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Abstract

We present a Reinforcement Learning (RL) algorithm to solve infinite horizon asymptotic Mean
Field Game (MFG) and Mean Field Control (MFC) problems. Our approach can be described as a
unified two-timescale Mean Field Q-learning: The same algorithm can learn either the MFG or the
MFC solution by simply tuning the ratio of two learning parameters. The algorithm is in discrete
time and space where the agent not only provides an action to the environment but also a distribution
of the state in order to take into account the mean field feature of the problem. Importantly, we
assume that the agent can not observe the population’s distribution and needs to estimate it in a
model-free manner. The asymptotic MFG and MFC problems are also presented in continuous time
and space, and compared with classical (non-asymptotic or stationary) MFG and MFC problems.
They lead to explicit solutions in the linear-quadratic (LQ) case that are used as benchmarks for the
results of our algorithm.
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1 Introduction

Reinforcement learning (RL) is a branch of machine learning (ML) which studies the interactions of an
agent within an environment in order to maximize a reward signal. RL algorithms solve Markov Decision
Processes (MDP) based on trials and errors. At each discrete time n, the agent observes the state of the
environment Xn and chooses an action An. Due to the agent’s action, the environment evolves to a state
Xn`1 and assigns a reward rn`1. The goal of the agent is to find the optimal strategy π which assigns to
each state of the environment the optimal action in order to maximize the aggregate discounted rewards.
A complete overview on the evolution of this field is given in [28]. The Q-learning method was introduced
by [29] to solve a discrete time MDP with finite state and action spaces. It is based on the evaluation
of the optimal action-value table, Qpx, aq, which represents the expected aggregate discounted rewards
when starting in state x and choosing the first action a, i.e.

Q˚px, aq “ max
π

E

«

8
ÿ

n“0

γnrn`1

ˇ

ˇ

ˇ
X0 “ x,A0 “ a

ff

, (1)
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where rn`1 “ rpXn, πpXnqq is the instantaneous reward, γ P p0, 1q is a discounting factor, and Xn`1 “

bpXn, πpXnqq. The maximum is taken over strategies (or policies) π, which are functions of the state
taking values in some action space. Since the state’s dynamics b (and sometimes the reward function r)
are unknown to the agent, the algorithm is characterized by the trade-off between exploration of the
environment and exploitation of the current available information. This is typically accomplished by
the implementation of an ε-greedy policy. The greedy action which maximizes the immediate reward is
chosen with probability 1´ ε and a random action otherwise, i.e.

πεpxq “

"

a P UnifpAq, with probability ε,
a˚ “ arg maxaPAQpx, aq, with probability 1´ ε.

(2)

Note that this is the randomized policy which will be used in the algorithm presented in Section 4, but
as the optimal strategies will turn out to be deterministic (as ε goes to zero over learning episodes), in
the following, we present the problems and the Q-learning approach only using deterministic policies
called controls and denoted by α instead of π (see [25] for additional details on randomized policies).

On the other hand, and to summarize, mean field games are the result of the application of mean
field techniques from physics into game theory. The mean field interaction is introduced to describe the
behavior of a large number N of indistinguishable players with symmetric interactions. The complexity
of the system would be intractable if we were to describe all the pairwise interactions. A solution to
this problem is given by describing the interactions of each player i with the empirical distribution of
the other players. As the number of players increases, the impact of each of them on the empirical
distribution decreases. By the principle of propagation of chaos (law of large numbers) each player becomes
asymptotically independent from the others and its interaction is with its own distribution making the
statistical structure of the system simpler. Two types of mean field problems can be distinguished between
a mean field game and a mean field control depending on the goal the agents try to achieve. The aim of a
mean field game is to find an equivalent of a Nash equilibrium in a non-cooperative N -player game when
the number of players becomes large. On the other hand, a mean field control problem analyzes the social
optimum in a cooperative game within a large population. Since the seminal works [23], and [22, 21], the
research in mean field game theory attracted a huge interest. We refer to the extensive works [8], and [4]
for further details. Connections between machine learning and mean field theory have been proposed in
the recent literature. Some model-based methods have first been introduced in [15, 9, 10] by combining
neural network approximation tools and stochastic gradient descent. Furthermore, model-free methods
and links with reinforcement learning have also attracted a surge of interest. [32] analyzes the benefits
that a mean field (local) interaction brings in a multi-agent reinforcement learning (MARL) algorithm
when the number of player is finite. [31] uses inverse reinforcement learning to learn the dynamics of a
mean field game on a graph. [19] defines a simulator based Q-learning algorithm to solve a mean field
game with finite state and action spaces. [27] designs a gradient based algorithm to solve cooperative
games (MFC) and a two-timescale approach to solve non-cooperative games (MFG) with finite state
and action spaces, analogously to [24]. Convergence of actor-critic method for linear-quadratic MFG [16]
and convergence regularized Q-learning for MFG with finite state and action spaces [1] have also been
proved. To learn MFC optima, model-free policy gradient methods have been proved to converge for LQ
problems in [11], whereas Q-learning for a “lifted” MDP on the space of distributions has been introduced
in [12]. To learn MFG equilibria, the fictitious play scheme has been introduced in [7], assuming the
best response can be computed exactly. [13] analyses the propagation of error when the best response is
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computed approximately in a model-free setting, while [26] extends the analysis of the fictitious play
scheme in continuous time of learning. Similarly to our approach, [30] studies a single-loop fictitious play
algorithm in which the state and the policy are updated at each iteration. Fictitious play combined with
deep neural networks has also been used to compute Nash equilibria in multi-agent games [20].

In this paper, we propose a mean field Q-learning algorithm which is able to solve the mean field
game or mean field control problem depending on the tuning of the parameters and the rate of update
of the distribution. Differently from the approach developed by [19], the algorithm does not require a
simulator of the population simplifying its application to real world problems. It exploits the mean field
limit transposing the interaction of the player with the population to the interaction of the player with
herself.

In Section 2 we formulate in discrete time and space the type of infinite horizon Asymptotic MFG
and MFC problems that our algorithm will address. Comparison with classical (non-asymptotic) and
stationary problems are also made. In Section 3, we recast them as a two-timescale problem of Borkar’s
type [5, 6] which provides convergence results. The algorithm itself is presented in Section 4. In
Section 5, we show numerical results with comparison to the benchmark case of discrete time and space
approximations for continuous time and space linear-quadratic problems for which we have explicit
formulas derived in Appendix A.

2 Mean Field Game and Mean Field Control Problems

We start by presenting three formulations of MFG and MFC problems: non-asymptotic, asymptotic, and
stationary. All these problems are on an infinite horizon and for the sake of consistency with the RL
literature, we present them in a discrete time and space framework. We will however resort to continuous
time and space models In Section 5 in order to obtain simple benchmarks. Note that, as customary in
the MFG literature, without loss of generality, we minimize a cost instead of maximizing a reward.

Let X and A be finite sets corresponding to states and actions. We denote by ∆|X | the simplex in
dimension |X |, which we identify with the space of probability measures on X . Let p : XˆAˆ∆|X | Ñ ∆|X |

be a transition kernel. We will sometimes view it as a function:

p : X ˆ X ˆAˆ∆|X | Ñ r0, 1s, px, x1, a, µq ÞÑ ppx1|x, a, µq,

which will be interpreted as the probability, at any given time step, to jump to state x1 when starting
from state x and using action a and when the population distribution is µ.

Let f : X ˆAˆ∆|X | Ñ R be a running cost function. We interpret fpx, a, µq as the one-step cost,
at any given time step, incurred to a representative agent who is at state x and uses action a while the
population distribution is µ. For a random variable X, we denote its law by LpXq. We will focus on
feedback controls, i.e., functions of the state of the agent and possibly of time.

2.1 Non-asymptotic formulations

In the usual formulation for time-dependent MFG and MFC, the interactions between the players are
through the distribution of states at the current time. More precisely, in a MFG, one typically looks for
pα̂, µ̂q where α̂ : NˆX Ñ A and µ̂ “ pµ̂nqně0 P p∆

|X |qN is a flow of probability distributions on X , such
that the following two conditions hold:
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1. Optimality of the best response map: α̂ is the minimizer of

α ÞÑ JMFGpα; µ̂q “ E

«

`8
ÿ

n“0

γnfpXα,µ̂
n , αnpX

α,µ̂
n q, µ̂nq

ff

,

where αnp¨q :“ αpn, ¨q and the process Xα,µ̂ follows the dynamics given by:

Xα,µ̂
n`1 „ p

´

¨|Xα,µ̂
n , αnpX

α,µ̂
n q, µ̂n

¯

with initial distribution Xα,µ̂
0 „ µ0;

2. Fixed point condition: µ̂n “ LpX α̂,µ̂
n q for every n ě 0.

In a MFC problem, the goal is to find α˚ such that the following condition holds: α˚ is the minimizer
of

α ÞÑ JMFCpαq “ E

«

`8
ÿ

n“0

γnfpXα
n , αnpX

α
n q,LpXα

n qq

ff

,

where the process Xα follows the dynamics:

Xα
n`1 „ p p¨|Xα

n , αnpX
α
n q,LpXα

n qq

with initial distribution Xα
0 „ µ0. Note that p is the same transition probability function as for the

MFG above but we plug the law LpXα
n q of Xα

n instead of a given distribution µ̂n. In other words, the
MFC problem is of McKean-Vlasov (MKV) type.

We will sometimes use the notation µ˚ “ µα˚ for the optimal distribution in the MFC. Note that the
objective function in the MFC setting can be written in terms of the objective function in the MFG as:

JMFCpαq “ JMFGpα;µαq,

where µαn “ LpXα
n q for all n ě 0. However, in general,

JMFCpα˚q “ JMFGpα˚;µ˚q ‰ JMFGpα̂; µ̂q.

In these two problems, the equilibrium control α̂ or the optimal control α˚ usually depend on time
due to the dependence of p and f on the mean field flow, which evolves with time.

Although these are the usual formulations of MFG and MFC problems, in order to draw connections
with reinforcement learning more directly, we turn our attention to formulations in which the control is
independent of time. That is naturally the case in some applications, and, roughly speaking, it is also in
the spirit of an individual player trying to optimally join a crowd of players already in the long-time
asymptotic equilibrium. This will be made more precise in the following section.
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2.2 Asymptotic formulations

We consider the following MFG problem: Find pα̂, µ̂q where α̂ : X Ñ A and µ̂ P ∆|X |, such that the
following two conditions hold:

1. α̂ is the minimizer of

α ÞÑ JAMFGpα; µ̂q “ E

«

`8
ÿ

n“0

γnfpXα,µ̂
n , αpXα,µ̂

n q, µ̂q

ff

,

where the process Xα,µ̂ follows the transitions:

Xα,µ̂
n`1 „ p

´

¨|Xα,µ̂
n , αpXα,µ̂

n q, µ̂
¯

with initial distribution Xα,µ̂
0 „ µ0;

2. µ̂ “ limnÑ`8 LpX α̂,µ̂
n q.

We stress that in this problem the control is a function of the state only and does not depend on time,
as b and f depend only on the limiting distribution but not on time. Intuitively, this problem corresponds
to the situation in which an infinitesimal player wants to join a crowd of players who are already in the
asymptotic regime (as time goes to infinity). This stationary distribution is a Nash equilibrium if the
new player joining the crowd has no interest in deviating from this asymptotic behavior.

We also consider the following MFC problem: Find α˚ such that the following condition holds: α˚ is
the minimizer of

α ÞÑ JAMFCpαq “ E

«

`8
ÿ

n“0

γnfpXα
n , αpX

α
n q, µ

αq

ff

,

where the process Xα follows the transitions

Xα
n`1 „ p p¨|Xα

n , αpX
α
n q, µ

αq

with initial distribution Xα
0 „ µ0, and with the notation µα “ limnÑ`8 LpXα

n q.
We will sometimes use the shorthand notation µ˚ “ µα

˚ for the optimal distribution in the MFC
setting. Here too, the control is independent of time, and p and f depend only on the limiting distribution.
Intuitively, this problem can be viewed as the one posed to a central planner who wants to find the
optimal stationary distribution such that the cost for the society is minimal when a new agent joins the
crowd.

Note that in this formulation again, the objective function in the MFC setting can be written in
terms of the objective function in the MFG as:

JAMFCpαq “ JAMFGpα;µαq,

with the notation µα “ limnÑ`8 LpXα
n q.

Remark 1. Although the AMFG and AMFC problems in this section are defined using an initial
distribution µ0 for the state process, one expects that under suitable conditions, ergodicity in particular,
the optimal controls α̂ and α˚ are independent of this initial distribution.
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2.3 Stationary formulations

Another formulation with controls independent of time consists in looking at the situation in which the
new agent joining the crowd starts with a position drawn according to the ergodic distribution of the
equilibrium control or the optimal control. This type of problems has been considered e.g. in [19], [27],
and can be described as follows.

The stationary MFG problem is to find pα̂, µ̂q where α̂ : X Ñ A and µ̂ P ∆|X |, such that the following
two conditions hold:

1. α̂ is the minimizer of

α ÞÑ JSMFGpα; µ̂q “ E

«

`8
ÿ

n“0

γnfpXα,µ̂
n , αpXα,µ̂

n q, µ̂q

ff

,

where the process Xα,µ̂ follows the SDE

Xα,µ̂
n`1 „ p

´

¨|Xα,µ̂
n , αpXα,µ̂

n q, µ̂
¯

,

and starts with distribution Xα,µ̂
0 „ µ̂;

2. The process X α̂,µ̂ admits µ̂ as invariant distribution (so µ̂ “ LpX α̂,µ̂
n q for all n ě 0).

The key difference with the Asymptotic MFG formulation is that here the process starts with the
invariant distribution µ̂. The control is a function of the state only and does not depend of time, and p
and f depend only on this stationary distribution.

