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Abstract

This work revisits the constant stepsize stochastic approximation al-

gorithm for tracking a slowly moving target and obtains a bound for the

tracking error that is valid for the entire time axis, using the Alekseev

non-linear variation of constants formula. It is the first non-asymptptic

bound for the entire time axis in the sense that it is not based on the

vanishing stepsize limit and associated limit theorems unlike prior works,

and captures clearly the dependence on problem parameters and the di-

mension.
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1 Introduction

1.1 Background

Robbins and Monro proposed in [39] a stochastic iterative scheme

xn+1 = xn + an
[
h(xn) +Mn+1

]
, n ≥ 0, (1)
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for finding the zero(s) of a function h(·) given its noisy evaluations, with Mn+1

being the measurement noise. By a clever choice of the stepsize sequence {an},
viz., those satisfying ∑

n

an = ∞,
∑

n

a2n < ∞, (2)

they were able to show almost sure (a.s.) convergence of the scheme to a zero
of h under reasonable hypotheses. The scheme has since been a cornerstone of
not only statistical computation, but also in a variety of engineering applica-
tions ranging from signal processing, adaptive control, to more recently, machine
learning. See [8,15] for some recent pedagogical accounts of stochastic approxi-
mation. What makes it so popular is its typically low per iterate memory and
computational requirement and ability to ‘average out’ the noise, which makes
it ideal for adaptive estimation/learning scenarios. A later viewpoint [17], [34]
views (1) as a noisy discretization of the ordinary differential equation (ODE
for short)

ẋ(t) = h(x(t)) (3)

with decreasing stepsize and argues that the errors due to discretization and
noise are asymptotically negligible under (2), so that it has the same asymp-
totic behaviour as (3). See [8, 10] for a fuller development of this approach.

The clean theory under (2) notwithstanding, there has also been an interest
and necessity to consider constant stepsize an ≡ a > 0. The strong convergence
claims under (2) can no longer be expected1, e.g., for the simple case of {Mn}
being i.i.d. zero mean, the best one can hope for is convergence to a station-
ary distribution. What one can still expect is a high probability concentration
around the desired target, viz., zero(s) of h, if the stepsize a is small [30, 31].
This is acceptable and in fact unavoidable in the important application area
of tracking a slowly moving target or measuring a slowly exciting signal [4, 23],
and other instances of learning in a slowly varying environment. This is because
with decreasing stepsize, the algorithmic time scale, dictated by the decreasing
stepsize, eventually becomes slower than the timescale on which the target is
moving and thereby loses its tracking ability. The alternative of either frequent
resets or adaptive loop gain is often not desirable because of the additional logic
it requires, particularly when the algorithm is hard-wired [8,44], and one settles
for a judiciously chosen constant stepsize. Such schemes are a part of traditional
signal processing and neural network algorithms [18, 19, 21, 28, 35, 41] and often
show up in important applications such as quasi-stationary experimentation for
meteorology [14], slowly exciting physical wave measurement [13], and more re-
cently in online learning and non-stationary optimization [45,51]. However, the
focus in online learning is cumulative regret bounds instead of all time bounds.

These developments have motivated analysis of constant stepsize schemes
[10,12,25,29,30,37,38,41] in the form of various limit theorems, (non) asymptotic

1barring some very special cases, e.g., when the right hand side of (1) is contractive uni-
formly w.r.t. the noise variable.
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analysis, law of iterated logarithm etc., but a convenient bound valid for all time,
a useful metric for tracking applications in a slowly varying environment, seems
to be a topic of relatively recent interest [51]. Our objective here is to provide
precisely one such bound.

1.2 Comparison with Prior Art

As already mentioned, one of the main motivation of constant stepsize stochastic
approximation has been their ability to track slowly moving environments. Not
surprisingly, much of the early work has come from signal processing and control,
most notably in adaptive filtering, and this continues to be its primary applica-
tion domain. Some representative works are [4], [20], [22], [23], [24], [41], [51],
etc.

Much of this work concerns tracking in specific models and the proposed
schemes usually have a very specific structure, e.g., linear. From purely the-
oretical angle, analyses appear in [12], [25], [30], [37], [38] among others. The
emphasis of the latter is towards analyzing convergence properties in the small
stepsize limit and the associated functional central limit theorem for fluctuations
around the deterministic o.d.e. limit, except in case of [25], which establishes
a law of iterated logarithms, and [38], which obtains confidence bounds for a
specific choice of adaptive stepsizes and stopping rule. The latter is a non-
asymptotic result as the title suggests, but in a different sense than us.

In the context of tracking, the functional central limit theorem character-
izing a Gauss-Markov process as a limit in law of suitably scaled fluctuations
is also used for suggesting performance metrics for tracking application, see,
e.g., [5].

More recently constant stepsize stochastic gradient and its variants have
elicited interest in machine learning literature due to the possibility of using
them in conjunction with iterate averaging to get better speed than decreas-
ing stepsizes, see, e.g, [3]. The pros and cons of these have been discussed,
e.g., in [32]. This motivation, however, is not relevant for tracking because
iterate averaging is also a stochastic approximation with decreasing stepsizes
(an = 1/(n+ 1) to be precise) and decreasing stepsizes is simply not an option
here because the iterates will eventually become slower than the slowly varying
signal and lose their tracking ability.

Another strand of work analyzes tracking in the specific context of tracking
the solution of an optimization problem when its parameters drift slowly [45].
Tracking problems have also been studied in the literature as regime switching
stochastic approximations when the evolution is modulated by a Markov chain
on a time scale equal to or faster than that of the algorithm. This situation has
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been analysed through mean squared error bounds [46,47] and is close in spirit
to ours.

1.3 Our contributions

Our main result is Theorem 4.1. The highlights of this result are as follows.

1. Our set-up is applicable to a very general scenario that includes unbounded
correlated noise without any explicit evolution model, no explicit strong
convexity or linearity assumptions regarding the dynamics being tracked,
and so on, rendering it a more general framework than in prior work.

