Progressive design methodology for complex engineering systems based on multiobjective genetic algorithms and linguistic decision making

P. Kumar • P. Bauer

Published online: 24 September 2008
© The Author(s) 2008. This article is published with open access at Springerlink.com

Abstract

This work focuses on a design methodology that aids in design and development of complex engineering systems. This design methodology consists of simulation, optimization and decision making. Within this work a framework is presented in which modelling, multiobjective optimization and multi criteria decision making techniques are used to design an engineering system. Due to the complexity of the designed system a three-step design process is suggested. In the first step multi-objective optimization using genetic algorithm is used. In the second step a multi attribute decision making process based on linguistic variables is suggested in order to facilitate the designer to express the preferences. In the last step the fine tuning of selected few variants are performed. This methodology is named as progressive design methodology. The method is applied as a case study to design a permanent magnet brushless DC motor drive and the results are compared with experimental values.

Keywords BLDC motors • PDM •
Voltage source inverter • Genetic algorithms •
Linguistic variables • Multi attribute decision making -Multi-objective optimization (MOOP)

1 Introduction

The design of complex engineering systems involves many objectives and constraints and requires application of knowledge from several disciplines (multidisciplinary) of

[^0]engineering (Balling and Sobieszczanski 1996; Lewis and Mistree 1998; Sobieszczanski-Sobieski and Haftka 1997). The multidisciplinary nature of complex systems design presents challenges associated with modelling, simulation, computation time and integration of models from different disciplines. In order to simplify the design problems, assumptions based on the designer's understanding of the system are introduced. The ability and the experience of the designer usually lead to good but not necessarily an optimum design. Hence there is a need to introduce formal mathematical optimisation techniques, in design methodologies, to offer an organised and structured way to tackle design problems.

A review of different methods for design and optimisation of complex systems is given in (Tappeta et al. 1998; Sobieszczanski et al. 1998, 2000, 2002; Alexandrov and Lewis 2002). The increase in complexity of systems, as well as the number of design parameters needed to be coordinated with each other in an optimal way, have led to the necessity of using mathematical modelling of systems and application of optimisation techniques. In this situation the designer focuses on working out an adequate mathematical model and the analysis of the results obtained while the optimisation algorithms choose the optimal parameters for the system being designed. Marczyk (2000) presented stochastic simulation using the Monte Carlo technique as an alternative to traditional optimisation. In recent years probabilistic design analysis and optimisation methods have also been developed (Tong 2000; Koch et al. 2000; Egorov et al. 2002) to account for uncertainty and randomness through stochastic simulation and probabilistic analysis. Much work has been proposed to achieve highfidelity design optimisation at reduced computational cost. Booker et al. (1999) developed a direct search Surrogate Based Optimisation (SBO) framework that converges to an
objective function subject only to bounds on the design variables and it does not require derivative evaluation. Audet et al. (2000) extended that framework to handle general non-linear constraints using a filter for step acceptance (Audet and Dennis 2004).

The primary shortcoming of many existing design methodologies is that they tend to be hard coded, that is they are discipline or problem specific and have limited capabilities when it comes to incorporation of new technologies. There appears to be a need for a new methodology that can exploit different tools, strategies and techniques which strive to simplify the design cycle of engineering systems. The other drawback of the existing methodologies is that the designer needs extensive knowledge of the process itself. In order to overcome these problems a new design methodology, progressive design methodology (PDM), has been proposed. In the following sections the details of PDM are laid down. In the next section the various steps of PDM are explained. In Sect. 3 the first step of PDM, viz. the Synthesis Phase is described. Section 4 deals with the second step of PDM, the Intermediate Analysis. An explanation of the third step of PDM, Final Analysis is given in Sect. 5. In Sect. 6 the application of the Synthesis Phase of PDM to design of a BLDC motor drive is presented. The application of Intermediate Analysis Phase to PDM to BLDC motor drive is given in Sects. 7 and 8 deals with the application Final Analysis Phase to BLDC motor drive design. Finally the conclusions are drawn in Sect. 9.

2 Progressive design methodology

A design method is a scheme for organising reasoning steps and domain knowledge to construct a solution (Dasgupta 1989). Design methodologies are concerned with the question of how to design whereas the design process is concerned with the question of what to design. A good design methodology has following characteristics (Shakeri 1998):

- Takes less time and causes fewer failures,
- produces better design,
- works for a wide range of design requirements,
- integrates different disciplines,
- consumes less resources: time, money, expertise,
- requires less information.

An ideal condition in the design of an engineering system will be if all the objectives and constraints can be expressed by a simple model. However in practical design problems this is seldom the case due to the complexity of the system. Hence a trade-off has to be made between the complexity of the model and time to compute the model.

A complex model will enable us to represent all the objectives and constraints of the system but will be computationally intensive. On the other hand a simple model will be computationally inexpensive but will limit the scope of objectives and constraints that can be expressed. In order to overcome this problem PDM consists of three main phases:

- Synthesis phase of PDM,
- intermediate analysis phase of PDM,
- final design phase of PDM.

Since in the first step (synthesis phase) of PDM the detailed knowledge is unavailable hence the optimisation process is exhaustive. If complex models are used in this phase then the computational burden will be overwhelming. In order to facilitate the initial optimisation process only those objectives and constraints are considered that can be expressed by simple mathematical models of the system. In the synthesis phase a set of feasible solutions (Pareto Optimal Solutions) is obtained. The Fig. 1 illustrates a set of Pareto Optimal Solutions for a problem where two objectives (f_{1} and f_{2}) are simultaneously minimised. The set of feasible solutions is obtained by using multi objective optimisation. Hence the engineering design problem is a multi objective optimisation problem (MOOP). The primary purpose of the synthesis phase is to develop simple models of the system and translate the problem as to a multi-objective optimisation problem. The details of the synthesis phase are explained in Sect. 3.

The most important task in engineering design problems, besides developing suitable mathematical models, is to generate various design alternatives and then to make preliminary decision to select a design or a set of designs that meets a set of criterion. Hence the engineering design problem is also a multicriteria decision making (MCDM) problem as well. In the conceptual stages of design, the

Fig. 1 A set of Pareto optimal solutions for an optimisation problem with two objectives
design engineer faces the greatest uncertainty in the product attributes and requirements (e.g. dimensions, features, materials and performance). The evolution of design is greatly affected by decisions made during the conceptual stage and these decisions have a considerable impact on overall cost.

In the intermediate analysis phase multicriteria decision making process is carried out. This step is a screening process where the set of solutions obtained from the synthesis phase is subjected to the process of screening. In order to achieve the screening additional constraints are taken into consideration. The constraints considered here are those that cannot be expressed explicitly in mathematical terms. The details of the intermediate analysis phase are given in Sect. 4.

In the final design phase detail model of the system is developed. After having executed the synthesis phase a better understanding of the system is obtained and it is possible to develop a detail model of the system. In this phase all the objectives and constraints that could not be considered in the synthesis phase are taken into consideration. In this phase exhaustive optimisation is not carried out, rather fine tuning of the variables is performed in order to satisfy all the objectives and constraints. The outline of the final design phase are given in Sect. 5.

3 Synthesis phase of PDM

In the synthesis phase the requirements of the system to be designed are identified. Based on these requirements system boundaries are defined and performance criterion/ criteria are determined. The next step is to determine the independent design variables that will be changed during the optimisation process. The various steps involved in the synthesis phase are:

1. System requirements analysis,
2. definition of system boundaries,
3. determination of performance criterion/criteria,
4. selection of variables and sensitivity analysis,
5. development of system model,
6. deciding on the optimisation strategy.

The implementation of the above steps is shown in Fig. 2. From Fig. 2 it can be seen that the six steps involved in the synthesis phase are not executed in purely sequential manner. After the sensitivity analysis has been done and a set of independent design variables (IDV) has been identified, the designer has to decide if the set of IDV obtained is appropriate to proceed with the modelling process. The decision about the appropriateness of the set of IDV can be made based on previous experience or discussions with other experts. If the set of IDV is not

Fig. 2 Steps in the synthesis phase of progressive design methodology (PDM)
sufficient then it is prudent to go back to system requirement analysis and perform the loop again. This loop can be repeated until a satisfactory set of IDV is identified. Similarly after the model of the system to be designed (target system) is developed, it is important to check if the model includes the system boundaries and the set of IDV. In reality the selection of variables and the development of the model have to be done iteratively since both depend on each other. The choice of variables has influence on modelling and the modelling process itself will influence of the variables needed. The details of each of the above steps are given in the following subsections.

Fig. 3 Classification of criterion

3.1 System requirements analysis

The requirements of the system to be designed are analysed in this phase. The purpose of system requirement analysis is to develop a clear and detailed understanding of the needs that the system has to full fill. Hence this phase can be a challenging task since the requirements form the basis for all subsequent steps in the design process. The quality of the final product is highly dependent on the effectiveness of the requirement identification. The primary goal of this phase is to develop a detailed functional specification defining the full set of system capabilities to be implemented.

3.2 Definition of system boundaries

Before attempting to optimise a system, the boundaries of the system to be designed should be identified and clearly defined. The definition of the clear system boundaries helps in the process of approximating the real system (Chong and Zak 2001). Since an engineering system consists of many subsystems it may be necessary to expand the system boundaries to include those subsystems that have a strong influence on the operation of the system that is to be designed. As the boundaries of the system increases, i.e. more the number of subsystems to be included, the complexity of the model increases. Hence it is prudent to decompose the complex system into smaller subsystems that can be dealt with individually. However care must be exercised while decomposing the system as too much decomposition may result in misleading simplifications of the reality. For example a brushless direct current (BLDC) motor drive system consists of three major subsystems viz.

- The BLDC motor,
- voltage source inverter (VSI),
- feedback control.

Usually a BLDC motor is designed for a rated load, i.e. the motor is required to deliver a specified amount of torque at specified speed for continuous operation at a specified input voltage. During design process the motor is the primary system under design. However, optimised design of the motor based only on the magnetic circuit may result in misleading results. It is possible that this optimised motor has a high electrical time constant and the VSI is not able to provide sufficient current resulting in lower
torque at rated speed and given input voltage. Hence, for the successful design of the BLDC motor it is important to include the VSI in the system, i.e. the boundary of the system is expanded. Of course, it is a different matter that the model of the system that includes the BLDC motor and the VSI is more complicated but nevertheless is closer to the reality.

3.3 Determination of performance criterion/criteria

Once the proper boundaries of the system have been defined, performance criterion/criteria are determined. The criterion/criteria form the basis on which the performance of the system is evaluated so that the best design can be identified. In engineering design problems different types of criteria can be classified as depicted in Fig. 3 (Chong and Zak 2001):

- Economic criterion/criteria: In engineering system design problems the economic criterion involves total capital cost, annual cost, annual net profit, return on investment, cost-benefit ration or net present worth.
- Technological criterion/criteria: The technological criterion involves production time, production rate, and manufacturability.
- Performance criterion/criteria: Performance criterion is directly related to the performance of the engineering system such as torque, losses, speed, mass, etc.

In the synthesis phase of PDM the Performance criterion/criteria are taken into consideration because they can be expressed explicitly in the mathematical model of the system. The economic and technological criteria are suitable for Intermediate analysis and Final design phases of PDM because by then detailed knowledge about the engineering systems performance and dimensions are available.

3.4 Selection of variables and sensitivity analysis

The next step is selection of variables that are adequate to characterise the possible candidate design. The design variables can be broadly classified as, Fig. 4:

- Engineering variables: The engineering variables are specific to the system being designed. These are variables with which the designer deals.
- Manufacturing variables: These variables are specific to the manufacturing domain.

Fig. 4 Classification of variables

- Price variables: This variable is the price of the product or the system being designed.

In the synthesis phase of PDM engineering variables are considered. There are two factors to be taken into account while selecting the engineering variables. First it is important to include all the important variables that influence the operation of the system or affect the design. Second, it is important to consider the level of detail at which the model of the system is developed. While it is important to treat all the key engineering variables, it is equally important not to obscure the problem by the inclusion of a large number of finer details of secondary importance (Chong and Zak 2001). In order to select the proper set of variables, sensitivity analysis is performed. For sensitivity analysis all the engineering variables are considered and its influence on the objective parameters is considered. The sensitivity analysis enables to discard the engineering variables that have least influence on the objectives.

3.4.1 Development of system model

A model is any incomplete representation of reality, an abstraction but could be close to reality. The purpose in developing a model is to answer a question or a set of questions. If the questions that the model has to answer, about the system under investigation, are specific then it is easier to develop a suitable and useful model. The models that have to answer a wide range of questions or generic
questions are most difficult to develop. The most effective process for developing a model is to begin by defining the questions that the model should be able to answer. Broadly models can be classified into following categories (Buede 1999), Fig. 5:

- Physical models: These models are full-scale mock-up, sub-scale mock-up or electronic mock up.
- Quantitative models: These models give numerical answers. These models can be either analytical, simulation or judgmental. These models can be dynamic or static. An analytical model is based on system of equations that can be solved to produce a set of closed form solutions. However finding exact solutions of analytical equations is not always feasible. Simulation models are used in situations where analytical models are difficult to develop or are not realistic. The main advantage of analytical models is that they are faster than numerical models and hence are suited for MOOP. The major aspect of analytical model is that certain approximations are required to develop analytical models. However in certain cases where approximations cannot be made and a very deep insight of the system are required then numerical simulation methods such as Finite element method (FEM), Computational fluid dynamics (CFD), etc. have to be adopted. The main drawback of numerical models is that they are computationally intensive and are not suitable for exhaustive optimisation process.

Fig. 5 Classification of models

3.5 Deciding on optimising strategy

Multi-objective optimisation results in a set of Pareto optimal solutions specifying the design variables and their objective tradeoffs. These solutions can be analysed to determine if there exist some common principles between the design variables and the objectives (Deb and Srinivasan 2005). If a relation between the design variables and objectives exit they will be of great value to the system designers. This information will provide knowledge of how to design the system for a new application without resorting to solving a completely new optimisation problem again.

