicontinuity for these systems.

Topological pressure and SRB measures. The lower bound obtained for hi,, (K, Q) is re-
lated to the topological pressure of random dynamical systems associated to the control flow. It
would, of course, be desirable to gain a better understanding of this bound, which suggests that
not only the instability of the dynamics on the set Q (measured by [log.J "1 ,du) is relevant for
the value of hiny (Q). In fact, it is clear that in the extremal case, when @) coincides with the state
space M, the invariance entropy is zero, no matter how unstable the dynamics on M is.

For a fixed invariant measure P on the base space U, and a fixed measure p on U x M, invariant
under @1, and projecting to P, observe that

mxw>—1[¥nggJ+wLucwdu@ax>—-o

if and only if i is an SRB measure for the random dynamical system arising by equipping U/ with
P and discretizing in time, cf. [20, Thm. 3.2.4]. Since, for any measure p the inequality

o)~ [ log T pru(e)dn(uz) <0
L(Q)
holds (Ruelle’s inequality), the statement

sup (hu(go) — /L(Q) log J+3017u(x)du(u,x)) =0

n: (pry )« =P

suppuCL(Q)
is equivalent to the existence of an SRB measure p for the corresponding random dynamical
system on the invariant set L(Q) (in case that the unstable bundle does not vanish). Hence, the
lower bound obtained for hi,y (K, Q) is zero iff for every invariant measure P on U there exists an
associated SRB measure supported on L(Q).

Asymptotically subadditive cocycles. The proofs of Propositions[3.9]and partially gen-
eralize known results for asymptotically subadditive cocycles (ASC), cf. [I8, [5]. An ASC over a
continuous dynamical system T : X — X is a continuous map ¢ : Z4 x X — R so that for every
€ > 0 there exists a continuous subadditive cocycle ¢ : Zy x X — R over T" with

lim sup 1 sup |on (z) — p(2)| < e.
n—oo N zeX
Looking at Proposition B7, we see that the family (v5).s0 has properties close to an ASC. Even
though the approximating subadditive cocycles wS® are not known to be continuous or even
measurable, and the approximation in the sense above is not exactly satisfied (only in the limit as
€,0 1 0), we can still prove some of the properties known for ASC such as the interchangeability of
lim inf and sup (Proposition B9) and the expression of the supremal growth rate as the supremal
ergodic average (Proposition B10).
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6 Appendix

6.1 Miscellaneous
The following lemma seems to be known, but we could not find a reference in the literature.

6.1 Lemma: Let M be a Riemannian manifold and K C M a nonempty compact subset. Then
for every e > 0, the boundary of N.(K) has volume zero.

Proof: We give the proof for M = R" with the Euclidean metric. The general case can be proved
by replacing straight lines with geodesics. Hence, let K C R™ be a nonempty compact set and
e > 0. Take x € ON.(K) and fix a point y € K such that dist(z, K) = || —y|| = ¢. We claim that
the open ball B.(y) is contained in N.(K) and does not contain any point from ON.(K). Indeed,
if z € Be(y), then dist(z, K) < ||z — y|| < € and all points w € IN(K) satisfy dist(w, K) = ¢
implying [|w — y|| > €. Let r € (0,¢). Then the intersection B,(z) N B(y) contains the ball
B, jo(tz + (1 —t)y) with ¢t := 1 —r/(2¢). Indeed, if w € B, j5(tx 4 (1 — t)y), then
lw = 2| < lw—te— (1 =t)yll + [tz + (1 = )y — ||
S+A—tlr—yl=5+5e=r
< 2 + 2 2 ’
oo =yl < llw — tz — (1 — )yl + [tz + (1 — )y — gl

<Latle—yl=1+(=—1)
— z—yl|l == e——=) ==e.
2 =3 2

Hence, for all r € (0,¢) we have
vol(B(z) N ON(K)) - er™ —c(r/2)"
vol(B,(z)) - erm
This proves that the density d(z) = lim, o vol(B,(x) NON.(K))/vol(B,(x)) is less than one wher-

ever it exists on N (K). Lebesgue’s density theorem asserts that d(x) = 1 at almost every point
of ON.(K). This can only be the case if vol(ON.(K)) = 0. O

The next lemma is essentially taken from [I9, Lem. 2.4].

=1-2""< 1.