2. We provide a bound valid for the entire time axis, not only for a finite
time interval as in, e.g., ‘sample complexity’ bounds, or purely asymptotic
as in, e.g., cumulative regret bounds or asymptotic error bounds. That
is, it holds uniformly for all n, 0 ≤ n < ∞, not only for n ≤ some N
or in the n → ∞ limit, which need not reflect the finite time behavior.
This is particularly relevant here because we are considering the prob-
lem of continuously tracking a time-varying, in particular, non-stationary
target. Furthermore, this is achieved under a very general noise model,
viz., martingale differences which allow dependence across times, requir-
ing only uncorrelatedness. Their conditional distributions given the past
are required to satisfy an exponential moment bound that is satisfied by
most standard distributions such as exponential, gaussian, their mixtures,
etc., except the heavy tailed ones.

3. This bound is non-asymptotic, i.e., it is derived for the actual constant
stepsize a > 0 and not from an idealized limiting scenario based on a limit
theorem for fluctuations in the a ↓ 0 limit, as is often the case in prior
studies. To the best of our knowledge, ours is the first result to achieve
this. Also, our derivation of the bound allows us to keep track of its de-
pendence on problem parameters, dimension, etc. if needed.

4. We bound the exact error which is given by the Alekseev formula, there
is no approximation at this stage. Furthermore, we analyze this error
keeping the slow movement of the target being tracked in tact, without
treating it as essentially static as, e.g., in [5].

As for potential avenues for improvement, we have the following observa-
tions:

1. It appears unlikely that the bounds that use Lipschitz constants etc., can
be improved much, if at all. The moment bounds on martingale differ-
ences use state of the art martingale concentration inequalities and could
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improve if better inequalities become available. It may be noted that we
assume exponential tails for the distributions of martingale differences.
Stronger inequalities such as McDiarmid’s inequality may be used under
stronger hypotheses such as uniformly bounded martingale differences,
see, e.g., [6]. On a different note, if we allow heavy tailed noise, one would
get weaker claims using the corresponding, naturally weaker, concentra-
tion inequalities. Rather limited results are available here, see e.g., [26]
and its application to stochastic approximation in [2].

2. One potential spot for improvement is in the use of the assumption (†)
below, which entails a stability condition for a linearized dynamics which
is time-dependent. Such conditions are available only under constraints
on the time scale separation between fast dynamics (of the algorithm)
and the slow one (of the target). This, as argued later, is unavoidable,
because there will be no tracking otherwise. This fact necessitates such a
condition or something close to it. The one we have used, due to Solo [42],
is the most general available to our knowledge. (Another class of sufficient
conditions available is based on existence of Liapunov functions and not
explicit like Solo’s.)

1.4 Organization

We begin by describing the problem formulation in the next section. This is
followed by the Alekseev formula as a non-linear generalization of the variation
of constants formula, and a key exponential stability assumption. A useful set of
sufficient conditions for this assumption are recalled. Section 3 details the error
analysis characterizing the tracking behaviour, developed through a sequence of
lemmas and leading to the main result in section 4. Section 5 concludes with
some discussion. An appendix recalls a martingale concentration inequality used
in the main text.

1.5 Symbols and Notation

The section number where the notation first appears is given in parentheses.

xn = Iterate at time n (2.1)

h(·, ·) = driving vector field of the tracking scheme (2.1)

a = Step-size (2.1)

Mn+1 = Martingale difference noise (2.1)

εn+1 = Additive error (2.1)

ε∗ = Bound on ‖εn+1‖ (2.1)
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y(·) = Slowly varying signal to be tracked (2.1)

ǫ = Small (≪ 1) number controlling rate of y(·) (2.1)
γ(·) = Vector field driving y(·) (2.1)

C∗ = max

(
sup
n

E
[
‖xn‖2

]1/2
, sup

n
E
[
‖xn‖4

]1/4
)

(2.1)

Cγ = sup
t≥0

‖y(t)‖ (2.1)

CM , δ = Constants featuring in the bound for ||Mn+1|| (2.1)
Φ = Transition matrix of linear system (2.2)

z(·) = Slowly varying equilibrium for the algorithm (2.3)

d = Dimension of xn and z(·) (2.1/2.3)
∇ = Gradient operator (2.3)

CΦ, β = Constants featuring in the exponential bound for Φ (2.3)

Lf = Lipschitz constant for Lipschitz function f (generic)

Gf = constant of linear growth for function f , i.e., |f(x)| ≤ Cf (1 + ‖x‖). (generic)
Bf = sup

x
|f(x)| for a bounded function f (generic)

Kγ = max
{y}≤Cγ

‖γ(y)‖ (3.2)

O(·) = Big O notation (3.3)

µ = 1/β (3.3)

K1 = Lh̃(1 + Ch + Cγ) + ε∗ (3.3)

K2 = CΦLh̃ (3.3)

K3 = K1 + Lγaǫ (3.3)

K4 = max
(
2CM/δ2, C2

M/δ2
)
(3.3)

K5 = KC3
ΦLD/β (3.4)

K6 = C3
ΦLγLDǫ (3.4)

K7 = max
(
24CMδ4, 4C2

Mδ4
)
(3.4)

K8 = 2
√
6CMC2

h/δ
2 (3.4)

K9 =
CMγ1d

1.5

δ
(3.5)
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2 Preliminaries

2.1 The tracking problem

We consider a constant step size stochastic approximation algorithm given by
the d-dimensional iteration

xn+1 = xn + a
[
h(xn, yn) +Mn+1 + εn+1

]
, n ≥ 0, (4)

for tracking a slowly varying signal governed by

ẏ(t) = aǫγ(y(t)), (5)

with 0 < a < 1, 0 < ǫ ≪ 1. Also, yn := y(n), n ≥ 0, the trajectory of (5)
sampled at unit2 time intervals coincident with the clock of the above iteration,
with slight abuse of notation. We assume that y(t), t ≥ 0, remains in a bounded
set. The term εn+1 represents an added bounded component attributed to
possible numerical errors (e.g., error in gradient estimation in case of stochastic
gradient algorithms [8]). We assume the following:

• The smallness condition on ǫ ensures a separation of time scale between
the two evolutions (4) and (5), in particular (5) has to be ‘sufficiently slow’
in a sense to be made precise later.