The principles of multi-objective optimisation are different from that of a single objective optimisation. When faced with only a single objective an optimal solution is one that minimises the objective subject to the constraints. However, in a multi-objective optimisation problem (MOOP) there are more than one objective functions and each of them may have a different individual optimal solution. Hence, many solutions exist for such problems. The MOOP can be solved in four different ways depending on when the decision maker articulates his preference concerning the different objectives (Hwang and Yoon 1980). The classification of the strategies is as follows, Fig. 6:

- Priori articulation of preference information: In this method the DM gives his preference to the objectives before the actual optimisation is conducted. The objectives are aggregated into one single objective
function. Some of the optimisation techniques that fall under this category are weighted-sum approach (Steuer 1986; Das and Dennis 1997), Non-Linear approaches (Krus et al. 1995), Utility theory (Krus et al. 1995; Thurston 1991).
- Progressive articulation of preference information: In this method the DM indicates the preferences for the objectives as the search moves and the decision-maker learns more about the problem. In these methods the decision maker either changes the weights in a weighted-sum approach (Steuer and Choo 1983), or by progressively reducing the search space as in the STEM method of reference (Benayoun et al. 1971). The advantages of this method are that it is a learning process where the decision-maker gets a better understanding of the problem. Since the DM is actively involved in the search it is likely that the DM accepts the final solution. The main disadvantage of this method is that a great degree of effort is required from the DM during the entire search process. Moreover the solution depends on the preference of one DM and if the DM changes his/her preferences or if a new DM comes then the process has to restart.
- Posteriori articulation of preference information: In this method the search space is scanned first and Pareto optimal solutions are identified. This set of Pareto optimal solution is finally presented to DM. The main advantage of this method is that the solutions are independent of DM's preferences. The process of optimisation is performed only once and Pareto optimal

Fig. 6 Classification of optimisation methods based on aggregation of information

set does not change as long as the problem description remains unchanged. The disadvantage of this method is that they need large number of computations to be performed and the DM is presented with too many solutions to choose from.

The principle goal of multi-objective optimisation algorithms is to find well spread set of Pareto optimal solutions. Each of the solutions in the Pareto optimal set corresponds to the optimum solution of a composite problem trading-off different objective among the objectives. Hence each solution is important with respect to some trade-off relation between the objectives. However in real situations only one solution is to be implemented. Therefore, the question arises about how to choose among the multiple solutions. The choice may not be difficult to answer in the presence of many trade-off solutions, but is difficult to answer in the absence of any trade-off information. If a designer knows the exact trade-off among objective functions there is no need to find multiple solutions (Pareto optimal solutions) and a priori articulation methods will be well suited. However, a designer is seldom certain about the exact trade-off relation among the objectives. In such circumstance it is better to find a set of Pareto optimal solutions first and then choose one solution from the set by using additional higher level information about the system being designed. With this in view in PDM posteriori based optimisation method is used. In principle any posteriori based multiobjective optimisation algorithm such as NSGA-II (Deb et al. 2000), SPEA 2 (Zitzler et al. 2001), etc. can be used in PDM. In this work the NBGA (Kumar et al. 2006) was used. Choosing a suitable solution from the Pareto optimal set forms the second phase of PDM and is described in the next section.

4 Intermediate analysis phase of PDM

Once the synthesis process is done and a set of Pareto optimal solutions is determined the next step involves analysis of the solutions. In the conceptual stages of design, the design engineer faces the greatest uncertainty in the product attributes and requirements (e.g. dimensions, features, materials, and performance). Because the evolution of the design is greatly affected by decisions made during the conceptual stage, these decisions have a considerable impact on overall cost. In the intermediate analysis phase the various alternatives obtained from the previous step (synthesis phase) are analysed and a small set of solutions are selected for deeper analysis. The most important tasks in engineering design, besides modelling
and simulation, are to generate various design alternatives and then to make preliminary decision to select a design or a set of designs that fulfils a set of criteria. Hence the engineering design decision problem is a multi criteria decision-making problem.

It is a general assumption that evaluation of a design on the basis of any individual criterion is a simple and straightforward process. However in practice, the determination of the individual criterion may require considerable engineering judgement (Scott and Antonsson 1999). An extensive literature survey on multi criteria decision making is given in the work of Bana de Costa (Costa and Vincke 1990). Carlsson and Fuller (1996) gave a survey of fuzzy multi criteria decision making methods with emphasis on fuzzy relations between interdependent criteria. A new elicitation method for assigning criteria importance based on linguistic variables is presented in (Ribeiro 1996). Roubens (1997) introduced a new pair wise preferred approach that permitted a homogeneous treatment of different kinds of criteria evaluations. A fuzzy model for design evaluation based on multiple criteria analysis in engineering systems is presented by Martinez and Liu (2006).

In the initial phase of development of an engineering system the details of a design are unknown and design description is still imprecise that the most important decisions are made (Whitney 1988). In this initial engineering design phase, the final values of the design variables are uncertain. Hence at this stage decision making using fuzzy linguistic variables is appropriate. After a decision is made and an alternative or set of alternatives is selected, detailed modelling of the system using standard tools (such as finite element Analysis, etc) serve to calculate the performance of the system and also help in reducing the uncertainty in the design variables.

In the initial stage of decision making the designers represent their preferences for different values of design variables using a set of fuzzy linguistic variables. Each value of design variable is assigned a preference between absolutely unacceptable and absolutely acceptable. The values of design variables have linguistic preference values. Hence the designer's judgement and experience are formally included in the preliminary design problem. The general problem is thus a Multi Criteria DecisionMaking problem, where the designer is to choose the highest performing design configuration from the available set of design alternatives and each design is judged by several, even competing, performance criteria or variables.

A multi criteria decision-making problem (mcdm) is expressed as:
$D=\begin{gathered} \\ A_{1} \\ A_{2} \\ \vdots \\ A_{m}\end{gathered}\left(\begin{array}{ccccc}x_{11} & c_{2} & \ldots & c_{n} \\ x_{12} & \ldots & x_{1 n} \\ x_{21} & x_{22} & \ldots & x_{2 n} \\ \vdots & \vdots & \ldots & \vdots \\ x_{m 1} & x_{m 2} & \ldots & x_{m n}\end{array}\right)$
$w=\left(w_{1}, w_{2}, \ldots w_{n}\right)$
where $A_{i}, i=1, \ldots, m$ are the possible alternatives; c_{j}, $j=1, \ldots, n$ are the criteria with which alternative performances are measured and $x_{i j}$ is the performance score of the alternative A_{i} with respect to attribute c_{j} and w_{j} are the relative importance of attributes.

The alternative performance rating $x_{i j}$ can be crisp, fuzzy, and/or linguistic. The linguistic approach is an approximation technique in which the performance ratings are represented as linguistic variable (Zadeh 1975a, b, c). The classical MCDM problem consists of two phases:

- an aggregation phase of the performance values with respect to all the criteria for obtaining a collective performance value for alternatives,

Fig. 7 Steps in the intermediate analysis phase of PDM

- an exploitation phase of the collective performance value for obtaining a rank ordering, sorting or choice among the alternatives.

The various parts of intermediate analysis phase of PDM are:

1. Identification of new set of criteria,
2. linguistic term set,
3. semantic of linguistic term set,
4. aggregation operator for linguistic weighted information.

The flow chart of the above steps is shown in Fig. 7.

4.1 Identification of new set of criteria

In the synthesis stage the constraints imposed on the system are engineering constraints. The engineering constraints are specific to the system being designed and can be considered as criteria based on which decision making is done. Besides engineering constraints there are other non-engineering constraints such as manufacturing limitations. It may be possible that certain Pareto optimal solutions obtained in the synthesis stage may not be feasible from the manufacturing point of view or may be too expensive to manufacture. Hence, in order to determine these constraints a high level of information is to be collected from various experts.

4.1.1 Linguistic term set

After determining all the constraints, the next step is to determine the linguistic term set. This phase consists of establishing the linguistic expression domain used to provide the linguistic performance values for an alternative according to different criteria. The first step in the solution of a MCDM problem is selection of linguistic variable set.

There are two ways to choose the appropriate linguistic description of term set and their semantic (Bordogna and Passi 1993). In the first case by means of a context-free grammar, and the semantic of linguistic terms is represented by fuzzy numbers described by membership functions based on parameters and a semantic rule (Bordogna and Passi 1993; Bonissone 1986) . In the second case the linguistic term set by means of an ordered structure of linguistic terms, and the semantic of linguistic terms is derived from their own ordered structure which may be either symmetrically/asymmetrically distributed on the $[0,1]$ scale. An example of a set of seven terms of ordered structured linguistic terms is as follows:
$S=\left\{s_{0}=\right.$ none, $s_{1}=$ very low, $s_{2}=$ low, $s_{3}=$ medium,
$s_{4}=$ high,$s_{5}=$ very high, $s_{6}=$ perfect $\}$

Fig. 8 Classification of semantic of linguistic term set

Fig. 9 Classification of aggregation operator for linguistic variables

4.1.2 The semantic of linguistic term set

The semantics of the linguistic term set can be broadly classified into three categories (Fig. 8), (a) Semantic based on membership functions and semantic rule (Bonissone and Decker 1986; Bordogna et al. 1997; Delgado et al. 1992), (b) Semantic based on the ordered structure of the linguistic term set (Bordogna and Passi 1993; Herrera and Herrera-Viedma 2000; Torra 1996; Herrera and Verdegay 1996) and (c) Mixed semantic (Herrera and HerreraViedma 2000; Herrera and Verdegay 1996).

4.1.3 Aggregation operator for linguistic weighted information

Aggregation of information is an important aspect for all kinds of knowledge based systems, from image processing to decision making. The purpose of aggregation process is to use different pieces of information to arrive at a conclusion or a decision. Conventional aggregation operators such as the weighted average are special cases of more general aggregation operators such as Choquet integrals (Gabrish et al. 1999). The conventional aggregation operators have been articulated with logical connectives arising from many-valued logic and interpreted as fuzzy set unions
or intersections (Dubois and Prade 2004). The latter have been generalised in the theory of triangular norms (Klement et al. 2000). Other aggregation operators that have been proposed are symmetric sums (Sivert 1979), null-norms (Calvo et al. 2001), uninorm (Yager and Fodor 1997), apart from other.

The aggregation operators can be grouped into the following broad classes (Dubois and Prade 2004):
i. Operators generalising the notion of conjunction are basically the minimum and all those functions f bounded from above by the minimum operators.
ii. Operators generalising the notion of disjunction are basically the maximum and all those functions f bounded from below by the maximum operations.
iii. Averaging operators are all those functions lying between the maximum and minimum.

For linguistic weighted information the aggregation operators mentioned above have to be modified for linguistic variables and can be placed under two categories (Herrera and Herrera-Viedma 1997) Linguistic Weighted Disjunction (LWD) and Linguistic Weighted Conjunction (LWC). In Fig. 9 the detailed classification of the linguistic aggregation operators is shown. In the following subsections the mathematical formulation of LWD and LWC is

Table 1 The relation between numerical values and linguistic variables

| | N | VL | L | M | H | VH |
| :--- | :---: | :--- | :--- | :--- | :---: | :---: | :---: |
| C 1 | $100-200$ | $200-300$ | $300-400$ | $400-500$ | $500-600$ | $600-700$ |
| C2 | $10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ | $60-70$ |
| C3 | $10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ | $60-70$ |
| C4 | $0.1-0.2$ | $0.2-0.3$ | $0.3-0.4$ | $0.4-0.5$ | $0.5-0.6$ | $0.6-0.7$ |
| C5 | $1-2$ | $3-3$ | $4-5$ | $5-6$ | $6-700$ | |

Table 2 Importance and score of alternative

Criteria	C1	C2	C3	C4	C5
Importance weight (w)	VH	VH	M	L	VL
Score of alternative 1	M (425)	L (34)	OU (77)	VH (0.65)	OU (7.6)
Score of alternative 2	M (460)	OU (75)	VH (64)	VH (0.67)	H (5.6)
Score of alternative 3	H (572)	M (47)	VH (64)	H (0.53)	OU (7.8)
Score of alternative 4	OU (72)	M (45)	H (53)	VH (0.66)	H (5.8)
Score of alternative 5	H (550)	M (46)	H (55)	OU (0.74)	VH (6.5)

given. In order to illustrate each of the above mentioned linguistic aggregation operators the following example is considered (Carlsson and Fuller 1995):

Example: for each alternative an expert is required to provide his/her opinion in terms of elements from the following scale
$S=\left\{\mathrm{OU}\left(S_{7}\right), \mathrm{H}\left(S_{6}\right), \mathrm{H}\left(S_{5}\right), \mathrm{M}\left(S_{4}\right), \mathrm{L}\left(S_{3}\right), \mathrm{VL}\left(S_{2}\right), \mathrm{N}\left(S_{1}\right)\right\}$
where OU stands for Outstanding, VH for Very High, H for High, M for Medium, L for Low, VL for Very Low, N for None. The expert provides the opinion on a set of five criteria $\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}\right\}$. An example of criteria as for electrical drive can be:
C_{1} Mass of the motor (Minimum mass is 100 gram and maximum mass is 800 gram)
C_{2} Cost of the electrical drive (Minimum cost is $€ 10$ gram and maximum cost is $€ 80$)
C_{3} Losses in the electrical drive (Minimum loss is 10 watts and maximum loss is 80 watts)
C_{4} Electrical time constant (Minimum loss is 00.1 milliseconds and maximum time constant is 0.8 milliseconds)
C_{5} Moment of inertia of the motor (Minimum moment of inertia is 1 and maximum moment of inertia is 8)
The performance of each alternative is also defined in terms of the scale $S=\left\{\mathrm{OU}\left(S_{7}\right), \mathrm{VH}\left(S_{6}\right), \mathrm{H}\left(S_{5}\right), \mathrm{M}\left(S_{4}\right)\right.$, $\left.\mathrm{L}\left(S_{3}\right), \mathrm{VL}\left(S_{2}\right), \mathrm{N}\left(S_{1}\right)\right\}$. The scale is evenly distributed and the scale for each alternative is given in Table 1 (Yager 1981).

The problem is to select a drive that has lowest losses, lowest cost, lowest mass, low electrical time constant and low moment of inertia. The motor is to be used in a hand held drill. For this application the mass of the motor and its cost are very important because a lighter motor with a low cost will be most preferred. Hence these two criteria are given Very High (VH) importance. For this application the efficiency of the motor is of moderate importance and is given a Medium (M) importance. The electrical time constant and moment of inertia of the rotor are important from the dynamic behaviour of the motor and are not very important for the application in hand held drill and are given low (L) and Very Low (VL) importance. The importance to each criterion is shown in Table 2. The performance of an alternative on all the criteria is also shown in Table 2; in brackets the numerical value is given.