The stationary MFC problem is defined as follows: Find α˚ such that the following condition holds:
α˚ is the minimizer of

α ÞÑ JSMFCpαq “ E

«

`8
ÿ

n“0

γnfpXα
n , αpX

α
n q, µ

αq

ff

,

where the process Xα follows the MKV dynamics

Xα
n`1 „ p p¨|Xα

n , αpX
α
n q, µ

αq ,

with initial distribution Xα
0 „ µα, and such that µα is the invariant distribution of Xα (assuming it

exists).
To conclude, let us mention that there is yet another formulation, in which the solution is stationary

but depends on the initial distribution, see [4, Chapter 7].

2.4 Connecting the three formulations

Denoting by α̂MFG, α̂AMFG, and α̂SMFG, the MFG equilibrium strategies respectively in the non-
asymptotic, asymptotic, and stationary formulations, we expect

#

α̂MFG
n pxq Ñ α̂AMFGpxq, @x, as nÑ `8,

α̂AMFGpxq “ α̂SMFGpxq, @x.
(3)
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Similarly denoting by α˚MFC , α˚AMFC , and α˚SMFC , the MFC optimal controls respectively in the
non-asymptotic, asymptotic, and stationary formulations, we expect

#

α˚MFC
n pxq Ñ α˚AMFCpxq, @x, as nÑ `8,

α˚AMFCpxq “ α˚SMFCpxq, @x.
(4)

In fact, we have the following result.

Theorem 1. Consider the set of admissible controls to be defined as the set of controls α such that the
process pXα

n qně0 is an irreducible and aperiodic Markov process on the finite space X. If a solution for
the asymptotic MFG (resp. MFC) exists, then it is equal to the solution of the corresponding stationary
MFG (resp. MFC) and vice versa.

Proof. Let us consider the pair pα̂AMFG, µ̂AMFGq solution of an asymptotic MFG. The optimal control
α̂AMFG is an optimizer over the set of admissible controls such that the process pXα

n qně0 is an irreducible
Markov process and admits a limiting distribution which is then the unique invariant distribution
using the control α̂AMFG. Note that the control α̂AMFG doesn’t depend on the initial distribution µ0

and consequently µ̂AMFG doesn’t either. Therefore, pα̂AMFG, µ̂AMFGq is the solution of the AMFG
starting from µ̂AMFG, which is the corresponding stationary MFG problem. Thus, we deduce the
desired relation α̂AMFG “ α̂SMFG. A similar argument for MFC problems applies and shows that
α˚AMFC “ α˚SMFC .

Remark 2. In terms of practical applications, the asymptotic formulation (AMFG and AMFC) seems to
be the most appropriate, and if one is interested in the optimal controls, Theorem 1 shows that solving
the asymptotic games also gives the solutions to the corresponding stationary games. Additionally, (3)
and (4) indicate that it also gives the long time solutions to the corresponding time-dependent games.
Developing Q-learning algorithms for solving time-dependent finite horizon games is addressed in our
forthcoming paper [2].

In Appendix A, we provide explicit solutions for MFG, AMFG, SMFG, MFC, AMFC, and SMFC,
in the case of continuous time, continuous space Linear-Quadratic stochastic differential games. We
verify that (3) and (4), and therefore, Theorem 1, are satisfied in that case as well. In Section 5, discrete
approximations of these games will also serve as benchmarks for our algorithm described in Section 4.

3 A unified view of learning for MFG and MFC

In this section we draw a connection between MFG, MFC, Q-learning and Borkar’s two timescale
approach [5, 6].
The definitions of MFG and MFC reveal that the two formulations are very similar and both involve
an optimization and a distribution. This leads to the idea of designing an iterative procedure which
would update the value function and the distribution. However, in the MFG, the distribution is frozen
during the optimization and then a fixed point condition is enforced, whereas in the MFC problem
the distribution is directly linked to the control, which implies that it should change instantaneously
when the control function is modified. Hence, to compute the solutions using an iterative algorithm, the
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updates should be done differently for each problem: intuitively, in a MFG, the value function should be
updated in an inner loop and the distribution in an outer loop, whereas it should be the converse for
MFC. More generally, we can update both functions in turn but at different rates. Then, to compute the
MFG solution, the distribution should be updated at a lower rate than the value function. For MFC, it
should be the converse. In the rest of this subsection, we formalize these ideas.

3.1 Action-value function in the classical Q-learning setup

One of the most popular methods in RL is the so-called Q-learning [29]. Instead of looking at the value
function V as in a PDE approach for optimal control, this method is based on the action-value function,
also called Q-function, which takes as inputs not only a state x but also an action a. Intuitively, in a
standard (non mean-field) MDP, this function quantifies the optimal cost-to-go of an agent starting at x,
using action a for the first step and then acting optimally afterwards. In other words, the value of px, aq
is the the cost of using a when in state x, plus the minimal cost possible after that, i.e. the cost induced
by using the optimal control; see e.g. [28, Chapter 3] for more details. The definition of the optimal
Q-function, denoted by Q˚, is similar to (1), up to a change of sign since we consider a cost f and a
minimization problem instead of a reward r and a maximisation problem, namely,

Q˚px, aq “ min
α

E

«

8
ÿ

n“0

γnfpXn, αpXnqq

ˇ

ˇ

ˇ
X0 “ x,A0 “ a

ff

.

Using dynamic programming, it can be shown that Q˚ is the solution of the Bellman equation:

Q˚px, aq “ fpx, aq ` γ
ÿ

x1PX
ppx1|x, aqmin

a1
Q˚px1, a1q, px, aq P X ˆA.

The corresponding value function V ˚ is given by:

V ˚pxq “ min
a
Q˚px, aq, x P X .

One of the main advantages of computing the optimal action-value function instead of the value function
is that from the former, one can directly recover the optimal control, given by arg minaPAQ

˚px, aq. This
is particularly important in order to design model-free methods, as we will see in the next section.

3.2 Action-value function for Asymptotic MFG

In the context of Asymptotic MFG introduced in Section 2.2, we can view the problem faced by an
infinitesimal agent among the crowd as an MDP parameterized by the population distribution. Hence,
given a population distribution µ, standard RL techniques can be applied to compute the Q-function of
an infinitesimal agent against this given µ.

Then, the optimal Q-function is defined, for a given µ, by

Q˚µpx, aq “ min
α

E

«

8
ÿ

n“0

γnfpXn, αpXnq, µq
ˇ

ˇ

ˇ
X0 “ x,A0 “ a

ff

, (5)
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where the cost function fpx, a, µq depends on the fixed µ as well as the transition probabilities ppx1|x, a, µq.
Since µ is fixed, as in the classical case, one obtains the the Bellman equation:

Q˚µpx, aq “ fpx, a, µq ` γ
ÿ

x1PX
ppx1|x, a, µqmin

a1
Q˚µpx

1, a1q, px, aq P X ˆA. (6)

This function characterizes the optimal cost-to-go for an agent starting at state x, using action a for
the first step, and then acting optimally for the rest of the time steps, while the population distribution
is given by µ (for every time step). Note that minaQ

˚
µpx, aq “ minα J

AMFGpα;µq in the notation of
Section 2.2.

3.3 Action-value function for Asymptotic MFC

For MFC, it is not obvious how to use the same Q-function because, as noticed earlier, the distribution
appearing in the definition of MFC is directly linked to the control and not fixed a priori. One possibility
is to look at MFC as an MDP on the space of distributions and then to introduce a Q-function which
takes a distribution as an input [12, 17, 18, 25].

We take a different route and consider a modified Q- function as follows. For an admissible control
αpxq, we define the MKV- dynamics ppx1|x, a, µαq so that µα is the limiting distribution of the associated
process pXα

n q. We define the control α̃ by

α̃px1q “

"

a if x1 “ x,
αpxq for x1 ‰ x.

(7)

Note that α̃ depends on x and a. Our modified Q-function is given by

Qαpx, aq “ fpx, a, µα̃q ` E

«

8
ÿ

n“1

γnfpXn, αpXnq, µ
αq

ˇ

ˇ

ˇ
X0 “ x,A0 “ a

ff

.

We then obtain that the optimal Q˚px, aq “ minαQ
αpx, aq satisfies the Bellman equation

Q˚px, aq “ fpx, a, µ̃˚q ` γ
ÿ

x1PX
ppx1|x, a, µ̃˚qmin

a1
Q˚px1, a1q, px, aq P X ˆA, (8)

where the optimal control α˚ is given by α˚pxq “ arg minaQ
˚px, aq, the control α̃˚ is defined by (7) for

x and a, and µ̃˚ :“ µα̃
˚ . The optimal value function is V ˚pxq “ minaQ

˚px, aq (“ JAMFCpα˚q in the
notation of Section 2.2). The details of the derivation of these equations are given in Appendix C.

Note that, compared with the Qµ-function used for MFG, our MFC modified Q-function involves
the differences ∆µf :“ fpx, a, µ̃q ´ fpx, a, µq and ∆µp :“ pp¨|x, a, µ̃q ´ pp¨|x, a, µq which play the role of
derivatives with respect to the probability distribution in the classical continuous time and space Mean
Field Control problems.

3.4 Unification through a two timescale approach

The goal is now to design a learning procedure which can approximate, for either MFG or MFC, not only
Q but also the corresponding µ. For MFG, the usual fixed point iterations are on the distribution and at
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each iteration, the best response against this distribution (which can be deduced from the corresponding
Q table) is computed. For MFC, the iterations are on the control (here again, it can be deduced from
the Q table) and the distribution corresponding to this control is computed at each iteration. Instead
of completely freezing the distribution (resp. the control) in the first case (resp. the second case), we
can imagine that letting it evolve at a slow rate would still lead to the same limit. In other words, the
definitions of MFG and MFC seem to lie at the two opposite sides of a spectrum.

Based on this viewpoint, we consider the following iterative procedure, where both variables (Q
and µ) are updated at each iteration but with different rates. Starting from an initial guess pQ0, µ0q P

R|X |ˆ|A| ˆ∆|X |, define iteratively for k “ 0, 1, . . . :

#

µk`1 “ µk ` ρ
µ
kPpQk, µkq,

Qk`1 “ Qk ` ρ
Q
k T pQk, µkq,

(9a)

(9b)

where
#

PpQ,µqpxq “ pµPQ,µqpxq ´ µpxq, x P X ,
T pQ,µqpx, aq “ fpx, a, µq ` γ

ř

x1 ppx
1|x, a, µqmina1 Qpx

1, a1q ´Qpx, aq, px, aq P X ˆA,

and
PQ,µpx, x1q “ ppx1|x, arg min

a
Qpx, aq, µq, pµPQ,µqpxq “

ÿ

x0

µpx0qP
Q,µpx0, xq,

PQ,µ is the transition matrix when the population distribution is µ and the agent uses the optimal
control according to Q. The learning rates ρµk and ρQk are assumed to satisfy usual Robbins-Monro type
conditions, namely:

ř

k ρ
µ
k “

ř

k ρ
Q
k “ `8 and

ř

k |ρ
µ
k |

2 “
ř

k |ρ
Q
k |

2 ă `8.
If ρµk ă ρQk , the approximate Q-function evolves faster, while it is the converse if ρµk ą ρQk . This

suggests that these two regimes should converge to different limit points. These ideas have been studied
by Borkar [5, 6] in connection with reinforcement learning methods under the name of two timescales
approach. More precisely, from Borkar [6, Chapter 6, Theorem 2], we expect to have the following two
situations. We assume that the operators T and P are Lipschitz continuous, which, as explained in
Appendix B, can be obtained from the Lipschitz continuity of f and p in the model, as well as a slight
modification of P to regularize the minimizer.

• Two timescale approach for MFG.

If ρµk{ρ
Q
k Ñ 0 as k Ñ `8, the system (9a)–(9b) tracks the ODE system

$

&

%

9µt “ PpQt, µtq,

9Qt “
1

ε
T pQt, µtq,

where ρµk{ρ
Q
k is thought of being of order ε ! 1. We consider, for any fixed µ, the ODE

9Qt “
1

ε
T pQt, µq,

and we assume it has a globally asymptotically stable equilibrium Qµ. In particular, T pQµ, µq “ 0,
meaning by (6) that Qµ is the value function of an infinitesimal agent facing the crowd distribution

11



µ. We further assume that Qµ is Lipschitz continuous with respect to µ. Convergence to Qµ can be
obtained following standard arguments for Q-learning (see, e.g., [6, Section 10.3]) and the Lipschitz
continuity of Qµ can be guaranteed through Lipschitz continuity of f, p and the minimizer in (5).
Then the first ODE becomes

9µt “ PpQµt , µtq.

Assuming it has a globally asymptotically stable equilibrium µ8, this distribution satisfies

PpQµ8 , µ8q “ 0.

This condition implies that µ8 and the associated control given by α̂pxq “ arg minaQµ8px, aq form
a Nash equilibrium. From [6, Chapter 6, Theorem 2], the system (9a)–(9b) with discrete time
updates also converges to this Nash equilibrium when ρµk{ρ

Q
k Ñ 0 as k Ñ `8.

• Two timescale approach for MFC.