• h : (x, y) 7→ h(x, y) is twice continuously differentiable in x with the first
and second partial derivatives in x bounded uniformly in y in a compact
set, and Lipschitz in y. A common example is where h(x, y) = −(x − y)
corresponding to least mean square criterion for tracking in the above
context with x, resp. y standing for the states of the tracking scheme and
the target resp.

• γ(·) is Lipschitz continuous,

• C∗ := max

(
supn E

[
‖xn‖2

]1/2
, supn E

[
‖xn‖4

]1/4
)

< ∞. (See [10] for suf-

ficient conditions for uniform boundedness of second moments. Analogous
conditions can be given for fourth moments.)

• Cγ := supt≥0 ‖y(t)‖ < ∞,

• there exists a constant ε∗ > 0 such that

||εn+1|| ≤ ε∗, ∀n ≥ 0, (6)

• Mn is a martingale difference sequence w.r.t. the increasing σ-fields

Fn := σ(xm,Mm, εm,m ≤ n), n ≥ 0,

2without loss of generality
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and satisfies: there exist continuous functions c1, c2 : Rd → (0,∞) with
c2 being bounded away from 0, such that

P (||Mn+1|| > u|Fn) ≤ c1(xn)e
−c2(xn)u, n ≥ 0, (7)

for all u ≥ v for a fixed, sufficiently large v > 0 (i.e., a sub-exponential
tail) with

sup
n

E [c1(xn)] < ∞. (8)

In particular, (7), (8) together imply that there exist δ, CM > 0 such that

E
[
eδ‖Mn+1‖

]
≤ CM , n ≥ 0. (9)

Using the Taylor expansion of the exponential function, we get

∞∑

m=0

δmE [‖Mn+1‖m]

m!
≤ CM , n ≥ 0. (10)

As each term in the above summation is positive, we can conclude that for all
n,m ≥ 0,

E[||Mn+1||m] ≤ CMm!

δm
. (11)

We shall be interested in m = 2, 4.

These bounds will play an important role in our error analysis. We next
state a formula due to Alekseev [1] that captures the difference between the
trajectory of a system and its (regular) perturbation, and may be viewed as a
‘non-linear variation of constants’ formula.

2.2 Alekseev’s formula

Consider the ODE
ẇ(t) = f(t, w(t)), t ≥ 0,

and its perturbed version,

u̇(t) = f(t, u(t)) + g(t, u(t)), t ≥ 0,

where f, g : R×Rd 7→ Rd, with:

• f(t, x) is measurable in t and continuously differentiable in x with bounded
derivatives uniformly w.r.t. t, and,

• g(t, x) is measurable in t and Lipschitz in x uniformly w.r.t. t.

8



Let w(t, t0, u0) and u(t, t0, u0) denote respectively the solutions to the above
non-linear systems for t ≥ t0, satisfying w(t0, t0, u0) = u(t0, t0, u0) = u0. Then
for t ≥ t0,

u(t, t0, u0) = w(t, t0, u0) +

∫ t

t0

Φ(t, s, u(s, t0, u0))g(s, u(s, t0, u0))ds, (12)

where Φ(t, s, w0) for any w0 ∈ Rd is the fundamental matrix of the linearized
system

φ̇(t) =
∂f

∂w
(t, w(t, s, w0))φ(t), t ≥ s, (13)

with Φ(s, s, w0) = Id, the d-dimensional identity matrix. That is, it is the
unique solution to the matrix linear differential equation

Φ̇(t, s, w0) =
∂f

∂w
(t, w(t, s, w0))Φ(t, s, w0)

with the aforementioned initial condition at t = s. The equation (12) is the
Alekseev nonlinear variation of constants formula [1] (see also Lemma 3, [11]).

The generalization of Alekseev’s nonlinear variation of constants for differing
initial conditions [7] is given by

u(t, t0, u0) = w(t, t0, w0) + Φ(t, t0, u0)(u0 − w0)

+

∫ t

t0

Φ(t, s, u(s, t0, u0))g(s, u(s, t0, u0))ds (14)

where the additional additive term captures the contribution due to differing
initial conditions. This term will decay exponentially under our assumption (†)
below.

2.3 Perturbation analysis

In view of the ODE approach described earlier, we consider the candidate ODE

ẋ(t) = h(x(t), y) (15)

where we have treated the y component as frozen at a fixed value in view
of its slow evolution (recall that ǫ << 1). We assume that this ODE has
a globally stable equilibrium λ(y) where λ is twice continuously differentiable
with bounded first and second derivatives. (Typically, this can be verified by
using the implicit function theorem.) In particular,

h(λ(y), y) = 0 ∀ y =⇒ h(λ(y(t)), y(t)) = 0 ∀ t ≥ 0.

Define z(t) = λ(y(t)), t ≥ 0. Then

ż(t) = ǫa∇λ(y(t))γ(y(t))

9



= ah(λ(y(t)), y(t)) + ǫa∇λ(y(t))γ(y(t))

= ah(z(t), y(t)) + ǫa∇λ(y(t))γ(y(t)) = ah̃(z(t), y(t))

for
h̃(z, y) := h(z, y) + ǫ∇λ(y)γ(y).

The corresponding Euler scheme would be

zn+1 = zn + ah̃(zn, yn).

