
Miguel A. Gutié rrez-Naranjo � Mario J. Pé rez-Jimé nez
Agustı́ n Riscos-Nú ñ ez

A fast P system for finding a balanced 2-partition

Abstract Numerical problems are not very frequently
addressed in the P systems literature. In this paper we
present an effective solution to the 2-Partition problem
via a family of deterministic P systems with active
membranes using 2-division. The design of this solution
is a sequel of several previous works on other problems,
mainly on the Subset-Sum and the Knapsack problems.
Several improvements are introduced and explained.

Keywords Complexity class Æ Membrane
computing Æ Active membranes Æ NP-Complete problem

1 Introduction

Membrane computing (we also say cellular computing)
is a recent branch of natural computing initiated in [4].
Its goal is to abstract computing models from the
structure and the functioning of living cells. These
models, called P systems, are parallel distributed devices
working with multisets of objects (see [6] for a detailed
introduction to membrane computing).

The present paper is focused in the design of a family
of P systems that solves a numerical NP-complete
problem, and in the formal verification of this solution.

The analysis of the solution presented here will be
done from the point of view of the complexity classes. A
complexity class for a model of computation is a col-
lection of problems that can be solved (or languages that
can be decided) by some devices of this model with
similar computational resources.

Following the ideas presented in [6] and developed in
[11], we first present a polynomial complexity class in

cellular computing with membranes. Then, we prove
that the 2-partition problem belongs to the class of
problems which can be solved in a polynomial time by P
systems with active membranes.

The paper is organized as follows: first a formal
definition of recognizer P systems is given in the next
section; then, in Sec. 3 the polynomial complexity class
PMCAM is introduced; in Sec. (4,5) a cellular solution
for the 2-Partition problem is presented, together with
some comments, and finally some concluding remarks
are given in Sec. 6.

2 Preliminaries

The reader is assumed to be familiar with basic elements
of membrane computing, e.g., from [6] or [8].

Recall that a decision problem, X , is a pair ðIX ; hX Þ
such that IX is a language over a finite alphabet (the
elements of IX are called instances) and hX is a total
boolean function over IX .

Definition 1. A P system with input is a tuple ðP;R; iPÞ,
where:

– P is a P system, with working alphabet C, with p
membranes labelled by 1; . . . ; p, initial multisets
M1; . . . ;Mp associated with them.

– R is an (input) alphabet strictly contained in C; the
initial multisets are over C� R.

– iP is the label of a distinguished (input) membrane.

Definition 2. Let ðP;R; iPÞ be a P system with input as
above. The initial configuration of ðP;R; iPÞ with input m
is ðl;M1; . . . ;MiP [m; . . . ;MpÞ.

Remark 1. Wedenote by IP the set of all possible inputs of
the P system P (i.e., IP is a collection of multisets over R).

The computations of a P system with input a multiset
m over R, are defined in a natural way. The only novelty
is that the initial configuration must be the initial

M. A. Gutiérrez-Naranjo (&) � M. J. Pérez-Jiménez
A. Riscos-Núñez
Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
Sevilla University Avda Reina Mercedes s/n,
41012 Sevilla, Spain
E-mail: {magutier, marper, ariscosn}@us.es

