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Abstract

In this paper we consider the expansions of logics of a left-continuous t-norm with
truth-constants from a subalgebra of the rational unit interval. From known results on
standard semantics, we study completeness for these propositional logics with respect to
chains defined over the rational unit interval with a special attention to the completeness
with respect to the canonical chain, i.e. the algebra over [0, 1]NQ where each truth-constant
is interpreted in its corresponding rational truth-value. Finally, we study rational com-
pleteness results when we restrict ourselves to deductions between the so-called evaluated
formulae.
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1 Introduction

Fuzzy logics primarily deal with a notion of comparative truth in the sense that their typical
semantics consist of algebras of totally ordered, and hence comparable, truth-values. Moreover,
their general algebraic semantics is usually such that every member is decomposable as a
subdirect product of linearly ordered ones. Therefore, linearly ordered algebras of truth-
values play a crucial semantical role in fuzzy logics.! By contrast, in the most popular
fuzzy logic systems only the classical truth-values (1 and 0, for definitive truth and definitive
falsity respectively) have a syntactical counterpart in the form of truth-constants 1 and 0, and
thus the notion of intermediate or partial truth (corresponding to intermediate truth-values
between the classical ones) is not syntactically stressed in these systems. Nevertheless, more
expressive fuzzy logic systems with an explicit (i.e. syntactic) usage of intermediate truth-
values may be required for some applications and they have been developed as well. The first
one was proposed by Pavelka in [25]: a propositional many-valued logical system which turned
out to be equivalent to the expansion of Lukasiewicz Logic L by adding into the language
a truth-constant 7 for each real r € (0,1), together with a number of additional axioms.
Although the resulting logic is not strongly complete with respect to the intended semantics
defined by the Lukasiewicz t-norm (as it already happens in the original Lukasiewicz logic
without truth-constants), Pavelka proved that his logic, denoted here PL, is indeed strongly

!See [1] for some rationale supporting the idea of fuzzy logics as the logics of chains.



complete but in a different sense. Namely, he defined the truth degree of a formula ¢ in a
theory T" as ||¢||lr = inf{e(p) | e is a PL-evaluation model of T'}, and the provability degree
of o in T as |¢|r = sup{r | T FprL, T — ¢} and proved that these two degrees coincide.
This kind of completeness is usually known as Pavelka-style completeness, and strongly relies
on the continuity of Lukasiewicz truth-functions. Novak extended Pavelka’s approach to a
first-order logic [22]. Furthermore, Lukasiewicz logic extended with real truth-constants has
been extensively developed by Noévak and colleagues in the frame of the so-called fuzzy logics
with evaluated syntax [23]. In this context, we also mention [27], where Turunen extended
Pavelka’s approach by expanding Lukasiewicz propositional logic with truth-constants from
an arbitrary complete injective MV-algebra.

Héjek showed in [17] that Pavelka’s logic PL could be significantly simplified while keeping
the Pavelka-style completeness results. Indeed he showed that it is enough to extend the
language only by a countable number of truth-constants, one constant 7 for each rational in
r € (0,1), and by adding to Lukasiewicz Logic the two following additional axiom schemata,
called book-keeping axioms:

T&S < T %1, S

(T—3) —TF=Ls
where *;, and =, are the Lukasiewicz t-norm and its residuum respectively. He called this
new system Rational Pavelka Logic, RPL for short. Moreover, he proved that RPL is strongly
complete (in the usual sense) for finite theories.

Similar expansions for a big class of other propositional t-norm based fuzzy logics (and even
for a few distinguished first-order t-norm based fuzzy logics) have been analogously defined
in [12, 26, 9, 14, 4, 15], but Pavelka-style completeness could not be obtained, as Lukasiewicz
Logic is the only t-norm based logic whose truth-functions are continuous. Thus, in these
papers rather than Pavelka-style completeness the authors have focused on the usual notion
of completeness of a logic with respect to a significant class of linearly ordered algebras. It has
been shown that all those logics are algebraizable in the sense of [2] and they are complete with
respect to the linearly ordered members of their equivalent algebraic semantics. Moreover,
the completeness properties with respect to standard chains (chains defined over the real unit
interval [0, 1]) for those logics and their restriction to the evaluated formulae (formulae 7 — ¢
where no constant corresponding to an intermediate truth-value occurs on ¢; they correspond
to Novak’s evaluated syntax) have been studied.

However, a coherent commitment with the notion of fuzzy logics as the logics of chains
leads to the consideration of alternative semantics of linearly ordered algebras. There are
actually several works (see [6, 8, 13]) where these semantics and the completeness properties
that they yield have been studied. Some very significant results support the consideration
of semantics based on rational chains as more powerful and versatile than the traditional
standard semantics. For instance, it has been proved that whenever standard completeness
holds for finite theories, the logic enjoys rational completeness for arbitrary theories (even
when this is not true for the standard semantics). Furthermore, it has been shown that the
completeness with respect to rational semantics is equivalent to completeness with respect to
hyperreal semantics. On the other hand, in Hajek’s setting Pavelka logics were seen as an
expansion of a fuzzy logic with truth-constants for rational values, which allows an effective
representation of truth-constants (that would not be possible if they would be irrational)
and the study of the computational complexity of the logics as it has been done in [18, 14].
Therefore, the general consideration of t-norm based logics expanded with rational truth-



constants and their rational completeness properties appears as a very natural development
of the theory. This is what we intend to do in this paper.

The paper is structured as follows. After this introduction, in Sections 2.1 and 2.2 we
recall some known standard completeness results about the logic of a (left-continuous) t-norm
belonging to two particular families (denoted by CONT-fin and WINM-fin) and their ex-
pansions with a countable set of truth-constants. In Section 2.3 we focus on the completeness
properties when restricting the deductions to evaluated formulae, and in particular we amend
some results which were erroneously generalized in [9]. Sections 3 and 4 contain our new re-
sults about completeness of the expanded logics with respect to rational semantics. Namely,
in Section 3 we study general completeness properties, with respect to both the semantics
given by all rational chains and the semantics given by the canonical rational chain. Finally,
in Section 4 we restrict ourselves to deductions among evaluated formulae and study again
their (canonical) rational completeness properties.