The tracking algorithm (4) can therefore be equivalently written as:

xn+1 = xn + a
[
h(xn, yn) +Mn+1 + εn+1

]
(16)

= xn + a
[
h̃(xn, yn)− ǫ∇λ(yn)γ(yn) +Mn+1 + εn+1

]
(17)

= xn + a
[
h̃(xn, yn) + κn(yn)

]
, (18)

where,

κn(yn) = −ǫ∇λ(yn)γ(yn) +Mn+1 + εn+1. (19)

Let x̄(t) be the linearly interpolated trajectory of the stochastic approximation
iterates such that x̄(tk) = xk. That is, for tn ≡ na ∀n,

x̄(t) = x̄(tn) +
t− tn
a

[
x̄(tn+1)− x̄(tn)

]
, t ∈ [tn, tn+1]. (20)

Then from (18), we get

x̄(tn+1) = x̄(t0) +

n∑

k=0

ah̃(x̄(tk), y(tk))−
n∑

k=0

aǫ∇λ(y(tk))γ(y(tk))

+

n∑

k=0

aMk+1 +

n∑

k=0

aεk+1 (21)

= x̄(t0) +

n∑

k=0

∫ tk+1

tk

h̃(x̄(tk), y(tk))ds−
n∑

k=0

∫ tk+1

tk

ǫ∇λ(y(tk))γ(y(tk))ds

+

n∑

k=0

∫ tk+1

tk

Mk+1ds+

n∑

k=0

∫ tk+1

tk

εk+1ds. (22)

For k ≥ 0 and s ∈ [tk, tk+1], define perturbation terms:

ζ1(s) := h̃(x̄(tk), y(tk))− h̃(x̄(s), y(s)),

ζ2(s) := Mk+1,

ζ3(s) := εk+1,

ζ4(s) := −ǫ∇λ(y(tk))γ(y(tk)).
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Thus

x̄(tn+1) = x̄(t0) +

∫ tn+1

t0

h̃(x̄(s), y(s))ds

+

∫ tn+1

t0

(
ζ1(s) + ζ2(s) + ζ3(s) + ζ4(s)

)
ds.

Using (20),

x̄(t) = x̄(t0) +

∫ t

t0

h̃(x̄(s), y(s))ds+

∫ t

t0

(
ζ1(s) + ζ2(s) + ζ3(s) + ζ4(s)

)
ds.

(23)

Define
Ξ(t) = ζ1(t) + ζ2(t) + ζ3(t) + ζ4(t).

Consider the coupled systems

ż(t) = h̃(z(t), y(t)), (24)

ẏ(t) = ǫaγ(y(t)), (25)

and

˙̄x(t) = h̃(x̄(t), y(t)) + Ξ(t), (26)

ẏ(t) = ǫaγ(y(t)). (27)

The ODE (26) can be seen as a perturbation of the (24), with the perturbation
term being Ξ(t).

Let D(·, ·) ∈ R
d×d denote the Jacobian matrix of h (and therefore of h̃) in

the first argument, and Γ(·) ∈ R
d×d the Jacobian matrix of λ. Then the lin-

earization or ‘equation of variation’ of (24) is

ṙ(t) = D(z(t), y(t))r(t). (28)

For t ≥ s ≥ 0 and x, y ∈ R
d, let Φ(t, s;x0, y0) denote the fundamental matrix

for the time varying linear system (28), i.e., the solution to the matrix-valued
differential equation

Φ̇(t, s;x0, y0) = D(z(t), y(t))Φ(t, s;x0, y0), t ≥ s, (29)

with initial condition Φ(s, s;x0, y0) = I. Then by Alekseev’s formula,

x̄(t) = z(t) + Φ(t, t0; x̄(t0), y0)(x̄(t0)− z(t0)) +

∫ t

t0

Φ(t, s; x̄(s), y(s))Ξ(s)ds.

Define

̺n = Φ(tn, t0; x̄(t0), y0)(x̄(t0)− z(t0)) (30)

11



An =

n−1∑

k=0

∫ tk+1

tk

Φ(tn, s; x̄(s), y(s))
[
h̃(x̄(tk), y(tk))− h̃(x̄(s), y(s))

]
ds, (31)

Bn =
n−1∑

k=0

∫ tk+1

tk

Φ(tn, s; x̄(s), y(s))Mk+1ds, (32)

Cn =
n−1∑

k=0

∫ tk+1

tk

Φ(tn, s; x̄(tk), y(tk))Mk+1ds, (33)

Dn =

n−1∑

k=0

∫ tk+1

tk

Φ(tn, s; x̄(s), y(s))εk+1ds, (34)

En =

n−1∑

k=0

∫ tk+1

tk

Φ(tn, s; x̄(s), y(s))× ǫ∇λ(y(tk))γ(y(tk))ds. (35)

Then

x̄(tn) = z(tn) +

∫ tn

t0

Φ(tn, s; x̄(s), y(s))ζ1(s)ds+

∫ tn

t0

Φ(tn, s; x̄(s), y(s))ζ2(s)ds

+

∫ tn

t0

Φ(tn, s; x̄(s), y(s))ζ3(s)ds+

∫ tn

t0

Φ(tn, s; x̄(s), y(s))ζ4(s)ds+ ̺n

(36)

= z(tn) +An + (Bn − Cn) + Cn +Dn − En + ̺n. (37)

Therefore

||x̄(tn)− z(tn)|| ≤ ||An||+ ||Bn − Cn||+ ||Cn||+ ||Dn||+ ||En||+ ||̺n||.

Also

E
[
||x̄(tn)− z(tn)||2

]1/2 ≤ E
[
||An||2

]1/2
+ E

[
||En||2

]1/2
+ E

[
||Cn||2

]1/2
+

E
[
||Dn||2

]1/2
+ E

[
||Bn − Cn||2

]1/2
+ E

[
||̺n||2

]1/2
.

(38)

We shall individually bound the above error terms in the next section under the
important assumption of exponential stability of the equation of variation (28):

(†) There exists a β > 0 such that ∀ t > s ≥ 0 and x0, y0,

||Φ(t, s;x0, y0)|| ≤ CΦe
−β(t−s).

This seemingly restrictive assumption requires some discussion, we argue in
particular that some such assumption is essential if one is to obtain bounds
valid for all time.

To begin, since the idea is to have the parametrized o.d.e. (15), which is
a surrogate for the original iteration, track its unique asymptotically stable
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equilibrium parametrized by y as the parameter y ≈ y(t) changes slowly, it is
essential that its rate of approach to the equilibrium, dictated by the spectrum
of its linearized drift at this equilibrium, should be much faster than the rate
of change of the parameter. This already makes it clear that there will be a
requirement of minimum time scale separation for tracking to work at all.