6.2 Lemma: Let f: X — X be a map on some set X and v : Z; x X — R a subadditive cocycle
over f, i.e.,
Untm () < vp(x) + v (f"(z)) forallxz € X, n,m € Zy.

Additionally suppose that

1
w:= sup —v,(z)| < cc. (28)
(n,z)eNx X T
Then for every x € X, n € N and € € (0,2w) there is a time 0 < ny < n with
1 1
Evk(fnl(:zr)) > —vp(z) —e forall0 <k <n—nj.
n

Moreover, n —ny > (en)/(2w) — oo for n — 0.

Proof: We write o := v, (x)/n and define

i Tuy(z)
= Imin -—v Z).
v 0<k<n k k

If v > 0 —¢, the assertion follows with n; = 0. For v < 0 — ¢, observing that the minimum cannot
be attained at k = n, let

1
ny = max{k €(0,n)NZ : Evk(x) < 0_5}7
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implying vp, (x)/n1 < 0 — . We obtain

£ < 20n(@) = 200, (8) = S04 (2) = -0y (0)
< 2 (00 0) v (7 @) = 2 (0)

() ¢ T )

n ny n—mny
n—ng 1 n 1 n—"n
= — Vp— T)) — —Un, () ] < 2w .
(e (M @) - @) £ 2
This implies
n—n; > — — oo forn— oo.

completing the proof. 1
The following lemma is used in [31l Lem. A.6].

6.3 Lemma: Let n > m be positive integers. For each i in the range 0 < i < m choose integers
qi,m; such that n =i+ qm + r; with ¢; > 0 and 0 < r; < m. Then

and all integers in the set on the right-hand side are uniquely parametrized by ¢ and j.

Proof: Tt is clear that (i1, 1) # (i2, j2) implies i1 + jim # iz + jom, since 0 < i1,i5 < m. Hence,
it suffices to show that the two sets are equal. To this end, we first show that i + jm < n — m,
whenever 0 < i <m and 0 < j < ¢;. Since j < ¢;, we have (j +1)m < ¢;m +r;. Adding 7 on both
sides yields (i + jm) +m < n, or equivalently i + jm < n —m.

Conversely, let us show that every number [ between 0 and n — m can be written as i + jm with
0 <i<mand 0 < j < ¢g. To this end, let 7,7 be the unique nonnegative integers so that
l =14 3m with 0 <7 < m. We need to show that j < ¢;. This is equivalent to

=1+ m<i+gm=n-—r;,.

This inequality holds, because I <n — (m —1) <n —r;, since 0 < r; < m. O
The next lemma is taken from [I1, Thm. 4].

6.4 Lemma: Consider a measurable skew-product ©,, : Q x M — Q x M (n € Z), (w,x) —
(0™w, p(n,w)x), where M is a compact metrizable space equipped with its Borel-o-algebra and
(Q,F, P) is a probability space. We assume that 0 preserves the measure P and that ¢ is con-

tinuous in z. Let (0,)nen be a family of random measures on Q x M, (tp)nen a sequence of
integer-valued random variables such that t,, > n almost surely. Put

tn—1

" 1
A= ™ I;J(@k)*an.

Then any limit point v* of (v"*)nen is O-invariant, i.e., (0, ).y* =~* for all n € Z.

24



6.2 Graph transform and volume estimates

In this subsection, we prove the volume lemma (Lemma [B6). This is a straightforward adaptation
of the proof given in [39] for autonomous systems. The proof does not use any structure of the
base space U except for compactness and metrizability. In fact, the proof applies to arbitrary
skew-product flows with compact metrizable base space and a compact set @ satisfying the partial
hyperbolicity assumption (P2).

We will use the following notation: If L is a linear map between Euclidean spaces, we write
m(L) = min,—; |Lz| for its conorm and || L|| = max|,— |Lz| for its norm. If 4, j € Z with i < j,
we write [i : j] = [i,j]NZ = {i,i+1,...,5}. We simply write d for the product metric on U x M.
By Lip(+) we denote the Lipschitz constant of a map.