2 Preliminaries

2.1 The logic of a t-norm L,

The basic logic in this framework is the propositional Monoidal T-norm based Logic MTL
[10], with primitive connectives & (multiplicative conjunction), — (implication), A (additive
conjunction) and the truth-constant 0. MTL is in fact the logic of all left-continuous t-norms
and their residua [19], in the sense that the set of its theorems is exactly ({Taut(x) | *
is a left-continuous t-norm}, where T'aut(*) denotes the set of tautologies when interpreting
respectively &, — and A by the left-continuous t-norm x, its residuum = and the min
operation. This implies that MTL is the most general t-norm based fuzzy logic since left-
continuity is the necessary and sufficient condition for a t-norm to have a residuum. Moreover,
this logic is a generalization of Basic Fuzzy Logic BL previously defined by Héjek in [17] and
proved to be the logic of all continuous t-norms and their residua in [5].

However, the expansion with truth-constants of a fuzzy logic is typically defined for a
logic complete with respect to some particular standard algebra defined over the real unit
interval by a t-norm and its residuum. Thus, we describe next the kinds of logics we need. In
the following we will denote the standard algebra defined over the real unit interval by a t-
norm * and its residuum = by [0, 1], = ([0, 1], x, =, min, max, 0, 1), and by L, the axiomatic
extension of MTL whose equivalent algebraic semantics is the variety generated by [0, 1]..
The members of this variety are called L,-algebras.

There are three main examples of continuous t-norms:

1. Lukasiewicz t-norm: a *;, b = max{0,a +b— 1}
2. Product t-norm: a *1 b = a - b (the usual product of real numbers)
3. Minimum (or Goédel) t-norm: a *g b = min{a, b}

Their residua are respectively the following operations:

1, if a <b,

¢ =rb= { 1—a+b, otherwise.



1, if a <b,

a=nb= { b/a, otherwise.

b= 1, if a <,
@=G6o= b, otherwise.

They are the most prominent examples of continuous t-norms because it is possible to
describe all continuous t-norms in terms of ordinal sums of these three distinguished ones (as
proved in [21, 20]). Amongst them, we denote as CONT-fin the set of continuous t-norms
which are decomposable as a finite ordinal sum of the three basic ones. Relevant examples
of these logics are L & G and L & II, which correspond, respectively, to the ordinal sum of *f,
and g, and the ordinal sum of %, and *1. In [11] it is proved that for each ¥ € CONT-fin
the logic L, is finitely axiomatizable.

Interesting examples of left-continuous (and in general non-continuous) t-norms are the
weak nilpotent minimum t-norms (WNM-t-norms from now on) introduced in [10]. Given a
negation function n (a function n : [0,1] — [0, 1], such that n(1) = 0, it is order-reversing,
and a < n(n(a)) for every a, as defined in [7]) and a, b € [0, 1], the WNM-t-norm x,, is defined
as:

[ min{a,b}, if a > n(b),
@kn b= { 0, otherwise.

and its residuum by:

Lop— 1, if a <0,
@Y=\ max{n(a),b}, otherwise.

Notice that *g is a WNM-t-norm (the only continuous one). Other important particular
cases are the so-called nilpotent minimum t-norm, *Nxm = *, wWhen n is the involutive nega-
tion n(x) = 1 — z, and the WNM-t-norms *,, and #,, defined respectively by the negation
functions?:

1, ifa=0,
nifa) =< 1, if0<a<i,
0, iff<a<l.
l—z, f0<a<}i,
ny(a) = ¢ 2 ifl<a<:i
3 3 >3
1l—z, if 2<a<l.

Weak nilpotent minimum t-norms and their associated logics have been intensively studied
in [24] with special attention to a particular subclass with a nice structure: those satisfying
the Finite Partition Property (FPP, for short) which, roughly speaking, means that their
defining negation functions admit a piecewise description by means of finite sets of intervals
in which it is either constant or involutive, as in the mentioned four examples. We denote by
WNM-fin the set of all WNM-t-norms satisfying the FPP. In [24] a method to axiomatize a
large family of logics L, for * € WINM-fin is given.

2Notice that we could consider parameterized isomorphic t-norms x5, or *p.: in the first the case by defining
the negation using any c € (0,1) instead of %7 and in the second case by using any ¢ € (%7 1) instead of % (and
1 — ¢ instead of 3).



Given a logic L, and a class K of L,-chains, one defines three completeness properties:

e L, has the property of strong K-completeness, SKC for short, if for every set I' of
formulae and every formula ¢, I' 1, ¢ iff T' =g .

e L, has the property of finite strong K-completeness, FSKC for short, if for every finite
set I' of formulae and every formula ¢, I' Fr, ¢ iff T g ¢.

e L. has the property of K-completeness, KC for short, if for every formula ¢, 1, ¢ iff

Fx ¢

Obviously, SKC implies FSKC, and this in turn implies KC. If K is the class of all chains
over the real unit interval [0,1] we use the notation RC and call the properties standard
completeness, while if it is the class of all chains over the rational unit interval [0,1]% =
[0,1] N Q we use the notation QC and call the properties rational completeness. Observe that
for every left-continuous t-norm *, the logic L, satisfies the RC by definition. Moreover, there
is the following general result connecting standard and rational completeness:

Theorem 2.1 ([8]). Let * be a left-continuous t-norm. If L, has the FSRC, then it has the
SQC.

A summary of completeness properties for the logics mentioned so far is given in Table 1.

| Logic | FSRC | SRC | SQC |
MTL Yes Yes Yes
BL Yes No Yes

L Yes No Yes
11 Yes No Yes
G Yes Yes Yes

Lo G Yes No Yes
Lell Yes No Yes
WNM Yes Yes Yes
NM Yes Yes Yes
L Yes Yes Yes
L Yes Yes Yes

*”1

*n2

Table 1: Standard and rational completeness properties for some prominent propositional
fuzzy logics.

2.2 Adding truth-constants

Let * be a left-continuous t-norm and = its residuum. Let C = (C, *,=, min, max, 0, 1) be a
countable subalgebra of [0,1].. Then L,(C) is the propositional fuzzy logic defined as follows:

(i) the language of L,(C) is that of L, expanded with a new propositional constant 7 for
each r € C'\ {0, 1},



(ii) the axioms of L,(C) are those of L, plus the book-keeping axioms:
T&S o TFS
(T—35) «T7=3
for each r,s € C.

(iii) the only inference rule of L.(C) is Modus Ponens.