The aggregation of the weighted information using Linguistic Weighted Conjunction (LWC) is defined as follows
$f=\operatorname{LWC}\left[\left(w_{1}, a_{1}\right), \ldots,\left(w_{m}, a_{m}\right)\right]$
where $\operatorname{LWC}=\operatorname{MIN}_{i=1, \ldots, m} \operatorname{MAX}\left(\operatorname{Neg}\left(w_{i}\right), a_{i}\right)$ and m is the number of alternatives. An example of LWC is KleeneDienes's Linguistic Implication Function $L I_{1} \rightarrow$: (Herrera and Herrera-Viedma 1997)
$L I_{1}(w, a)=\operatorname{Max}(\operatorname{Neg}(w), a)$
Based on the example given in Tables 1, 2 the net performance of the first alternative based on $L l_{1}$ is

$$
\begin{aligned}
& f_{1}=\operatorname{MIN}\left[L I_{1}^{\rightarrow}(\mathrm{VH}, \mathrm{M}), L I_{1}^{\rightarrow}(\mathrm{VH}, \mathrm{~L}), L I_{1}^{\rightarrow}(\mathrm{M}, \mathrm{OU})\right. \\
& \left.\quad L I_{1}^{\rightarrow}(\mathrm{L}, \mathrm{VH}), L I_{1}^{\rightarrow}(\mathrm{VL}, \mathrm{OU})\right] \\
& \quad=\operatorname{MIN}[\mathrm{M}, \mathrm{~L}, \mathrm{OU}, \mathrm{VH}, \mathrm{OU}]=L
\end{aligned}
$$

The final score of the second alternative is

$$
\begin{aligned}
& f_{2}=\operatorname{MIN}\left[L I_{1}^{\rightarrow}(\mathrm{VH}, \mathrm{M}), L I_{1}^{\rightarrow}(\mathrm{VH}, \mathrm{OU}), L I_{1}^{\rightarrow}(\mathrm{M}, \mathrm{VH}),\right. \\
& \left.\quad L I_{1}^{\rightarrow}(\mathrm{L}, \mathrm{VH}), L I_{1}^{\rightarrow}(\mathrm{VL}, \mathrm{H})\right] \\
& \quad=\mathrm{MIN}[\mathrm{M}, \mathrm{OU}, \mathrm{VH}, \mathrm{VH}, \mathrm{VH}]=M
\end{aligned}
$$

The final score of the third alternative is

$$
\begin{aligned}
& f_{3}=\operatorname{MIN}\left[L I_{1}^{\rightarrow}(\mathrm{VH}, \mathrm{H}), L I_{1}^{\rightarrow}(\mathrm{VH}, \mathrm{M}), L I_{1}^{\rightarrow}(\mathrm{M}, \mathrm{VH})\right. \\
& \left.\quad L I_{1}^{\rightarrow}(\mathrm{L}, \mathrm{H}), L I_{1}(\mathrm{VL}, \mathrm{OU})\right] \\
& \quad=\operatorname{MIN}[\mathrm{H}, \mathrm{M}, \mathrm{VH}, \mathrm{H}, \mathrm{OU}]=M
\end{aligned}
$$

The final score of the fourth alternative is

$$
\begin{aligned}
& f_{4}=\mathrm{MIN}\left[L I_{1}^{\rightarrow}(\mathrm{VH}, \mathrm{OU}), L I_{1}^{\rightarrow}(\mathrm{VH}, \mathrm{M}), L I_{1}^{\rightarrow}(\mathrm{M}, \mathrm{H}),\right. \\
& \left.\quad L I_{1}^{\rightarrow}(\mathrm{L}, \mathrm{VH}), L I_{1}^{\rightarrow}(\mathrm{VL}, \mathrm{H})\right] \\
& \quad=\mathrm{MIN}[\mathrm{OU}, \mathrm{M}, \mathrm{H}, \mathrm{VH}, \mathrm{VH}]=\mathrm{M}
\end{aligned}
$$

The final score of the fifth alternative is

$$
\begin{aligned}
& f_{5}=\operatorname{MIN}\left[L I_{1}^{\rightarrow}(\mathrm{VH}, \mathrm{M}), L I_{1}^{\rightarrow}(\mathrm{VH}, \mathrm{M}), L I_{1}^{\rightarrow}(\mathrm{M}, \mathrm{H}),\right. \\
& \left.\quad L I_{1}^{\rightarrow}(\mathrm{L}, \mathrm{OU}), L I_{1}^{\rightarrow}(\mathrm{VL}, \mathrm{H})\right] \\
& \quad=\operatorname{MIN}[\mathrm{M}, \mathrm{M}, \mathrm{H}, \mathrm{OU}, \mathrm{VH}]=M
\end{aligned}
$$

Hence on the basis of $L I_{1}^{\rightarrow}$ the final score of all the alternatives is $[L, M, M, M, M]$.

The results of total score of all the five alternatives based on different aggregation operators is summarised below in Table 3.

From the above the following conclusions can be drawn:

- The choice of linguistic aggregation operator can influence the results of the intermediate analysis process.
- The linguistic weighted disjunction aggregation operators in general give an optimistic average value to alternatives. The Weakest linguistic disjunction gives the least optimistic value to the alternatives.

Table 3 The result of total score of all the alternatives using different aggregation operators

Alternative \rightarrow	1	2	3	4	5
Min $L D_{1} \rightarrow$	M	VH	H	VH	H
Nilpotent $L D_{2}$	M	VH	H	VH	H
Weakest $L D_{3}$	M	VH	VL	VH	L
Kleene-Dienes's $L I_{1}$	L	M	M	M	M
Gödel's $L I_{2}$	L	M	M	M	M
Fodor's $L I_{3}$	L	M	M	M	M
Lukasiewicz's $L I_{4}$	M	H	M	H	H

- The linguistic weighted conjunction aggregation operators in general give a pessimistic average value to the alternatives.
- Out of all the conjunction operators the Lukasiewicz's implication operator gives the least pessimistic final score to all the alternatives.
- The disjunction aggregation operators are suitable if it is required to select a set of as many alternatives as possible. This situation can arise in the initial design phase when the designer wants to include as many alternatives as possible for further investigation.
- In the initial design process if the number of alternatives is large and there is limited capability, in terms of manpower and computing power, to investigate each alternative then linguistic weighted conjunction operators are preferred.

5 Final analysis phase of PDM

In the final analysis detailed simulation model of the target system is developed. After intermediate analysis the set of plausible solutions is greatly reduced and hence a detailed simulation for each solution is feasible. After setting up of the simulation model a new set of Independent design variables and objectives is identified. The steps involved in this stage are:

Step1: Detailed simulation model of the target system is developed.
Step2: Independent design variables and objectives are identified.
Step3: Each solution in the reduced solution set is optimised for the new objectives and a set of solutions is obtained.
Step4: Final decision is made.
In the next section the PDM is applied for design of a BLDC motor. The various aspects of PDM are used in the design of BLDC motor.

6 Synthesis phase of progressive design methodology for design of a BLDC motor drive

Since the emergence of new high field permanent magnet materials brushless DC motors (BLDC) drives have become increasingly attractive in a wide range of applications. They have smaller volume compared with equivalent wound field machines, operate at higher speed, dissipate heat better, require less maintenance, and are more efficient and reliable than conventional motors.

Many researchers have made efforts to improve motor performance in terms of efficiency, maximum torque, back EMF, power/ weight ratio, and minimum losses in iron, coils, friction, and windage. A scheme for optimisation of a three phase electric motor based on genetic algorithms (GA) was presented by Bianchi (1998). As a demonstration of this technique the authors took a surface mounted permanent magnet motor as an example and applied genetic algorithm to minimise the permanent magnet weight. Similarly an optimal design of Interior Permanent Magnet Synchronous Motor using genetic algorithms was performed by Sim et al. (1997). In this case the efficiency of the motor was taken as the objective function. In recent years research has been pursued in the area of multiobjective optimisation of PM motors. Multiobjective optimisation of PM motor using genetic algorithms was performed by Yamada et al. (1997). A surface mounted PM synchronous motor was taken for optimisation and ε-constraint method was used to obtain the solution. The objective functions that were considered for optimisation were motor weight and material cost. The authors used a two step method for optimisation. First a preliminary design was carried out in which the design is formulated as a constraint non-linear programming problem by using space harmonic analysis. Then the motor configuration was optimised using a procedure that combined the finite element method (FEM) with the optimisation algorithm. Sim et al. (1997) implemented multiobjective optimisation for a permanent magnet motor design using a modified genetic algorithm. The genetic algorithm used in this case was adjusted to the vector optimisation problem. Multiobjective optimisation of an interior permanent magnet synchronous motor was carried out again by Sim et al. (Cho et al. 1999). In both cases the authors chose weight of the motor and the loss as objective functions. In the present work the MOOP of PM motors is taken a step further. The optimisation of the motor so far laid focus mainly on the magnetic circuit of the motor. In this work a methodology is presented for design of BLDC motor drive. The BLDC motor drive considered here consists of the BLDC motor and voltage source inverter. Here the entire system is considered while designing the motor and hence the system design approach is used to design the BLDC motor.

In this section the PDM is applied for the design of a BLDC motor for a specific application. All the steps of PDM are applied and the motor is designed that optimal with respect to the system in which it has to work. In the next subsection the customer requirements are elicited and validated.

6.1 System requirement analysis

The specified parameters of the motor are:

Rated speed	800 rpm (mechanical)
Torque at speed	0.2 Nm
Input voltage	24 V
Number of phases	3

The aim of the problem is to design a motor with a cogging torque of less than 20 mNm , maximum efficiency, and minimum mass and trapezoidal back emf.

Inverter	Full bridge voltage source inverter
Motor topology	Inner rotor with surface mount magnets
Phase connection	The phases are connected in star

The additional constraints of the motor are

Outer stator diameter	40 mm
Max. length	50 mm
Air gap length	0.2 mm

6.2 Definition of system boundaries

The BLDC motor to be designed is driven by a voltage source inverter (VSI) and a fixed voltage of 24 V . Hence while designing the motor it is important to include the VSI in the system boundaries. This will ensure that the designed motor will produce the required torque when it is integrated with the VSI. During the design of the motor the parameters of the VSI itself will not be optimised. In the current scenario motor is the primary system under investigation. The model of the system that includes the BLDC motor and the VSI is more complicated but will ensure a well designed motor. Hence the system boundary under consideration in the synthesis phase consists of:

- The BLDC motor (primary system),
- three phase VSI.

6.3 Determining of performance criteria

From the requirement analysis the primary objectives that have to be satisfied are:

- Minimum cogging torque,
- maximum efficiency,
- minimum mass,
- sinusoidal shape of back EMF.

In the synthesis phase of PDM only simple model of the BLDC drive is developed. However determining parameters like cogging torque and shape of the back emf required detailed analytical models or FEM models. The mass and efficiency of the motor can be calculated with relative ease compared to the cogging torque and back emf shape. Hence in the synthesis phase the objectives that will be considered are

- Minimise the mass,
- maximise the efficiency.

A generic topology of BLDC motor with surface mount magnets as shown in Fig. 10 are considered. This topology is optimised for minimum mass and maximum efficiency. In the final design the parameters of this optimised generic topology are fine-tuned to reduce the cogging torque and obtain sinusoidal back emf shape.

6.4 Selection of variables and sensitivity analysis

The following set of independent design variables are identified

- Number of poles $\left(N_{\mathrm{p}}\right)$,
- number of slots $\left(N_{\mathrm{m}}\right)$,
- length of the motor $\left(L_{\mathrm{mot}}\right)$,
- ratio of inner diameter of motor to outer diameter $\left(\alpha_{d}\right)$,

Fig. 10 The generic topology of the BLDC motor with surface mount magnets

Fig. 11 Sensitivity of loss w.r.t. number of turns the in the coil

- ratio of magnet angle to pole pitch $\left(\alpha_{\mathrm{m}}\right)$,
- height of the magnet $\left(h_{\mathrm{m}}\right)$,
- reminance field of the permanent magnets $\left(B_{\mathrm{r}}\right)$,
- maximum allowable field density in the lamination material for linear operation $\left(B_{\mathrm{fe}}\right)$,
- number of turns in the coils of the motor ($N_{\text {turns }}$).

Sensitivity analysis is performed to determine influence of the engineering variables on the objectives viz. mass and efficiency. In Figs. 11 to 24 the sensitivity curves of losses and mass w.r.t. single design variables are shown. From Fig. 11 it can be seen that as the number of turns in the coil increases the losses in the motor decrease. This is due to the fact that with higher number of turns the induced back emf increases as a result of this the difference between the input voltage (24 V in the present case) and the back emf reduces thereby reducing the magnitude of the phase current and hence the Ohmic losses, proportional to square of the current, reduce. The losses of the motor are also sensitive to length of the motor (length of the motor is same as length of the magnet in the present analysis) and reach a minimum value as the length increases Fig. 12. The ratio of inner diameter to outer diameter of the stator has an influence on the losses in the motor, Fig. 13. As the ratio increases the losses reduce because the stator yoke is thicker and as a result of this the field density in the yoke is less resulting in reduction of eddy current and hysteresis losses. As the ratio of magnet angle to pole pitch increases the losses reduces, Fig. 14. A smaller ratio ratio of magnet angle to pole pitch results in smaller magnet and hence less field density in the iron part,thereby reducing the eddy and hysteresis losses in the iron partsofthe motor. The reminance field of the permanent magnet and maximum allowable field density in iron for linear characteristics have influence on the losses, Figs. 15 and 16, respectively. The height of the magnet also influences the losses in the motor, Fig. 17.

The mass of the motor more or less remaining constant with increase in the number of turns of the coil, Fig. 18.

Fig. 12 Sensitivity of loss w.r.t. length of motor

Fig. 13 Sensitivity of loss w.r.t. ratio of inner to outer stator diameters

Fig. 14 Sensitivity of loss w.r.t. ratio of magnet angle to pole pitch

This is due to the fact that the slot fill ratio is kept constant in the present analysis, hence increase in the number turns does have an influence on the total mass of copper. The mass is directly proportional to motor length, Fig. 19. As the ratio of stator inner and outer diameter increases the

Fig. 15 Sensitivity of loss w.r.t. reminance field allowable Density of permanent magnet characteristics

Fig. 16 Sensitivity of loss w.r.t. maximum field density in iron for linear

Fig. 17 Sensitivity of loss w.r.t. height of magnet
mass of the motor reduces because the amount of iron in the stator reduces, Fig. 20. The mass reach a maximum as the ratio of the magnet angle to the pole pitch increases, Fig. 21. The influence of reminance field density of the permanent magnet on the mass of the motor is shown in

Fig. 18 Sensitivity of mass w.r.t. number of turns

Fig. 19 Sensitivity of mass w.r.t. motor length

Fig. 20 Sensitivity of mass w.r.t. ratio of stator inner and outer diameter

Fig. 22. Similarly the influence of maximum allowable field density in iron for linear characteristics on motor mass is shown in Fig. 23. The height of the magnet has influence on the mass as shown in Fig. 24.