A stronger motivation comes from the fact that the tracking error, given
exactly by the Alekseev formula, depends on the linearization of the o.d.e. itself
around its ideal trajectory z(·), which is a time-varying linear differential equa-
tion of the type ṙ(t) = A(t)r(t). It is well known in control theory that this can
be unstable even if the matrix A(t) is stable for each t, see, e.g., Example 8.1, p.
131, [40]. Stability is guaranteed to hold only in the special case of A(t) varying
slowly with time. The most general result in this direction is that of [42], which
we recall below as a sufficient condition for (†). (There have also been some
extensions thereof to nonlinear systems, see, e.g., [36].)

Consider the following time varying linear dynamical system:

ẋ(t) = [A(t) + P (t)]x(t) (39)

and assume the following for this perturbed system:

1. There exists Ā > 0 such that

lim sup
T↑∞

1

T

∫ t0+T

t0

||A(s)||ds ≤ Ā ∀t0.

2. There exists γ ∈ (0, 1], b > 0 and β > 0 sufficiently small in the sense
made precise in the theorem below, such that

n0+n∑

t=n0

||A(t2 + (t− 1)T )−A(t1 + (t− 1)T )|| ≤ Tb+ T γ(n+ 1)β ∀n, n0,

whenever |t2 − t1| ≤ T .

3. Let α(t) be the real part of the eigenvalue of A(t) whose real part is the
largest in absolute value. Then there exists ᾱ < 0 such that, for any
T > 0,

lim sup
N↑∞

1

N

n0+N∑

n=n0

α(s+ nT ) ≤ ᾱ ∀s, n0.

4. There exists δ > 0 such that

lim sup
T↑∞

∫ t0+T

t0

||P (s)||ds ≤ δ, ∀ t0.

13



Theorem 2.1 (Stability test for deterministic perturbations using eigenvalue
based characterization [42]). If the previously mentioned assumptions (A1) −
(A4) hold, the system ẋ(t) = (A(t) + P (t))x(t) is exponentially stable provided
we chose ǫ, δ > 0 small enough so that

ᾱ+ ǫ < 0,

and
ᾱ+ ǫ+Mǫδ < 0,

with Mǫ = 3(2(Ā+b)
ǫ + 1)p−1/2, where Ā, b, ᾱ are as defined in (A1)-(A4) and β

is small enough so that:

ᾱ+ ǫ+Mǫδ + 2(lnMǫ)
γ/(γ+1)[β(Mǫ + ǫ/(Ā+ b))]1/(γ+1) < 0.

The correspondence of the foregoing with our framework is given by A(·) ↔
D(·, ·), P (·) ↔ Ξ(·).

We note here that there are also some sufficient conditions for stability of
time-varying linear systems in terms of Liapunov functions, e.g., [49], [50], but
they appear not so easy to verify.

3 Error bounds

Here we obtain the error bounds through a sequence of lemmas.

3.1 Bound on D
n

Lemma 1. For Dn defined in (34),

E
[
||Dn||2

]1/2 ≤ CΦε
∗

β
(40)

Proof. We have

||Dn|| = ||
n−1∑

k=0

∫ tk+1

tk

Φ(tn, s; x̄(s), y(s))εk+1ds||

≤ ε∗
n−1∑

k=0

∫ tk+1

tk

||Φ(tn, s; x̄(s), y(s))||ds (41)

≤ CΦε
∗
∫ tn

t0

e−β(tn−s)ds (42)

≤ CΦε
∗

β
,

14



where (41) and (42) follow from (6) and (†) respectively. Therefore, for all
n ≥ 0, we have

E
[
||Dn||2

]1/2 ≤ CΦε
∗

β
. (43)

�

3.2 Bound on E
n

Lemma 2. For En defined in (35),

E
[
||En||2

]1/2 ≤ KγLλCΦǫ

β
(44)

where Kγ := max‖y‖≤Cγ
||γ(y)||.

Proof. We have,

||En|| = ||
n−1∑

k=0

∫ tk+1

tk

Φ(tn, s;x(s), y(s)) × ǫ∇λ(y(tk))γ(y(tk))ds||

≤ ǫ

n−1∑

k=0

∫ tk+1

tk

||Φ(tn, s;x(s), y(s))|| × ||∇λ(y(tk))|| × ||γ(y(tk))||ds, (45)

≤ ǫKγLλ

n−1∑

k=0

∫ tk+1

tk

||Φ(tn, s;x(s), y(s))||ds. (46)

Using (†),

||En|| ≤ ǫKγLλCΦ

∫ tn

t0

e−β(tn−s)ds (47)

≤ KγLλCΦǫ

β
. (48)

Hence

E
[
||En||2

]1/2 ≤ KγLλCΦǫ

β
. (49)

�

3.3 Bound on A
n

The next lemma is a variant of Lemma 5.5 of [43].

Lemma 3. For a suitable constant K1 > 0,
∫ tk+1

tk

e−β(tn−s)||x̄(s)− x̄(tk)||ds

≤ [K1 +Gh̃||x̄(tk)||+ ||Mk+1||]e−β(tn−tk+1)a2.

15



Proof. Using (20) and (1), for s ∈ [tk, tk+1],

||x̄(s)− x̄(tk)|| =
s− tk
a

||x̄(tk+1)− x̄(tk)||

= (s− tk)[||h̃(x̄(tk), y(tk)) +Mk+1 + εk+1||]
≤ (s− tk)[||h̃(x̄(tk), y(tk))||+ ||Mk+1||+ ||εk+1||]
≤ (s− tk)[Gh̃(1 + ||x̄(tk)||+ ||y(tk)||) + ||Mk+1||+ ε∗] (50)

≤ (s− tk)[Gh̃(1 + Cγ) +Gh̃||x̄(tk)||+ ||Mk+1||+ ε∗]

≤ (s− tk)[K1 +Gh̃||x̄(tk)||+ ||Mk+1||], (51)

where K1 = Gh̃(1 + Cγ) + ε∗. Also,

∫ tk+1

tk

(s− tk)e
−β(tn−s)ds ≤ e−β(tn−tk+1)a2.