Its algebraic counterpart, called L, (C)-algebras, are the expansions of L,-algebras with
nullary functions 7 (one for each r € C) satisfying the book-keeping axioms, i.e. for every
r,s € C the following identities hold:

e

A A A = =34

L, (C)-chains defined over the real unit interval [0, 1] are called standard. Among them there
is one which reflects the intended standard semantics, the so-called canonical standard L (C)-
chain [0, 1], (¢y which is the standard chain over [0, 1], where the truth-constants are inter-
preted by their defining values, i.e. if A denotes [0, 1], () one has 7 = r for all r € C.
It is worth to point out that for a logic L.(C) there may exist multiple standard chains as
long as there exist different ways of interpreting the truth-constants on [0, 1] respecting the
book-keeping axioms. The mapping that sends each truth-constant to its interpretation in
an L,(C)-chain A is a homorphism from C to A and thus it is univocally determined by its
kernel, which is the filter {r € C | 74 = TA}. Thus, the existence of different non-trivial filters
allows the existence of different standard L,(C)-chains. For instance, if A = [0, 1]y, is the
standard chain of the L, II, G or NM logics, a possible way of expanding such a chain with
truth-constants from C is interpreting them as follows:

1, ifreF
={0, if-reF
r, otherwise

where F' is any proper filter of C. The resulting standard chain is denoted [0, l}f* ©) In the
case of L the only proper filter is the trivial one {1} and hence the only standard chain is
the canonical one. In the case of II there are two filters, (0, 1] and {1}, and thus, besides the
canonical chain there is another one where all truth-constants 7 with » > 0 are interpreted
as 1. For G (resp. NM) there are infinitely many filters: all the intervals [c, 1] for every
¢ >0 (resp. ¢ > 3) and (c, 1] for every ¢ > 0 (resp. ¢ > 1). In that case there are infinitely-
many standard chains. The situation for arbitrary left-continuous t-norms can be much more
complex, but the next proposition shows that the construction above still remains valid for a
large family of left-continuous t-norms.

Proposition 2.2 ([14]). Let x € CONT-finUWNM-fin and let C be a countable subalgebra
of [0,1]x. Then, for every filter F' of C, there ezists a standard L.(C)-chain A such that for
everyr € C,7A =1 ifr € F, 7 =0 if -r € F, and 7™ = r otherwise. This chain will be
denoted as |0, 1]5*(6) and called the standard chain of type F.

Completeness properties w.r.t. both the class of all standard chains and the canonical
standard chain (denoted as CanRC, CanFSRC and CanSRC) have been studied and solved
in the literature for all those logics L, (C) such that:



(1) * € CONT-fin UWNM-fin, and

(2) C is a countable subalgebra of [0, 1], such that C has elements in the interior of each
component of the ordinal sum (in the case of continuous t-norms) or in the interior of
each interval of the partition (in the case of WNM-t-norms).

The results are gathered in Table 2. Note that, although not shown in the table, none of
the logics L. (C) enjoys the CanSRC. Moreover, the strong standard completeness for weak
nilpotent minimum logics can be refined in the following way:

Proposition 2.3 ([14]). For every x € WNM-fin and every countable C C [0, 1], the logic
L.(C) has the SKC, where K = {[0, 1]5*(0) | F is a filter of C}.

2.3 About real completeness properties restricted to evaluated formulae

In the cases where the standard completeness fails® one can try to improve the situation
by restricting deductions among to the so-called evaluated formulae, i.e. formulae ¥ — ¢
where no additional truth-constant occurs in . Actually, one must also require an additional
constraint on the values r as next proposition shows.

Proposition 2.4. For any logic L.(C) with x € CONT-fin U WNM-fin, if there ezists
r € C\{0} such that r is negative (i.e. r < —r) and there is a filter F' such that —r € F', then
L.(C) does not enjoy the CanFSRC.

Proof. Under the hypotheses of the proposition, it is easy to check that

T—=2(0 =) Fpil,e ¥ — ¢

holds true but
T— (e — ) %[0,1}1” Y=

L« (C)

since —7 is interpreted as 1 (and hence T interpreted to 0) on the algebra [0, 1]5 ©)’ and thus
the premise is always true while this is not the case for ¥ — . ]

Indeed, this proposition does not put any restriction in the case of logics L.(C) with
* € CONT-fin since C'\ {0} either does not have negative elements or the negation of the
negative elements belong to a Lukasiewicz component, and thus they cannot belong to a non-
trivial filter. On the other hand, when * € WINM-fin the proposition restricts the search for
completeness results to deductions among positively evaluated formulae, i.e. formulae 7 — ¢
where r > —r, as done in [12, 14].

A second (negative) result that deserves some comments is about the CanSRC property.
When C = [0,1] N Q, it is easy to notice that all the logics L.(C) under our scope fail to
satisfy the CanSRC restricted to evaluated formulae as it can be seen with the following
counterexample (already used in [9] in the continuous t-norm case). Let I' = {(;}7) — ¢ |
n € N}. For every logic L.(C) we have T ):[0 TP But if I' k-, ¢y » then, since the

Lk ()

logic is finitary, there would exist ng € N such that (;7) — ¢ F1,(c) ¢, hence, we would
have (;205) — ¢ 5:[0 e P a contradiction. However, in [9] it is erroneously claimed that
)

3Looking at Table 2, this is the case of the SRC and the Canonical completeness properties for some of the
logics under our scope.



Logic | FSRC | SRC | CanRC | Can(FS/S)RC |

L(C) Yes No Yes Yes / No

I1(C) Yes No Yes No

G(C) Yes Yes Yes No

LaG)(C),ad¢C Yes No Yes No

(LeIl)(C),a¢ C Yes No Yes No

Other L. (C) Yes No No No
with * € CONT-fin

NM(C) Yes Yes Yes No

L., (C) Yes Yes Yes No

L., (C) Yes Yes Yes No

Other L, (C) Yes Yes No No
with + € WINM-fin

Table 2: Standard completeness properties for propositional fuzzy logics with truth-constants
(a denotes the element separating both components in the ordinal sums L. @ G and L & II).

this counterexample applies for all logics L.(C), independently of the particular algebra of
truth-values C. Indeed, one can use an analogous counterexample for the case the algebra C
has an accumulation point 7 which is the supremum of a strictly increasing sequence (r;);en
of points of C. We call sup-accessible such an accumulation point r. But the CanSRC may
hold for logics L, (C) with x € WNM-fin where C does not have sup-accessible elements as
it will be proved in Theorem 4.4 in the case of rational semantics; the same proof applies to
the real semantics as well.