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL --File Options: Compatibility: PDF 1.2 Optimize For Fast Web View: Yes Embed Thumbnails: Yes Auto-Rotate Pages: No Distill From Page: 1 Distill To Page: All Pages Binding: Left Resolution: [600 600] dpi Paper Size: [595.276 785.197] PointCOMPRESSION --Color Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitGrayscale Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitMonochrome Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 600 dpi Downsampling For Images Above: 900 dpi Compression: Yes Compression Type: CCITT CCITT Group: 4 Anti-Alias To Gray: No Compress Text and Line Art: YesFONTS -- Embed All Fonts: Yes Subset Embedded Fonts: No When Embedding Fails: Warn and ContinueEmbedding: Always Embed: [] Never Embed: []COLOR --Color Management Policies: Color Conversion Strategy: Convert All Colors to sRGB Intent: DefaultWorking Spaces: Grayscale ICC Profile: RGB ICC Profile: sRGB IEC61966-2.1 CMYK ICC Profile: U.S. Web Coated (SWOP) v2Device-Dependent Data: Preserve Overprint Settings: Yes Preserve Under Color Removal and Black Generation: Yes Transfer Functions: Apply Preserve Halftone Information: YesADVANCED --Options: Use Prologue.ps and Epilogue.ps: No Allow PostScript File To Override Job Options: Yes Preserve Level 2 copypage Semantics: Yes Save Portable Job Ticket Inside PDF File: No Illustrator Overprint Mode: Yes Convert Gradients To Smooth Shades: No ASCII Format: NoDocument Structuring Conventions (DSC): Process DSC Comments: NoOTHERS -- Distiller Core Version: 5000 Use ZIP Compression: Yes Deactivate Optimization: No Image Memory: 524288 Byte Anti-Alias Color Images: No Anti-Alias Grayscale Images: No Convert Images (< 257 Colors) To Indexed Color Space: Yes sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [576.0 792.0] /HWResolution [600 600]>> setpagedevice

configuration of the system associated with the input
multiset m.

In the case of P systems with input and with external
output, the concept of computation is introduced in a
similar way but with a small change. In order to be able
to handle the external output of the computations in a
formal way, one defines a membrane structure with
environment by just adding a virtual membrane sur-
rounding the skin, and thus containing the whole sys-
tem. In this way, the information about the contents of
the environment can be included in the configurations of
the system.

However, we will not get into details here. In what
follows, we will refer to the objects that have been sent
out of the system assuming that it is possible to ‘‘read’’
them.

Definition 3. An accepting P system is a P system with
input and with external output, such that the working
alphabet contains two distinguished objects: Yes and No.

Now, imposing some conditions to the behaviour of
these accepting P systems, we will get the special subclass
that will be used to solve (decision) problems. First, we
need to define an Output function for our P sys-
tems. Given a computation C ¼ fCigi<r, we will denote
by Mj

env the content of the environment in the configu-
ration Cj.

Definition 4. The output of a computation C ¼ fCigi<r is:

OutputðCÞ ¼

Yes; if C is halting;

Yes 2 Mr�1
env and No =2 Mr�1

env

No if C is halting;

No 2 Mr�1
env and Yes =2 Mr�1

env

not defined; otherwise

8
>>>>>><

>>>>>>:

If C satisfies any of the two first conditions, then we say
that it is a successful computation.

Definition 5. An accepting P system is said to be valid if
for every halting computation, and only for them, one
symbol Yes or one symbol No (but not both) is sent out (in
the last step of the computation).

Definition 6. We say that C is an accepting computation
(respectively, rejecting computation) if the object Yes
(respectively, No) is present in the environment associated
with the halting configuration of C.

Definition 7. A recognizer P system is a valid accepting P
system such that all its computations halt.

These recognizer systems are specially suitable when
trying to solve decision problems. The definitions above
are stated in a general way, but in this paper P systems
within the active membrane model will be used. We refer
to [6] (see chapter 7) for a detailed definition of evolution
rules, transition steps, configurations and computations
in this model.

3 The complexity class PMCAM

Roughly speaking, a computational complexity study of
a solution for a problem is an estimation of the resources
(time, space, etc.) that are required through all the
processes that take place in the way from the bare
instance of the problem up to the final answer.

The first results about ‘‘solvability’’ of NP–complete
problems in polynomial time (even linear) by cellular
computing systems with membranes were obtained using
variants of P systems that lack an input membrane.
Thus, the constructive proofs of such results need to
design one system for each instance of the problem (see
for instance [5] or [12]).

If we wanted to perform such a solution of some
decision problem in a laboratory, we will find a draw-
back on this approach: a system constructed to solve a
concrete instance is useless when trying to solve another
instance. This issue can be easily overtaken if we con-
sider a P system with input. Then, the same system could
solve different instances of the problem, provided that
the corresponding input multisets are introduced in the
input membrane.

Therefore, when attacking a problem in the mem-
brane computing framework, we will design P systems
that are able to decide all the instances of ‘‘equivalent
size’’, in certain sense. We introduce some preliminary
notions before the proper definition of the complexity
class is given.