We first extend both ET and E°~ continuously to a compact neighborhood K of L(Q), without
requiring invariance of these extended bundles. We define the continuous function £ : K — R,

&(u,x) := —log|det Dcpl,u(x)|E+(u@)’.
Recall that we denote by A > 0 the expansivity constant on ET as required in (P2).
For r > 0 and (u,z) € K we define

Ef(u,z):={veET(u,z) : [v|<r}, EY (u,z):={veE" (u,z) : [v|]<r},
E.(u,z) := Ef (u,r) x E° (u,x).
We fix some 0 < € < A. According to (P2), there exists N € N such that for all (u,z) € L(Q),
veE(u,r) = Do) > ey,

ve€E " (u,2) = |Donu(z)v] < eyl

We work with a time-discretized system in the following, hence we may assume N = 1. Thus,
mM(D1u(0) |+ (ua) = € [Deru(@)jpo-all < e, (u,2) € L(Q). (29)
We fix an r > 0 small enough so that the following holds: If (u, ) € K and ®1(u,z) € K, then
Bue  Br(,2) = TproagM, e = OXDLy , ) OP1u 0 OXD,
makes sense. Using our assumption that the dimensions of Et and E°~ are constant, we put
p:=dimE" and ¢:=dimE°".
In the following, we identify E*(u,x) with R? and E°~ (u,x) with RY.
For the rest of this subsection, we fix

0< XN <X and & :=2e.

The idea of the following lemma is to replace @, . for (u,z) € K\L(Q) with a linear map L, ,
which is CHMP-close to ©u,» in a small neighborhood of 0 € T, M and preserves E* and E°.

6.5 Lemma: For every 7 > 0 there exist §,r9 > 0 such that for all (u,z) € K with the property
(v, y) € L(Q) with d((u,z), (v,y)) <6 and d(P1(u,x), 1(v,y)) < (30)
it holds that
Lip(Pu,z — Lu,m)lETO(u,m) <T,

where L, , € End(RP9) is a linear map of the form Ly, = L), , ® L} , with L}, , € End(RP),
L? , € End(R?) and

’

m(Lyg) > e, L] <o

25



Proof: For the given 7 > 0 we choose 7, < r small enough so that
o~ - T
Lip (B~ Doy (0)) 5,0y < & for all (v,) € L(Q). (31)
Existence of such r{ can be seen as follows. Writing

Tv,y(w) = &vy(w) - D&v,y(o)wv
we find that for wy, ws € E,.(v,y),

7o,y (w1) = 7oy (w2)| < [[Dryy (]| - [wr — wy
with a point £ € [wq,ws]. The map (v,y,&) — || Dry,(§)| is continuous and satisfies ||Dr, ,(0)|| =
0. Hence, by uniform continuity on compact sets, we find the desired r{.
Now choose ¢ small enough so that for any (u,x) € K satisfying B0) with some (v,y) € L(Q) we
can find linear isomorphisms hy : Tp M — Ty M and ha : Ty(1 o)M= Ty(1,y,0)M preserving E*
and E°~ with max{Lip(h;),Lip(hy ')} < v/2. This is possible by uniform continuity of E*(-,-)
and E° (-,-) on the compact set L(Q). Define
@(u,w)—)(v,y) = hgl © @yﬂ) o hla Lu,m = D@(u,m)—)(v,y) (O)
We have
@(u,w)—)(v,y) - D@(u,m)—)(v,y) (O) = h2_1 © (@v,y - D@(U,y) (O)) © hl-
Hence, using [B1), we can find 0 < 79 < 7, such that

27

Lip (@(u,m)—»(v,y) - D@(u,m)—»(v,y) (0)) | By (u,z) < ? (32)

whenever d((u, x), (v,y)) < § and d(P1(u,x), P1(v,y)) <.
The linear map Ly, is of the form L;, , & L2 with respect to E* (u, ) & E°~ (u, x) and satisfies

Lu,;ﬂ = h§1 o DSZUKU(O) © hl'

Hence, if § is small enough, we can choose the Lipschitz constants of h; and hy ! small enough to
obtain m(L}, ,) > ¢ and L2 I < ¢, using @9). Finally, for § small enough, d((u,z), (v,y)) < &
and d(®q(u,x), ®1(v,y)) < ¢ imply

Lip(Gu,z = Plu,z)—(v,y))| Evg (urz) < %; (33)
since BT and E°~ and also D@. .(+) are continuous. We end up with
Lip(®u,e — Lu,e) < LiD(Pup — Puz) = (w.)) | Eny
+Lip(Prua)—wy) = PP (Oe, < F+5 =T

The proof is complete. O
Now we introduce some notation to describe the graph transform.