The obtained results in [9, 14] are summarised in Table 3, but notice that we have pur-
posely left empty some slots of the CanSRC property for the logics G(C), NM(C), L, (C)
and Ly, (C), which were wrongly reported in [14] papers for some kinds of truth-constants
algebras C. The table can be fully completed by taking into account that the missing cases
coincide with the ones given in Table 5 for CanSQC.

3 Rational completeness results: the general case

Let * be a left-continuous t-norm and = its residuum such that the rational unit interval
[0,1]2 is closed under the operations % and =. Let [0,1]% be the L,-chain defined by the
restriction of * and = to [0,1]2. Let C be a subalgebra of [0, 1] and consider the logic L, (C).
Now L, (C)-chains defined over the rational unit interval are called rational chains and among
them, the one which reflects the intended rational semantics is the so-called canonical rational
L, (C)-chain

[0, 1](8*@ = (0,1]9, %, =, min, max, (r : r € C)),

i.e. the rational chain over [0, 1]9 where the truth-constants are interpreted by their defining
values.

The possible interpretations of truth-constants over rational chains can be described in
the same way as in the real case and, hence, algebras ([0, I]Q)Ii (c) are defined analogously.



Logic | SRC | CanRC | CanFSRC | CanSRC |

L(C) No Yes Yes No
I1(C) No Yes Yes No
G(C) Yes Yes Yes —
LeG)(C),ad¢C No Yes Yes No
(Lell)(C),a¢ C No Yes Yes No
Other L. (C) No No No No

with * € CONT-fin
NM(C) Yes Yes Yes —
L., (C) Yes Yes Yes —
L., (C) Yes Yes Yes —
Other L. (C) Yes No No No

* € WNM-fin

Table 3: Standard completeness properties for propositional fuzzy logics with truth-constants
restricted to (positively) evaluated formulae (again a denotes the element separating both
components in the ordinal sums L & G and L & II).

We will consider logics L, (C) with the same restrictions on * and C stated in the previ-
ous section and their completeness properties with respect to all rational L,(C)-chains (QC,
FSQC and SQC) and with respect to the canonical rational L, (C)-chain (denoted as CanQC,
CanFSQC and CanSQC). The properties in the first group obviously hold for all the logics
appearing in Table 2 by virtue of Theorem 2.1, since all of them enjoy the FSRC. We start
the study of canonical completeness properties for the Lukasiewicz-based logics L(C).

Theorem 3.1. For every C C [0, 1]% the logic L(C) enjoys the CanFSQC.

Proof. Suppose that for some arbitrary finite set of formulae we have 1, ..., ¢n Fc) ¥. We
must prove that ¢1,..., @, %[0,119(0) ¥. On one hand, by the FSRC [17], there is an evaluation
e over [0, 1]gcy such that e(p1) = ... = e(p,) = 1 and e(x)) < 1. On the other hand, by
using a result in [3],* we know that [0, 1],y is partially embeddable into [0, l]g(c) (and hence,
preserving truth-constants), i.e. every partial finite subalgebra of [0, 1]L(C) is embeddable into
[0, 1]«3(6)' Therefore there is an embedding f of the partial algebra {e(n) | n a subformula of
h, o1, .., n} into [0, 1](8(6). Then any evaluation €’ on [0, 1]%@ such that €'(p) = f(e(p)) for

every propositional variable p appearing in ¥, ¢1,..., ¢, is a model of {¢1,...,p,} while it
is not a model of . O

However, the CanFSQC fails for the remaining logics we are considering. Indeed, given
+ € CONT-fin U WNM-fin non-isomorphic to Lukasiewicz t-norm and C C [0,1]2, there
exists a non-trivial proper filter F' of C and we can take r € F'\ {1}. Then:

*(P=a) =T 1P

e (p—q)—>T %([0,1]@9)5*(0) q—p

4Actually, the result we use from [3] comes from a translation of the paper in Russian [16].



Therefore, there is an entailment which holds for the canonical rational chain, but not for
all chains. Thus, none of these logics enjoy the CanFSQC. This implies, of course, the failure
of CanSQC for all these logics as well; moreover, the failure of CanSQC for L(C) will follow
from the results in the next section.

We turn now to the CanQC. Several positive results are proved in the following theorems.

Theorem 3.2. For every C C [0, 1]%, the logic II(C) enjoys the CanQC.

Proof. For this proof we need to introduce some notation. Given x = (x1,...,x,) € R" and
0 = (01,...,0n) € (Ry)", we define the set Es(z) = {(y1,...,yn) € ([0,1]0)" | z; = y; if
x; € Q,and y; € (z; — 6, i + 6;) if x; ¢ Q}

Suppose that /) . Assume further that the variables of ¢ are among {p1,...,pn}-
By the CanRC, there is an evaluation e on [0, 1]y such that e(¢) < 1. We will prove by
induction that for every subformula 1 of ¢ the following two conditions hold:

1. If e(yp) = 0, then there is Es(e(p1),...,e(pn)) such that for every evaluation v on
[07 1]%(6)’ if <U(p1)a s 7/U(pn)> € E5(e(p1)7 s 7€(pn)) then U(i/’) =0.

2. If e(yp) # 0, then for every ¢ > 0 there is Es(e(p1),...,e(pn)) such that for every
evaluation v on [0, 1]%(6), it (v(p1),...,v(pn)) € Es(e(p1),...,e(pn)) then | v(y)) —
e(y) |< e.

Indeed:

e Assume ¢ = p;. If e(p;) = 0, then any ¢ does the job as e(p;) € Q and we will have
v(p;) = 0 for every v. If e(p;) # 0, for every € > 0 it is enough to take a § such that
52' =E&.

o If ) =7 for some r € C, it is trivial.

e Assume ¢ = a&f. If e(a&f) = 0, then one of the two conjuncts must be evalu-
ated to 0; assume for instance that e(a) = 0. The induction hypothesis for « gives a
Es(e(p1),...,e(pn)) such that for every evaluation v on [0, 1]%(0), if (v(p1),...,v(pn)) €
Es(e(p1),-..,e(pn)) then v(a) = 0, and hence v(a& ) = 0. Suppose now that e(a&3) #
0. Then e(a) # 0 and e(B) # 0. It is enough to use the continuity of product function
and the induction hypothesis to prove that for every € > 0 there is Es(e(p1),...,e(pn))
such that for every evaluation v on [0, 1]%6) if (v(p1),...,v(pn)) € Es(e(p1),.-.,e(pn)),

| v(@) - v(B) —e(a) - e(B) < e

e Assume ¢ = o — (. If e(a — ) = 0, then e(a) # 0 and e(3) = 0. The induction
hypothesis on o and (3 does the job. Suppose now that e(a — ) # 0. If e(a)) = 0, the
induction hypothesis on « does the job, so assume that e(a) # 0 and e() # 0. Now,
again, it is enough to use the induction hypothesis and the continuity of the implication

function in any point (z,y) such that x # 0.
From this it easily follows that there is an evaluation v on [0, 1]%(0) such that v(y) < 1, and

thus the theorem is proved. ]

10



Theorem 3.3. Let L, € {L® G, L@ II}. Let a be the element separating the two components
of 5 Then, for every C C [0,1]2 such that a ¢ C, the logic L.(C) enjoys the CanQC.