Let us denote by AM the class of recognizer P sys-
tems with active membranes using 2-division only for
elementary membranes (see [6], sect 7.2).

Definition 8. Let L be a language and P ¼ ðPðtÞÞt2N a
family of P systems. A polynomial encoding of L in P is a
pair ðcod; sÞ of polynomial-time computable functions,
cod : L!

S
t2N IPðtÞ, and s : L! N, such that for every

u 2 L we have codðuÞ 2 IPðsðuÞÞ.
That is, for each word u of the language L, we have a

multiset codðuÞ and a number sðuÞ associated with it
such that codðuÞ is an input multiset for the P system
PðsðuÞÞ.

Lemma 1. Let L1 � R�1 and L2 � R�2 be languages. Let
P ¼ ðPðtÞÞt2N be a family of P systems. If r : R�1 ! R�2 is
a polynomial-time reduction from L1 to L2, and ðcod; sÞ is
a polynomial encoding of L2 in P, then ðcod � r; s � rÞ is a
polynomial encoding of L1 in P.

For a detailed proof, we refer the reader to [11].
Considering all the definitions already presented, we

are now ready to give the definition of the complexity
class PMCAM, which is based on the one given in [11].

Definition 9. We say that a decision problem, X ¼ ðIX ;
hX Þ, is solvable in polynomial time by a family of
recognizer P systems with active membranes using
2-division, and we denote this by X 2 PMCAM, if there

exists a family of P systems, P ¼
�
PðtÞ

�

t2N, with the
following properties:

1. The family P is consistent with regard to the class
AM; that is, 8t 2 N ðPðtÞ 2 AMÞ.

2. The family P is polynomially uniform by Turing
machines; that is, there exists a deterministic Turing
machine constructing PðtÞ from t in polynomial time.

3. There exists a polynomial encoding ðcod; sÞ of IX in P
such that:

3. – The family P is polynomially bounded with regard
to (X , cod, s); that is, there exists a polynomial
function, p, such that for each u 2 IX every com-
putation of the system PðsðuÞÞ with input codðuÞ is
halting and, moreover, it performs at most pðjujÞ
steps.

3. – The family P is sound with regard to (X , cod, s);
that is, for each u 2 IX it is verified that if there
exists an accepting computation of the system
PðsðuÞÞ with input codðuÞ, then hX ðuÞ ¼ 1.

3. – The family P is complete with regard to (X , cod, s);
that is, for each u 2 IX it is verified that if hX ðuÞ ¼ 1,
then every computation of the system PðsðuÞÞ with
input codðuÞ is an accepting one.

Remark 2. Note that, as a consequence of the above
definition, the complexity class PMCAM is closed under
complement (because we use recognizer P systems).

We would like to remark also that a confluence con-
dition is implicit in the above definition, in the following
sense: a P system of the family (that can be nondeter-
ministic) will produce allways the same output for a
given input, irrespectively of the computation that is
chosen in each run. Thus, once the input multiset is
introduced we do not need to interact anymore with the
system, we know that the system will output Yes if and
only if the instance has an affirmative answer, and
otherwise it will output No.

Proposition 1. Let X and Y be decision problems such
that X is reducible to Y in polynomial time. If
Y 2 PMCAM, then X 2 PMCAM.

That is, the complexity class PMCAM is stable under
polynomial-time reduction. The proof of this result can
also be found in [11].

4 Solving the partition problem in linear time

The 2-partition problem can be stated as follows:
Given a set A ¼ fa1; . . . ; ang, where each element ai has

a ‘‘weight’’ wi 2 N, decide whether or not there exists a
partition of A into two subsets such that they have the
same weight.

We will represent the instances of the problem using
tuples of the kind ðn; ðw1; . . . ;wnÞÞ, where n is the size of
the set A and ðw1; . . . ;wnÞ is the list of weights of the
elements from A. We can define in a natural way an
additive function w that corresponds to the data in the
instance.

We will address the resolution of the problem via a
brute force algorithm, in the framework of recognizer P
systems with active membranes using 2-division, without
cooperation nor priority among rules. Our strategy will
consist in:

– Generation stage: Membrane division is used until a
specific membrane for each pair ðB;BcÞ is obtained,
where B is a subset of A that contains the element a1

(this condition is stated to avoid considering twice the
same pair; Bc is the complementary of B).