The result of the sensitivity analysis show that the selected engineering variable have an influence on the

Fig. 21 Sensitivity of mass w.r.t. ratio of magnet to pole pitch

Fig. 22 Sensitivity of mass w.r.t. reminance field density of permanent magnet

Fig. 23 Sensitivity of mass w.r.t. maximum allowable field density in iron for linear characteristics
objectives (mass and losses) selected for synthesis analysis. After having performed sensitivity analysis the next step is to determine the optimisation strategy and set up the problem for optimisation. These steps are described in next subsection.

Fig. 24 Sensitivity of mass w.r.t. height of magnet

Fig. 25 Flux distribution in a typical BLDCmotor

6.5 Development of system model

6.5.1 Motor model

In this section a simple design methodology for the surface mounted BLDC motor is given (Hanselmann 2003). To develop this model certain assumptions have been made. The assumptions made are:

- No saturation in iron parts,
- magnets are symmetrically placed,
- slots are symmetrically placed,
- back emf is trapezoidal in shape,
- motor has balanced windings,
- permeability of iron is infinite.

The general configuration of the motor is shown in Fig. 28. The motor design equations are developed in the following sequence:

Fig. 26 The general shape of the slots and main dimensions

Fig. 27 Pareto optimal solutions for a BLDC motor with Ns $=6$ and $\mathrm{Np}=4$

- Electrical design,
- general sizing,
- inductance and resistance calculation.
6.5.1.1 Electrical design (back emf and torque) The back emf voltage induced in a stator coil due to magnet flux crossing the air gap is given by
$e_{\mathrm{ph}}=\frac{\mathrm{d} \lambda}{\mathrm{d} t}=\frac{\mathrm{d} \theta}{\mathrm{d} t} \frac{\mathrm{~d} \lambda}{\mathrm{~d} \theta}=\omega_{\mathrm{m}} \frac{\mathrm{d} \lambda}{\mathrm{d} \theta}$
where ω_{m} is the mechanical speed of the rotor (radians/s) and λ is the flux linked by the coil.

The magnitude of back emf is given by
$\left|e_{\mathrm{ph}}\right|=2 B_{\mathrm{g}} N_{\text {turns }} L_{\mathrm{stack}} R_{\mathrm{ro}} \omega_{\mathrm{m}}$
where $N_{\text {turns }}$ is the number of turns in a coil, $L_{\text {stack }}$ is the length rotor of the stack, R_{ro} is the outer radius of the B_{g} is the air gap field density given by
$B_{\mathrm{g}}=B_{\mathrm{r}} \frac{h_{\mathrm{m}}}{h_{\mathrm{m}}+g}$
where h_{m} is the height of the magnet, g is the airgap and the outer radius of the rotor R_{ro} is given by
$R_{\mathrm{ro}}=\alpha_{\mathrm{d}} R_{\mathrm{o}}$

Fig. 28 Pareto optimal solutions for a BLDC motor with $\mathrm{Ns}=9$ and $\mathrm{Np}=6$

Fig. 29 Pareto optimal solutions for a BLDC motor with $\mathrm{Ns}=9$ and $\mathrm{Np}=8$
where the R_{o} is outer radius of the stator and α_{d}. is the ratio of outer diameter of the rotor to the outer diameter of the stator.

For fractional pitched magnets the coil back emf is given by
$e_{\mathrm{ph}}=2 \alpha_{\mathrm{m}} B_{\mathrm{g}} N_{\mathrm{turns}} L_{\mathrm{stack}} R_{\mathrm{ro}} \omega_{\mathrm{m}}$
6.5.1.2 General sizing If the alternating direction of flux flow over alternating magnet faces is ignored, the total flux crossing the air gap is given by
$\phi_{\text {total }}=B_{\mathrm{g}} A_{\mathrm{g}}=2 \pi B_{\mathrm{g}} R_{\mathrm{ro}} L_{\text {stack }}$
where B_{g} is the amplitude of the air gap flux density and is given by (9) and A_{g} is area of the airgap. This flux is divided among the teeth on the stator and the direction of the flux depends on the polarity of the magnet under each tooth. As a result, the magnitude of the flux flowing in each tooth is given by

Fig. 30 Pareto optimal solutions for a BLDC motor with $\mathrm{Ns}=9$ and $\mathrm{Np}=10$

Fig. 31 Pareto optimal solutions for a BLDC motor with $\mathrm{Ns}=12$ and $\mathrm{Np}=8$
$\phi_{\mathrm{t}}=\frac{\phi_{\mathrm{total}}}{N_{\mathrm{s}}}=\frac{2 \pi B_{\mathrm{g}} R_{\mathrm{ro}} L_{\mathrm{stack}}}{N_{\mathrm{s}}}$
where N_{S} is the number of slots on the stator.
This flux travels through the body of the tooth resulting in a flux density B_{t} whose magnitude is given by
$B_{t}=\frac{\phi_{t}}{w_{t b} L_{\text {stack }}}$
where w_{tb} is the width of the tooth.
The value of B_{t} is generally known, as it is the maximum allowable flux density in iron. Hence once the value of B_{t} is determined the width of the tooth is given from Eqs. 7 and 8
$w_{\mathrm{tb}}=\frac{2 \pi R_{\mathrm{ro}} B_{\mathrm{g}}}{N_{\mathrm{s}} B_{\mathrm{t}}}$
From the above expression it can be seen that the tooth width is directly dependent on the rotor outer radius and inversely proportional to number of slots. As the number of

Fig. 32 Pareto optimal solutions for a BLDC motor with $\mathrm{Ns}=15$ and $\mathrm{Np}=10$
slot increase, the width of the tooth decreases. The width of the tooth is independent of the number of poles (magnets) because the total flux crossing the air gap is not a function of the number of poles. Hence w_{tb} does not vary with the change in the number of poles.

The flux from each magnet splits into two halves, with each half forming a flux loop, Fig. 14. The stator flux density is $B_{\text {sy }}$ given by
$B_{\text {sy }}=\frac{\phi_{\text {total }} / 2}{w_{\text {sy }} L_{\text {stack }}}$
where $w_{\text {sy }}$ is the width of the yoke and is given by
$w_{\mathrm{sy}}=\frac{\pi R_{\mathrm{ro}} B_{\mathrm{g}}}{N_{\mathrm{m}} B_{\mathrm{sy}}}$
$B_{\text {sy }}$ is again the maximum permissible flux density in iron. The above expression shows that width of the yoke is directly proportional to the outer radius of the rotor R_{ro} and inversely proportional to the number of magnets. The stator yoke width is independent of number of slots.

The general shape of the slot considered here is shown in Figs. 25, 26.

The area of the above slot is given by

$$
\begin{align*}
& A_{\mathrm{s}}=\frac{\pi}{N_{\mathrm{s}}}\left[\left(R_{\mathrm{so}}-w_{\mathrm{sy}}\right)^{2}-\left(R_{\mathrm{ro}}+g+d_{\mathrm{sht}}\right)^{2}\right]-w_{\mathrm{tb}} \\
& \quad\left(R_{\mathrm{so}}-w_{\mathrm{sy}}-R_{\mathrm{ro}}-g-d_{\mathrm{sht}}\right) \tag{12}
\end{align*}
$$

The area of the copper in the slot is given by

$$
\begin{equation*}
A_{\mathrm{cu}}=K_{\mathrm{cu}} A_{\mathrm{s}} \tag{13}
\end{equation*}
$$

where $k_{c u}$ is the copper fill factor.
With this the calculation of the main dimensions of the motor is done.
6.5.1.3 Inductance and resistance calculation The total phase inductance L_{ph} composed of air gap inductance L_{g},

Table 4 Importance of different parameters used in screening process

Parameter	Importance	Direction
Length of the stack	M	L
Losses	H	L
Mass	VH	L
Electrical time constant	H	L
Inertia of the rotor	L	L
Ratio of inner stator to outer stator diameters	H	H
Number of turns	M	L
Reminance field of permanent magnet	N	L
Max. field density in stator lamination material	N	L
Width of the tooth		
Width of the yoke	VL	L
Area of slots	H	L

slot leakage inductance L_{s}, and end turn inductance L_{e} is given (Hanselmann 2003)
$L_{\mathrm{ph}}=N_{\mathrm{s}} / 3\left(L_{\mathrm{s}}+L_{\mathrm{e}}+L_{\mathrm{g}}\right)$
where
$L_{\mathrm{g}}=\frac{N_{\text {turns }}^{2} \mu_{\mathrm{r}} \mu_{o} L_{\mathrm{stack}} \tau_{\mathrm{c}} k_{\mathrm{d}}}{4\left(L_{\text {stack }}+\mu_{\mathrm{r}} k_{\mathrm{c}} g\right)}$
$L_{\mathrm{s}}=N_{\text {turns }}^{2}\left[\frac{\mu_{0} d_{3}^{2} L_{\mathrm{stack}}}{3 A_{\mathrm{s}}}+\frac{\mu_{0} d_{2} L_{\mathrm{stack}}}{\left(w_{\mathrm{s}}+w_{\mathrm{si}}\right) / 2}+\frac{\mu_{0} d_{1} L_{\mathrm{stack}}}{w_{\mathrm{s}}}\right]$
$L_{\mathrm{e}}=\frac{\mu_{0} N_{\text {turn }}^{2} \tau_{\mathrm{c}}}{8} \ln \left[\frac{\tau_{\mathrm{c}}^{2} \pi}{4 A_{\mathrm{s}}}\right]$
where μ_{0} is the permeability of free space.
The parameters of the motor are shown in Fig. 26. Since each slot has two coil sides and each coil has $N_{\text {turns }}$ turns, the resistance $R_{\text {slot }}$ per slot is given by
$R_{\text {slot }}=\frac{\rho L_{\text {stack }} 4 N_{\text {turns }}^{2}}{K_{\text {cu }} A_{\text {slot }}}$
A three phase star connected motor is considered. Hence the phase resistance of the motor is given by
$R_{\mathrm{ph}}=\frac{N_{\mathrm{s}}}{3} R_{\text {slot }}$
6.5.1.4 Loss calculation The Ohmic P_{r} and the core loss P_{Fe} can be determined from the following relation:
$P_{\mathrm{r}}=3 I_{\mathrm{ph}}^{2} R_{\mathrm{ph}}$
$P_{\mathrm{Fe}}=\rho_{\mathrm{bi}} V_{\mathrm{st}} \Gamma\left(f_{\mathrm{e}}, B_{\mathrm{Fe}}\right)$
where I_{ph} is the RMS value of the driving current for each phase, R_{ph} is the resistance value for each phase, ρ_{bi} is the mass density of the back iron, $V_{\text {st }}$ is the stator volume and

Table 5 The results of screening for the motor with $\mathrm{Ns}=6$ and $\mathrm{Np}=4$

Direction	L	L	L	L	L	H	L	L	L	H	Final value
Importance	M	H	VH	H	L	H	M	VL	L	H	
Alternatives	$\mathrm{L}_{\text {stack }}$	Losses	Mass	Time constant	Inertia	DiDo	$\mathrm{N}_{\text {turns }}$	wt	wy	Aslots	
1	39.080	102.921	0.266	0.0002397	5.058	0.600	59	7.083	5.312	3.111	VL
2	39.075	103.171	0.266	0.0002412	4.993	0.600	59	7.071	5.303	3.111	VL
3	39.076	109.431	0.265	0.0002846	4.860	0.600	59	6.924	5.193	3.164	VL
4	23.731	124.825	0.172	0.0002911	3.710	0.581	59	7.093	5.320	3.203	L
5	23.778	125.444	0.164	0.0002917	3.035	0.595	60	6.805	5.104	3.299	L
6	23.789	127.760	0.163	0.0002988	3.087	0.600	59	6.688	5.016	3.356	L
7	23.789	128.071	0.163	0.0003007	3.082	0.600	59	6.681	5.011	3.363	L
8	22.637	129.909	0.161	0.0003286	2.828	0.580	60	6.929	5.197	3.317	L
9	22.664	139.730	0.160	0.0003093	2.673	0.581	53	6.993	5.245	3.263	L
10	17.241	159.536	0.124	0.0003367	2.305	0.581	59	6.714	5.036	3.554	L
11	17.174	162.847	0.123	0.0003636	2.101	0.581	60	6.602	4.952	3.723	L
12	17.174	166.638	0.121	0.0003473	2.577	0.599	60	6.339	4.755	3.901	L
13	14.710	167.018	0.104	0.0003287	2.110	0.599	59	6.304	4.728	3.972	L
14	14.439	170.149	0.102	0.0003425	1.931	0.599	59	6.232	4.674	4.122	L
15	13.216	174.275	0.096	0.0003213	2.216	0.600	59	6.231	4.673	4.098	L
16	13.216	176.200	0.095	0.0003275	2.162	0.600	59	6.204	4.653	4.156	L
17	11.973	188.203	0.086	0.0003321	1.805	0.600	59	6.101	4.576	4.399	L
18	11.973	189.799	0.086	0.000332	1.805	0.600	59	6.101	4.575	4.399	L
19	11.991	194.382	0.086	0.0003491	1.678	0.600	59	6.027	4.520	4.587	L
20	11.451	196.572	0.083	0.0003423	1.728	0.600	59	6.014	4.511	4.620	L
21	11.433	200.977	0.083	0.0003562	1.682	0.599	59	5.971	4.478	4.769	L
22	11.447	201.833	0.083	0.0003556	1.676	0.600	59	5.954	4.466	4.784	L
23	11.447	203.203	0.083	0.0003611	1.611	0.600	59	5.930	4.448	4.852	L
24	11.429	207.990	0.082	0.0003738	1.555	0.600	59	5.873	4.404	5.020	L
25	10.437	214.082	0.077	0.0003576	1.544	0.599	59	5.878	4.408	5.044	L
26	10.450	215.020	0.076	0.0003645	1.396	0.599	59	5.847	4.385	5.137	L
27	9.858	221.809	0.073	0.0003605	1.355	0.595	59	5.861	4.396	5.188	L
28	9.817	222.447	0.073	0.000363	1.289	0.595	59	5.847	4.385	5.236	L
29	9.785	223.964	0.072	0.0003632	1.375	0.600	59	5.760	4.320	5.370	L
30	8.172	261.767	0.064	0.0003974	0.998	0.581	59	5.701	4.276	6.147	L
31	8.148	306.782	0.062	0.000323	1.262	0.600	49	5.760	4.320	5.381	L
32	6.516	307.858	0.056	0.0003963	0.956	0.570	59	5.544	4.158	7.069	L
33	6.510	313.504	0.056	0.0004111	0.877	0.570	59	5.461	4.096	7.430	L
34	6.517	316.436	0.056	0.0004174	0.838	0.570	59	5.428	4.071	7.579	L
35	6.507	318.500	0.056	0.0004168	0.836	0.570	59	5.429	4.072	7.574	L
36	6.523	325.143	0.056	0.0004387	0.755	0.570	59	5.316	3.987	8.103	L
37	6.573	358.582	0.055	0.0003779	0.829	0.570	53	5.660	4.245	6.587	L
38	6.507	361.755	0.055	0.0003759	0.807	0.570	53	5.656	4.242	6.605	L
39	6.583	381.327	0.054	0.0003302	0.879	0.581	47	5.765	4.324	5.908	M
40	6.551	396.263	0.052	0.0003356	0.875	0.600	47	5.414	4.060	6.642	M
41	6.510	408.011	0.051	0.0002838	0.956	0.600	44	5.709	4.282	5.545	L
42	5.069	424.016	0.051	0.0004663	0.594	0.526	59	5.355	4.016	9.121	L
43	5.012	428.063	0.051	0.0004665	0.572	0.526	59	5.329	3.997	9.264	L
44	5.863	457.472	0.049	0.0003225	0.708	0.581	44	5.645	4.234	6.355	M