If ρQk {ρ
µ
k Ñ 0 as k Ñ `8, the system (9a)–(9b) tracks the ODE system

$

&

%

9µt “
1

ε
PpQt, µtq,

9Qt “ T pQt, µtq,

where ρQk {ρ
µ
k is thought of being of order ε ! 1. We consider, for any fixed Q, the ODE

9µt “
1

ε
PpQ,µtq,

and we assume it has a globally asymptotically stable equilibrium µQ. In particular, PpQ,µQq “ 0,
meaning that µQ is the asymptotic distribution of a population in which every agent uses the
control αpxq “ arg minaQpx, aq. We further assume that µQ is Lipschitz continuous with respect
to Q. Then the second ODE becomes

9Qtpx, aq “ T pQtpx, aq, rµQtq,

where rµQt is defined by (7) at px, aq for αp¨q “ arg mina1 Qtp¨, a
1q. This is consistent with the

update of Q and what the algorithm proposed in Section 4 does. Assuming this ODE has a globally
asymptotically stable equilibrium Q8, this Q-table satisfies

T pQ8, rµQ8q “ 0.

This last condition means that Q8 “ Q˚ satisfies the MFC Bellman equation (8), and that the
control α˚pxq “ arg minaQ8px, aq is an MFC optimum for the asymptotic formulation and the
induced optimal distribution is µQ8 . From [6, Chapter 6, Theorem 2], the system (9a)–(9b) with
discrete time updates also converges to this social optimum when ρQk {ρ

µ
k Ñ 0 as k Ñ `8.
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3.5 Stochastic approximation

The above (deterministic) algorithm relies on the operators P , T which, in many practical situations are
not known, for instance because the agent does not know for sure the dynamics or the reward function.
In such situations, the agent can only rely on random samples (more details are provided in the next
section). The algorithm can be modified to account for such stochastic approximations. Indeed, let us
assume that, for any Q,µ, x, a, the agent can know the value fpx, a, µq and can sample a realization of
the random variable

X 1x,a,µ „ pp¨|x, a, µq.

Then, she can compute the realization of the following random variables qTQ,µ,x,a and qPQ,µ,x,a taking
values respectively in R and ∆|X |:

qTQ,µ,x,a “ fpx, a, µq ` γmin
a1

QpX 1x,a,µ, a
1q ´Qpx, aq,

and
qPQ,µ,x,apx2q “ 1tX 1x,a,µ“x2u ´ µpx

2q, @x2 P X .

Observe that

ErqTQ,µ,x,as “
ÿ

x1

ppx1|x, a, µq

„

fpx, a, µq ` γmin
a1

Qpx1, a1q ´Qpx, aq



“ T pQ,µqpx, aq, (12)

and
Er qPQ,µ,x,apx2qs “

ÿ

x1

ppx1|x, a, µq
`

1tx1“x2u ´ µpx
2q
˘

“ ppx2|x, a, µq ´ µpx2q.

If the starting point x comes from a random variable X „ µ and if a is chosen to be an optimal action at
X according to a given table Q, i.e., a P arg minAQpX, ¨q, then we obtain

Er qPQ,µ,X,arg minaQpX,aq
px2qs “

ÿ

x

µpxq
ÿ

x1

ppx1|x, arg min
a

Qpx, aq, µq
`

1tx1“x2u ´ µpx
2q
˘

“
ÿ

x

µpxq

ˆ

ppx2|x, arg min
a

Qpx, aq, µq ´ µpx2q

˙

“ pµPQ,µqpx2q ´ µpx2q

“ PpQ,µqpx2q. (13)

We can thus replace the deterministic updates (9a)–(9b) by the following stochastic ones, starting
from some initial Q0, µ0: for k “ 0, 1, . . . ,

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

µk`1pxq “ µkpxq ` ρ
µ
k
qPQk,µk,Xk,arg minaQpXk,aq

pxq

“ µkpxq ` ρ
µ
kPpQk, µkqpxq `Pkpxq, @x P X

Qk`1px, aq “ Qkpx, aq ` ρ
Q
k
qTQk,µk,x,a

“ Qk ` ρ
Q
k T pQk, µkqpx, aq `Tkpx, aq, @px, aq P X ˆA,

Xk „ µk,

(14a)

(14b)
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where we introduced the notation:

Pkpxq “ ρµk

´

qPQk,µk,Xk,arg minaQkpXk,aq
pxq ´ PpQk, µkqpxq

¯

, @x,

and
Tkpx, aq “ ρQk

´

qTQk,µk,x,a ´ T pQk, µkqpx, aq
¯

, @px, aq,

with Xk sampled from µk. Note that Tk and Pk are martingales by the above remarks, see (12)–(13).
Hence under suitable conditions, we expect convergence to hold by classical stochastic approximation
results [6].

However, the procedure (14a)–(14b) is synchronous (it updates all the coefficients of the Q-table
and the distribution at each iteration k) and it requires having access to a generative model, i.e., to a
simulator which can provide samples of transitions drawn according to pp¨|x, a, µkq for arbitrary state x.
In the next section, we propose a procedure which works even with a more restricted setting, which uses
episodes: In each episode, the learner is constrained to follow the trajectory sampled by the environment
without choosing arbitrarily its state.

4 Reinforcement Learning Algorithm

As recalled in the Introduction, RL studies the algorithms to solve a Markov decision process (MDP)
based on trials and errors. An MDP can be described through the interactions of an agent with an
environment. At each time n, the agent observes its current state Xn P X and chooses an action An P A.
Due to the agent’s action, the environment provides the new state of the agent Xn`1 and incurs a cost
fn`1. The goal of the agent is to find an optimal strategy (or policy) π˚ which assigns to each state
an action in order to minimize the aggregated discounted costs. The idea is then to design methods
which allow the agent to learn (an approximation of) π˚ by making repeated use of the environment’s
outputs but without knowing how the environment produces the new state and the associated cost. A
detailed overview of this field can be found in [28] (although RL methods are often presented with reward
maximization objectives, we consider cost minimization problems for the sake of consistency with the
MFG literature).

As presented in Section 3.1, the optimal strategy can be derived from the optimal action-value
function. However Q˚ is a priori unknown. In order to learn Q˚ by trials and errors, an approximate
version Q of the table Q˚ is constructed through an iterative procedure. At each step, an action is
taken, which leads to a cost and to a new state. On the one hand, it is interesting to act efficiently in
order to avoid high costs, and on the other hand it is important to improve the quality of the table
Q by trying actions and states which have not been visited many times so far. This is the so-called
exploitation–exploration trade-off. The trade-off between exploration of the unknown environment and
exploitation of the currently available information can be taken care of by an ε-greedy policy based on
Q. The algorithm chooses the action that minimizes the immediate cost with probability 1´ ε, and a
random action otherwise, as in (2) with an arg min.

4.1 U2-MF-QL : Unified Two Timescales Mean Field Q-learning

In order to apply the RL paradigm to mean field problems, the first step consists in defining the
connection between these two frameworks. In a MFG (resp. a MFC) the goal of a typical agent is to
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find the pair pα̂, µ̂q (resp. pα˚, µ˚q) where α̂ : X ÞÑ A (resp. α˚ : X ÞÑ A) represents the equilibrium
(resp. optimal) strategy which assigns at each state the equilibrium (resp. optimal) action in order to
minimize the aggregated discounted costs and µ̂ (resp. µ˚) is the ergodic distribution of the population
at equilibrium (resp. optimum). The traditional definition of an MDP based on the agent–environment
pair is augmented with the distribution of the population. In this new framework, the agent corresponds
to the representative player of the mean field problem.

We now define the type of environment to which the agent is assumed to have access. A key difference
with prior works on RL for mean field problems is that we do not assume that agent can witness
the evolution of the population’s distribution. Instead, the environment estimates the distribution of
the population by exploiting the symmetry property of the problem. Indeed, when the system is at
equilibrium the law of the representative player matches the distribution of the population. As showed in
the diagram of Figure 1, at each time n, the agent observes its current state Xn P X and then chooses an
action An P A. An approximation of the distribution µn is computed by the environment based on the
observed states of the representative player. Provided with the choice of the action and the estimate of
the distribution, the environment generates the new state of the agent Xn`1 and assigns a cost fn`1.

Environment

Agent

Cost

fn+1

State

Xn+1

Distribution
µn

Action

An

Cost

fn

State

Xn

Figure 1: MDP with Mean Field interactions: Interaction of the representative agent with the environment.
When the current state of the representative agent is Xn, given an action An, the environment produces
an estimate of the distribution µn, the new state Xn`1 and incurs a cost fn`1 calculated by starting from
the current state of the environment Xn and using the transition controlled by An and parameterized by
µn.

The algorithm is designed to solve infinite horizon problems through an online approach, i.e. interacting
with the environment. The learning procedure is based on splitting the infinite horizon in successive
episodes in order to promote the exploration of the environment. The first episode is initialized based
on the initial distribution of the representative player. Within a given episode, the agent updates her
strategy at each learning step aiming to optimize the expected aggregated cost based on the current
estimate of the distribution of the population µn. Changes in the representative player’s strategy have
an effect on the population requiring to update µn accordingly. After an assigned number of steps T ,
the episode is terminated. A new episode is initialized based on the current version of the environment
represented by the estimate of the population obtained at the last time point of the previous episode. One
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may think at the initialization step as a change in the choice of the representative player who provides
the data flow. As the number of episodes increases, one expects the distribution of the representative
player to converge to the limiting distribution. Within a given learning step, the environment computes
an estimate of µn based on the current state of the agent Xn, provides the next state Xn`1 and assigns
the cost fn`1 given the triple pXn, An, µnq. In other words, the environment consists of the dynamics of
the agent and the cost structure. The case of our interest corresponds to the one in which the dynamics
of the agent and the cost structure are unknown. In this way, introducing the RL paradigm is equivalent
to define a data driven approach to solve mean field models which may scale their applicability to real
world problems.

In contrast with standard Q-learning, since in the mean field framework the cost function also
depends on the distribution of the population, the goal here consists in learning the optimal strategy
along with the corresponding ergodic distribution of the population, i.e. pα̂, µ̂q in the MFG setting
and pα˚, µ˚q in the MFC setting. Based on the intuition provided in Section 3 related to the two
timescale approach, we propose Algorithm 1. At each step, we update the Q-table at the observed
state-action pair QpXn, Anq. With a different learning rate, the estimate of the distribution is up-
dated based on the operator δ : X ÞÑ ∆|X | which maps the next observed state Xn`1 P X to the
corresponding one-hot vector measure. To be specific, we identify the simplex ∆|X | with the subset
!

rµpxiqsi“0,...,|X |´1 : µpxiq P r0, 1s and
ř

i µpxiq “ 1
)

of R|X |. Then δ is the function which associates to
each element of X “ tx0, . . . , x|X |´1u the corresponding element of the canonical basis pe0, . . . , e|X |´1q of
R|X |, i.e., for each i “ 0, . . . , |X | ´ 1, δpxiq “ ei, which is an element of ∆|X | by the above identification.
In order to learn the limiting distribution of the population through successive learning episodes, an
estimate µni is computed for each step ni based on the sample Xk

ni collected from episodes k “ 1, 2, . . . .
This approach attempts to minimize the correlation of the sampled states. The update rule presented in
algorithm 1 allocates more weight on the most recent samples allowing to forget progressively the initial
sample that were obtained by a distribution far from the limiting one. At convergence, one may expect
each µni to be an estimate of the limiting distribution.

The algorithm returns both an approximation µkT of the distribution and an approximation Qk of the Q-
function, from which an approximation of the optimal control can be recovered as x ÞÑ arg minaPAQ

kpx, aq.
The Unified Two Timescales Mean Field Q-learning (U2-MF-QL) algorithm represents a unified

approach to solve mean field problems. On the one hand, by choosing the learning rate for the distribution
of the population slower than the one for the Q-table, we obtain the solution to the MFG problem.
Similarly to the scheme presented in Section 3, the iterations in Q perceive the quantity µ as quasi-static
mimicking the freezing of the flow of measures characteristic in the solving scheme of a MFG. On the
other hand, by choosing the learning rate for the mean-field term faster than the one for the Q-table,
we obtain the solution to the MFC problem. Indeed, this choice of the parameters guarantees that the
distribution changes instantaneously for each variation of the control function (Q-table) replicating the
structure of the MFC problem.

4.2 Application to continuous problems

Although it is presented in a setting with finite state and action spaces, the application of the algorithm U2-
MF-QL can be extended to continuous problems. Such adaptation requires truncation and discretization
procedures to time, state and action spaces which should be calibrated based on the specific problem.
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Algorithm 1 Unified Two Timescales Mean Field Q-learning - Tabular version
Require: T : number of time steps in a learning episode,

X “ tx0, . . . , x|X |´1u : finite state space,
A “ ta0, . . . , a|A|´1u : finite action space,
µ0 : initial distribution of the representative player,
ε : parameter related to the ε´greedy policy,
tolµ, tolQ : break rule tolerances.