We write RP(r) := {z € RP : |z| < r} and R(r) := RP(r) x Ri(r). Let F : R(r) — RP x R? be a
map. The graph transform by F' from R(r) to R(s), for which we write I' = T, s(F), is defined as
follows. Let g : RP(r) — RI(r). We say that I'g is well-defined if it is a function from RP(s) to
RY(s) satisfying

graph(I'g) = F(graph(g)) N R(s). (34)

If g is a Cl'-function, then graph(g) can be viewed as a submanifold of R(r) and we write
T(graph(g)) for its tangent bundle.
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6.6 Lemma: There exist 7,0 > 0 (depending on p,q, X', ') with the following property. Let r > 0
be arbitrary and let F : R(r) — RP x R be a C*- d1ﬂ”eomorph1sm onto its image with F(0) =0
and L € End(RP+9) of the form L = Ly & Ly with Ly € End(RP), Ly € End(R?) such that the
following conditions are satisfied:

Lip(F —L) <7, m(L)>e", |Lsf <e”

If g : RP(r) — R%(r) is a C'-map with |g(0)| < r/2 and |Dg|| < o[l then Tg =T
well-defined with

(F)g is

r,res

| det DF|T(graph(<7))|
| det L1|

T ’
Lg(0)] < 5e*, [[DTg[| <o, e

Proof: In this proof, h will always denote an element of Hom(R?,R?). We first choose 71 > 0
such that the following holds: For every L € End(RP*Y), if |L — L|| < 7, and ||h|| < 1, then

- | det L\graph(h)| . (35)
| det L\graph(h)|

We choose o > 0 such that ||h]| < o implies

| det L\graph(h)|

36
| det L1| ( )

It follows from standard graph transform estimates that given o, N,¢e', there exists 0 < 7 < 7y
such that Lip(F — L) < 7 implies that T'g exists and satisfies |[[g(0)| < (r/2)e2’, ||DI'g|| < o.

Let y = (#,9(2)) € graph(g), L := DF(y) and h := Dg(z). Then the following holds:
(i) Tygraph(g) = graph(h) (easy to see).
(ii) |IL - L] = [DF(y) - L|| < Lip(F = L) < 7 < 7.
(iii) [|h]] = [|Dg(2)|| < o by assumption.

Since R
| det DF(y)|Ty(graph(g))| o | det ngraph(h)l ] | det L\graph(h)|

| det L, | | det Ligraphny| | det Ly
the inequalities (B5]) and (B8] yield

| det DF( )\T (graph(g))| e2€'
| det L, | o

completing the proof. O

We will apply the above lemma to F' := &, , with (u,z) € K and L= Ly, as in Lemma 68 In
the following, let

Byt(x) :={ye M : d(e(j,z,u),¢(j,y,u)) < p, 0<j<n},

which slightly differs from (5] without consequences on the validity of the volume lemma, however.

The following proposition is the adaptation of [39, Lem. 2] to our situation.

IBy ||Dg|| < o, we mean ||Dg(z)|| < o for all z in the domain of g.
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6.7 Proposition: There exist a compact neighborhood K of L(Q) (possibly smaller than the
original K) and a constant py > 0 such that for each 0 < p < pg there is a constant C, > 1 such

that

0;16_45/"62?:0 (P (u,z)) < vol(B;““(:v)) < Cpe4€'nezzb:0 E(P;(u,x))

for allm € N and (u,x) € K, := (g P_i(K).

Proof: Let 7,0 > 0 be given by Lemma [6.6] and 6,79 > 0 (depending on 7) by Lemma 6.5 Since
o can be chosen arbitrarily small in Lemma [6.6] we may assume that 160 < 1. Let

K:={(u,z) e x M :3(v,y) € L(Q) s.t.
max{d((uv ‘T)v (’U, y))a d(q)l(ua I)a ‘1)1(1), y))} < 5}a

which we can assume to be contained in the original K (where E* and E°~ are defined).