Proof. The proof of this theorem is the same in both cases and it runs parallel to the previous
one. Suppose, for instance, that /gqomc) ¢. By the CanRC, we know that there is an
evaluation e on [0, 1]gem)c) such that e(p) < 1. Assume further that the variables of ¢ are
among {p1,...,pn}. What can be proved now by induction is slightly different, namely that
for every subformula 1 of ¢:

1. If e(yp) = a, then there is Es(e(p1),...,e(pn)) such that for every evaluation v on
[07 1]%@1‘[)(0)7 if <U(p1)a cee 7U(pn)> € E5(e(p1)7 s ae(pn)) then U(U)) = a.

2. If e(y)) # a, then for every ¢ > 0 there is Es(e(p1),...,e(py)) such that for every
evaluation v on [0, H%@H)(C)’ if (v(p1),...,v(pn)) € Es(e(p1),-..,e(pn)) then | v(yp) —
e(y) |<e.

From this it easily follows that there is an evaluation v on [0, 1]% o) (c) Such that v(p) <1,

and thus the theorem is proved. O
Theorem 3.4. The logics G(C), NM(C), Ly, (C) and L., (C) enjoy the CanQC.

To prove this theorem we need to recall some characterizations of the four t-norms related
to the logics involved in the theorem.

1) *q, *NM, *n, @nd *x,, are the only four t-norms (up to isomorphisms) of WINM-fin
1 2
such that their corresponding negation on the set of positive elements is either both
mmvolutive and continuous, or it is identically 0.

(ii) Let * € WINM-fin and let F, = [a,1] be a filter of [0,1], for some positive element
a € [0,1]. Then *q, *NM, *n, and *y, are the only four t-norms x of WNM-fin (up to
isomorphisms) of WNM-fin such that the quotient algebra [0,1],/F, is isomorphic to
[0, 1]..

(i) follows from a simple inspection of the graph of the negation functions defining the t-norms
in WNM-fin. As for (ii), notice that the classes of [0,1]./F, are [1]r, = Fy, [0]r, = {z |
-z € Fu} and [z]p, = {x} otherwise, hence [0, 1],/F, can be viewed as the restriction of
on the interval [—a,a], and so isomorphic to a t-norm #” on [0, 1]. Now, one can check that
only in the considered four cases, the t-norm #’ is isomorphic to the initial one . See [14] for
details. Finally, let us notice that these characterizations remain valid when considering the
t-norms defined on the rational unit interval [0, 1]9.

Proof of Theorem 3.4 This theorem can be proved in a similar way we proved in [14] that
these logics enjoy the CanRC, but we detail the proof here for the reader’s convenience. By
virtue of the rational analogue of Proposition 2.3, we know that the theorems of L,.(C) are
the common tautologies over ([0, 1](@)5* © for each filter F' of C. Therefore, it is enough to

prove that if ¢ is a tautology with respect to [0, l]g*(c), it is also a tautology of (][0, 1]@)5*(0)

for each filter I of C.

5Notice that the particular choice of an element a € (0, 1)Q is not important, as all the resulting algebras
are isomorphic and hence they yield the same logic.
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Let e be an interpretation over the chain ([0, 1](@)5* (c)- Suppose that Ais the finite algebra
generated by {e(¢) | ¥ subformula of ¢} and let & = min{r € F' | 7 occurs in ¢}. Without loss
of generality we can assume F = F, = [a, 1] since defining the evaluation €’ on (][0, 1](@)5‘:(C)
by €'(p) = e(p) for all propositional variables p, we have that e and e’ coincide on ¢ and all
its subformulae (hence from now on we will only speak about F, and €’).

Let I, = {r € C| -r € F,} and let f : [0,1]¢ — [0, 1]© a mapping such that: (1) f(1) =1
and f(0) = 0, and (2) f restricted to (0,1)? is a bijection on (-, @)@ satisfying f(r) = r
for all r ¢ F, U F,, such that 7 occurs in . Then define an evaluation v on the canonical
rational chain by setting v(p) = f(e’(p)) for any propositional variable p. Since by hypothesis
¢ is a tautology of the canonical rational chain, v(¢) = 1. Take the algebra [0,1]2/F,. By
characterization (i) above this algebra is isomorphic to [0,1]2. Define the evaluation v’ on
the quotient algebra [0,1]%/F, obtained from v. It is obvious that v/(¢) = [1]r,. But a
simple computation shows that the algebra B generated by {v'(¢) | 1 subformula of ¢} is
isomorphic to A: observe that v'(¢) over the quotient algebra corresponds to €’(¢) over the
chain (]0, 1](@)5*(0). Therefore €’(¢) = 1 and the theorem is proved. O

For the remaining logics this completeness property fails. In the case of continuous t-
norms it can be seen by means of the same counterexamples used in [9] to show that these
logics do not enjoy the Can/RC. Namely, in each case we find a suitable formula of the form
7 — ¢ (which is, actually, an evaluated formula) such that it is a tautology of the canonical
rational algebra |0, 1]% ©) (i.e. it holds that r < e(y) for every evaluation e), but it is not a
tautology of the algebra ([0, 1](@)5*(@ for some proper filter F' of C containing r (i.e. it holds
that v(¢) < 1 for some evaluation v, since as in this algebra r is interpreted to 1). In the
following we assume that the first component of [0, 1] is defined on the interval [0,a]. We
provide first the required counterexamples for the cases when the first component is product
or Godel, and then we consider the case when the first component is Lukasiewicz taking also
into account whether a € C or not (A stands for an arbitrary standard BL-chain):

1. If [0,1], = [0,a]n & A, then take b € C'N (0,a), the filter F" = (0,1] N C, the formula
b— —pV ((p — p&p) — p) and an evaluation v such that v(p) = a.