1: Initialization: Q0px, aq “ 0 for all px, aq P X ˆA, µ0
n “

”

1
|X | , . . . ,

1
|X |

ı

for n “ 0, . . . , T

2: for each episode k “ 1, 2, . . . do
3: Initialization: Sample Xk

0 „ µk´1
T and set Qk ” Qk´1

4: for nÐ 0 to T ´ 1 do
5: Update µ:

µkn “ µk´1
n ` ρµkpδpX

k
nq ´ µ

k´1
n q where δpXk

nq “

”

1x0pX
k
nq, . . . ,1x|X̃ |´1

pXk
nq

ı

6: Choose action Akn using the ε-greedy policy derived from QkpXk
n, ¨q

Observe cost fn`1 “ fpXk
n, A

k
n, µ

k
nq and state Xk

n`1 provided by the environment
7: Update Q:

QkpXk
n, A

k
nq “ QkpXk

n, A
k
nq ` ρ

Q
k,n,Xk

n,A
k
n
rfn`1 ` γmina1PAQ

kpXk
n`1, a

1q ´QkpXk
n, A

k
nqs

8: end for
9: if δpµk´1

T , µkT q ď tolµ and }Qk ´Qk´1}1,1 ă tolQ then
10: break
11: end if
12: end for
13: return pµk, Qkq

In practice, the learning episode will correspond to a uniform discretization τ “ ttnunPt0,...,|τ |´1u of a
time interval r0, T s with T large enough. The environment will provide the new state and reward at these
discrete times. We assume that T is large enough to reach the ergodic regime. The continuous state
space will be represented as the disjoint union of equally sized neighbors. Each of them will be identified
by its centroid and it will correspond to a row of the Q table. Likewise, actions will be provided to the
environment in a finite set A “ ta0, . . . , a|A|´1u Ă Rk, and the distribution µ will be estimated on the
set of centroids X “ tx0, . . . , x|X |´1u Ă Rk identifying µpxiq as the probability of the neighbor centered
in xi. Then Algorithm 1 is ran on those spaces.

We will use the benchmark linear-quadratic models given in continuous time and space for which
we have explicit formulas given in Appendix A. In that case, we use an Euler discretization. We do not
address here the error of approximation since the purpose of this comparison with a benchmark is mainly
for illustration.

5 Numerical experiments

In this section we illustrate our algorithm on a benchmark problem which admits an analytical solution.
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5.1 Benchmark problem

We illustrate our algorithm on the following model, in which the mean-field interactions are through the
first moment. We take d “ k “ 1,

fpx, α, µq “
1

2
α2 ` c1 px´ c2mq

2
` c3 px´ c4q

2
` c5m

2, bpx, α, µq “ α, (15)

where m “
ş

R xµpxqdx. Here the parameters c2, c4 P R and c1, c3, c5 P R` are constant such that
c1` c3´ c1c2 ‰ 0. In this model the drift is simply the control, while the running cost can be understood
as follows: the first term is a quadratic cost for controlling the diffusion, which penalizes high velocity,
the second term incorporates mean field interactions and encourages the agents to be close to c2m (if
c2 “ 1, this has a mean-reverting effect), the third term creates an incentive for each agent to be close to
the target position c4, and the fourth term penalizes the population when its mean m is far away from
zero. We thus obtain a complex combination of various effects, which can be balanced depending on the
choice of parameters.

We consider both the corresponding MFG and MFC problems in the asymptotic formulation. The
details on the solutions of these problems and their connection to the non-asymptotic formulation are
given in the appendix.

5.2 Numerical results

We present the results obtained by applying the U2-MF-QL algorithm to the mean field problems based
on the running cost and drift specified in (15). These results show how the algorithm successfully learns
the MFG solution or the MFC solution based on simply tuning the learning rates. Moreover, this shows
that the algorithm manages to solve problems defined on continuous time and continuous state, action
spaces even though it is conceived for discrete problems. Such applications require to apply truncation
and discretization procedures to time, state and actions which should be calibrated on a problem base.

We consider the problem defined by the choice of parameters: c1 “ 0.25, c2 “ 1.5, c3 “ 0.50,
c4 “ 0.6, c5 “ 5, discount parameter β “ 1 and volatility σ “ 0.3. The infinite time horizon is
truncated at time T “ 20. The continuous time is discretized using step ∆t “ 10´2. Recall that γ in
the discrete time setting corresponds to e´β∆t in the continuous time setting. The action space is given
by A “ ta0 “ ´1, . . . , aNA “ 1u and the state space by X “ tx0 “ ´2` xc, . . . , xNX “ 2` xcu, where
xc is the center of the state space. The step size for the discretization of the spaces X and A is given
by ∆. “

?
∆t “ 10´1. The state space X and the action space A have been chosen large enough to

make sure that the state is within the boundary most of the time. In practice, this would have to be
calibrated in a model-free way through experiments. In this example, for the numerical experiments, we
used the knowledge of the model. In particular, we choose xc “ 0.5 for both examples. Note that if the
problem under consideration is posed on finite spaces, this issue does not occur since the domain is fixed.
The exploitation-exploration trade off is tackled on each episode using an ε´greedy policy, see (2). In
particular, the value of ε is fixed to 0.15.
We present the following results for both the MFG and MFC benchmark examples:

1. learning rates analyses;

2. learning of the controls and the ergodic distribution;
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3. empirical error analyses;

4. empirical analyses of the stopping criteria.

5.2.1 Learning rates analyses

It is important to observe that even if in the MFC case the choice of ρµk below does not satisfy the classical
Robbins-Monro summability condition recalled in Section 3.4, the numerical convergence of the algorithm
is obtained suggesting that these requirements may be relaxed in this framework. Failing in satisfying
these conditions generates a noisy approximation of the distribution µ in the MFC problem. However,
averaging over the last 10k episodes allows to minimize such noise as showed in the Figures below. Based
on the theoretical results given in [14], we define the learning rates appearing in Algorithm 1 as follows:

ρQk,n,x,a “
1

p1`#|px, a, k, nq|qω
Q , ρµk “

1

p1` kqωµ
, (16)

where #|px, a, k, nq| is the number of times that the algorithm visited state x and performed action
a until episode k and time tn. The exponent ωQ can take values in p1

2 , 1q. The value of ωµ is chosen
depending on the value of ωQ and the cooperative or non-cooperative nature of the problem we want to
solve. The algorithm is run over 80ˆ 103 episodes over the interval r0, T s.

Figures 2, 3, 4, 5: comparison of the learning rates. The solution of the MFG benchmark is
reached based on the choice pωQ, ωµq “ p0.55, 0.85q, such that ρµ ă ρQ. As pointed out in section 3.4, by
satisfying this relation the Q-function evolves faster than the estimation of the distribution mimicking
the solving scheme of a MFG. On the other hand, the solution of the MFC benchmark can be obtained
by opting for the pair of parameters pωQ, ωµq “ p0.65, 0.15q such that ρµ ą ρQ. In figures 2, 3, 4, 5,
we suppose that #|px, a, k, 1q| “ k. The x´axis refers to the episode. The y´axis represents the rate
evaluated at episode k.
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Figure 2: MFG: learning rates over the first 500
episodes
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Figure 3: MFC: learning rates over the first 500
episodes
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Figure 4: MFG: learning rates over 80ˆ 103 episodes
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Figure 5: MFC: learning rates over 80ˆ 103 episodes

Figures 6, 7, 8, 9: Empirical check of the two timescale conditions. The U2-MF-QL algorithm
is based on an asynchronous QL approach which makes use of different learning rates for each Qpx, aq
based on the number of visits to the relative state-action pair. An empirical check of the two timescale
conditions presented in section 3.4 is presented in the following plots. The number of visits to each state
depends on their proximity to the mean of the ergodic distribution. As a proof of concept, the learning
rates for two different states in the MFG and MFC frameworks are analyzed after 80 ˆ 103 learning
epochs. The plots on the left are relative to the state on the left bound of X , while the plots on the right
are relative to the closest state to the theoretical mean. Each plot shows the value of the learning rates
ρµk and ρQk,n,x,a together with the counter of visits to each pair px, aq. The two timescale conditions are
satisfied in each plot. The number of visits changes from order 102 for the state on the border of X to
order 107 for the closest state to the ergodic mean. The x´axis refers to the action. The left y´axis
represents the learning rate. The right y´axis represents the counter of visits for each state-action pair.
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Figure 6: MFG: comparison learning rates for state
x “ ´1.50
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Figure 7: MFG: comparison learning rates for state
x “ 0.80
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Figure 8: MFC: comparison learning rates for state
x “ ´1.50
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Figure 9: MFC: comparison learning rates for state
x “ 0.10

5.2.2 Learning of the controls and the ergodic distribution

Figures 10, 11, 12, 13, 14, 15: controls, distributions and value functions learned by the
algorithm. The controls and the distribution learned by the algorithm are compared with the theoretical
solution obtained in the appendix A. As presented in Section 3, the control αpxq is obtained as the
arg minaQpx, aq. Similarly, the value function V pxq can be recovered as minaQpx, aq. The x´axis
represents the state variable x. In Figures 10, 11, 12, 13, 14, 15, the left y´axis relates to the action αpxq.
The right y´axis refers to the probability mass µpxq. The red (resp. blue) line shows the theoretical
control function for the MFG (resp. MFC) problem. The black dots are the controls learned by the
algorithm. Note that the peak of the distribution µ is not located at the same point x for MFG and
MFC. Note that the peak of the distribution µ is not located at the same point x for MFG and MFC. In
Figures 10, 12, the y´axis corresponds to the value function V pxq. The continuous lines refer to the
theoretical solution. The black dots are the numerical approximation recovered by the Q-function. We
observe that the algorithm converges to different solutions based on the choice of the pair pωQ, ωµq. On
the left, the choice pωQ, ωµq “ p0.55, 0.85q produces the approximation of the solution of the MFG. On
the right, the set of parameters pωQ, ωµq “ p0.65, 0.15q lets the algorithm learn the solution of the MFC
problem. In Figures 10 , 11 the learned controls and the learned ergodic distribution is averaged over 10
runs. In Figures 12 , 13 the learned controls and the learned distribution µT is averaged over 10 runs
and the last 104 episodes.
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Figure 10: MFG: results averaged over 10 runs
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Figure 11: MFC: results averaged over 10 runs
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Figure 12: MFG: results averaged over 10 runs and
last 10k episodes
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Figure 13: MFC: results averaged over 10 runs and
last 10k episodes
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Figure 14: MFG: value function
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Figure 15: MFC: value function

5.2.3 Empirical error analyses

Figures 16, 17: MSE error on the control. A metric used to evaluate the numerical results consists
in the mean squared error (MSE) of the controls learned by episode k with respect to the theoretical
solution presented in Appendix A. In particular, this metric considers the states x P X where the ergodic
distribution µ̂ is mostly concentrated. Let CMFG Ă X be centered in m̂ s.t. µ̂pCMFGq “ 0.99, then the
mean squared error by episode k for run i and its average over all runs are defined as

MSEαpi, kq “
1

|CMFG|

|CMFG|´1
ÿ

j“0

pαi,kpxjq ´ α̂pxjqq
2, MSEαpkq “

1

#runs

#runs
ÿ

i“0

MSEαpi, kq.

The x´axis represents the number of episodes used for learning. The y´axis represents the mean squared
error averaged over 10 runs (solid line) and its standard deviation (shaded region).
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Figure 16: MFG: squared root of MSEαpkq
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Figure 17: MFC: squared root of MSEαpkq

Figures 18, 19: MSE on the ergodic mean. A metric used to evaluate the numerical results consists
in the squared error of the ergodic mean learned by episode k compared with its theoretical value obtained
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in Appendix A averaged over the total numbers of runs, i.e.

MSEmpkq “
1

#runs

#runs
ÿ

i“0

pmi,k
T ´ m̂q2.

The x´axis represents the number of episodes used for learning. The y´axis represents the error
averaged over 10 runs (solid line) and its standard deviation (shaded region). For the MFG, the error in
the approximation of the ergodic mean reduces both in mean and standard deviation by increasing the
number of episodes. For the MFC case, an oscillating behavior is observed. The choice of ωµ “ 0.15 in
the learning rates defined in 16 allows to quicker adjustment of the mean by allocating more weights
on the most recent sample. In this way, the algorithm mimics the nature of the MFC problem at the
expense of a slower and more oscillating convergence.
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Figure 18: MFG: mean sqared error on m̂
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Figure 19: MFC: mean sqared error on m̂

5.2.4 Empirical analyses of the stopping criteria

Figures 20, 22, 21, 23: stopping criteria. The goal of the the U2-MF-QL is to obtain a good
approximation of the optimal controls and the ergodic distribution. As presented in algorithm 1, the
stopping criteria is based on the analyses of the progresses in learning the optimal Q function and the
ergodic distibution. The total variation and the 1, 1-norm between the start and the end of each episode
is evaluated for the distribution and the Q´table respectively as follows

δpµk´1
T , µkT q “

ÿ

xiPX

∣∣∣µkT pxiq ´ µk´1
T pxiq

∣∣∣, }Qk ´Qk´1}1,1 “
ÿ

i,j

∣∣∣Qki,j ´Qk´1
i,j

∣∣∣.
The algorithm stops when the increments are not significant anymore based on a threshold given as input.
The value of the threshold depends on the user’s needs and it may be calibrated by a trial and error
approach. The remaining plots show how these quantities decrease as the number of episodes increase.
The x´axis represents the number of episodes used for learning. The y´axis represents the value of the
total variation.
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Figure 22: MFC: total variation on µ
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A Theoretical solutions for the benchmark examples

In this appendix the solutions of the following benchmark problems are presented for the linear-quadratic
models given by (15).

A.1 Non-asymptotic Mean Field Game,

A.2 Asymptotic Mean Field Game,
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A.3 Stationary Mean Field Game,

A.4 Non-asymptotic Mean Field Control,

A.5 Asymptotic Mean Field Control.

A.6 Stationary Mean Field Control.

In particular, we check that the relations (3) and (4) are satisfied. The explicit formulas for the optimal
controls (AMFG and AMFC) are used as benchmarks for our algorithm.

A.1 Solution for non-asymptotic MFG

We present the solution for the following MFG problem

1. Fix m “ pmtqtě0 Ă R and solve the stochastic control problem:

min
α
Jmpαq “ min

α
E
„
ż 8

0
e´βtfpXα

t , αt,mtqdt



“

“ min
α

E
„
ż `8

0
e´βt

ˆ

1

2
α2
t ` c1 pX

α
t ´ c2mtq

2
` c3 pX

α
t ´ c4q

2
` c5m

2
t

˙

dt



,

subject to
dXα

t “ αtdt` σdWt,

Xα
0 „ µ0.