Therefore
∫ tk+1

tk

e−β(tn−s)||x̄(s)− x̄(tk)||ds ≤

[K1 +Gh̃||x̄(tk)||+ ||Mk+1||]e−β(tn−tk+1)a2.

�

Lemma 4. For An as defined in (31),

E
[
||An||2

]1/2
= O(a).

Proof. We have

||An|| = ||
n−1∑

k=0

∫ tk+1

tk

Φ(tn, s;x(s), y(s)) ×
[
h̃(x̄(tk), y(tk))− h̃(x̄(s), y(s))

]
ds||

≤
n−1∑

k=0

∫ tk+1

tk

||Φ(tn, s;x(s), y(s))||

× ||
[
h̃(x̄(tk), y(tk))− h̃(x̄(s), y(s))

]
||ds

≤
n−1∑

k=0

∫ tk+1

tk

CΦe
−β(tn−s)Lh̃ ×

[
||x̄(tk)− x̄(s)||+ ||y(tk)− y(s)||

]
(52)

≤ CΦLh̃

n−1∑

k=0

[
[K1 +Gh̃||x̄(tk)||+ ||Mk+1||]e−β(tn−tk+1)a2

+Kγaǫ

∫ tk+1

tk

(s− tk)e
−β(tn−s)ds

]
(53)

≤ CΦLh̃

n−1∑

k=0

[
[K1 +Gh̃||x̄(tk)||+ ||Mk+1||]e−β(tn−tk+1)a2

16



+Kγaǫe
−β(tn−tk+1)a2

]
(54)

= CΦLh̃

n−1∑

k=0

[K1 +Gh̃||x̄(tk)||+Kγaǫ+ ||Mk+1||]× e−β(tn−tk+1)a2

≤ aCΦLh̃

(
(K1 +Kγaǫ)µ +

n−1∑

k=0

(
Gh̃||x̄(tk)||+ ||Mk+1||

)
ae−β(tn−tk+1)

)
,

where µ := 1
β . Equation (53) follows from Lemma 3. Denote the terms CΦLh̃,

K1+Kγaǫ,
∑n−1

k=0 ||Mk+1||ae−β(tn−tk+1) and
∑n−1

k=0 a||x̄(tk)||e−β(tn−tk+1) by K2,

K3, Fn and F̃n. Note that K3 is O(1). Then

||An|| ≤ aK2

(
K3µ+ Fn +Gh̃F̃n

)
,

E[||An||2]1/2 ≤ aK2

(
K3µ+ E[F 2

n ]
1/2 +Gh̃E[F̃

2
n ]

1/2

)
.

Now,

E[F̃ 2
n ]

1/2 =

n−1∑

k=0

(
aE[||x̄(tk)||2]1/2e−β(tn−tk+1)

)

≤ C∗µ (55)

and

E[F 2
n ]

1/2 =
n−1∑

k=0

E[||Mk+1||2]1/2ae−β(n−k)a

≤
n−1∑

i=0

√
2CM

δ
ae−β(n−k)a

≤ K4µ (56)

where K4 =
√
2CM

δ . Therefore

E[||An||2]1/2 ≤ aK2

(
K3µ+K4µ+Gh̃C

∗aµ

)
.

Hence E[||An||2]1/2 = O(a). �

3.4 Bound on B
n
− C

n

Lemma 5. For Bn and Cn defined in (32) and (33)

E[||Bn − Cn||2]1/2 = O(a).

17



Proof. From (32) and (33) we have

Bn − Cn =

n−1∑

k=0

∫ tk+1

tk

[
Φ(tn, s; x̄(s), y(s))− Φ(tn, s; x̄(tk), y(tk))

]
Mk+1ds

Therefore

||Bn − Cn|| = ||
n−1∑

k=0

∫ tk+1

tk

[
Φ(tn, s; x̄(s), y(s))− Φ(tn, s; x̄(tk), y(tk))

]
Mk+1ds||

≤
n−1∑

k=0

∫ tk+1

tk

||Φ(tn, s; x̄(s), y(s))− Φ(tn, s; x̄(tk), y(tk))||

× ||Mk+1||ds.

From (28), we know that Φ(t, s; x̄(s), y(s)) and Φ(t, s; x̄(tk), y(tk)) are funda-
mental matrices for the linear systems given by: for t ≥ s,

χ̇(t, s; x̄(s), y(s)) =D(z(t, s; x̄(s), y(s)), y(t, s; y(s)))χ(t, s; x̄(s), y(s)), (57)

and

˙̃χ(t, s; x̄(tk), y(tk)) =D(z(t, s; x̄(tk), y(tk)), y(t, s; y(tk)))χ̃(t, s; x̄(tk), y(tk)).
(58)

So Φ(t, s; x̄(s), y(s)) and Φ(t, s; x̄(tk), y(tk)) satisfy the following matrix valued
differential equations

Φ̇(t, s; x̄(s), y(s)) =D(z(t, s; x̄(s), y(s)), y(t, s; y(s)))Φ(t, s; x̄(s), y(s)), (59)

and

Φ̇(t, s; x̄(tk), y(tk)) =D(z(t, s; x̄(tk), y(tk)), y(t, s; y(tk)))Φ(t, s; x̄(tk), y(tk)).
(60)

For each column indexed by j, the differential equations (59) and (60) can be
equivalently written as

Φ̇j(t, s; x̄(s), y(s)) = D(z(t, s; x̄(s), y(s)), y(t, s; y(s)))Φj(t, s; x̄(s), y(s)), (61)

and

Φ̇j(t, s; x̄(tk), y(tk)) = D(z(t, s; x̄(s), y(s)), y(t, s; y(s)))Φj(t, s; x̄(tk), y(tk)) +[
D(z(t, s; x̄(tk), y(tk)), y(t, s; y(tk)))

−D(z(t, s; x̄(s), y(s)), y(t, s; y(s)))
]

× Φj(t, s; x̄(tk), y(tk)). (62)

18



Treating (62) as a perturbation of (61) and applying Alexseev’s formula (12)3

to each column of Φ(•, •; •, •), we have

Φj(tn, s; x̄(tk), y(tk))− Φj(tn, s; x̄(s), y(s))