2. If [0,1]« = [0, a]g ® A with A % [0, 1], then we take b as any element of C'N (0, a), the
filter F' = [b,1] N C, the formula b — (p — p&p) and v(p) any non idempotent element
from A.

3. If [0,1]x = [0,a]r, & A and a € C, then take the filter ' = [a,1] N C, the formula
a— (=—p —p) and v(p) € A\ {1}.

4. If [0,1], = [0,a]y, & [a,b]lc & A with A 2 [0,1]¢ and a ¢ C, then take any element
d € (a,b) N C, the filter F' = [d,1] N C, the formula d — (=—p — p) V (p — p&p) and
v(p) any non idempotent element from 4.

5. If [0,1]« = [0,a]r, ® [a,bln ® A and a ¢ C, then take any element d € (a,b) N C, the
filter ' = (a,1] N C, the formula d — [(—=—p&—-—q&((p — p&q) — q)&(q¢ — p)&(p —
p&p)) — p| and v(p) = b and v(q) € (a,b).

Observe that for a t-norm * whose decomposition begins with two copies of Lukasiewicz
t-norm, the idempotent element a separating them has to belong to the truth-constants sub-
algebra C. Indeed, take into account that, by assumption, C' must contain a non idempotent
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element ¢ of the second component and for this element there exists a natural number m such
that ¢™ = cx - *c = a, and thus a € C. Hence this case is subsumed in the above third
item.

In the case of WNM-t-norm based logics we can provide counterexamples in the same
fashion for all t-norms from WNM-fin except those isomorphic to *qg, *NM, *p, and g,
(already proved to enjoy the CanQC in Theorem 3.4). Let n be a negation function, I its
first positive interval, and let *,, be the associated WNM-t-norm to n .

1. If I is constant (and hence n has no fix point) and x*, is not Godel t-norm, then take
r € INC, the filter F = [r,1] N C, the formula 7 — ——(p V —p) and an evaluation v
such that v(p) € I. See (a) in Figure 1.

2. If I is involutive and there is a positive constant interval .J, then take » € I N C, the
filter F' = [r,1] N C, the formula 7 — (== (pV —p) — (pV —p)) and v(p) € J. See (b) in
Figure 1.

3. If I is involutive, there are no positive constant intervals and %, is not isomorphic to
*NM, then there must be a discontinuity point in the positive part, and symmetrically a
constant interval J in the negative part. Then take r € I N C, the filter F' = [r,1] N C,
the formula 7 — (==(p A =p) — (p A =p)) and v(p) € J. See (c) in Figure 1.

Figure 1: Negation functions used in the counterexamples for WINM-fin.

See the new results we have obtained on rational completeness properties in Table 4.

4 Rational completeness results: the case of positively evalu-
ated formulae

In this section we focus on restricted completeness properties for the different logics when only
(positively) evaluated formulae are involved with the aim of improving the negative results
got for arbitrary formulae.

As regards to completeness properties with respect to the class of all rational chains there
is nothing to add: the SQC holds for evaluated formulae because it already holds in general for
all formulae. Thus, we only need to examine the restricted canonical completeness properties.

To start with, let us consider the property of CanSQC. A first negative result shows that
CanSQC restricted to evaluated formulae fails for any logic L, (C) such that L, does not enjoy
the SRC.

13



| Logic | SQC | CanQC | CanFSQC | CanSQC |

L(C) Yes Yes Yes No
II(C) Yes Yes No No
G(C) Yes Yes No No
(LeG)(C),a¢ C | Yes Yes No No
(LeIl)(C),a¢ C | Yes Yes No No
Other L, (C) Yes No No No

* € CONT-fin
NM(C) Yes Yes No No
L., (C) Yes Yes No No
L., (C) Yes Yes No No
Other L, (C) Yes No No No

* € WNM-fin

Table 4: Rational completeness properties for propositional fuzzy logics with truth-constants
(a denotes the element separating both components in the ordinal sums L. @ G and L & II).

Proposition 4.1. Let x be any left-continuous t-norm closed on |0, 1]@ such that Ly does
not enjoy the SRC. Then, for any C C [0, 1]9, the logic L.(C) does not enjoy the CanSQC
restricted to evaluated formulae.

Proof. In [6] it is shown that, given a class K of L-algebras, a necessary and sufficient condition
for a core fuzzy logic L to have the SKC is that any countable L-chain be embedded into an
L-chain from the class K. Now, if L, does not have the SRC, there is a countable L,-chain
A that cannot be embedded into any L,-chain over the real interval [0,1], in particular it
cannot be embedded into the (canonical real) L,-chain [0, 1].. Therefore, since the rational
interval algebra [0, 1]9 is a subalgebra of [0,1],, the algebra A cannot be embedded either
into the rational interval algebra [0, 1](*@ Therefore, L, does not enjoy strong completeness
with respect to the [0, 1]9 Finally, since L,-formulae are also evaluated L, (C)-formulae, it is
clear that the CanSQC restricted to evaluated formulae does not hold either. O

Corollary 4.2. For any t-norm * € CONT-fin \ {xq} and any C C [0,1]%, the logic L.(C)
does not enjoy the CanSQC restricted to evaluated formulae.

Analogously to the case of real semantics, a second negative result is linked to a particular
topological property of the algebras of truth-constants C used when expanding the original
logic L, with truth-constants. The same counterexample mentioned in Section 2.3 for the
case the algebra of truth-values C' has an accumulation point r which is the supremum of a
strictly increasing sequence (r;);en of points of C' yields the following proposition.

Proposition 4.3. Let x be a left-continuous t-norm and let C C [0, 1](,;Q containing at least one
sup-accessible point. Then L.(C) does not enjoy the CanSQC restricted to evaluated formulae.

However, we are able to prove that the CanSQC for evaluated formulae does hold for
the expansions of four distinguished WNM logics with algebras of truth-constants C without
(positive) sup-accessible points.
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Theorem 4.4. Let x be any of the following four t-norms from WNM-fin: *q, *NM, *n,
O %n,. Let C C [0,1]2 be such that it contains no positive sup-accessible point. Then L, (C)
enjoys the CanSQC for (positively) evaluated formulae.

Proof.

(i) First we prove the CanSQC for G(C). Soudness is obvious as usual. Thus, for completeness
we have to prove that if a (possibly infinite) family of evaluated formulae {7; — ¢; | i € I}
does not prove an evaluated formula 5 — 1) then there is an evaluation v over the canonical
chain such that for every i € I, v(7; — ¢;) = 1 and v(5s — ¢) < 1.