– Calculation stage: In each Membrane the weight of
the associated subset and of its complementary are
calculated.

– Checking stage: In each membrane it is checked if
these two weights coincide.

– Output stage: The answer is delivered according to the
results of the checkings.

The family presented here is

P ¼ fðPðnÞ;RðnÞ; iðnÞÞ : n 2 Ng ;
where RðnÞ ¼ fx1; . . . ; xng, iðnÞ ¼ e, and the P system
PðnÞ ¼ ðCðnÞ; fe; r; sg; l;Me;Mr;Ms;RÞ is defined as
follows:

� Working alphabet:
CðnÞ ¼ RðnÞ [fa0; a; b0; b; c; d0; d1; d2; e1; . . . ; en;
g; g0; g1; h0; h1; i1; i2; i3; i4; p; p0; q;
Yes; No; no; z1; . . . ; z2nþ1;#g

� Membrane structure: l ¼ ½ ½ �e ½ �r �s:
� Initial multisets:
Me ¼ e1g1,Mr ¼ b0h0 andMs ¼ z1:

� The set of evolution rules, R, consists of the following
rules:

(a)½ei�0e ! ½q�
�
e ½ei�þe ; for i ¼ 1; . . . ; n;

½ei�þe ! ½eiþ1�0e ½eiþ1�þe ; for i ¼ 1; . . . ; n� 1:

The goal of these rules is to generate one membrane for
each subset of A that contains a1. This is done as fol-
lows:

– when ½ei�0e divides, the negatively charged daughter
membrane leaves the generation stage, the other one
continues.

– when ½ei�þe divides, in the neutrally charged daughter
membrane the element aiþ1 2 A is added to the
associated subset, B, but in the other one the element
aiþ1 is added to the complementary subset, Bc.

(b)½x1 ! a0�0e ; ½x1 ! p0�þe ;
½xi ! xi�1�þe ; for i ¼ 2; . . . ; n;

½xi ! p0��e ; for i ¼ 2; . . . ; n:

In the beginning, the multiplicities of the objects xj (with
1 � j � n) encode the weights of the corresponding ele-
ments of A. They are not present in the definition of the
system, but they are inserted as input in the membrane
labelled by e before starting the computation: for each
aj 2 A, wj copies of xj have to be added to the input
membrane.

During the computation, at the same time as elements
are added to the subset associated with a membrane (as
explained above), objects a0 and p0 are generated to
store the weight of this subset and of its complementary.
Notice that the electic charge of the membranes in each
step is of chief importance in this stage. In Fig. 1 the
division process is depicted, including the information
about the charge at every moment.

(c) ½en�þe ! #;

½a0 ! #�0s ; ½p0 ! #�0s ; ½g1 ! #�0s :
As there are not elements ai 2 A with i 	 nþ 1, the
membranes positively charged where the object en occurs
must leave the generation stage; indeed, they are useless
membranes (see membranes marked by a diamond in
Fig. 1). These rules perform a ‘‘cleaning’’ task dissolving
these spare membranes and erasing the contents that
these dissolutions spill in the skin membrane.

(d)½q! i1��e ; ½p0 ! p��e ; ½a0 ! a��e ;
½g1��e ! ½ �

�
e g0:

When a membrane gets negatively charged, the two first
stages (i.e., generation and calculation stages) end, and
then some transition rules are applied. Objects a0 and p0,
whose multiplicities encode the weights of the associated
subset and of its complementary, are renamed for the
next stage, when their multiplicities are compared. Also
an object g0 is sent out and the total weight of all the
elements that have not been considered in the generation
stage is added to the complementary.

All these rules are applied simultaneously in the same
step, and after this step we say that the membrane
becomes adult.

(e) ½a��e ! ½ �
0
e#; ½p�0e ! ½ �

�
e #:

These rules implement the comparison above mentioned
(that is, they check whether wðBÞ ¼ wðBcÞ holds or not).
They work as a loop that erases objects a and p one by
one alternatively, changing the charge of the membrane
in each step.