Table 6 The results of screening for the motor with $\mathrm{Ns}=9 \mathrm{~Np}=10$

Direction	L	L	L	L	L	H	L	L	L	H	Final value
Importance	M	H	VH	H	L	H	M	VL	L	H	
Alternative	$\mathrm{L}_{\text {stack }}$	Losses	Mass	Time constant	Jmot	DiDo	$\mathrm{N}_{\text {turns }}$	wt	wy	Aslots	
1	31.119	117.451	0.214	0.0026401	2.380	0.508	60	3.288	1.479	32.508	VL
2	24.722	124.145	0.171	0.0027403	1.829	0.508	60	2.685	1.208	38.803	VL
3	20.866	136.246	0.147	0.0025642	1.811	0.516	60	2.642	1.189	38.770	L
4	18.946	143.236	0.138	0.0024483	1.492	0.508	60	2.841	1.279	37.140	L
5	17.614	149.605	0.130	0.002309	1.378	0.508	60	3.018	1.358	35.261	L
6	15.732	159.273	0.118	0.0023229	1.240	0.508	60	2.738	1.232	38.254	L
7	14.713	166.044	0.111	0.0022571	1.162	0.508	60	2.740	1.233	38.202	L
8	13.751	175.540	0.106	0.0021383	1.072	0.508	60	2.882	1.297	36.682	L
9	13.788	180.009	0.103	0.0020036	1.270	0.537	60	2.788	1.254	35.755	L
10	8.046	205.460	0.062	0.0008258	1.014	0.600	60	4.478	2.015	17.609	L
11	8.009	207.324	0.062	0.0008158	1.010	0.600	60	4.514	2.031	17.371	L
12	5.077	254.040	0.046	0.0006926	0.651	0.599	60	3.993	1.797	21.016	L

Γ is the core loss density of the stator material at the flux density B_{Fe} and frequency f_{e}.

6.5.2 Dynamic performance of BLDC motor

The derivation of this model is based on the assumptions that the induced currents in the rotor due to the stator harmonic fields are neglected.

The coupled circuit equations of the stator windings in terms of the motor electrical constants are
$[V]=[R][i]+[L] \frac{\mathrm{d}[i]}{\mathrm{d} t}+[e]$
where $[V]=\left[V_{a}, V_{b}, V_{c}\right]^{\prime}$
$[R]=\left[\begin{array}{ccc}R_{\mathrm{ph}} & 0 & 0 \\ 0 & R_{\mathrm{ph}} & 0 \\ 0 & 0 & R_{\mathrm{ph}}\end{array}\right]$
$[i]=\left[i_{a}, i_{b}, i_{c}\right]^{\prime}$
$[L]=\left[\begin{array}{ccc}L_{\mathrm{ph}} & 0 & 0 \\ 0 & L_{\mathrm{ph}} & 0 \\ 0 & 0 & L_{\mathrm{ph}}\end{array}\right]$
$[e]=\left[e_{a}, e_{b}, e_{c}\right]^{\prime}$
where R_{ph} and L_{ph} are the phase resistance and phase inductance values, respectively defined earlier and V_{a}, V_{b}, and V_{c} are the input voltages to each phase a, b and c, respectively. The induced emf e_{a}, e_{b}, e_{c} are sinusoidal in shape and their peak values are given by Eq. 2. The electromagnetic torque is given by
$T_{\mathrm{e}}=\left[e_{a} i_{a}+e_{b} i_{b}+e_{c} i_{c}\right] \frac{1}{\omega_{\mathrm{m}}}$
where ω_{m} is the mechanical speed of the motor.
The analytical solution of the Eq. 27a is given by Nucera et al. (Nucera et al. 1989). In this work the model developed by Nucera et al. has been used.

6.6 Optimisation strategy

In the present case study optimisation strategy based on Posteriori articulation of preference information is used. To achieve the multiobjective optimisation the Nondominated sorting Biologically Motivated Genetic Algorithm (NBGA) (Kumar et al. 2006) is used. The parameters of NBGA are as follows

Number of generations $=50$
Number of individuals $=100$
Crossover probability $=80 \%$
Single point crossover was used.
The mutation rate was fixed between 0 and 10%
Hence the multiobjective optimisation problem to be solved is expressed mathematically as
$\operatorname{minimise}\left\{\begin{array}{l}f_{1}(\vec{x})=P_{c u}+P_{\text {hys }}+P_{\text {eddy }} \\ f_{2}(\vec{x})=M_{\text {iron }}+M_{\text {magnet }}\end{array}\right.$
where $P_{\text {cu }}, P_{\text {hys }}$ and $P_{\text {eddy }}$ are the copper loss, hysteresis loss in the stator yoke and the eddy current loss in the stator yoke, respectively and $M_{\text {iron }}$ and $M_{\text {magnet }}$ are the mass of yoke (stator and rotor) and mass of permanent magnets, respectively.
subject to $h(\vec{x})=T_{\text {motor }} \geq 0.2 \mathrm{Nm}$
where $\vec{x}=\left(B_{\mathrm{r}}, B_{\mathrm{Fe}}, h_{\mathrm{m}}, L_{\mathrm{motor}}, \alpha_{\mathrm{m}}, \alpha_{\mathrm{d}}, N_{\mathrm{m}}, N_{\mathrm{s}}, N_{\text {turns }}\right)$ are the independent design variables

Table 7 The results of screening for the motor with $\mathrm{Ns}=9 \mathrm{~Np}=6$

Direction Importance Alternative	L M $\mathrm{L}_{\text {stack }}$	L H Losses	L VH Mass	L H Time constant	L L Jmot	H H DiDo	L M $\mathrm{N}_{\text {turns }}$	L VL wt	L L wy	H H Aslots	Final value
1	9.786	157.634	0.072	0.0003752	1.688	0.600	60	5.054	3.790	8.263	VL
2	9.786	164.114	0.072	0.000383	1.613	0.600	59	5.012	3.759	8.470	VL
3	9.786	171.410	0.072	0.0003836	1.602	0.600	60	5.009	3.757	8.486	VL
4	9.794	172.560	0.071	0.000397	1.486	0.600	60	4.940	3.705	8.838	VL
5	9.792	173.388	0.071	0.0004052	1.421	0.600	60	4.897	3.673	9.061	VL
6	9.799	174.509	0.070	0.0004174	1.334	0.600	60	4.836	3.627	9.386	VL
7	9.804	175.171	0.070	0.0004244	1.288	0.600	60	4.801	3.601	9.576	VL
8	9.786	177.536	0.070	0.0004294	1.292	0.600	60	4.773	3.580	9.727	VL
9	9.786	182.972	0.070	0.0004283	1.291	0.600	59	4.779	3.584	9.695	VL
10	9.786	183.042	0.070	0.0004283	1.291	0.600	59	4.779	3.584	9.695	VL
11	8.427	196.408	0.063	0.0004116	1.381	0.600	60	4.680	3.510	10.254	L
12	7.344	197.133	0.055	0.0004021	1.033	0.600	60	4.548	3.411	11.035	L
13	7.331	198.013	0.055	0.0004066	0.995	0.600	60	4.520	3.390	11.204	L
14	6.667	211.152	0.052	0.0003902	1.150	0.600	60	4.478	3.358	11.467	L
15	6.641	213.407	0.052	0.0004011	1.052	0.600	60	4.409	3.307	11.897	L
16	6.650	215.335	0.052	0.0004138	0.965	0.600	60	4.340	3.255	12.347	L
17	6.642	218.685	0.051	0.0004337	0.849	0.600	60	4.228	3.171	13.092	L
18	6.641	218.706	0.051	0.0004337	0.848	0.600	60	4.228	3.171	13.095	L
19	6.659	241.040	0.051	0.0003775	0.936	0.600	52	4.550	3.413	11.021	L
20	5.231	253.763	0.044	0.0003926	0.933	0.600	58	4.085	3.063	14.091	L
21	5.231	254.492	0.044	0.0003927	0.932	0.600	58	4.084	3.063	14.095	L
22	5.146	257.163	0.043	0.0003925	0.917	0.600	58	4.058	3.043	14.282	L
23	5.176	261.857	0.043	0.0003957	0.867	0.600	60	4.048	3.036	14.353	L
24	5.191	264.120	0.043	0.0004153	0.753	0.600	60	3.934	2.950	15.191	L
25	5.191	266.084	0.043	0.0004225	0.705	0.600	60	3.891	2.918	15.513	L
26	5.155	267.243	0.043	0.0004205	0.696	0.600	60	3.891	2.918	15.513	L
27	5.137	269.628	0.043	0.0004277	0.678	0.600	60	3.842	2.882	15.885	L
28	5.146	307.658	0.042	0.0003999	0.699	0.600	52	4.013	3.010	14.609	L
29	5.138	362.249	0.042	0.0003071	0.806	0.600	42	4.619	3.464	10.609	L
30	5.150	370.205	0.041	0.000323	0.699	0.600	42	4.512	3.384	11.253	L
31	5.150	370.205	0.041	0.000323	0.699	0.600	42	4.512	3.384	11.253	L
32	5.144	439.331	0.041	0.0002639	0.780	0.600	34	4.939	3.704	8.840	L

and $0.5 \leq B_{\mathrm{r}} \leq 1.2,0.5 \leq B_{\mathrm{Fe}} \leq 2$

$$
1 \leq h_{\mathrm{m}} \leq 3,1 \leq L_{\mathrm{motor}} \leq 100
$$

$$
0.1 \leq \alpha_{\mathrm{m}} \leq 1,0.1 \leq \alpha_{\mathrm{d}} \leq 0.7
$$

$$
2 \leq N_{\mathrm{m}} \leq 10,3 \leq N_{\mathrm{s}} \leq 15
$$

$$
1 \leq N_{\text {turns }} \leq 100
$$

The results of the optimisation are given the next subsection.

6.7 Results of multiobjective optimisation

The results of optimisation are given in Figs. 27, 28, 29, 30, 31, 32. From the results it can be seen that for each pole
slot combination a number of Pareto optimal solutions are present and as the mass of the motor increases the losses decreases. Since the number of feasible solutions is large the results have to be screened so that a reduced set is obtained. Detailed analysis can be then performed on the reduced set. In the next section the screening process is performed.