=

∫ tn

s

Φ(tn, t; x̄(t), y(t))

×
[
D(z(t, s; x̄(tk), y(tk)), y(t, s; y(tk)))−D(z(t, s; x̄(s), y(s)), y(t, s; y(s)))

]

× Φj(t, s; x̄(tk), y(tk))dt (63)

Combining the equations (63) for all columns, we get

Φ(tn, s; x̄(tk), y(tk))− Φ(tn, s; x̄(s), y(s))

=

∫ tn

s

Φ(tn, t; x̄(s), y(s))

×
[
D(z(t, s; x̄(tk), y(tk)), y(t, s; y(tk)))−D(z(t, s; x̄(s), y(s)), y(t, s; y(s)))

]

× Φ(t, s; x̄(tk), y(tk))dt

Therefore

||Bn − Cn|| ≤
n−1∑

k=0

∫ tk+1

tk

∫ tn

s

||Φ(tn, t; x̄(s), y(s))||

× ||
[
D(z(t, s; x̄(tk), y(tk)), y(t, s; y(tk)))

−D(z(t, s; x̄(s), y(s)), y(t, s; y(s)))
]
||

× ||Φ(t, s; x̄(tk), y(tk))|| × ||Mk+1||dt ds

≤
n−1∑

k=0

∫ tk+1

tk

∫ tn

s

C2
ΦLD × e−β(tn−s) × e−β(t−s)×

[
||z(t, s; x̄(s), y(s))− z(t, s; x̄(tk), y(tk))||

+ ||y(s)− y(tk)||
]
× ||Mk+1||dt ds (64)

≤
n−1∑

k=0

∫ tk+1

tk

∫ tn

s

C2
ΦLD × e−β(tn−s) × e−β(t−s)×

[[
||x̄(s)− x̄(tk)||+ ||y(s)− y(tk)||

]
CΦe

−β(t−s)

+ ||y(s)− y(tk)||
]
× ||Mk+1||dt ds, (65)

where (64) follows from (†) and the Lipschitz property of D(·, ·) while (65)

3in fact, the classical variation of constants formula for linear systems which it generalizes
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follows from (14) and (†). We split the analysis into two terms as follows:

Gn :=
n−1∑

k=0

∫ tk+1

tk

∫ tn

s

C3
ΦLDe

−β(tn−s)||x̄(s)− x̄(tk)|| × e−2β(t−s) × ||Mk+1||dt ds

=

n−1∑

k=0

∫ tk+1

tk

C3
ΦLDe

−β(tn−s)||x̄(s)− x̄(tk)|| ×
1− e−2β(tn−s)

2β
× ||Mk+1||ds

= K5

n−1∑

k=0

∫ tk+1

tk

e−β(tn−s) × ||x̄(s)− x̄(tk)|| ×
(
1− e−2β(tn−s)

)
× ||Mk+1||ds

≤ K5

n−1∑

k=0

∫ tk+1

tk

e−β(tn−s)||x̄(s)− x̄(tk)|| × ||Mk+1||ds

≤ K5

n−1∑

k=0

a2e−β(tn−tk+1)
[
K1||Mk+1||+ ||Mk+1||2 +Gh̃||x̄(tk)|| ||Mk+1||

]

(66)

where K5 denotes C3
ΦLD/2β and (66) follows from Lemma 3,

Hn :=

n−1∑

k=0

∫ tk+1

tk

∫ tn

s

C3
ΦLD × e−β(tn−s)||y(s)− y(tk)||e−2β(t−s)||Mk+1||dtds

+

n−1∑

k=0

∫ tk+1

tk

∫ tn

s

C2
ΦLD × e−β(tn−s)||y(s)− y(tk)||e−β(t−s)||Mk+1||dtds

=

n−1∑

k=0

∫ tk+1

tk

C3
ΦLDe

−β(tn−s)||y(s)− y(tk)||
[
1

2β

(
1− e−2β(tn−s)

)]
||Mk+1||ds

+

n−1∑

k=0

∫ tk+1

tk

C2
ΦLDe−β(tn−s)||y(s)− y(tk)||

[
1

β

(
1− e−β(tn−s)

)]
||Mk+1||ds

≤
n−1∑

k=0

∫ tk+1

tk

C2
Φ(

1
2 + CΦ)LD

β
e−β(tn−s)Kγaǫ(s− tk)||Mk+1||ds

≤ K6

n−1∑

k=0

e−β(tn−tk+1)a3||Mk+1|| (67)

where (67) follows from (5) and K6 := (12 + CΦ)C
2
ΦKγLDǫ/β. Further define

G1,n, G2,n and G3,n as follows

G1,n =

n−1∑

k=0

ae−β(tn−tk+1)||Mk+1||,

G2,n =

n−1∑

k=0

ae−β(tn−tk+1)||Mk+1||2,
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G3,n =

n−1∑

k=0

ae−β(tn−tk+1)||x̄(tk)|| ||Mk+1||.

Then

||Bn − Cn|| ≤ Gn +Hn

≤ K5a(K1Gn,1 +Gn,2 +Gh̃Gn,3) +
(
K6a

2Gn,1

)
.

Therefore

E[||Bn − Cn||2]1/2 ≤ K5a
(
K1E[G

2
n,1]

1/2 + E[G2
n,2]

1/2 +Gh̃E[G
2
n,3]

1/2
)
+

a2K6E[G
2
n,1]

1/2

We now bound each of the terms in the previous expression. Using a calculation
similar to the one used for (56), we have

E[G2
n,1]

1/2 ≤ K4µ, (68)

E[G2
n,2]

1/2 =

n−1∑

k=0

E[||Mk+1||4]1/2ae−β(n−k)a

≤
n−1∑

k=0

√
24CM

δ2
ae−β(n−k)a

≤ K7

( n−1∑

k=0

ae−β(n−k)a

)

≤ K7µ, (69)

where K7 =
√
24CM/δ2,

E[G2
n,3]

1/2 = E

[ n−1∑

k=0

ae−β(tn−tk+1)E
[
||x̄(tk)||2||Mk+1||2

]1/2
]

≤
n−1∑

k=0

ae−β(tn−tk+1)

(
E
[
||x̄(tk)||4

]
E
[
||Mk+1||4

])1/4

≤
n−1∑

k=0

ae−β(tn−tk+1)C∗
(
E
[
||Mk+1||4

])1/2

≤
n−1∑

k=0

ae−β(tn−tk+1)C∗
(
(24CM )1/4

δ

)

≤ K8µ, (70)

where K8 =
C∗(24CM )1/4

δ
.
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Using (68), (69) and (70), we have

E[||Bn − Cn||2]
1
2 ≤ K5a

(
K1K4µ+K7µ+Gh̃K8µ

)
+ a2K6K8µ

= O(a). (71)

�

3.5 Bound on C
n

Lemma 6. For Cn defined in (33)

E[||Cn||2]1/2 = O(max{a1.5d3.25, a0.5d2.5}).