2. Find the fixed point, m̂ “ pm̂tqtě0, such that E
“

Xα̂
t

‰

“ m̂t for all t ě 0.

This problem can be solved by two equivalent approaches: PDE and FBSDEs. Both approaches start by
solving the problem defined by a finite horizon T . Then, the solution to the infinite horizon problem is
obtained by taking the limit T goes to infinity. Let VmT ,T pt, xq be the optimal value function for the
finite horizon problem conditioned on X0 “ x, i.e.

Vm
T ,T pt, xq “ inf

α
Jm,xpαq “ inf

α
E
„
ż T

t
e´βsfpXα

s , αs,m
T
s qds

ˇ

ˇ

ˇ
Xα

0 “ x



, Vm
T ,T pT, xq “ 0.

where mT “ tmT
t u0ďtďT Ă R. Let’s consider the following ansatz with its derivatives

Vm
T ,T pt, xq “ ΓT2 ptqx

2 ` ΓT1 ptqx` ΓT0 ptq,

BtV
mT ,T pt, xq “ 9ΓT2 ptqx

2 ` 9ΓT1 ptqx`
9ΓT0 ptq,

BxV
mT ,T pt, xq “ 2ΓT2 ptqx` ΓT1 ptq,

BxxV
mT ,T pt, xq “ 2ΓT2 ptq,

(17)

28



Then, the HJB equation for the value function reads:

BtV
mT ,T ´ βVm

T ,T ` inf
α
tAXVm

T ,T ` fpx, α,mT qu

“ BtV
mT ,T ´ βVm

T ,T

` inf
α

"

αBxV
mT ,T `

1

2
σ2BxxV

mT ,T `
1

2
α2 ` c1px´ c2m

T q2 ` c3px´ c4q
2 ` c5pm

T q2
*

“ BtV
mT ,T ´ βVm

T ,T

`

"

´BxV
mT ,T 2

`
1

2
σ2BxxV

mT ,T `
1

2
BxV

mT ,T 2
` c1px´ c2m

T q2 ` c3px´ c4q
2 ` c5pm

T q2
*

“ BtV
mT ,T ´ βVm

T ,T ´
1

2
BxV

mT ,T 2
`

1

2
σ2BxxV

mT ,T ` c1px´ c2m
T q2 ` c3px´ c4q

2 ` c5pm
T q2 “ 0,

where in the third line we evaluated the infimum at α̂T “ ´Vm
T ,T

x . The following ODEs system is
obtained by replacing the ansatz and its derivatives in the HJB equation:

$

’

’

’

’

&

’

’

’

’

%

9ΓT2 ´ 2pΓT2 q
2 ´ βΓT2 ` c1 ` c3 “ 0, ΓT2 pT q “ 0,

9ΓT1 “ p2ΓT2 ` βqΓ
T
1 ` 2c1c2m

T ` 2c3c4, ΓT1 pT q “ 0,
9ΓT0 “ βΓT0 `

1
2pΓ

T
1 q

2 ´ σ2ΓT2 ´ c3c4
2 ´ pc1c2

2 ` c5qpm
T q2, ΓT0 pT q “ 0,

9mT “ ´2ΓT2 m
T ´ ΓT1 , mT p0q “ E rµ0s “ m0,

(18)

where the last equation is obtained by considering the expectation of Xα
t after replacing α̂T “

´BxV
mT ,T “ ´pΓT2 x ` ΓT1 q. The first equation is a Riccati equation. In particular, the solution

ΓT2 converges to Γ̂2 “
´β`

?
β2`8pc1`c3q

4 as T goes to infinity. The second and fourth ODEs are coupled
and they can be written in matrix notation as

9
Ŕ

ˆ

mT

ΓT1

˙

“

„

´2ΓT2 ´1
2c1c2 2ΓT2 ` β

ˆ

mT

ΓT1

˙

`

ˆ

0
2c3c4

˙

,

ˆ

mT p0q
ΓT1 pT q

˙

“

ˆ

m0

0

˙

. (19)

We start by solving the homogeneous equation, i.e.

9
Ŕ

ˆ

mT

ΓT1

˙

“ KT
t

ˆ

mT

ΓT1

˙

:“

„

´2ΓT2 ´1
2c1c2 2ΓT2 ` β

ˆ

mT

ΓT1

˙

,

ˆ

mT p0q
ΓT1 pT q

˙

“

ˆ

m0

0

˙

. (20)

We introduce the propagator P T , i.e.
ˆ

mT

ΓT1

˙

“ P Tt

ˆ

mT p0q
ΓT1 p0q

˙

. (21)

By deriving
ˆ

mT

ΓT1

˙

and expressing the initial conditions in terms of the inverse of P T and
ˆ

mT

ΓT1

˙

, we

obtain
9

Ŕ

ˆ

mT

ΓT1

˙

“ 9P Tt

ˆ

mT p0q
ΓT1 p0q

˙

“ 9P Tt pP
T
t q
´1

ˆ

mT

ΓT1

˙

. (22)
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By comparing the last system with (20), we obtain
#

9P Tt “ KT
t P

T
t

P T0 “ I2
(23)

where I2 is the identity matrix in dimension 2. The solution is given by P Tt “ e
şt
0K

T
s ds :“ eL

T
t . In

particular, the exponent is equal to

LTt “

ż t

0
KT
s ds “

«

´2
şt
0 ΓT2 psqds ´t

2c1c2t 2
şt
0 ΓT2 psqds` βt

ff

“

„

gTt dt
bt aTt



. (24)

We evaluate the exponential P T ptq “ eL
T
t by using the Taylor’s expansion and diagonalizing the matrix

LTt . The eigenvalues/eigenvectors of LTt are given by

λT1z2,t :“
aTt ` g

T
t ˘

a

paTt ´ g
T
t q

2 ` 4btdt
2

, vT1,t :“

ˆ

dt
λT1,t ´ g

T
t

˙

, vT2,t :“

ˆ

dt
λT2,t ´ g

T
t

˙

. (25)

Pt is obtained by

P Tt “

ˆ

pTt p1, 1q pTt p1, 2q
pTt p2, 1q pTt p2, 2q

˙

“ eL
T
t “

8
ÿ

k“0

“

vT1,t vT2,t
‰

ˆ

λT1,t 0

0 λT2,t

˙k

k!

“

vT1,t vT2,t
‰´1

:“

:“ STt

8
ÿ

k“0

DT
t
k

k!
pSTt q

´1 “

“ STt

˜

eλ
T
1,t 0

0 eλ
T
2,t

¸

pSTt q
´1 “

“
1

dtpλT2,t ´ λ
T
1,tq

˜

dte
λT1,tpλT2,t ´ g

T
t q ` dte

λT2,tpgTt ´ λ
T
1,tq d2

t pe
λT2,t ´ eλ

T
1,tq

pλT1,t ´ g
T
t qpλ

T
2,t ´ g

T
t qpe

λT1,t ´ eλ
T
2,tq dte

λT2,tpλT2,t ´ g
T
t q ` dte

λT1,tpgTt ´ λ
T
1,tq

¸

.

(26)

In order to solve the non homogeneous case, we introduce an extra term
ˆ

hT1
hT2

˙

, i.e.

ˆ

mT

ΓT1

˙

“ P Tt

ˆ

hT1
hT2

˙

. (27)

By deriving
ˆ

mT

ΓT1

˙

, we obtain

9
Ŕ

ˆ

mT

ΓT1

˙

“ 9P Tt

ˆ

hT1
hT2

˙

` P Tt

9
Ŕ

ˆ

hT1
hT2

˙

“ KT
t P

T
t

ˆ

hT1
hT2

˙

` P Tt

9
Ŕ

ˆ

hT1
hT2

˙

“ KT
t

ˆ

mT
t

ΓT1

˙

` P Tt

9
Ŕ

ˆ

hT1
hT2

˙

. (28)
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By comparing (19) with (28), we obtain

9
Ŕ

ˆ

hT1
hT2

˙

“ pP Tt q
´1

ˆ

0
2c4c4

˙

“
1

|P Tt |

ˆ

pTt p2, 2q ´pTt p1, 2q
´pTt p2, 1q pTt p1, 1q

˙ˆ

0
2c3c4

˙

. (29)

By integration we obtain

hT1 ptq “ hT1 p0q ´ 2c3c4

ż t

0

pTs p1, 2q

|P Ts |
ds,

hT2 ptq “ hT2 p0q ` 2c3c4

ż t

0

pTs p1, 1q

|P Ts |
ds,

(30)

where hT1 p0q “ m0 and hT2 p0q “ ΓT1 p0q.
We use the terminal condition ΓT1 pT q “ 0 to obtain an evaluation of hT2 p0q “ ΓT1 p0q in terms of P TT

and m0, i.e.

ΓT1 pT q “ pTT p2, 1qh
T
1 pT q ` p

T
T p2, 2qh

T
2 pT q “ 0,

ΓT1 pT q “ pTT p2, 1q

ˆ

m0 ´ 2c3c4

ż T

0

pTs p1, 2q

|P Ts |
ds

˙

` pTT p2, 2q

ˆ

ΓT1 p0q ` 2c3c4

ż T

0

pTs p1, 1q

|P Ts |
ds

˙

“ 0,

ΓT1 p0q “ ´
pTT p2, 1q

pTT p2, 2q

ˆ

m0 ´ 2c3c4

ż T

0

pTs p1, 2q

|P Ts |
ds

˙

´ 2c3c4

ż T

0

pTs p1, 1q

|P Ts |
ds.

(31)

In order to evaluate the limit of ΓT1 p0q as T goes to infinity, we analyze the different terms separately.
First, we evaluate the following limit:

lim
TÑ8

1

T

ż T

0
ΓT2 psqds “ lim

TÑ8
ΓT2 ps1q “ Γ̂2, s1 P r0, T s, (32)

where we applied the mean value integral theorem and Γ̂2 “
´β`

?
β2`8pc1`c3q

4 is the limit of the solution
of the Riccati equation obtained previously, i.e. Γ̂2 “ limTÑ8 ΓT2 psq. We recall that

λT2,T ´ λ
T
1,T “

b

paTT ´ g
T
T q

2 ` 4bTTdT “ T

d

ˆ

4

T

ż T

0
ΓT2 psqds` β

˙2

´ 8c1c2 ą 0
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which goes to infinity as T goes to 8 when the term under square root is well defined. We observe that

ĝt :“ lim
TÑ8

gTt “ lim
TÑ8

´2

ż t

0
ΓT2 psqds “ ´2Γ̂2t :“ gt,

bt “ 2c1c2t,

ât :“ lim
TÑ8

aTt “ lim
TÑ8

2

ż t

0
ΓT2 psqds` βt “ 2Γ̂2t` βt,

dt “ ´t,

λ̂1z2,t :“ lim
TÑ8

λT1z2,t “
ât ` ĝt ˘

a

pât ´ ĝtq2 ` 4btdt
2

“ t
β ˘

b

p4Γ̂2 ` βq2 ´ 8c1c2

2
:“ tλ1z2,

P̂t :“ lim
TÑ8

P Tt “

“
1

dtpλ̂2,t ´ λ̂1,tq

˜

dte
λ̂1,tpλ̂2,t ´ ĝtq ` dte

λ̂2,tpĝt ´ λ̂1,tq d2
t pe

λ̂2,t ´ eλ̂1,tq

pλ̂1,t ´ ĝtqpλ̂2,t ´ ĝtqpe
λ̂1,t ´ eλ̂2,tq dte

λ̂2,tpλ̂2,t ´ ĝtq ` dte
λ̂1,tpĝt ´ λ̂1,tq

¸

.

(33)

To evaluate Γ̂1p0q “ limTÑ8 ΓT1 p0q, we study the limit of the remaining terms:

lim
T ÞÑ8

´
pTT p2, 1q

pTT p2, 2q
“ lim

T ÞÑ8

pλT1,T ´ g
T
T qpλ

T
2,T ´ g

T
T qpe

λT2,T ´ eλ
T
1,T q

dT e
λT2,T pλT2,T ´ g

T
T q ` dT e

λT1,T pgTT ´ λ
T
1,T q

“

“ lim
T ÞÑ8

1
dT

pλT1,T´g
T
T qp1´e

λT
1,T

´λT
2,T q

`
dT

pλT2,T´g
T
T qp1´e

λT
2,T

´λT
1,T q

“

“ ´pλ1 ´ gq “

“ ´pλ1 ` 2Γ̂2q,

lim
T ÞÑ8

ż T

0

pTs p1, 2q

|P Ts |
ds “ lim

T ÞÑ8

ż T

0

dspe
λT2,s ´ eλ

T
1,sq

pλT2,s ´ λ
T
1,sqpe

λT1,s`λ
T
2,sq

ds “

“
1

λ2 ´ λ1

ˆ

1

λ2
´

1

λ1

˙

lim
T ÞÑ8

ż T

0

pTs p1, 1q

|P Ts |
ds “ lim

T ÞÑ8

ż T

0

1

eλ
T
1,s`λ

T
2,s

˜

eλ
T
1,s
λT2,s ´ g

T
s

λT2,s ´ λ
T
1,s

` eλ
T
2,s
gTs ´ λ

T
1,s

λT2,s ´ λ
T
1,s

¸

ds “

“
λ2 ´ g

λ2pλ2 ´ λ1q
`

g ´ λ1

λ1pλ2 ´ λ1q
.