By the algebraizability of the logic with truth-constants if the syntactical deduction is
not valid there is a countable G(C)-chain A and an evaluation e over it such that for every
iele(— )= T4 and e(s — ) < T4, Suppose this is a chain of type F, that is, I is a
filter of C such that for every r € F, 74 = T4, Observe that, since the elements of C' are not
sup-accessible, for each point r € C' there is an interval I, = (r — §,7) N Q (with countably
many elements) such that I N C' = (. To built the desired evaluation v we need to study
two cases:

(i-1) Suppose that s € F. In such a case define the mapping f : A — [0,1]Q as follows:
f(TA) = 1,f(6A) = 0 and f restricted to A\ {6A,TA} is an embedding into I;. An easy
computation shows that f is a morphism of G-chains (without truth-constants). Define the
[0, 1]8(6)—evaluation v as v(p) = f(e(p)) for every propositional variable p. Such v satisfies
the required conditions since: If r; € F, then v(yp;) = e(yp;) = 1 > r; and if r; ¢ F, then
v(p;) € {1}UI; and thus greater or equal than r;. Moreover, since e(¢) < 1, v(¢) € I; U{0}
and thus v(¢) < s.

(i-2) Suppose that s ¢ F. In such a case define the mapping f : A — [0,1]? as follows:
f(TA) = 1, £(0") = 0 and f(34) = s and f restricted to (§A,TA) is an embedding into I
and f restricted to (GA,§A) is an embedding into I;. An easy computation shows that f
is a morphism of the G-chains (without truth-constants). Define the [0, 1]g(c)-evaluation v
as v(p) = f(e(p)) for every propositional variable p. Such v satisfies the required conditions
since: If 7; € F, then v(;) = e(p;) = 1 > ry; if r; ¢ F, r; > s, then e(p;) > 54 and thus
v(pi) € I; U {1}, which implies v(yp;) > r;; if there is some r; = s obviously v(p;) > s;
if r; < s, then v(p;) € {1} UI; UI; which implies v(p;) > r;. Finally, since e(¢)) < 34,
v(v) € I7 U{0} and thus v(¢) < s.

(ii) The proof for NM(C) is similar but we detail it for the sake of completeness. Again, we
have to prove that if a family of evaluated formulae {7; — ¢; | i € I} does not prove an
evaluated formula s — v (where all the r;’s and s are positive elements of C), then there is
an evaluation v over the canonical NM(C)-chain [0, 1]xyy(c) such that v(7; — ¢;) = 1 for all ¢
and v(s — 1) < 1. Since NM(C) is algebraizable, there is countable NM(C)-chain A and an
evaluation e over it such that e(7; — ;) = T and e(5 — ) < T, Assume A is a chain of
type F, that is, F is a filter of C such that for all » € F, then 74 = T4 and =74 = 04, By
hyphotesis the positive elements of C' are not sup-accessible, therefore for each positive point
r € C there is an interval I, = (r — §,7) N Q such that I NC = (). To build the desired
evaluation v we need to consider two cases:

(ii-1) Suppose s € F. In such a case define the mapping f : A — [0,1] as follows:

_ _ —A —A _
f(lA) = 1,f(OA) =0,f(3) = %, f restricted to (3 ,1A) is an embedding into I; and
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f restricted to (6“4, %A) is the dual embedding into (1 — 7,1 —r + ) N Q, i.e. satisfying
f(x) =1— f(—-x). An easy computation shows that f is a morphism of NM-chains (without
truth-constants). Define the [0, 1]xyr(c)-evaluation v as v(p) = f(e(p)) for each propositional
variable p. Such an evaluation v satisfies the required conditions since: if r; € F, then
v(p;) = e(pi) =1 >r; if r; ¢ F and r; > 1, then v(yp;) € {1} UI; and thus greater or
equal than r;; and finally, if r; ¢ F and r; = 3 (if any) is obvious. Moreover, since e() < 1,
v(v) € I;7 U{0} and thus v(¢)) < s.

(ii-2) Suppose now s ¢ F. In such a case define the mapping f : A — [0,1] as fol-

_ _ —A
lows: f(lA) = 1,f(0A) =0,f(34) = s,f(% ) = %,f(l —SA) = 1—s, and [ restricted to
(EA,TA) is an embedding («) into I;, f restricted to (%A,EA) is an embedding (() into I,

[ restricted to (ﬁ““, %A) is the dual embedding of («) and f restricted to (6"‘,@““))
is the dual embedding of (3). An easy computation shows that f is a morphism of NM-
chains (without truth-constants). Define the [0, 1]xyr(c)-evaluation v as v(p) = f(e(p)) for
any propositional variable p. Such v satisfies the required conditions since: if r; € F, then
v(pi) =e(pi) =1>r;if r; ¢ F and r; > s, then v(p;) € I7 U {1}, which implies v(p;) > ri;
if 7; = s, then obviously v(y;) > s; if £ < r; < s, then v(y;) € {1} UI; U I, which implies
v(p;) > r;. The case r; = % (if any) is obvious. Finally, since e(¢)) < 4, in any case we have

v(1) < s.

(iii) The proofs for the cases of L., (C) and L, (C) easily follow from the proofs of G(C)
and NM(C) taking into account that the negations in the (rational) canonical algebras [0, 1],
and [0, 1], (the functions n; and ny described in Section 2), when restricted to the set of
positive elements, coincide with the ones of the canonical G and NM-algebras, [0,1]g and
[0, 1]nw respectively. O

Although no logic L. (C) enjoys the CanSQC for x € CONT-fin \ {*¢}, we can still show
several positive results of restricted CanFSQC for some of these logics apart from L.(C),
which already enjoys the unrestricted CanFSQC.

Theorem 4.5. For every C C [0, 1]%, the logic II(C) enjoys the CanFSQC restricted to
evaluated formulae.