Proof. It is easy to verify that Cn satisfies the condition for the martingale
concentration inequality provided in Theorem 5.1 in Appendix, with

αk,n =

∫ tk+1

tk

Φ(tn, s, x̄(tk), y(tk))ds,

γ1 =
CΦ

β
, γ2 = 1, βn = a,

for k, n ≥ 0. Thus,

E[||Cn||2] =
∫ ∞

0

P (||Cn||2 ≥ s)ds

=

∫ ∞

0

P (||Cn|| ≥
√
s)ds

Using the martingale concentration inequality provided in 5.1 in Appendix, we
have

E[||Cn||2] =
∫ K9

0

2d2exp
(−cs

d3a

)
ds

+

∫ ∞

K9

2d2exp
(−c

√
s

d3/2a

)
ds, (72)

where K9 =
CMγ1d

1.5

δ
. Analysing the terms separately, we have

∫ K9

0

2d2exp
(−cs

d3a

)
ds =

2d5a

c

(
1− exp

(−cK9

d3a

))

≤
(2d5

c

)
a, (73)

and
∫ ∞

K9

2d2exp
(−c

√
s

d3/2a

)
ds =

4d5a

c2
exp

(−c
√
K9

d3/2a

)(
a+

c
√
K9

d3/2

)
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≤ 4d5a

c2

( ad3/2

c
√
K9

)(
a+

c
√
K9

d3/2

)
(74)

= O(max{a3d6.5, a2d5}), (75)

where (74) follows from the fact that e−1/a ≤ a for a > 0. From (73) and (75),
we have

E[||Cn||2] ≤
(
2d5

c

)
a+O(max{a3d6.5, a2d5})

= O(max{a3d6.5, ad5})
∴ E[||Cn||2]1/2 = O(max{a1.5d3.25, a0.5d2.5}).

�

4 Main result

Combining the foregoing bounds leads to our main result stated as follows.

Theorem 4.1. The mean square deviation of tracked iterates from a non-
stationary trajectory satisfies:

E
[
||xn − λ(y(n))||2

]1/2 ≤ CΦε
∗

β
+

KγLλCΦǫ

β

+O(max{a1.5d3.25, a0.5d2.5})
+ CΦe

−β(tn−t0)||x0 − λ(y(0))|| (76)

Proof. Using (38), (†) and lemmas 1-6, we get

E
[
||x̄(tn)− z(tn)||2

]1/2 ≤ CΦε
∗

β
+

KγLλCΦǫ

β
+O(a)

+O(max{a1.5d3.25, a0.5d2.5})
+ CΦe

−β(tn−t0)||x̄(t0)− z(t0)||

=
CΦε

∗

β
+

KγLλCΦǫ

β

+O(max{a1.5d3.25, a0.5d2.5})
+ CΦe

−β(tn−t0)||x̄(t0)− z(t0)||.

The claim follows. �

Remark: 1. The O(·) notation is used above to isolate the dependence
on the stepsize a. The exact constants involved are available in the relevant
lemmas, but are suppressed in order to improve clarity.
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2. The linear complexity of the error bound in ε∗ and ǫ is natural to expect,
these being contributions from bounded additive error component εn and rate
of variation of the tracking signal, respectively. The O(·) term is due to the
martingale noise and discretization. The last term accounts for the effect of
initial condition.

3. By setting ǫ = 0 in (76), we can recover as a special case a bound valid
for all time for a stationary target. Then y(·) ≡ y∗, a constant, and z(·) ≡ x∗ =
λ(y∗), also a constant, viz., an equilibrium for the system ẋ(t) = h(x(t), y∗).

5 Conclusion and Future Work

We analyzed a constant step-size stochastic approximation algorithm for track-
ing a slowly varying dynamical system and obtained a non-asymptotic bound
valid for all time, with dependence on step-size and dimension explicitly given.
The latter in particular provides insight into step-size selection in high dimen-
sional regime.

A natural extension would be to the problem of tracking a stochastic dy-
namics. Indeed, a suitable extension of Alekseev’s formula is available for this
purpose [48], which is much more complex.

24



Appendix: A martingale concentration inequality

We state here the martingale concentration inequality we have used, from
[43], which in turn is a slight adaptation of the results of [33].

Theorem 5.1. Let Sn =
∑n

k=1 αk,nXk, where Xk is a R
d valued Fk - adapted

martingale difference sequence and αk,n is a sequence of bounded pre-visible real
valued d× d random matrices, i.e., αk,n ∈ Fk−1 and there exists finite number,
say Ak,n, such that ||αk,n|| ≤ Ak,n. Suppose that for some δ, C > 0

E
[
eδ||Xk||

∣∣∣∣Fk−1

]
≤ C, k ≥ 1.

Further assume that there exist constants γ1, γ2 > 0, independent of n, so
that

∑n
k=1 Ak,n ≤ γ1 and max1≤k≤n Ak,n ≤ γ2βn, where βn is some positive

sequence. Then for η > 0, there exists some constant c > 0 depending on
δ, C, γ1, γ2 such that

P (||Sn|| > η) ≤




2d2e

− cη2

d3βn if η ∈
(
0, Cγ1d

1.5

δ

]
,

2d2e
− cη

d1.5βn otherwise.
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