7 Intermediate analysis phase of progressive design methodology for design of a BLDC motor drive

In this section the results obtained from the multi-criteria multiobjective optimisation obtained in the previous

Table 8 The results of screening for the motor with $\mathrm{Ns}=9 \mathrm{Ns}=8$

Direction	L	L	L	L	L	H	L	L	L	H	Final value
Importance	M	H	VH	H	L	H	M	VL	L	H	
Alternative	$\mathrm{L}_{\text {stack }}$	Losses	Mass	Time constant	Jmot	DiDo	$\mathrm{N}_{\text {turns }}$	wt	wy	Aslots	
1	36.776	122.016	0.241	0.0029401	2.736	0.510	60	2.519	1.417	38.424	VL
2	34.264	124.545	0.219	0.0031552	2.813	0.518	60	1.929	1.085	44.894	VL
3	32.803	128.750	0.214	0.0029982	2.816	0.521	60	2.116	1.190	42.405	VL
4	32.876	132.891	0.209	0.0030011	2.650	0.528	59	2.008	1.129	43.131	VL
5	32.876	133.476	0.209	0.0029885	2.668	0.530	59	2.012	1.132	42.975	VL
6	32.876	134.417	0.208	0.0028896	2.857	0.542	59	2.021	1.137	41.886	VL
7	31.646	135.148	0.199	0.0029401	3.238	0.542	59	1.878	1.056	43.527	VL
8	29.731	137.036	0.192	0.0026618	2.891	0.542	60	2.321	1.305	38.398	VL
9	26.491	142.312	0.182	0.0028708	1.840	0.501	60	2.347	1.320	41.122	L
10	26.574	143.091	0.182	0.0028883	1.740	0.501	59	2.318	1.304	41.472	L
11	25.288	146.151	0.173	0.0029022	1.658	0.501	59	2.212	1.244	42.744	L
12	24.557	150.596	0.165	0.0028077	2.036	0.521	59	2.062	1.160	43.054	L
13	24.673	151.189	0.164	0.0028218	2.134	0.521	60	2.039	1.147	43.321	L
14	24.635	153.936	0.162	0.0026879	2.286	0.541	60	2.006	1.129	42.070	L
15	26.522	158.045	0.162	0.0023082	2.768	0.595	60	2.061	1.159	36.646	L
16	22.448	159.025	0.152	0.0027394	1.963	0.525	59	1.997	1.123	43.552	L
17	22.440	161.063	0.150	0.0026146	2.082	0.541	60	2.005	1.128	42.091	L
18	19.888	170.183	0.138	0.0026272	1.821	0.521	60	2.063	1.160	43.030	L
19	19.772	174.089	0.136	0.0024361	1.914	0.542	60	2.154	1.212	40.312	L
20	19.874	175.847	0.133	0.0023942	1.837	0.553	60	2.090	1.176	40.139	L
21	19.874	178.268	0.133	0.0024049	1.836	0.553	60	2.068	1.163	40.394	L
22	17.181	182.271	0.117	0.0015246	1.579	0.595	60	3.204	1.802	25.286	L
23	17.283	183.240	0.117	0.0015224	1.558	0.595	60	3.219	1.811	25.153	L
24	17.252	184.765	0.115	0.0015063	1.450	0.600	60	3.191	1.795	25.085	L
25	17.216	185.155	0.115	0.0015052	1.448	0.600	60	3.190	1.794	25.089	L
26	16.087	192.939	0.110	0.0015347	1.391	0.597	59	3.048	1.715	26.571	L
27	8.241	198.313	0.063	0.000679	1.129	0.599	60	4.679	2.632	13.932	L
28	8.213	199.209	0.062	0.0006746	1.126	0.600	60	4.689	2.637	13.860	L
29	8.157	222.350	0.062	0.0007611	0.941	0.595	60	4.368	2.457	16.174	L
30	8.150	224.592	0.062	0.0007637	0.970	0.595	60	4.356	2.450	16.262	L
31	8.157	227.535	0.062	0.00074	0.974	0.599	60	4.390	2.470	15.792	L
32	8.150	228.063	0.062	0.0007379	0.975	0.600	60	4.393	2.471	15.758	L
33	6.541	238.653	0.053	0.0006565	0.779	0.595	60	4.402	2.476	15.951	L
34	6.510	239.622	0.053	0.0006558	0.775	0.595	60	4.400	2.475	15.981	L
35	6.510	239.622	0.053	0.0006558	0.775	0.595	60	4.400	2.475	15.981	L
36	6.510	242.278	0.052	0.0006558	0.878	0.595	60	4.393	2.471	16.002	L
37	5.467	247.724	0.046	0.00061	0.696	0.600	60	4.178	2.350	17.238	L
38	5.423	251.816	0.046	0.0006097	0.756	0.599	60	4.166	2.344	17.338	L
39	5.412	252.442	0.046	0.0006072	0.756	0.600	60	4.169	2.345	17.294	L
40	5.423	254.365	0.045	0.0005575	0.758	0.600	60	4.445	2.500	15.410	L
41	5.446	286.415	0.045	0.0005252	0.742	0.599	51	4.643	2.612	14.157	L
42	5.423	484.203	0.045	0.0005171	0.757	0.599	38	4.681	2.633	13.919	L

section are screened to reduce the number of feasible solution set. The application of various steps of intermediate analysis is explained in the following subsection.

7.1 Identification of new set of objectives

For decision making the following parameters of the motor are taken into consideration

Table 9 The results of screening for the motor with $\mathrm{Ns}=12 \mathrm{~Np}=8$

Direction	L	L	L	L	L	H	L	L	L	H	Final value
Importance	M	H	VH	H	L	H	M	VL	L	H	
Alternative	$\mathrm{L}_{\text {stack }}$	Losses	Mass	Time constant	Jmot	DiDo	$\mathrm{N}_{\text {turns }}$	wt	wy	Aslots	
1	39.153	122.200	0.247	0.0020986	1.856	0.506	60	1.727	1.295	45.748	VL
2	36.786	130.723	0.205	0.0019278	3.608	0.587	60	1.144	0.858	45.602	VL
3	36.793	131.379	0.201	0.0019101	3.816	0.599	59	1.050	0.788	45.489	VL
4	32.095	133.581	0.200	0.0019214	1.602	0.527	60	1.707	1.280	44.196	VL
5	33.028	135.156	0.190	0.0018583	3.640	0.583	60	1.249	0.937	44.705	VL
6	33.052	136.475	0.184	0.0017921	3.624	0.600	60	1.197	0.898	43.558	L
7	29.610	138.134	0.171	0.0015522	2.154	0.599	60	1.608	1.206	38.515	L
8	22.184	140.240	0.135	0.0015364	1.736	0.587	60	1.547	1.160	40.495	L
9	22.708	146.473	0.134	0.0014637	1.653	0.600	60	1.596	1.197	38.637	L
10	22.171	147.055	0.131	0.0014768	1.626	0.599	60	1.550	1.162	39.260	L
11	18.358	152.854	0.114	0.0012214	1.279	0.599	60	2.017	1.513	33.782	M
12	18.294	153.270	0.114	0.0012197	1.274	0.600	60	2.015	1.511	33.781	M
13	18.263	153.651	0.113	0.0012194	1.271	0.600	60	2.014	1.511	33.791	M
14	13.327	172.092	0.087	0.0011676	0.977	0.596	60	1.840	1.380	36.089	M
15	13.255	175.962	0.086	0.0011509	0.977	0.600	60	1.844	1.383	35.738	M
16	13.216	176.470	0.086	0.0011504	0.964	0.600	60	1.841	1.381	35.764	M
17	11.291	181.938	0.077	0.0010364	0.818	0.587	60	2.129	1.597	33.599	M
18	8.968	195.128	0.064	0.0005925	1.191	0.597	60	3.318	2.489	20.406	L
19	6.874	197.068	0.051	0.0005788	0.732	0.596	60	3.016	2.262	23.270	L
20	6.778	199.365	0.051	0.0005999	0.755	0.599	60	2.864	2.148	24.544	L
21	6.802	202.215	0.050	0.0005466	0.759	0.600	60	3.113	2.335	22.102	L
22	5.233	213.024	0.042	0.0004887	0.677	0.583	60	3.198	2.398	22.549	L

- Stack length,
- losses,
- mass,
- electrical time constant,
- inertia of the rotor,
- ratio of inner diameter of stator to outer diameter,
- number of turns,
- width of the tooth,
- thickness of the stator yoke,
- area of slots.

The losses and mass of the motor are the primary parameters. A motor with smallest losses and smallest mass is preferable. However as can be seen from the results of the previous section as the mass increases the losses decrease. Hence in the intermediate analysis both are considered for the screening purpose.

Electrical time constant of the motor has a direct influence on the dynamic performance of the motor. A motor with lower time constant has a better dynamic response compared to the motor with higher electrical time constant. Similarly the inertia of the rotor is important parameter because it influences the dynamic performance of the motor.

A motor with high inertia will accelerate slowly compared to the motor with lower inertia. The ratio of inner diameter of stator to outer diameter of stator is considered because it has an influence on the end turn of the winding.

The magnetic loading and the mechanical aspects determine the width of the tooth. If the tooth is too thin then it may not be able to withstand the mechanical forces acting on it. Hence in this analysis tooth with higher thickness is preferred.

The thickness required for the stator yoke depends on the magnetic loading of the machine as well as on the mechanical properties. If the number of the pole pairs is small, often the allowable magnetic loading and the mechanical loading determines the thickness of the stator yoke. However, if the number of pole pairs is high enough the stator yoke may be thin if it is sized according to the allowed magnetic loading. The mechanical constraints may thus determine the minimum thickness of the stator yoke. In the decision making process it smaller the thickness of stator yoke the better it is. A smaller yoke thickness is preferred because it reduces the mass of the steel lamination required.

Table 10 The results of screening for the motor with $\mathrm{Ns}=12 \mathrm{~Np}=10$

Direction	L	L	L	L	L	H	L	L	L	H	Final value
Importance	M	H	VH	H	L	H	M	VL	L	H	
Alternative	$\mathrm{L}_{\text {stack }}$	Losses	Mass	Time constant	Jmot	DiDo	$\mathrm{N}_{\text {turns }}$	wt	wy	Aslots	
1	25.781	114.536	0.168	0.0023246	1.794	0.504	60	1.848	1.109	46.480	VL
2	25.862	118.012	0.168	0.0023281	1.868	0.509	60	1.780	1.068	46.935	VL
3	25.787	122.454	0.157	0.001965	2.541	0.567	60	1.799	1.080	41.582	VL
4	24.189	124.206	0.147	0.0020185	2.385	0.567	60	1.611	0.967	43.737	VL
5	20.531	130.141	0.139	0.002161	1.383	0.504	60	1.926	1.155	45.514	VL
6	20.488	131.790	0.138	0.0021564	1.383	0.504	60	1.929	1.157	45.447	VL
7	20.524	136.966	0.131	0.001778	2.113	0.564	60	2.013	1.208	39.406	L
8	17.490	137.605	0.123	0.0018707	1.179	0.504	60	2.370	1.422	39.953	L
9	17.490	138.022	0.122	0.0019735	1.179	0.504	60	2.128	1.277	42.941	L
10	17.493	143.015	0.120	0.0020916	1.188	0.505	59	1.844	1.106	46.425	L
11	18.237	145.270	0.115	0.0015907	1.994	0.589	60	2.000	1.200	37.330	L
12	18.185	146.264	0.114	0.0015779	2.006	0.591	60	2.002	1.201	37.123	L
13	17.386	149.075	0.111	0.0018453	1.852	0.567	60	1.610	0.966	43.768	L
14	14.858	150.121	0.106	0.0019816	1.077	0.504	60	1.868	1.121	46.229	L
15	14.895	152.044	0.104	0.0019974	1.159	0.510	60	1.764	1.059	47.074	L
16	14.044	154.792	0.103	0.001804	1.080	0.504	60	2.205	1.323	42.000	L
17	14.059	155.033	0.102	0.001901	1.058	0.504	60	1.970	1.182	44.958	L
18	14.059	156.596	0.100	0.001957	1.093	0.509	60	1.770	1.062	47.020	L
19	14.850	159.208	0.099	0.0015843	1.581	0.567	60	2.037	1.222	38.914	L
20	14.925	160.043	0.098	0.0017538	1.592	0.567	60	1.616	0.970	43.695	L
21	14.904	163.174	0.097	0.0016122	1.518	0.580	60	1.794	1.077	40.395	L
22	14.084	164.641	0.094	0.0016468	1.515	0.567	60	1.796	1.078	41.617	L
23	14.029	165.159	0.093	0.001715	1.509	0.567	60	1.619	0.972	43.655	L
24	14.075	166.999	0.093	0.0016861	1.551	0.572	60	1.630	0.978	43.035	L
25	14.062	167.051	0.092	0.0016858	1.537	0.572	60	1.630	0.978	43.042	v
26	14.029	170.280	0.090	0.0014998	1.717	0.600	60	1.731	1.039	39.113	M
27	10.332	176.067	0.072	0.0009414	1.109	0.600	60	2.967	1.780	26.366	L
28	10.383	178.156	0.071	0.0012403	1.115	0.600	60	2.003	1.202	36.250	M
29	10.332	179.231	0.071	0.0012376	1.109	0.600	60	2.003	1.202	36.250	M
30	6.585	183.990	0.050	0.0007325	0.771	0.600	60	3.021	1.813	25.854	L
31	6.585	184.051	0.050	0.000732	0.771	0.600	60	3.023	1.814	25.835	L
32	6.555	185.535	0.050	0.0007257	0.797	0.600	60	3.044	1.826	25.654	L
33	6.585	186.427	0.050	0.0007195	0.788	0.600	60	3.076	1.845	25.340	L
34	6.555	187.326	0.050	0.0007177	0.784	0.600	60	3.075	1.845	25.347	L
35	6.505	189.058	0.049	0.0007135	0.778	0.600	60	3.080	1.848	25.304	L
36	6.504	193.031	0.049	0.0006939	0.818	0.600	60	3.167	1.900	24.514	L
37	6.504	200.664	0.049	0.0006823	0.799	0.600	59	3.220	1.932	24.045	L
38	6.504	203.785	0.049	0.0006724	0.846	0.600	59	3.266	1.959	23.643	L
39	5.312	207.725	0.043	0.0006363	0.655	0.600	59	3.055	1.833	25.529	L
40	5.312	208.434	0.043	0.0006303	0.668	0.600	60	3.086	1.852	25.254	L
41	5.279	210.099	0.042	0.0006262	0.664	0.600	60	3.092	1.855	25.186	L
42	5.021	217.749	0.041	0.0006347	0.647	0.600	60	2.952	1.771	26.493	L
43	5.026	233.215	0.041	0.0005823	0.677	0.600	58	3.221	1.933	24.037	L