For all sufficiently small p and (u,z) € K,, we have the inclusion

BZ}’"(:Z:) C exp, {5 € RP(rg) x Rq(%o) :Vjel0:n], @Juz(g) € RP(rg) x Rq(%o)}
=:exp, (N”“(:v)) ,

To

where &7 . = Pa,_,(uz) O+ © Pue (cf. [12, Lem. 4.2] for a detailed argument).
For w € R9(ro), denote by ¢g* : RP(ro) — R%(ro) the constant function equal to w. Let

A:={we Ri(ro/4) : Vj €[0:n], graph(IVg"¥) C RP(ro) x R%(ro/2)},

where IV =Tjo---olyand T =T, ./ ($a,(u.q))- We claim that

Ny C | (@5 ,) " eraph(I"g™).
weA
Let & = (§,&,) € N2¥(z) and w = &, € R9(ro/4). We have |g(0)| < 70/2 and |[Dg“|| =0 < o,
so by Lemma [6.6] T'g" is well-defined with ||[DT'¢g"|| < o.
As & € NVU(x), Pue(§) € RP(ro) x R(ro/4) implying [T'g” (0)| < ro/4 (from B4)). As |[DI'g”| <
o < 1/8 (by the choice of o), on RP(rg) we have
To

T T
ITg*| < [Lg™(0)| + [[DTg"| - ro < ZO + go <5

Hence, the image of T'g", restricted to RP(rg), is contained in R9(rp). We conclude that I'g"
satisfies all the assumptions of Lemma[G.6] implying that I'2g™ is well-defined with |DI"2g%|| < o.

Iterating this process, we obtain that for every i € [1 : n], I'g® is well-defined and [I"g%| < r¢/2,
i.e., graph(T"g"”) C RP(ro) x R%(ro/2). So w € A and ¢ € (@} ,)” 'graph(I"g"). (Observe that
every time we apply the graph transform, rg gets multiplied with e However, every time we can
restrict the domain of the resulting function again to RP(ro).)

Let m, denote the p-dimensional Riemannian measure on any p-dimensional submanifold of a
tangent space of M. Then

my ((%,m) graph(I™g )) S eqmax |det(D@Y ) 7. graph(gw)| - mp(graph(I™g™))
n—1
< eX'n H ‘det L<1I>¢(u,w) ’_1 -mp(graph(I'™g"))
i=0

n—1
S e2€/n H ‘det L']i?‘l(u,z) |71 . OTg

=0

28



n—1

< Crge%,” H ‘det(Dcﬁ@(u,x))(O)\RP
i=0
n—1

= Cre* ™ [ [ |det Dor o, (0(i, 2, 1) 5+ (@, (u.))
i=0

—1
—1

PDede H (@i w2) — Ot n I @i (),

Here the second and the fourth line follow from Lemma (in the second case, the lemma is
applied with g = 0). Observe that the sets (@Zw)fl graph(I"g%), w € A, are pairwisely disjoint.
Integrating over A yields

Mpiq ( ( O/ 4e'n H eE (u,x))

for some constant C’ > 0 depending on ry (here we use that the angle between the subspace E+
and E°~ is bounded on K). Since the application of exp, results in a volume distortion, which is
bounded over (u,z) € K, and B}""(z) C exp,(N/y"(z)), the upper estimate follows. Analogous
arguments yield the lower estimate (cf. [39, Lem. 2]) O

Now we can conclude the proof of the volume lemma.

Proof: (of Lemma B6) We put ¢ := 4¢’ = 8. Let > 0 be chosen such that K in Proposition
contains the closed n-neighborhood of L(Q). Let n € N and « € Qa(n + 1,u,n) for some
u €U, ie., dist(p(i,z,u),Q(;u)) < nfor 0 < i <mn. For each 0 < i < n choose y; € M with
(Oiu,y;) € L(Q) and d(¢(i,z,u),y;) < n. This yields ®;(u,z) € K for 0 < i < n, so Proposition
[6.7 implies

Oy le /e TIS €0:(0a) < vol(Bp(z)) < Cpele/meTiy €®i(wa)

for 0 < p < po. Define the desired extension of J* ¢, () to K by

n—1

. —ynol i (u,x
T onula H |det D1,0,u (@6, T, 1)) |+ (@4 (u,0))| = €~ =0 S(@ilw2)),
1=0

This extension satisfies multiplicativity by definition and thus the volume estimates are provedE
As the proof shows, € can be chosen arbitrarily small. By Lemma then also 7 and o must
become small, and by Lemma [65] also 6 and pg. O
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