(34)

Finally, the value of Γ̂1p0q is given by

Γ̂1p0q “ ´pλ1 ´ gqm0 ´ 2
c3c4

λ2
. (35)
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Given Γ̂1p0q, we evaluate the limit as T goes to 8 of (30), i.e.

h1ptq :“ lim
T ÞÑ8

hT1 ptq “ m0 ´ 2c3c4 lim
T ÞÑ8

ż t

0

pTs p1, 2q

|P Ts |
ds “

“ m0 ` 2
c3c4

λ2 ´ λ1

ˆ

1

λ2
e´tλ2 ´

1

λ1
e´tλ1 `

1

λ1
´

1

λ2

˙

,

h2ptq :“ lim
T ÞÑ8

hT2 ptq “ lim
T ÞÑ8

ˆ

ΓT1 p0q ` 2c3c4

ż t

0

pTs p1, 1q

|P Ts |
ds

˙

“

“ Γ̂1p0q ` 2
c3c4

λ2 ´ λ1

ˆ

λ2 ´ g

λ2
p1´ e´tλ2q `

g ´ λ1

λ1
p1´ e´tλ1q

˙

.

(36)

We can conclude that

m̂t “ lim
TÑ8

mT
t “

“ p̂tp1, 1qh1ptq ` p̂tp1, 2qh2ptq “

“

ˆ

m0 ` 2
c3c4

λ2 ´ λ1

ˆ

1

λ1
´

1

λ2

˙˙

etλ1 ` 2
c3c4

λ2 ´ λ1

ˆ

1

λ2
´

1

λ1

˙

,

Γ̂1ptq “ lim
TÑ8

ΓT1 ptq “

“ p̂tp2, 1qh1ptq ` p̂tp2, 2qh2ptq “

“ m0pg ´ λ1qe
tλ1 ` 2

c3c4

λ2 ´ λ1

ˆ

λ2 ´ g

λ2
´
λ1 ´ g

λ1

˙

.

(37)

Finally, the third ODE in (18) can be solved by plugging in the solution of the previous ones and
integrating. Since our interest is into the evolution of the mean and the control function, we omit these
calculations, but we recall that:

α̂t “ ´pΓ̂2x` Γ̂1ptqq, Γ̂2 “
´β `

a

β2 ` 8pc1 ` c3q

4
, (38)

and we observe that

lim
tÑ8

α̂t “ ´pΓ̂2x` Γ̂1q, Γ̂1 “ ´
4c1c2Γ̂2

λ2
“

c3c4Γ̂2

2pc1 ` c3 ´ c1c2q
. (39)

A.2 Solution for Asymptotic MFG

The asymptotic version of the problem presented above is given by:

1. Fix m P R and solve the stochastic control problem:

min
α
Jmpαq “ min

α
E
„
ż 8

0
e´βtfpXα

t , αt,mqdt



“

“ min
α

E
„
ż 8

0
e´βt

ˆ

1

2
α2
t ` c1 pX

α
t ´ c2mq

2
` c3 pX

α
t ´ c4q

2
` c5m

2

˙

dt



,

subject to: dXα
t “ αtdt` σdWt, Xα

0 „ µ0.
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2. Find the fixed point, m̂, such that m̂ “ limtÑ`8 E
”

X α̂,m̂
t

ı

.

Let V mpxq be the optimal value function given m P R and conditioned on X0 “ x, i.e.

V mpxq “ inf
α
Jm,xpαq “ inf

α
E
„
ż `8

0
e´βt

ˆ

1

2
α2
t ` c1 pX

α
t ´ c2mq

2
` c3 pX

α
t ´ c4q

2
` c5m

2

˙

ˇ

ˇ

ˇ
Xα

0 “ x



.

We consider the following ansatz with its derivatives with respect to x:

V mpxq “ Γ2x
2 ` Γ1x` Γ0,

9V mpxq “ 2Γ2x` Γ1,

:V mpxq “ 2Γ2.

Let’s consider the HJB equation

βV mpxq ´ inf
α
tAXV mpxq ` fpx, α,mqu

“ βV mpxq ´ inf
α

"

α 9V pxq `
1

2
σ2 :V mpxq `

1

2
α2 ` c1px´ c2mq

2 ` c3px´ c4q
2 ` c5m

2

*

“ βV mpxq ´

"

´p 9V mq2pxq `
1

2
σ2 :V mpxq `

1

2
p 9V mq2pxq ` c1px´ c2mq

2 ` c3px´ c4q
2 ` c5m

2

*

“ βV mpxq `
1

2
p 9V mq2pxq ´

1

2
σ2 :V mpxq ´ c1px´ c2mq

2 ´ c3px´ c4q
2 ´ c5m

2 “ 0,

where in the third line we evaluated the infimum at α̂pxq “ ´ 9V mpxq. Replacing the ansatz and its
derivatives in the HJB equation, it follows that
`

βΓ2 ` 2Γ2
2 ´ c1 ´ c3

˘

x2`pβΓ1`2Γ2Γ1`2c1c2m`2c3c4qx`βΓ0`
1

2
Γ2

1´σ
2Γ2´pc1c2

2`c5qm
2´c3c4

2 “ 0.

An easy computation gives the values

Γ2 “
´β `

a

β2 ` 8pc1 ` c3q

4
,

Γ1 “ ´
2c1c2m` 2c3c4

β ` 2Γ2
,

Γ0 “
c5m

2 ` c3c4
2 ` c1c2

2m2 ` σ2Γ2 ´
1
2Γ2

1

β
.

By plugging the control α̂pxq “ ´p2Γ2x` Γ1q into the dynamics of Xt and taking the expected value,
we obtain an ODE for mt

9mt “ ´p2Γ2mt ` Γ1q. (40)

The solution of (40) is used to derive m as follows

m “ lim
tÞÑ8

mt “ lim
tÞÑ8

´
Γ1

2Γ2
`

ˆ

m0 `
Γ1

Γ2

˙

e´2Γ2t “ ´
Γ1

2Γ2
“

2c1c2m` 2c3c4

2Γ2pβ ` 2Γ2q
,

m “
c3c4

Γ2pβ ` 2Γ2q ´ c1c2

(41)
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To summarize, we derived that α̂pxq “ ´p2Γ2x` Γ1q with Γ2 “ Γ̂2 and Γ1 “ Γ̂1 obtained in (39). In
other words, we have checked that

lim
tÑ8

α̂MFG
t pxq “ α̂AMFGpxq, @x,

that is the first part of (3) for this LQ MFG.

A.3 Solution for stationary MFG

The only difference with the derivation above in the case of asymptotic MFG is that mt should be a
constant which, from (40), should satisfy 2Γ2m` Γ1 “ 0. Therefore, m takes the same value as in (41),
and we deduce

α̂SMFGpxq “ α̂AMFGpxq, @x,

that is the second part of (3) for this LQ MFG.

A.4 Solution for non-asymptotic MFC

We present the solution for the following non-asymptotic MFC problem

min
α
Jpαq “ min

α
E
„
ż 8

0
e´βtfpXα

t , αt,E rXα
t sqdt



“ min
α

E
„
ż `8

0
e´βt

ˆ

1

2
α2
t ` c1 pX

α
t ´ c2E rXα

t sq
2
` c3 pX

α
t ´ c4q

2
` c5E rXα

t s
2

˙

dt



,

subject to: dXα
t “ αtdt` σdWt, Xα

0 „ µ0.

Note that here the mean E rXα
t s of the population changes instantaneously when α changes.

This problem can be solved by two equivalent approaches: PDE and FBSDEs. Both approaches start
by solving the problem defined by a finite horizon T . Then, the solution to the infinite horizon problem
is obtained by taking the limit for T goes to infinity. Let V T pt, xq be the optimal value function for the
finite horizon problem conditioned on X0 “ x, i.e.

V T pt, xq “ inf
α
Jm

α,xpαq “ inf
α

E
„
ż T

t
e´βsfpXα

s , αs,m
α
s qds

ˇ

ˇ

ˇ
Xα

0 “ x



, V T pT, xq “ 0.

Let’s consider the following ansatz with its derivatives

V T pt, xq “ ΓT2 ptqx
2 ` ΓT1 ptqx` ΓT0 ptq, V T pT, xq “ 0,

BtV
T pt, xq “ 9ΓT2 ptqx

2 ` 9ΓT1 ptqx`
9ΓT0 ptq,

BxV
T pt, xq “ 2ΓT2 ptqx` ΓT1 ptq,

BxxV
T pt, xq “ 2ΓT2 ptq,

(42)

Starting by the MFC-HJB equation (4.12) given in [4], we extended it to the asymptotic case as follows

βV T ´ V T
t ´H pt, x,µ, αq ´

ż

R

δH

δµ

`

t, h,µ,´BxV
T
˘

pxqµtphqdh “ 0,
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where mt “
ş

R yµtpdyq and α
˚ “ ´BxV

T . We have:

H pt, x,µ, αq :“ inf
α

 

AXV T ` f pt, x, α,µq
(

“ inf
α

"

αBxV
T `

1

2
σ2BxxV

T `
1

2
α2 ` c1px´ c2mtq

2 ` c3px´ c4q
2 ` c5mt

2

*

“ ´
1

2
pBxV

T q2 `
1

2
σ2BxxV

T ` c1px´ c2mtq
2 ` c3px´ c4q

2 ` c5mt
2,

δH pt, h,µ, αq

δµ
“

δ

δµ

`

c1ph´ c2mtq
2 ` c5mt

2
˘

pxq

“
δ

δµ

˜

c1

ˆ

h´ c2

ż

R
yµtpdyq

˙2

` c5

ˆ
ż

R
yµtpdyq

˙2
¸

pxq

“ ´2c1c2x

ˆ

h´ c2

ż

R
yµtpdyqq

˙

` 2c5x

ż

R
yµtpdyq

“ ´2c1c2xph´ c2mtq ` 2c5xmt,

ż

R

δH

δµ

`

t, h,µ,´BxV
T
˘

pxqµtphqdh “ ´2c1c2xpmt ´ c2mtq ` 2c5xmt,

and finally

βV T ´ BtV
T `

1

2
pBTx q

2 ´
1

2
σ2BxxV

T ´ c1px´ c2mtq
2

´ c3px´ c4q
2 ´ c5mt

2 ` 2c1c2xpmt ´ c2mtq ´ 2c5xmt “ 0.

The following system of ODEs is obtained by replacing the ansatz and its derivatives in the MFC-HJB:
$

’

’

’

’

&

’

’

’

’

%

9ΓT2 ´ 2pΓT2 q
2 ´ βΓT2 ` c1 ` c3 “ 0, ΓT2 pT q “ 0,

9ΓT1 “ p2ΓT2 ` βqΓ
T
1 ` p2c1c2p2´ c2q ´ 2c5qm

T
t ` 2c3c4, ΓT1 pT q “ 0,

9ΓT0 “ βΓT0 `
1
2pΓ

T
1 q

2 ´ σ2ΓT2 ´ c3c4
2 ´ pc1c2

2 ` c5qpm
T
t q

2, ΓT0 pT q “ 0,

9mT
t “ ´2ΓT2 m

T ´ ΓT1 , mT p0q “ E rXα
0 s “ m0,

(43)

where the last equation is obtained by considering the expectation of Xα
t after replacing α˚pxq “

´BxV
T pxq “ ´pΓT2 x ` ΓT1 q. The first equation is a Riccati equation. In particular, the solution ΓT2

converges to Γ˚2 “
´β`

?
β2`8pc1`c3q

4 as T goes to infinity. The second and fourth ODEs are coupled and
they can be written in matrix notation as

9
Ŕ

ˆ

mT

ΓT1

˙

“

„

´2ΓT2 ´1
p2c1c2p2´ c2q ´ 2c5q 2ΓT2 ` β

ˆ

mT

ΓT1

˙

`

ˆ

0
2c3c4

˙

,

ˆ

mT p0q
ΓT1 pT q

˙

“

ˆ

m0

0

˙

. (44)
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By similar calculations to the non-asymptotic MFG case, the following solutions can be obtained

m˚t “ lim
TÑ8

mT
t “ p˚t p1, 1qh1ptq ` p

˚
t p1, 2qh2ptq

“

ˆ

m0 ` 2
c3c4

λ2 ´ λ1

ˆ

1

λ1
´

1

λ2

˙˙

etλ1 ` 2
c3c4

λ2 ´ λ1

ˆ

1

λ2
´

1

λ1

˙

,

Γ˚1ptq “ lim
TÑ8

ΓT1 ptq “ p˚t p2, 1qh1ptq ` p
˚
t p2, 2qh2ptq

“ m0pg ´ λ1qe
tλ1 ` 2

c3c4

λ2 ´ λ1

ˆ

λ2 ´ g

λ2
´
λ1 ´ g

λ1

˙

,

(45)

where

g :“ ´2Γ˚2 ,

b :“ 2pc1c2p2´ c2q ´ c5q,

a :“ 2Γ˚2 ` β,

d :“ ´1,

λ1z2 :“
a` g ˘

a

pa´ gq2 ` 4bd

2
“ t

β ˘
a

p4Γ˚2 ` βq
2 ´ 8pc1c2p2´ c2q ´ c5q

2
.

(46)

As in the MFG case, the third ODE in (43) can be solved by plugging in the solution of the previous
ones and integrating. Since our interest is into the evolution of the mean and the control function, we
omit the calculation for this ODE.