(f) ½i1 ! i2��e ; ½i2 ! i1�0e :
A marker that controls the previous loop is described
here. The index of ij and the electric charge of the
membrane give enough information to point out if the
number of objects a is greater than (less than or equal to)
the number of objects p.

(g) ½i1�0e ! ½ �
þ
e no:

If a subset B � A verifies that wðBÞ > wðBcÞ, then inside
the adult membrane associated with it there will be less
objects p than a. The moment will come when there are
no objects p left, and then the rule ½i2 ! i1��e will be
applied but it will not be possible to apply the rule
½p�0e ! ½ �

�
e # at the same time. Thus, an object i1 will be

present in the membrane and the latter will be neutrally
charged, so the rule (g) will be applied ending the
checking stage with a negative result.

(h)½i2 ! i3c��e ;
½c��e ! ½ �

0
e#; ½i3 ! i4�0e ;

½i4�0e ! ½ �
þ
e Yes; ½i4��e ! ½ �

þ
e no:

If, on the contrary, wðBÞ � wðBcÞ holds, then the objects
a will be exhausted before the objects p. It is important
to distinguish between the cases where the multiplicity of
p is strictly greater than the multiplicity of a and the
cases where both multiplicities coincide. This is why
object c gives again a neutral charge to the membrane
and then object i4 checks if the rule ½p�0e ! ½e�

�
e # is

applied or not.

(i) ½p! #�þe ; ½a! #�þe :
If after the checking loop of rules in (e) is finished there
are still some objects p or a in the membrane, they can be
erased (again, just for ‘‘cleaning’’ purposes).

(j) ½zi ! ziþ1�0s ; for i ¼ 1; . . . ; 2n;
½z2nþ1 ! d0d1�0s ; d0½ �0r ! ½d0�

�
r ; ½d1�0s ! ½ �

þ
s d1;

½g0 ! g�þs ;
g½ �þe ! ½g�

0
e :

Before the answer is sent out, the system has to make
sure that all the adult membranes have finished their
checking stages. This is done using the objects g0 that are
present in the skin (recall that they are put there via one
of the rules in (d)) and the auxiliary membrane labelled
by r (see the next set of rules).

First of all, we wait until the generation stage is over,
evolving the counter zi in the meanwhile. Then, there
must be 2n�1 copies of g0, because each adult membrane
sends one, and there is one adult membrane for each
B � A such that a1 2 B (that is, 2n�1 in all). Thus we
generate objects d0 and d1 to ‘‘activate’’ the objects g and
the membrane r.

(k) ½h0 ! h1��r ; ½h1 ! h0�þr ;
½b0��r ! ½ �

þ
r b; g½ �þr ! ½g�

�
r ;

b½ ��r ! ½b0�þr ; ½g�þr ! ½ �
�
r g;

½h0�þr ! ½ �
þ
r d2; ½d2�þs ! ½ �

0
s d2:Fig. 1 Membrane division process for n ¼ 3

The membrane labelled by r is present in the initial
configuration, but remains inactive until an object d0
‘‘wakes it up’’. The purpose of this membrane is to
perform a loop where the objects g are involved, and
thus we can detect if there are no objects g present in
the skin region. This fact will mean that all the adult
membranes have finished their checking stage, and
that the system is ready to send out the answer (Yes
or No).

(l) ½no! No��s ;
½Yes��s ! ½ �

0
sYes;

½No��s ! ½ �
0
sNo:

Finally, the output process is activated. The skin mem-
brane needs to be negatively charged before the answer
is sent out. Object d2 takes care of this (see the previous
set of rules) and then, if the answer is affirmative, an
object Yes will be sent out recovering the neutral charge
for the skin. Note that the answer Yes has priority over
the negative answer, in the sense that we first check if
there is any object Yes and then, if it is not the case, the
answer No will be sent out.

Formal verification: a sketch. Now we will outline the
formal verification of the design presented above. That
is, we will sketch the proof that this family of P systems
actually solves in polynomial time the Partition problem
(2-Part, for short), according to Definition 9.

First of all, it is clear that the design corresponds to a
family of P systems with active membranes, with input
and with external output. It can be also easily checked
that all the systems are deterministic, and after a detailed
study, one can conclude that all the computations halt
and that an object Yes or an object No is sent to the
environment in their last step. Thus, all the P systems
from the family are in AM.