Table 11 Results of final screening process

Direction	L	L	L	L	L	H	L	L	L	H	Ns	Np	Final value
Importance	M	H	VH	H	L	H	M	VL	VL	H			
Alternative	$\mathrm{L}_{\text {stack }}$	Losses	Mass	Time constant	Jmot	DiDo	$\mathrm{N}_{\text {turns }}$	wt	wy	Aslots			
1	6.583	381.327	0.054	0.0003302	0.879	0.581	47	5.765	4.324	5.908	6	4	L
2	6.551	396.263	0.052	0.0003356	0.875	0.600	47	5.414	4.060	6.642	6	4	L
3	5.863	457.472	0.049	0.0003225	0.708	0.581	44	5.645	4.234	6.355	6	4	L
4	8.427	196.408	0.063	0.0004116	1.381	0.600	60	4.680	3.510	10.254	9	6	L
5	7.344	197.133	0.055	0.0004021	1.033	0.600	60	4.548	3.411	11.035	9	6	L
6	7.331	198.013	0.055	0.0004066	0.995	0.600	60	4.520	3.390	11.204	9	6	L
7	6.667	211.152	0.052	0.0003902	1.150	0.600	60	4.478	3.358	11.467	9	6	L
8	6.641	213.407	0.052	0.0004011	1.052	0.600	60	4.409	3.307	11.897	9	6	L
9	6.650	215.335	0.052	0.0004138	0.965	0.600	60	4.340	3.255	12.347	9	6	L
10	6.642	218.685	0.051	0.0004337	0.849	0.600	60	4.228	3.171	13.092	9	6	L
11	6.641	218.706	0.051	0.0004337	0.848	0.600	60	4.228	3.171	13.095	9	6	L
12	6.659	241.040	0.051	0.0003775	0.936	0.600	52	4.550	3.413	11.021	9	6	L
13	5.231	253.763	0.044	0.0003926	0.933	0.600	58	4.085	3.063	14.091	9	6	L
14	5.231	254.492	0.044	0.0003927	0.932	0.600	58	4.084	3.063	14.095	9	6	L
15	5.146	257.163	0.043	0.0003925	0.917	0.600	58	4.058	3.043	14.282	9	6	L
16	5.176	261.857	0.043	0.0003957	0.867	0.600	60	4.048	3.036	14.353	9	6	L
17	5.191	264.120	0.043	0.0004153	0.753	0.600	60	3.934	2.950	15.191	9	6	L
18	5.191	266.084	0.043	0.0004225	0.705	0.600	60	3.891	2.918	15.513	9	6	L
19	5.155	267.243	0.043	0.0004205	0.696	0.600	60	3.891	2.918	15.513	9	6	L
20	5.137	269.628	0.043	0.0004277	0.678	0.600	60	3.842	2.882	15.885	9	6	L
21	5.146	307.658	0.042	0.0003999	0.699	0.600	52	4.013	3.010	14.609	9	6	L
22	5.138	362.249	0.042	0.0003071	0.806	0.600	42	4.619	3.464	10.609	9	6	L
23	5.150	370.205	0.041	0.000323	0.699	0.600	42	4.512	3.384	11.253	9	6	L
24	5.150	370.205	0.041	0.000323	0.699	0.600	42	4.512	3.384	11.253	9	6	L
25	5.144	439.331	0.041	0.0002639	0.780	0.600	34	4.939	3.704	8.840	9	6	L
26	26.491	142.312	0.182	0.0028708	1.840	0.501	60	2.347	1.320	41.122	9	8	VL
27	26.574	143.091	0.182	0.0028883	1.740	0.501	59	2.318	1.304	41.472	9	8	VL
28	25.288	146.151	0.173	0.0029022	1.658	0.501	59	2.212	1.244	42.744	9	8	VL
29	24.557	150.596	0.165	0.0028077	2.036	0.521	59	2.062	1.160	43.054	9	8	VL
30	24.673	151.189	0.164	0.0028218	2.134	0.521	60	2.039	1.147	43.321	9	8	VL
31	24.635	153.936	0.162	0.0026879	2.286	0.541	60	2.006	1.129	42.070	9	8	VL
31	26.522	158.045	0.162	0.0023082	2.768	0.595	60	2.061	1.159	36.646	9	8	VL
33	22.448	159.025	0.152	0.0027394	1.963	0.525	59	1.997	1.123	43.552	9	8	VL
34	22.440	161.063	0.150	0.0026146	2.082	0.541	60	2.005	1.128	42.091	9	8	VL
35	19.888	170.183	0.138	0.0026272	1.821	0.521	60	2.063	1.160	43.030	9	8	VL
36	19.772	174.089	0.136	0.0024361	1.914	0.542	60	2.154	1.212	40.312	9	8	VL
37	19.874	175.847	0.133	0.0023942	1.837	0.553	60	2.090	1.176	40.139	9	8	VL
38	19.874	178.268	0.133	0.0024049	1.836	0.553	60	2.068	1.163	40.394	9	8	VL
39	17.181	182.271	0.117	0.0015246	1.579	0.595	60	3.204	1.802	25.286	9	8	M
40	17.283	183.240	0.117	0.0015224	1.558	0.595	60	3.219	1.811	25.153	9	8	M
41	17.252	184.765	0.115	0.0015063	1.450	0.600	60	3.191	1.795	25.085	9	8	M
42	17.216	185.155	0.115	0.0015052	1.448	0.600	60	3.190	1.794	25.089	9	8	M
43	16.087	192.939	0.110	0.0015347	1.391	0.597	59	3.048	1.715	26.571	9	8	M
44	8.241	198.313	0.063	0.000679	1.129	0.599	60	4.679	2.632	13.932	9	8	L
45	8.213	199.209	0.062	0.0006746	1.126	0.600	60	4.689	2.637	13.860	9	8	L
46	8.157	222.350	0.062	0.0007611	0.941	0.595	60	4.368	2.457	16.174	9	8	L
47	8.150	224.592	0.062	0.0007637	0.970	0.595	60	4.356	2.450	16.262	9	8	L

Table 11 continued

Direction	L	L	L	L	L	H	L	L	L	H	Ns	Np	Final value
Importance	M	H	VH	H	L	H	M	VL	VL	H			
Alternative	$\mathrm{L}_{\text {stack }}$	Losses	Mass	Time constant	Jmot	DiDo	$\mathrm{N}_{\text {turns }}$	wt	wy	Aslots			
48	8.157	227.535	0.062	0.00074	0.974	0.599	60	4.390	2.470	15.792	9	8	L
49	8.150	228.063	0.062	0.0007379	0.975	0.600	60	4.393	2.471	15.758	9	8	L
50	6.541	238.653	0.053	0.0006565	0.779	0.595	60	4.402	2.476	15.951	9	8	L
51	6.510	239.622	0.053	0.0006558	0.775	0.595	60	4.400	2.475	15.981	9	8	L
52	6.510	239.622	0.053	0.0006558	0.775	0.595	60	4.400	2.475	15.981	9	8	L
53	6.510	242.278	0.052	0.0006558	0.878	0.595	60	4.393	2.471	16.002	9	8	L
54	5.467	247.724	0.046	0.00061	0.696	0.600	60	4.178	2.350	17.238	9	8	L
55	5.423	251.816	0.046	0.0006097	0.756	0.599	60	4.166	2.344	17.338	9	8	L
56	5.412	252.442	0.046	0.0006072	0.756	0.600	60	4.169	2.345	17.294	9	8	L
57	5.423	254.365	0.045	0.0005575	0.758	0.600	60	4.445	2.500	15.410	9	8	L
58	5.446	286.415	0.045	0.0005252	0.742	0.599	51	4.643	2.612	14.157	9	8	L
59	5.423	484.203	0.045	0.0005171	0.757	0.599	38	4.681	2.633	13.919	9	8	L
60	20.866	136.246	0.147	0.0025642	1.811	0.516	60	2.642	1.189	38.770	9	10	VL
61	18.946	143.236	0.138	0.0024483	1.492	0.508	60	2.841	1.279	37.140	9	10	VL
62	17.614	149.605	0.130	0.002309	1.378	0.508	60	3.018	1.358	35.261	9	10	VL
63	15.732	159.273	0.118	0.0023229	1.240	0.508	60	2.738	1.232	38.254	9	10	VL
64	14.713	166.044	0.111	0.0022571	1.162	0.508	60	2.740	1.233	38.202	9	10	VL
65	13.751	175.540	0.106	0.0021383	1.072	0.508	60	2.882	1.297	36.682	9	10	VL
66	13.788	180.009	0.103	0.0020036	1.270	0.537	60	2.788	1.254	35.755	9	10	VL
67	8.046	205.460	0.062	0.0008258	1.014	0.600	60	4.478	2.015	17.609	9	10	VL
68	8.009	207.324	0.062	0.0008158	1.010	0.600	60	4.514	2.031	17.371	9	10	VL
69	5.077	254.040	0.046	0.0006926	0.651	0.599	60	3.993	1.797	21.016	9	10	VL
70	18.358	152.854	0.114	0.0012214	1.279	0.599	60	2.017	1.513	33.782	12	8	M
71	18.294	153.270	0.114	0.0012197	1.274	0.600	60	2.015	1.511	33.781	12	8	M
72	18.263	153.651	0.113	0.0012194	1.271	0.600	60	2.014	1.511	33.791	12	8	M
73	13.327	172.092	0.087	0.0011676	0.977	0.596	60	1.840	1.380	36.089	12	8	M
74	13.255	175.962	0.086	0.0011509	0.977	0.600	60	1.844	1.383	35.738	12	8	M
75	13.216	176.470	0.086	0.0011504	0.964	0.600	60	1.841	1.381	35.764	12	8	M
76	11.291	181.938	0.077	0.0010364	0.818	0.587	60	2.129	1.597	33.599	12	8	M
77	10.383	178.156	0.071	0.0012403	1.115	0.600	60	2.003	1.202	36.250	12	10	M
78	10.332	179.231	0.071	0.0012376	1.109	0.600	60	2.003	1.202	36.250	12	10	M
79	14.029	170.280	0.090	0.0014998	1.717	0.600	60	1.731	1.039	39.113	12	10	M

The area of the slot is considered as an objective because it influences the winding. A slot with smaller area is difficult to wind. Hence in this analysis a larger slot area is preferred.

7.2 Linguistic term set

For the screening purpose the Linguistic term set Based on the Ordered Structure is used. A set of seven terms of ordered structured linguistic terms is used here:
$S=\left\{S_{0}=\right.$ none, $s_{1}=$ very low, $s_{2}=$ low, $s_{3}=$ medium,
$s_{4}=$ high, $s_{5}=$ very high, $s_{6}=$ perfect $\}$
where $s_{a}<s_{b}$ iff $a<b$. The linguistic terms set in addition satisfy the following conditions:
i. Negation operator: $\operatorname{Neg}\left(s_{i}\right)=s_{j}, j=T-i(T+1$ is the cardinality),
ii. maximisation operator: $\operatorname{Max}\left(s_{i}, s_{j}\right)=s_{i}$, if $s_{i} \geq s_{j}$,
iii. minimisation operator: $\operatorname{Min}\left(s_{i}, s_{j}\right)=s_{i}$, if $s_{i} \leq s_{j}$.
7.3 The semantic of linguistic term set

In this case the Semantic Based on the Ordered Structure is used. The terms are symmetrically distributed, i.e. it is

Table 12 Parameters of the set of solutions

Alternative number	$\mathrm{L}_{\text {stack }}$	Losses	Mass	DiDo	α_{m}	hm	$\mathrm{N}_{\text {turns }}$	Bmag	Biron	wt	wy	Ns
1	17.181	182.271	0.117	0.595	0.587	1.784	60	1.19	1.51	3.204	1.802	9
2	17.283	183.240	0.117	0.595	0.616	1.675	60	1.16	1.51	3.219	1.811	9
3	17.252	184.765	0.115	0.600	0.601	1.574	60	1.18	1.51	3.191	1.795	9
4	17.216	185.155	0.115	0.600	0.601	1.575	60	1.18	1.51	3.190	1.794	9
5	16.087	192.939	0.110	0.597	0.587	1.674	59	1.20	1.58	3.048	1.715	9
6	18.358	152.854	0.114	0.599	0.523	1.505	60	1.20	1.58	2.017	1.513	12
7	18.294	153.270	0.114	0.600	0.522	1.505	60	1.20	1.58	2.015	1.511	12
7	18.263	153.651	0.113	0.600	0.522	1.505	60	1.20	1.58	2.014	1.511	12
8	13.327	172.092	0.087	0.596	0.547	1.534	60	1.12	1.68	1.840	1.380	12
10	13.255	175.962	0.086	0.600	0.546	1.522	60	1.12	1.68	1.844	1.383	12
11	13.216	176.470	0.086	0.600	0.547	1.504	60	1.12	1.68	1.841	1.381	12
12	11.291	181.938	0.077	0.587	0.577	1.505	60	1.18	1.58	2.129	1.597	12
13	10.383	178.156	0.071	0.600	0.802	1.510	60	0.81	1.53	2.003	1.202	12
14	10.332	179.231	0.071	0.600	0.802	1.510	60	0.81	1.53	2.003	1.202	12
15	14.029	170.280	0.090	0.600	0.838	1.636	60	0.82	1.91	1.731	1.039	12
12										10		

Table 13 Parameters of the final set of solution

Alternative number	$\mathrm{L}_{\text {stack }}$	DiDo	α_{m}	hm	$\mathrm{N}_{\text {turns }}$	Bmag	Biron	wt	wy	Ns
1	17.233	0.597	0.601	1.652	60	1.179	1.506	3.201	1.801	9
2	16.087	0.597	0.587	1.674	59	1.198	1.577	3.048	1.715	9
3	18.305	0.600	0.522	1.505	60	1.200	1.582	2.015	1.511	12
4	13.266	0.599	0.547	1.520	60	1.121	1.684	1.842	1.381	12
5	11.291	0.587	0.577	1.505	60	1.184	1.579	2.129	1.597	12
6	10.358	0.600	0.802	1.510	60	0.805	1.534	2.003	1.202	12
7	14.029	0.600	0.838	1.636	60	0.821	1.909	1.731	1.039	12

Fig. 33 Cogging Torque for all the seven motors
assumed that linguistic term sets are distributed on a scale with an odd cardinal and the mid term representing an assessment of "approximately 0.5 " and the rest of the terms are placed symmetrically around it.

Fig. 34 Back EMF for all the seven motors
7.4 Aggregation operator for linguistic weighted information

In this case the Linguistic Weighted conjunction aggregation operator is used.

Table 14 Parameters of the refine set of solution

Alternative number	$\mathrm{L}_{\text {stack }}$	DiDo	α_{m}	hm	$\mathrm{N}_{\text {turns }}$	Bmag	Biron	wt	wy	Ns	Np
1	10	0.597	1	1.652	60	1.179	1.506	3.201	1.801	9	8
2	10	0.6	1	1.505	60	0.65	1.577	2.015	1.511	12	8
3	18	0.5	1	1.636	60	0.82	1.909	1.731	1.039	12	10

Fig. 35 Cogging Torque for the final three motors

Fig. 36 Back EMF for the final three motors

7.5 The screening process

The importance of different parameters discussed in the previous section is shown in Table 4.

The length of the motor stack is given medium importance and the smaller the length of the motor the better it is, i.e. a smaller stack length is preferred over the larger length. For the losses a high importance is given and lower the losses the better. Similarly for the mass a very high importance is given and smaller the mass the more preferred is the motor. The electrical time constant of the motor is given a high importance and the lower value is

Power Vs. Speed

Fig. 37 Power versus speed characteristics comparison between simulation and experiments

Fig. 38 Current versus speed characteristic comparison between simulations and experiment values
better. Ratio of inner to outer stator diameter is given a higher value and higher the value the better it is. A medium importance is given to number of turns and lower the number of turns is preferred. The reminance field of permanent magnet and maximum allowable field density of stator lamination is given no importance. The width of the tooth and width of the yoke are given very low and low importance, respectively and lower the values of both the parameters the better it is. The area of the slot is given a

Fig. 39 Torque versus speed characteristic comparison

Fig. 40 Cogging torque comparison between simulation and exprimental values
high importance and the higher value of the slot area is preferred. The results of the multicriteria decision for motors with different number of poles and slots are given in Tables 5, 6, 7, 8, 9, 10.