A.5 Solution for Asymptotic MFC

The asymptotic version of the problem presented above is given by:

min
α
Jpαq “ inf

α
E
„
ż 8

0
e´βtfpXα

t , αt,m
αqdt



“ inf
α

E
„
ż `8

0
e´βt

ˆ

1

2
α2
t ` c1 pX

α
t ´ c2m

αq
2
` c3 pX

α
t ´ c4q

2
` c5pm

αq2
˙

dt



,

subject to: dXα
t “ αtdt` σdWt, Xα

0 „ µ0,

where mα “ limtÑ`8 E rXα
t s .

Let V pxq be the optimal value function conditioned on X0 “ x, i.e.

V pxq “ inf
α
Jxpαq “ inf

α
E
„
ż `8

0
e´βt

ˆ

1

2
α2
t ` c1 pX

α
t ´ c2m

αq
2
` c3 pX

α
t ´ c4q

2
` c5pm

αq2
˙

dt
ˇ

ˇ

ˇ
Xα

0 “ x



.

We consider the following ansatz with its derivative

V pxq “ Γ2x
2 ` Γ1x` Γ0,

9V pxq “ 2Γ2x` Γ1,

:V pxq “ 2Γ2.
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Starting by the MFC-HJB equation (4.12) given in [4], we extended it to the asymptotic case as follows

βV pxq ´H px, µα, αq ´

ż

R

δH

δµ

´

h, µα,´ 9V phq
¯

pxqµαphqdh “ 0,

where mα “
ş

R yµ
αpdyq. We have:

H px, µα, αq :“ inf
α

 

AXV pxq ` f px, α, µαq
(

“ inf
α

"

α 9V pxq `
1

2
σ2 :V pxq `

1

2
α2 ` c1px´ c2m

αq2 ` c3px´ c4q
2 ` c5pm

αq2
*

“ ´
1

2
9V pxq2 `

1

2
σ2 :V pxq ` c1px´ c2m

αq2 ` c3px´ c4q
2 ` c5pm

αq2,

δH ph, µα, αq

δµ
“

δ

δµ

`

c1ph´ c2m
αq2 ` c5pm

αq2
˘

pxq

“
δ

δµ

˜

c1

ˆ

h´ c2

ż

R
yµαpdyq

˙2

` c5

ˆ
ż

R
yµαpdyq

˙2
¸

pxq

“ ´2c1c2x

ˆ

h´ c2

ż

R
yµαpdyqq

˙

` 2c5x

ż

R
yµαpdyq “ ´2c1c2xph´ c2m

αq ` 2c5xm
α,

ż

R

δH

δµ

´

h, µα,´ 9V phq
¯

pxqµαphqdh “ ´2c1c2xpm
α ´ c2m

αq ` 2c5xm
α,

and finally the HJB equation becomes:

βV pxq `
1

2
9V pxq2 ´

1

2
σ2 :V pxq ´ c1px´ c2m

αq2 ´ c3px´ c4q
2 ´ c5pm

αq2 ` 2c1c2xpm
α ´ c2m

αq ´ 2c5xm
α “ 0.

A system of ODEs is obtained by replacing the ansatz and its derivatives in the MFC-HJB and cancelling
terms in x2, and x and constant:

`

βΓ2 ` 2Γ2
2 ´ c1 ´ c3

˘

x2 ` pβΓ1 ` 2Γ2Γ1 ` 2c1c2m
αp2´ c2q ` 2c3c4 ´ 2c5m

αqx

` βΓ0 `
1

2
Γ2

1 ´ σ
2Γ2 ´ pc1c2

2 ` c5qpm
αq2 ´ c3c4

2 “ 0.

An easy computation gives the values

Γ2 “
´β `

a

β2 ` 8pc1 ` c3q

4
,

Γ1 “
2c5m

α ´ 2c1c2m
αp2´ c2q ´ 2c3c4

β ` 2Γ2
,

Γ0 “
c5pm

αq2 ` c3c4
2 ` c1c2

2pmαq2 ` σ2Γ2 ´
1
2Γ2

1

β
.
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By plugging the control α˚pxq “ ´p2Γ2x ` Γ1q into the dynamics of Xα
t and taking the expected

value, we obtain an ODE for mαt

9mαt “ ´p2Γ2m
α
t ` Γ1q. (47)

The solution of (47) is used to derive m as follows

mα “ lim
tÞÑ8

mαt “ lim
tÞÑ8

ˆ

´
Γ1

2Γ2
`

ˆ

m0 `
Γ1

Γ2

˙

e´2Γ2t

˙

“ ´
Γ1

2Γ2
“ ´

2c5m
α ´ 2c1c2m

αp2´ c2q ´ 2c3c4

2Γ2pβ ` 2Γ2q

mα “
c3c4

Γ2pβ ` 2Γ2q ` c5 ´ c1c2p2´ c2q

(48)

We remark that the values of mαt and Γ1ptq obtained in the non-asymptotic case converge to mα and Γ1

respectively as t goes to 8. Therefore, we have obtained that

lim
tÑ8

α˚MFC
t pxq “ α˚AMFGpxq, @x,

that is the first part of (4) for this LQ MFC problem.

A.6 Solution for stationary MFC

The only difference with the derivation above in the case of asymptotic MFC is that mα
t should be a

constant which, from (47), should satisfy 2Γ2m
α ` Γ1 “ 0. Therefore, mα takes the same value as in

(48), and we deduce
α˚SMFGpxq “ α˚AMFGpxq, @x,

that is the second part of (4) for this LQ MFC problem .
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B Lipschitz property of the 2 scale operators

B.1 Generic setting

We modify the original operators using the softmin operator on R|A| defined as:

soft-minpzq “

˜

e´zi
ř

j e
´zj

¸

i“1,...,|A|

P ∆|A|, z P R|A|.

Intuitively, it gives a probability distribution on the indices i “ 1, . . . , |A| which has higher values on
indices whose corresponding values are closer to be a minimum. In particular, the elements of minti “

1, . . . , |A| : zi “ arg minj zju have equal weight and this weight is the largest among
ˆ

e´zi
ř

j e
´zj

˙

i“1,...,|A|
.

We recall that the function soft-min is Lipschitz continuous for the 2-norm. Denoting by Ls its Lipschitz
constant, it means that

} soft-minpzq ´ soft-minpz1q}2 ď Ls}z ´ z
1}2, z, z1 P R|A|.

Moreover, since |A| is finite, all the norms on R|A| are equivalent so there exists a positive constant c2,8

such that
} soft-minpzq ´ soft-minpz1q}8 ď Lsc2,8}z ´ z

1}8, z, z1 P R|A|.
To alleviate the notation, we will write Qpxq :“ pQpx, aqqaPA for any Q P R|X |ˆ|A|. We also introduce

a more general version p of the transition kernel p, which can take as an input a probability over actions
instead of a single action: for x, x1 P X , ν P ∆|A|, µ P ∆|X |,

ppx1|x, ν, µq “
ÿ

a

νpaqppx1|x, a, µq.

Intuitively, this is the probability for a agent at x to move to x1 when the population distribution is µ
and the agent picks a random action following the distribution ν.

We now consider the following iterative procedure, which is a slight modification of (9a)–(9b). Here
again, both variables (Q and µ) are updated at each iteration but with different rates. Starting from an
initial guess pQ0, µ0q P R|X |ˆ|A| ˆ∆|X |, define iteratively for k “ 0, 1, . . . :

#

µk`1 “ µk ` ρ
µ
kPpQk, µkq,

Qk`1 “ Qk ` ρ
Q
k T pQk, µkq,

(49a)

(49b)

where
#

T pQ,µqpx, aq “ fpx, a, µq ` γ
ř

x1 ppx
1|x, a, µqmina1 Qpx

1, a1q ´Qpx, aq, px, aq P X ˆA,
PpQ,µqpxq “ pµPQ,µqpxq ´ µpxq, x P X ,

with

PQ,µpx, x1q “ ppx1|x, soft-minQpxq, µq, and pµPQ,µqpxq “
ÿ

x0

µpx0qP
Q,µpx0, xq,

is the transition matrix when the population distribution is µ and the agent uses an approximately
optimal randomized control according to the soft-min of Q.
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Lemma 1. Assume that f is Lipschitz continuous with respect to µ and that p is Lipschitz continuous
with respect to ν and µ. Then

• the operator T is Lipschitz continuous w.r.t. µ (with a Lipschitz constant possibly depending on
}Q}8q, and Lipschitz continuous in Q (uniformly in µ);

• the operator P is Lipschitz continuous in both variables.

If p is independent of µ, then both T and P are Lipschitz continuous.

Proof. Let us denote by Lp and Lf the Lipschitz constants of p and f respectively. Let pQ,µq, pQ1, µ1q P
R|X |ˆ|A| ˆ∆|X |. We first consider T . We have

}T pQ,µq ´ T pQ1, µq}8 ď γ
ÿ

x1

max
x,a

ppx1|x, a, µq

ˇ

ˇ

ˇ

ˇ

min
a1

Qpx1, a1q ´min
a1

Q1px1, a1q

ˇ

ˇ

ˇ

ˇ

`
›

›Q´Q1
›

›

8

ď pγ ` 1q
›

›Q´Q1
›

›

8
.

Moreover,

}T pQ,µq ´ T pQ,µ1q}8 ď |fpx, a, µq ´ fpx, a, µ1q|

` γ
ÿ

x1

|ppx1|x, a, µq ´ ppx1|x, a, µ1q| |min
a1

Qpx1, a1q|

ď pLf ` γLp}Q}8q|X |}µ´ µ1}8,

where Lf and Lp are respectively the Lipschitz constants of f and p with respect to µ. If p is independent
of µ, we obtain

}T pQ,µq ´ T pQ,µ1q}8 ď Lf }µ´ µ
1}8.

We then show that the operator P is Lipschitz continuous. We have

}PpQ,µq ´ PpQ,µ1q}8
ď }µPQ,µ ´ µ1PQ,µ

1

}8 ` }µ´ µ
1}8

ď

›

›

›

›

›

ÿ

x

´

pp¨|x, soft-minQpxq, µqµpxq ´ pp¨|x, soft-minQpxq, µ1qµ1pxq
¯

›

›

›

›

›

8

` }µ´ µ1}8.

For the first term, we note that, for every x P X ,
›

›

›

´

pp¨|x, soft-minQpxq, µqµpxq ´ pp¨|x, soft-minQpxq, µ1qµ1pxq
¯›

›

›

8

ď

›

›

›

´

pp¨|x, soft-minQpxq, µq ´ pp¨|x, soft-minQpxq, µ1q
¯

µpxq
›

›

›

8

`

›

›

›
pp¨|x, soft-minQpxq, µ1q

´

µpxq ´ µ1pxq
¯
›

›

›

8

ď pLp ` 1q
›

›µ´ µ1
›

›

8
,
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where we used the fact that discrete probability measures are non-negative and bounded by 1.
Moreover, we have

}PpQ,µq ´ PpQ1, µq}8 ď }µpPQ,µ ´ PQ
1,µ1q}8

ď
ÿ

x

}pp¨|x, soft-minQpxq, µq ´ pp¨|x, soft-minQ1pxq, µq}8

ď
ÿ

x

Lp} soft-minQpxq ´ soft-minQ1pxq}8

ď |X |Lp Ls c2,8 }Q´Q
1}8,

which concludes the proof.

B.2 Application to a discrete model for the LQ problem

Recall that the continuous linear-quadratic model we consider is defined by (15). Here, we propose a
finite space MDP which approximates the dynamics of a typical agent in this continuous LQ model. We
consider that the action space is given by A “ ta0 “ ´1, a1 “ ´1`∆., . . . , aNA “ 1´∆., aNA “ 1u and
the state space by X “ tx0 “ xc ´ 2, x1 “ xc ´ 2´∆., . . . , xNX´1 “ xc ` 2´∆., xNX “ xc ` 2u, where
xc is the center of the state space. The step size for the discretization of the spaces X and A is given by
∆. “

?
∆t “ 10´1.

Consider the transition probability:

ppx, x1, a, µq “ PpZx`a,∆t P rx1 ´∆.{2, x
1 `∆.{2sq “ Φx`a,σ2∆tpx

1 `∆.{2q ´ Φx`a,σ2∆tpx
1 ´∆.{2q,

where Z „ N px` a, σ2∆tq and Φx`a,σ2∆t is the cumulative distribution function of the N px` a, σ2∆tq
distribution. Moreover, consider that the one-step cost function is given by fpx, a, µq∆t with

fpx, a, µq “
1

2
a2 ` c1

¨

˝x´ c2

ÿ

ξPS

µpξq

˛

‚

2

` c3 px´ c4q
2
` c5

¨

˝

ÿ

ξPS

µpξq

˛

‚

2

, bpx, a, µq “ a,

For simplicity, we write µ̄ “
ř

ξPS µpξq.

Lemma 2. In this model, f is Lipschitz continuous with respect to µ and p is Lipschitz continuous with
respect to ν and µ

Proof. We start with f . For the µ component, we have:

|fpx, a, µq ´ fpx, a, µ1q| ď c
ˇ

ˇ

ˇ
px´ c2µ̄q

2
´
`

x´ c2µ̄
1
˘2
ˇ

ˇ

ˇ
` c

ˇ

ˇ

ˇ
pµ̄q2 ´

`

µ̄1
˘2
ˇ

ˇ

ˇ

ď c
`

µ̄1 ´ µ̄
˘

¨
`

2x` pµ̄1 ´ µ̄q
˘

` cpµ̄´ µ̄1qpµ̄` µ̄1q

ď cmax
xPS

}x}8
`

µ̄1 ´ µ̄
˘

ď cmax
xPS

}x}8
ÿ

xPS

`

µ1pxq ´ µpxq
˘

ď cmax
xPS

}x}8 |S| }µ
1 ´ µ}8,
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where c ą 0 is a constant depending only on the parameters of the model and whose value may change
from line to line.