The amount of resources needed to build a P system
PðnÞ (size of the alphabet, number of rules, maximal
length of rules, and number of membranes and of
objects in the initial configuration) is linearly bounded
with respect to n, so the polynomially uniform condition
is also fulfilled.

Concerning the third condition of Definition 9, and
given an instance u ¼ ðn; ðw1; . . . ;wnÞÞ of the Partition
problem, we can define the two functions cod and s as
follows: codðuÞ ¼ xw1

1 � � � xwn
n and sðuÞ ¼ n. Then, in a

similar way as it is done in [9] and [10], the computation
of the P system PðsðuÞÞ with input codðuÞ can be studied
to verify that actually the number of steps is of linear
order with respect to juj (recall that the instance is
encoded in an unary fashion in the system, through the
input multiset) and that an object Yes (or an object No) is
sent out in the last step of the computation, if and only if
the instance has an affirmative answer (or a negative
answer, respectively).

From the discussion presented here, and according to
the Definition 9, we deduce that 2-Part 2 PMCAM. Thus,
taking into account that this problem isNP–complete and

the class PMCAM is stable under polynomial-time
reduction and closed under complement, we also haveNP

[co-NP � PMCAM.

5 Improving the design

If one studies how the generation stage works, one can
notice that the number of spare membranes that are
generated and immediately dissolved (the ones with
positive charge and containing the object en) is actu-
ally 2n�1, the same amount as of adult membranes. In
the formal model we do not worry about this, because
this space is created during the computation, and thus
it is not needed a priori. But if we try to run a sim-
ulation of these P systems on a computer, then the
space complexity becomes much more important. Even
if we use the trick of dissolving the membranes
immediately after being generated, the resources used
are too large.

A possible solution is to avoid the generation of such
useless membranes. This can be done for example by
using a division strategy that follows a complete binary
tree structure. We do not use here this idea, because we
have the intention to get some of the adult membranes
before the generation stage ends, instead of getting all
the membranes together after a linear number of steps.
This is motivated because we are looking for better
efficiency in the best or average case than in the worst
case.

Here is a proposal how this can be done:
Generation stage

½ei�0e ! ½q�
0
e ½ei�þe ; for i ¼ 1; . . . ; n� 1;

½ei�þe ! ½eiþ1�0e ½eiþ1�þe ; for i ¼ 1; . . . ; n� 2;

½en ! q�0e ;

½en�1�þe ! ½ �
0
e#;

½e0i ! e0iþ1�
þ
e ; ½e00i ! e0iþ1�

þ
e ; for i ¼ 1; . . . ; n� 2;

½e0i ! e00i �
0
e ; ½e00i ! k�0e ; for i ¼ 1; . . . ; n� 1;

½e0n�1 ! en�þe ; ½e00n�1 ! en�þe :
In this new approach, we do not produce any useless
membrane, so the dissolving rules are no longer nee-
ded. Furthermore, only two electrical charges are used.
Although the sequence of electrical charges of a
membrane is still meaningful, the end of the stage is
not marked anymore now by getting a negative charge,
but by having the neutral charge for two consecutive
evolution steps (see [1] for an example of using active
membranes with only two charges). This condition is
controlled by the ‘‘witness-objects’’ e0i and e00i , that show
whether in the previous step the charge was neutral (e00i)
or positive (e0i).

If we want to use these rules instead of the rules in (a),
then the checking stage needs also to be adapted, and
this could be done as follows:

Weight calculation stage

½x1 ! a0�0e ; ½x1 ! p0�þe ;

½x01 ! a0�0e ; ½x01 ! p0�þe ;

½xi ! xi�1�þe ; for i ¼ 2; . . . ; n;

½x0i ! xi�1�þe ; for i ¼ 2; . . . ; n;

½xi ! x0i�
0
e ; for i ¼ 2; . . . ; n;

½x0i ! p0�0e ; for i ¼ 2; . . . ; n:

This stage is almost the same as it was in the former
designs, but again it is necessary to introduce ‘‘witness-
objects’’ to detect when the generation stage finishes,
because in this moment the calculation stage must also
conclude.