In the above table the motors selected for further analysis are marked in bold. The designs three to seven are equally good and are considered for further analysis. Hence in total the feasible solutions is 79 out of 195 total solutions. The first phase of screening process is able to eliminate 60% of solutions and only 40% of solutions are selected.

In the second phase of screening the 79 competent solutions obtained so far are again subjected to multicriteria decision making. The results of second phase of screening are given in Table 11.

From the second phase of screening 15 feasible solutions are obtained. All the solutions having the highest final value are chosen. The relevant parameters of the 15 solutions are given in Table 12. For all the motors the outer diameter of the motor is 40 mm and the air-gap length is 0.2 mm .

From the above table it can be seen that alternatives one to four have almost the same geometric parameters. Similarly 6 to 8 have similar parameters and 9 to 11 have almost similar parameters. The alternatives 13 and 14 are also similar geometrically. Hence in order to reduce the number of alternatives for detailed simulation the geometrically similar alternatives are replaced by single alternative and its geometric parameters are average of the similar alternatives. Hence instead of considering alternatives one to four, a single alternative with parameters that are average of parameters of alternatives one to four is considered. The new set of alternatives that are considered for detailed modelling are given in Table 13.

Hence these seven solutions that will be considered for detailed analysis. For detailed analysis FEM models of the motor are developed using FEMAG and smartFEM. In the section the results of final analysis are give.

8 Final analysis phase of progressive design methodology for design of a BLDC motor drive

In this section detailed analysis of the motors obtained in the previous section is done. For the detailed analysis FEM model of the motors were developed in FEMAG and smartFEM. The results of cogging torque and back emf for all the seven alternatives in Table 13 are shown in Figs. 33 and 34 , respectively.

From the above figures it can be seen that motors three, four and five have higher cogging torque compared to other motors. None of the motors have trapezoidal back emf. To obtain trapezoidal back emf the geometric parametrs of the motors have to be varied. The parameter that will have an impact on the shape of the back emf is ratio of magnet angle to pole pitch $\left(\alpha_{\mathrm{m}}\right)$. The parameters that was varied is Bmag. The new dimensions of the motors are given in Table 14.

The values of back emf and cogging torques for the above motor configurations are shown in Figs. 35 and 36, respectively.

From Fig. 35 it is seen that all the three motors have a cogging toruqe of less than 20 mNm and the back emf of all the motors is as close to trapezoidal shape as possible. Hence all the three motors are competitent. Finally a prototype based on configuration 2 given in Table 14 was made. The characteristics curves of the prototype are givn in Figs. 37, 38, 39, 40.

The comparison between the simulated and experimental cogging torque is shown in Fig. 40. From the above figures it can be seen that the performance of the motor is close to the simulated values.

9 Conclusion

In this work the progressive design methodology (PDM) is proposed. This methodology is suitable for designing complex systems, such as electrical drive and power electronics, from conceptual stage to final design. The main aspects of PDM discussed are as follows:

- PDM allows effective and efficient practices and techniques to be used from the start of the project.
- PDM ensures that each component of the system is compatible with each other.
- The computation time required for optimisation is reduced as the bulk of optimisation is done in the synthesis phase and the models of the components of the target system are simple in the synthesis phase.
- The experience of design engineers and production engineers are included in the intermediate analysis thus ensuring that the target system is feasible to manufacture.

In PDM the decision making factor is critical as proper decisions about dimensions, features, materials, and performance in the conceptual stage will ensure a robust and optimal design of the system. The different stages of PDM are explained using the example of the design of a BLDC motor and the results are validated by experiments. It is shown that using PDM an optimal design of the motor can be obtained that meets the performance requirements.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

Alexandrov NM, Lewis RM (2002) Analytical and computational aspects with multidisciplinary design. AIAA 40:301-309
Audet C, Dennis J (2004) A pattern search filter method for nonlinear programming without derivatives. SIAM J Optim 14:980-1010. doi:10.1137/S105262340138983X
Audet C, Dennis J, Moore DW, Booker A, Frank PD (2000) A Surrogate model based method for constraint optimization. In: Proceedings of the 8th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization, Long Beach
Balling RJ, Sobieszczanski JS (1996) Optimization of coupled systems: a critical overview of approaches. AIAA 34:6-17. doi: 10.2514/3.13015

Benayoun R, Montgolfier JD, Tergny J, Laritchev O (1971) Linear programming with multiple objective functions: step method (STEM). Math Program 1:366-375. doi:10.1007/BF01584098
Bianchi N (1998) Design optimization of electrical motors by genetic algorithms. IEEE Proc Electr Power Appl 145:475-483. doi: 10.1049/ip-epa:19982166

Bonissone PP (1986) A fuzzy sets based linguistic approach, approximate reasoning in decision analysis, pp 329-339

Bonissone PP, Decker KS (1986) Selecting uncertainty calculi and granularity: an experiment in trading-off precision and complexity, uncertainty in artificial intelligence, pp 217-247
Booker A, Dennis J, Frank P, Serafini D, Torczon V, Trosset M (1999) A rigorous framework for optimization of expensive functions by surrogates. Struct Optim 17:1-13
Bordogna G, Passi G (1993) A fuzzy linguistic approach generalizing boolean information retrieval: a model and its evaluation. J Am Soc Inf Sci 44:70-82. doi:10.1002/(SICI)1097-4571(199303) 44:2<70::AID-ASI2>3.0.CO;2-I
Bordogna G, Fedrizzi M, Passi G (1997) A linguistic modeling of consensus in group decision making based on OWA operators. IEEE Trans Syst Man Cybern A Syst Hum 27:126-132. doi: 10.1109/3468.553232

Buede DM (1999) The engineering design of systems: models and methods. Wiley, London
Calvo T, Baets BD, Fodor J (2001) The functional equations of Alsina and Frank for uniforms and null-norms. Fuzzy Sets Syst 120:385-394. doi:10.1016/S0165-0114(99)00125-6
Carlsson C, Fuller R (1995) On fuzzy screening systems, presented at EUFIT'95, Aachen
Carlsson C, Fuller R (1996) Fuzzy multiple criteria decision making: recent developments. Fuzzy Sets Syst 78:139-153. doi:10.1016/ 0165-0114(95)00165-4
Cho DH, Sim DJ, Jung HK (1999) Multiobjective optimal design of interior permanent magnet synchronous motors considering improved core loss formula. IEEE Trans Energ Convers 14:1347-1352. doi:10.1109/60.815071
Chong EPK, Zak SH (2001) An introduction to optimization, 2nd edn. Wiley, London
Costa B, Vincke P (1990) Multiple criteria decision aid: an overview, readings in multiple criteria decision aid, pp 3-14
Das I, Dennis JE (1997) A close look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Struct Optim 14:63-69. doi: 10.1007/BF01197559

Dasgupta S (1989) The structure of design process. Adv Comput 28:1-67
Deb K, Srinivasan A (2005) INNOVIZATION: innovative design principles through optimization, I. I. T Kanpur, India 2005007
Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist nondominated sorting genetic algorithm for multi-objective optimization. In: Proceedings of the parallel problem solving from nature VI(PPSN-VI), pp 849-858
Delgado M, Verdegay JL, Vila MA (1992) Linguistic decision making models. Int J Intellect Syst 7:479-492. doi:10.1002/ int. 4550070507
Dubois D, Prade H (2004) On the use of aggregation operations in information fusion process. Fuzzy Sets Syst 142:143-161. doi: 10.1016/j.fss.2003.10.038

Egorov N, Kretinin GV, Leshchenko IA (2002) Stochastic optimization of parameters and control laws of aircraft gas-turbine engines-a step to a robust design. Inverse Probl Eng Mech III 345-353
Gabrish M, Murofushi T, Sugeno M (1999) Fuzzy measures and integrals. Physica-Verlag, Heidelberg
Hanselmann DC (2003) Brushless permanent magnet motor design, the writer's collective, 2nd edn
Herrera F, Herrera-Viedma E (1997) Aggregation operators for linguistic weighted information. IEEE Trans Syst Man Cybern A Syst Hum 27:646-656. doi:10.1109/3468.618263
Herrera F, Herrera-Viedma E (2000) Linguistic decision analysis: steps for solving decision problems under linguistic information. Fuzzy Sets Syst 115:67-82. doi:10.1016/S0165-0114(99) 00024-X

Herrera F, Verdegay JL (1996) A linguistic decision process in group decision making. Group Decis Negot 5:165-176. doi: 10.1007/BF00419908

Higuchi T, Yamada E, Oyama J, Chiricozzi E, Parasiliti F, Villani M (1997) Optimization procedure of surface pm synchronous motors. IEEE Trans Magn 33:1943-1946. doi:10.1109/20. 582673
Hwang SPC, Yoon K (1980) Mathematical programming with multiple objectives: a tutorial. Comput Oper Res 7:5-31. doi: 10.1016/0305-0548(80)90011-8

Klement EP, Mesiar R, Pap E (2000) Triangular norms. Kluwer, Dordrecht
Koch PN, Wujek B, Golovidov O (2000) A multi-stage, parallel implementation of probabilistic design optimitzation in an mdo framework. In: Proceedings of 8th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization, Long Beach
Krus P, Palmberg JO, Löhr F, Backlund G (1995) The impact of computational performance on optimisation in aircraft design. In: I MECH E, AEROTECH 95, Birmingham
Kumar P, Gospodaric D, Bauer P (2006) Improved genetic algorithm inspired by biological evolution, soft computing-a fusion of foundations. Methodol Appl 11:923-941
Lewis K, Mistree F (1998) Collaboration, sequential and isolated decision design. ASME J Mech Des 120:643-652. doi:10.1115/ 1.2829327

Marczyk J (2000) Stochastic multidisciplinary improvement: beyond optimization. In: Proceedings of 8th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization, Long Beach
Martinez L, Liu J (2006) A fuzzy model for design evaluation based on multiple-criteria analysis in engineering systems. Int \mathbf{J} Uncertain Fuzziness Knowl Based Syst 14:317-336. doi: 10.1142/S0218488506004035

Nucera RR, Sundhoff SD, Krause PC (1989) Computation of steady state performance of an electronically commutated motor. IEEE Trans Ind Appl 25:1110-1111. doi:10.1109/28.44249
Ribeiro RA (1996) Fuzzy multiple attribute decision making: a review and new preference elicitation techniques. Fuzzy Sets Syst 78:155-181. doi:10.1016/0165-0114(95)00166-2
Roubens M (1997) Fuzzy sets and decision analysis. Fuzzy Sets Syst 90:199-206. doi:10.1016/S0165-0114(97)00087-0
Scott MJ, Antonsson EK (1999) Arrow's theorem and engineering design decision making. Res Eng Des 11:218-228. doi:10.1007/ s001630050016
Shakeri C (1998) Discovery of design methodologies for the integration of multi-disciplinary design
Sim DJ, Cho DH, Chun JS, Jung HK, Chung TK (1997a) Efficiency optimization of interior permanent magnet synchronous motor using genetic algorithms. IEEE Trans Magn 33:1880-1883. doi: 10.1109/20.582651

Sim DJ, Jung HK, Hahn SY, Won JS (1997b) Application of vector optimization employing modified genetic algorithm to permanent magnet motor design. IEEE Trans Magn 33:18881891. doi:10.1109/20.582654

Sivert W (1979) A class of operations fuzzy sets, IEEE Trans Syst Man Cybern A Syst Hum 9
Sobieszczanski JS (1998) Optimization by decomposition: a step from hierarchic to non-hierarchic system. In: Second NASA/USAF symposium on recent advances in multidisciplinary analysis and optimization
Sobieszczanski JS, Agte JS, Sandusky RJ (2000) Bilevel integrated system synthesis. AIAA 38:164-172
Sobieszczanski JS, Altus TD, Philips M, Sandusky RJ (2002) Bilevel integrated system synthesis (bliss) for concurrent and distributed processing. In: 9th AIAA/ISSMO symposium on multidisciplinary analysis and optimisation
Sobieszczanski-Sobieski J, Haftka RT (1997) Multidisciplinary design optimization. Struct Optim 14:1-23. doi:10.1007/ BF01197554
Steuer R (1986) Multiple criteria optimization: theory, computation and application. Wiley, London
Steuer R, Choo E-U (1983) An interactive weighted Tchebycheff procedure for multiple objective programming. Math Program 26:326-344. doi:10.1007/BF02591870
Tappeta R, Nagendra S, Renand JE and Badhrinath K (1998) Concurrent sub-space optimization (CSSO) code using iSIGHT, GE
Thurston D (1991) A formal method for subjective design evaluation with multiple attributes. Res Eng Des 3:105-122. doi:10.1007/ BF01581343
Tong MT (2000) A probabilistic approach to aeropropulsion system assessment. In: Proccedings of ASME TURBOEXPO, Munich
Torra V (1996) Negation functions based semantics for ordered linguistic labls. Int J Intellect Syst 11:975-988. doi:10.1002/ (SICI)1098-111X(199611)11:11<975::AID-INT5>3.0.CO;2-W
Whitney DE (1988) Manufacturing by design. Harv Bus Rev 66(4):83-91
Yager RR (1981) A new methodology for ordinal multiple aspect decision based on fuzzy sets. Decis Sci 12:589-600. doi: 10.1111/j.1540-5915.1981.tb00111.x

Yager R, Fodor J (1997) Structure of uninorms. J Uncertain Fuzziness Knowl Based Syst 5:411-427
Zadeh LA (1975a) The concept of a linguistic variable and its applications to approximate reasoning. Part III. Inf Sci 9:43-80. doi:10.1016/0020-0255(75)90017-1
Zadeh LA (1975b) The concept of a linguistic variable and its applications to approximate reasoning. Part I. Inf Sci 8:301-357. doi:10.1016/0020-0255(75)90046-8
Zadeh LA (1975c) The concept of a linguistic variable and its applications to approximate reasoning. Part II. Inf Sci 8:357-377
Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength pareto evolutionary alorithm

[^0]: P. Kumar • P. Bauer (\triangle)

 Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
 e-mail: P.Bauer@tudelft.nl; P.Bauer@TUDelft.nl