Then we consider p. It is independent of µ in this model. For the action component, we have:

|ppx, x1, ν, µq ´ ppx, x1, ν1, µq|

“

ˇ

ˇ

ˇ

ÿ

a

νpaq
´

Φx`a,σ2∆tpx
1 `∆.{2q ´ Φx`a,σ2∆tpx

1 ´∆.{2q
¯

´
ÿ

a1

ν 1pa1q
´

Φx`a1,σ2∆tpx
1 `∆.{2q ´ Φx`a1,σ2∆tpx

1 ´∆.{2q
¯ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

a

`

νpaqΦx`a,σ2∆tpx
1 `∆.{2q ´ ν

1paqΦx`a,σ2∆tpx
1 `∆.{2q

˘

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

a

´

νpaqΦx`a,σ2∆tpx
1 ´∆.{2q

¯

´ ν 1paqΦx`a,σ2∆tpx
1 ´∆.{2q

¯

ˇ

ˇ

ˇ

ˇ

ˇ

“

ż x1`∆.{2

´8

1

σ
?

2π∆t

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

a

pνpaq ´ ν 1paqqe´
py´px`aqq2

2σ2∆t

ˇ

ˇ

ˇ

ˇ

ˇ

dy

`

ż x1´∆.{2

´8

1

σ
?

2π∆t

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

a

pνpaq ´ ν 1paqqe´
py´px`aqq2

2σ2∆t

ˇ

ˇ

ˇ

ˇ

ˇ

dy

ď c}ν ´ ν 1}8,

where c is a constant depending only on the model (and in particular on the state space, the action space
and ∆t).

C The Bellman equation for the optimal Q function in the Asymptotic
MFC framework

In this appendix, we provide the derivation of the Bellman equation (8) for the modified Q´function
presented in section 3.3.

Let X and A be discrete and finite state and action spaces. Let V α : X ÞÑ R and Qα : X ˆA ÞÑ R be
value function relative to the policy α and the corresponding modified Q´function defined as follows

V αpxq :“ E

«

8
ÿ

n“0

γnfpXn, αpXnq, µ
αq

ˇ

ˇ

ˇ
X0 “ x

ff

, (50)

Qαpx, aq :“ fpx, a, µα̃q ` E

«

8
ÿ

n“1

γnfpXn, αpXnq, µ
αq

ˇ

ˇ

ˇ
X0 “ x,A0 “ a

ff

, (51)

where

µα “ lim
nÞÑ8

LpXα
n q and α̃psq “

#

αpsq, @s ‰ x,

a, if s “ x.
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Theorem 2. The optimal Q˚px, aq “ minαQ
αpx, aq satisfies the Bellman equation

Q˚px, aq “ fpx, a, µ̃˚q ` γ
ÿ

x1PX
ppx1|x, a, µ̃˚qmin

a1
Q˚px1, a1q, px, aq P X ˆA, (52)

where the optimal control α˚ is given by α˚pxq “ arg minaQ
˚px, aq, the modification α̃˚pxq is based on

the pair px, aq and µ̃˚ :“ µα̃
˚.

Remark 3. The population distribution µ̃˚ based on the modification of α˚ given the pair px, α˚pxqq is
equal to µ˚ . Indeed, α̃˚ is equal to α˚ itself, i.e.

α̃˚psq “

#

α˚psq, @s ‰ x,

α˚psq, if s “ x.

Remark 4. The term mina1 Q
˚px1, a1q does not depend on µ̃˚ , i.e.

min
a1

Q˚px1, a1q “ Q˚px1, α˚px1qq “

“ fpx1, α˚px1q, µ̃˚q ` γ
ÿ

x2PX
ppx2|x1, α˚px1q, µ̃˚qmin

a1
Q˚px2, a1q “

˝
“ fpx1, α˚px1q, µ˚q ` γ

ÿ

x1PX
ppx2|x1, α˚px1q, µ˚qmin

a1
Q˚px2, a1q

where step ˝ is due to Remark 3. It follows that (52) depends on µ̃˚ only through the cost due to the first
step.

In order to prove Theorem 2, the following results are required.

Theorem 3. The Bellman equation for Qα is given by

Qαpx, aq “ fpx, a, µα̃q ` γE
”

QαpX1, αpX1qq

ˇ

ˇ

ˇ
X0 “ x,A0 “ a

ı

, (53)

Lemma 3. The value function relative to the policy α is equivalent to the corresponding Q´function
evaluated on the pair px, αpxqq, i.e.

V αpxq “ Qαpx, αpxqq. (54)

Theorem 4 (Policy improvement). Let α̃ be a policy derived by α

α̃psq “

#

αpsq, for s ‰ x,

a, for s “ x.

such that
Qαpx, α̃pxqq ą V αpxq. (55)

Then,
V α̃px1q ą V αpx1q @x1 P X . (56)
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Theorem 5. Let V ˚ : X ÞÑ R be defined as V ˚pxq “ maxα V
αpxq. Then,

V ˚pxq “ max
a

max
α

Qαpx, aq, (57)

Theorem 3.

Qαpx, aq “ fpx, a, µα̃q`

` γE

«

E

«

8
ÿ

n“1

γn´1fpXn, αpXnq, µ
αq

ˇ

ˇ

ˇ
X0 “ x,A0 “ αpxq, X1

ff

ˇ

ˇ

ˇ
X0 “ x,A0 “ a

ff

“

“ fpx, a, µα̃q ` γE

«

E

«

8
ÿ

n“1

γn´1fpXn, αpXnq, µ
αq

ˇ

ˇ

ˇ
X1

ff

ˇ

ˇ

ˇ
X0 “ x,A0 “ a

ff

“

“ fpx, a, µα̃q`

` γE

«

fpX1, αpX1q, µ
αq ` γE

«

8
ÿ

n“2

γn´2fpXn, αpXnq, µ
αq

ˇ

ˇ

ˇ
X1

ff

ˇ

ˇ

ˇ
X0 “ x,A0 “ a

ff

“

“ fpx, a, µα̃q ` γE
”

QαpX1, αpX1qq

ˇ

ˇ

ˇ
X0 “ x,A0 “ a

ı

,

Lemma 3.

V αpxq “ fpx, αpxq, µαq ` E

«

8
ÿ

n“1

γnfpXn, αpXnq, µ
αq

ˇ

ˇ

ˇ
X0 “ x,A0 “ αpxq

ff

“

“ fpx, αpxq, µα̃q ` E

«

8
ÿ

n“1

γnfpXn, αpXnq, µ
αq

ˇ

ˇ

ˇ
X0 “ x,A0 “ αpxq

ff

“

(51)
“ Qαpx, αpxqq

where we used that the modification of α given the pair px, αpxqq is equal to α itself and consequently
µα “ µα̃.

Theorem 4. Step 1 Show that V αpxq ă V α̃pxq.
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We observe that

V αpxq ă Qαpx, α̃pxqq “

(53)
“ fpx, α̃pxq, µα̃q ` γE

”

QαpX1, αpX1qq

ˇ

ˇ

ˇ
X0 “ x,A0 “ α̃pxq

ı

“

(54)
“ fpx, α̃pxq, µα̃q ` γE

”

V αpX1q

ˇ

ˇ

ˇ
X0 “ x,A0 “ α̃pxq

ı

ď

(55)
ď fpx, α̃pxq, µα̃q ` γE

”

QαpX1, α̃pX1qq

ˇ

ˇ

ˇ
X0 “ x,A0 “ α̃pxq

ı

“

(53)
“ fpx, α̃pxq, µα̃q ` γE

”

fpX1, α̃pX1q, µ
α̃q ` γQαpXt2 , αpXt2qq

ˇ

ˇ

ˇ
X0 “ x,A0 “ α̃pxq

ı

ď

...

ď E

«

k
ÿ

n“0

γnfpXn, α̃pXnq, µ
α̃q ` γk`1V αpXk`1q

ˇ

ˇ

ˇ
X0 “ x

ff

Considering the limit as k Ñ8, it follows that

V αpxq ă E

«

8
ÿ

n“0

γnfpXn, α̃pXnq, µ
α̃q

ˇ

ˇ

ˇ
X0 “ x

ff

“ V α̃pxq

Step 2 Show that V αpx1q ă V α̃px1q @x1 P X ztxu.

Let define τx “ mintn : Xn “ xu. Then

V αpx1q “ E

«

8
ÿ

n“0

γnfpXn, αpXnq, µ
αq

ˇ

ˇ

ˇ
X0 “ x1

ff

“

“ E

«

τx´1
ÿ

n“0

γnfpXn, αpXnq, µ
αq `

8
ÿ

n“τx

γnfpXn, αpXnq, µ
αq

ˇ

ˇ

ˇ
X0 “ x1

ff

“

“ E

«

τx´1
ÿ

n“0

γnfpXn, αpXnq, µ
αq

ˇ

ˇ

ˇ
X0 “ x1

ff

` E

«

8
ÿ

n“τx

γnfpXn, αpXnq, µ
αq

ˇ

ˇ

ˇ
X0 “ x1

ff

“

:“ T1 ` T2

We start analyzing the first term observing that Xn ‰ x and αpXnq “ α̃pXnq for all n ă“ τx ´ 1. Then,

T1 “ E

«

τx´1
ÿ

n“0

γnfpXn, α̃pXnq, µ
α̃q

ˇ

ˇ

ˇ
X0 “ x1

ff

The analyses of the term T2 is based on the tower property (TP), the Markov property (MP) and Step 1

46



(S1). It follows that

T2
(TP)
“ E

«

E

«

8
ÿ

n“τx

γnfpXn, αpXnq, µ
αq

ˇ

ˇ

ˇ
X0 “ x1, X1, . . . , Xτx

ff

ˇ

ˇ

ˇ
X0 “ x1

ff

“

(MP)
“ E

«

γτxE

«

8
ÿ

n“τx

γn´τxfpXn, αpXnq, µ
αq

ˇ

ˇ

ˇ
Xτx

ff

ˇ

ˇ

ˇ
X0 “ x1

ff

“

“ E
”

γτxV αpXτxq

ˇ

ˇ

ˇ
X0 “ x1

ı

ă

(S1)
ă E

”

γτxV α̃pXτxq

ˇ

ˇ

ˇ
X0 “ x1

ı

Combining the analyses of T1 and T2, it follows that

V αpx1q “ T1 ` T2 ă

ă E

«

τx´1
ÿ

n“0

γnfpXn, α̃pXnq, µ
α̃q

ˇ

ˇ

ˇ
X0 “ x1

ff

` E
”

γτxV α̃pXτxq

ˇ

ˇ

ˇ
X0 “ x1

ı

“ E

«

τx´1
ÿ

n“0

γnfpXn, α̃pXnq, µ
α̃q ` γτx

8
ÿ

n“τx

γn´τxfpXn, α̃pXnq, µ
α̃q

ˇ

ˇ

ˇ
X0 “ x1

ff

“

“ E

«

8
ÿ

n“0

γnfpXn, α̃pXnq, µ
α̃q

ˇ

ˇ

ˇ
X0 “ x1

ff

“

“ V α̃px1q

Theorem 5. Let X “ tx1, . . . , xnu and A “ ta0, . . . , amu be the state and action spaces.
Step 1 Let α0 be an initial policy and define α1 as follows

α1pxq “

#

arg maxaQ
α0
px, aq, if x “ x1,

α0pxq, o.w.

Then,

Qα
0
px1, α

1px1qq ě V α0
px1q

(56)
ùñ V α1

pxq ě V α0
pxq, @x

Step 2 Consider α2 defined as follows

α2pxq “

#

arg maxaQ
α1
px, aq, if x “ x2,

α1pxq, o.w.

“

$

’

&

’

%

arg maxaQ
α1
px, aq, if x “ x2,

arg maxaQ
α0
px, aq, if x “ x1,

α0pxq, o.w.
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Then,

Qα
1
px2, α

2px2qq ě V α1
px1q

(56)
ùñ V α2

pxq ě V α1
pxq ě V α0

pxq, @x

Step n Consider αn defined as follows

αnpxq “

#

arg maxaQ
αn´1

px, aq, if x “ xn,

αn´1pxq, o.w.

“ arg max
a

Qα
k´1
px, aq, if x “ xk, for k “ 1, . . . , n,

Then,

Qα
n´1
pxn, α

npxnqq ě V αn´1
pxnq

(56)
ùñ V αnpxq ě V αn´1

pxq ě V α0
pxq, @x

Step N Since the state and action spaces are finite, the policy can be improved only a finite number of
times. In other words, DN ą 0 such that

αN pxq “ arg max
a

Qα
N
px, aq, @x P X

and
V αN pxq “ Qα

N
px, αN pxqq “ max

a
Qα

N
px, aq, @x P X .

Can αN be still suboptimal? No, by extending Bellman and Dreyfus’s Optimality Theorem (1962),
[3].

Theorem (2).

RHS “ fpx, a, µα̃q ` γE
„

max
a1

Q˚pX1, a
1q

ˇ

ˇ

ˇ
X0 “ x,A0 “ a



“

(57)
“ fpx, a, µα̃q ` γE

”

V ˚pX1q

ˇ

ˇ

ˇ
X0 “ x,A0 “ a

ı

(54)
“ fpx, a, µα̃q ` γE

”

Qα
˚

pX1, α
˚pX1qq

ˇ

ˇ

ˇ
X0 “ x,A0 “ a

ı

“

(53)
“ Qα

˚

px, aq “ Q˚px, aq,

where the last step is due to what shown in the proof of equation (57), i.e. the same policy α˚ optimizes
V α and Qα.
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