6 Final remarks

The approach proposed here tries to be as general as
possible, and at the same time tries to be uniform, in the
sense that the design of a family of P systems that solves
a problem is not made looking for one P system for each
instance of the problem. Instead, each P system of the
family can deal with a set of instances of the same size (in
this case, with the same value of n, independently of the
values of the weight function), receiving at the beginning
of the computation an input that encodes the concrete
instance. It is also important that the number of steps of
the computations is polynomial (preferably linear) with
respect to the input given; in the case of Partition
problem the number of steps is of a linear order.

Several numerical problems have already been solved
with similar techniques: the Subset-Sum problem ([9]),
the Knapsack problem ([10]) and the Partition problem
(in this paper), among others. This fact gives rise to the
following question: is it possible to formalize a proce-
dure of ‘‘reusing rules’’? This question is addressed
in [3].

Some first attempts in this direction have already
been made, in the framework of a simulator of P systems
in Prolog (see [2]). Several files have been created, con-
taining the instructions to generate the evolution rules
that deal with the different problems (following the
schemes given in the corresponding designs), and now
we are working to put these files together and reuse
somehow the information.

Another research topic related with these ideas is
trying to formalize what means polynomial reduction
performed by P systems. It will be nice to have a defi-
nition of a complexity class that only depends on P
systems parameters, without including a polynomial-
time precomputing process (this is somehow unnatural,
as one mixes computing devices of essentially different
types, Turing machines and P systems).

Acknowledgements The support of this research through the pro-
ject TIC2002-04220-C03-01 of the Ministerio de Ciencia y Tecno-
logı́a of Spain, cofinanced by FEDER funds, is gratefully
acknowledged.

References

1. Alhazov A, Freund R, Păun Gh (2004) P systems with active
membranes and two polarizations. 7:20–36

2. Cordón-Franco A, Gutiérrez-Naranjo MA, Pérez-Jiménez MJ,
Sancho-Caparrini F (in press) A Prolog simulator for deter-
ministic P systems with active membranes. New Generation
Computing

3. Gutiérrez-Naranjo MA, Pérez-Jiménez MJ, Riscos-Núñez A
(2004) Towards a programming language in cellular computing.
7: 247–257

4. Păun Gh (2000) Computing with membranes. Journal of
Computer and System Sciences 61(1):108–143

5. Păun Gh (2001) P Systems with active membranes: Attacking
NP-complete problems. J Automata, Languages and Combi-
natorics 6(1): 75–90

6. Păun Gh (2002) Membrane computing. An introduction.
Springer, Berlin Heidelberg New York

7. Păun Gh, Riscos-Núñez A, Romero-Jiménez A, Sancho-
Caparrini A (eds) (2004) Second Brainstorming Week on
Membrane Computing, Sevilla, February 2004. TR 01/2004,
Research Group on Natural Computing, Sevilla University

8. Păun Gh, Rozenberg G (2002) A guide to membrane comput-
ing. Theoretical Computer Science 287: 73–100

9. Pérez-Jiménez MJ, Riscos-Núñez A (in press) Solving the
Subset-Sum problem by active membranes. New Generation
Computing

10. Pérez-Jiménez MJ, Riscos-Núñez A (2004) A linear solution for
the Knapsack problem using active membranes. In: Martı́n-
Vide C, Mauri G, Păun Gh, Rozenberg G, Salomaa A (eds)
(2004) Membrane Computing. International Workshop
WMC2003, Tarragona, July 2003, Revised papers. Lecture
Notes in Computer Science 2933, Springer, Berlin, 250–268

11. Pérez-Jiménez MJ, Romero-Jiménez A, Sancho-Caparrini F
(2003) A polynomial complexity class in P systems using
membrane division. In: Csuhaj-Varjú E, Kintala C,
Wotschke D, Vaszil G (eds) (2003) Proceedings of the Fifth
International Workshop on Descriptional Complexity of For-
mal Systems, Budapest, Hungary, July 12–14, 284–294

12. Zandron C (2001) A model for molecular computing: Mem-
brane systems. Ph.D. Thesis, Università degli Studi di Milano.