Proof. Assume that {7; — ¢; | i =1,...,n} U{5 — ¢} is a finite set of evaluated formulae
such that {73 — ¢; | i = 1,...,n} V) 3 — ¥. We must prove that {1; — ¢; | i =

1,...,n} [;é[o e 5= 1. By the CanFSRC restricted to evaluated formulae, there is an
ey

evaluation e on [0, 1]r(cy such that for every i € {1,...,n}, e(7; — ;) = L and e(5 — ¢) # 1,
ie. s > e(y) and r; < @; for every i. Without loss of generality we can assume that r; < e(p;)
for every ¢ (if it is not the case, we choose any positive real number « such that for every i,
ri < e(pi) < e(p:)® and s > e(1)® > e(1h) and take instead of e the evaluation €'(p) = e(p)®).
Then we use the same trick as in the proof of Theorem 3.2 showing by induction that for every
subformula 1 of ¥, ¢1, ..., ¢, (we assume that the variables in 1 are among {p1,...,pr}):

1. If e(n) = 0, then there is Es(e(p1),...,e(pr)) such that for every evaluation v on
[0, Uiy if (1) -, v(pr)) € Bs(e(pr),- -, e(py)) then v(n) = 0.

2. If e(n) # 0, then for every £ > 0 there is Es(e(p1),...,e(px)) such that for every

evaluation v on [0, 1]%6), if (v(p1),...,v(pr)) € Es(e(p1),...,e(px)) then | v(n)—e(n) |<
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Therefore, there is an evaluation v on |0, 1]%(0) that maps to 1 the premises while maps
the conclusion to some lower value and hence {7; — ¢; |i=1,...,n} F&[o e S— . O
Hrie)
Theorem 4.6. Let L, € {L® G, L@ II}. Let a be the element separating the two components
of x. Then, for every C C |0, 1](9 such that a ¢ C, the logic L.(C) enjoys the CanFSQC
restricted to evaluated formulae.

Proof. Both cases are analogously proved. Suppose, for instance, that for some finite set for
evaluated formulae {7; — ¢; | i =1,...,n} F(Lemc) 5 — ¥. By the CanF'SRC restricted to
evaluated formulae, there is an evaluation e on [0, 1]g.em)(c) such that for every i € {1,...,n}
e(r; = ¢;) =1 and e(5 — ¥) # 1, i.e. s > e(yp) and 1; < ¢; for every i. Using the fact that
[0, 1]g,¢) is partially embeddable into [0, 1](8((3), we can assume that e is an evaluation on the

canonical (L®II)(C)-chain defined over [0, a]g@ [a, 1];7. Moreover, as in the previous proof, we

can assume that r; < e(yp;) for every 4. Finally, using an analogous claim proved by induction
. . o) . _ e

we obtain an evaluation over [0, 1](L@H)(C) showing that {7; — ¢; |i=1,...,n} %[0’1]%%)(6)

5 — 1.

On the other hand, the counterexamples exhibited at the end of Section 3.1 to refute
the unrestricted CanQC for a number of cases, including the logics corresponding to the
remaining WINM-fin t-norms, are actually counterexamples for the CanQC restricted to
evaluated formulae as well since the formulae involved were indeed (positively) evaluated
formulae.

Corollary 4.7. (i) For x € WNM-fin \ {*q, *NM, *n,,%n, } and any C C [0,1]2, the logic
L.(C) does not enjoy the CanQC restricted to evaluated formulae.

(ii) For x € CONT-fin\ {sy,, %11, %G, 1, ®*11, L D *q } and any C C [0,1]2, the logic L. (C)
does not enjoy the CanQC restricted to evaluated formulae.

(i1i) If * € CONT-fin is such that [0,1], = [0,a]r, ® [a, 1]n or [0,1], = [0,a]r & [a,1]q,
and C C [0,1]2 is such that a € C, then the logic L(C) does not enjoy the CanQC restricted
to evaluated formulae.

With these results we have covered all the logics under our scope. As a summary, the
obtained rational completeness results restricted to evaluated formulae are gathered in Table
5, where C't denotes the set of positive elements of the algebra C, and Psup —qcc([0, 1]) denotes
the set of subsets of [0, 1] containing at least one sup-accessible point.

5 Conclusions

In this paper we have discussed the rational semantics for fuzzy logics expanded with truth-
constants as a new topic for research. The results we have presented for the propositional
case show the interest of the approach, as the rational semantics has demonstrated to provide
better completeness properties for the main propositional fuzzy logics.

An interesting issue to comment is about rational completeness results for expansions of
logics L. (C) with the Baaz’s projection connective A, as it was done in [9, 14] for the real
semantics. The additional axioms of L,a(C)are the well-known five axioms and rule for A
(see e.g. [17] for details) together with an additional book-keeping axiom

AT « §(r)
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’ Logic ‘ CanQC ‘ CanFSQC \ CanSQC ‘

L(C) Yes Yes No

I1(C) Yes Yes No

G(C), CT € Psup—acc([0,1]) Yes Yes No
G(C), CT & Psup —ace([0,1]) Yes Yes Yes
LeG)(C),agC Yes Yes No
(LeIl)(C),a¢ C Yes Yes No
Othe L.(C), x € CONT-fin No No No
M(C), C" € Paup —ace([0,1]) Yes Yes No
M(C), C* & Psup —acc([0,1]) Yes Yes Yes
L*n1 (C), C € Psup —ace(]0,1]) Yes Yes No
L., (C), C" & Psup —acc ([0, 1]) Yes Yes Yes
L*n2 (C), CT € Psup —ace(]0, 1]) Yes Yes No
Ls,, (C) C" & Psup —ace(]0,1]) Yes Yes Yes
Other L. (C), x € WNM-fin No No No

Table 5: Canonical rational completeness properties for propositional fuzzy logics with truth-
constants restricted to (positively) evaluated formulae (again a denotes the element separating
both components in the ordinal sums L & G and L ¢ II).

where §(r) = 1 if » = 1 and 6(r) = 0 otherwise. The logics Lya(C) are also algebraizable
with equivalent algebraic semantics given by the the variety of L.a(C)-algebras, defined in
the natural way. It is also easy to check that L.a(C)-algebras are representable as subdirect
product of chains. A key observation is that, due to the presence of the A operator, all
L.A(C)-chains are simple, and this fact simplifies the analysis. A quick inspection of the
above mentioned results about real completeness show that they remain valid for the rational
semantics as well, namely, we have that all logics L.a(C) for ¥+ € CONT-fin U WNM-fin
enjoy the CanFSQC, and they enjoy the CanSQC in the case of x € WNM-fin.

Future research includes, among others: (i) extending the investigation on rational com-
pleteness properties to wider classes of logics based on left-continuous t-norms; and (ii) study-
ing rational completeness properties for first-order predicate fuzzy logics, as it has been done
for the standard semantics in [15].
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