
Page 1 of 23 

LOSSLESS FITNESS INHERITANCE IN GENETIC ALGORITHMS FOR DECISION 
TREES 

 

Last updated: March 6, 2009 

 

Dimitris KALLES1, Athanasios PAPAGELIS2 

ABSTRACT 

When genetic algorithms are used to evolve decision trees, key tree quality parameters can be recursively 
computed and re-used across generations of partially similar decision trees. Simply storing instance indices 
at leaves is enough for fitness to be piecewise computed in a lossless fashion. We show the derivation of 
the (substantial) expected speed-up on two bounding case problems and trace the attractive property of 
lossless fitness inheritance to the divide-and-conquer nature of decision trees. The theoretical results are 
supported by experimental evidence. 
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1. Introduction 

Decision trees have two key merits when compared to other concept learners. First, greedy algorithms 
have been shown to produce good results for an array of interesting problems and they requite relatively 
little computational power for the creation of the model of the underlying hypothesis; moreover, the 
representation of the model does not demand excessive memory. Second, by providing classifications and 
predictions that can be argued about, they advance our insight in the problem domain. 

Advances in decision trees have been indicative of the introduction of sophisticated methodologies into 
the mainstream of research, industry and education. The really early approaches focused on optimizing the 
building of decision trees based on dynamic programming (Meisel & Michalopoulos, 1973). An NP-
completeness result (Hyafil & Rivest, 1976) resulted in nearly a decade of silence, which was broken by 
the systematic use of heuristics for top-down decision tree induction (Breiman et al., 1984; Quinlan, 
1986). The abundant research in the field generated heuristics for nearly all stages of the decision tree life-
cycle, theoretical results for optimal construction (Naumov, 1991), commercial software (Quinlan, 1993) 
and the field became ripe for textbook treatment (Mitchell, 1997; Rokach and Maimon, 2008). 

As genetic algorithms started being increasingly employed into the investigation of NP-complete 
problems (Mitchell, 1996), some attempts were also made at trying to apply them to the building of 
decision trees. The earliest approach to using genetic programming in decision trees is probably traced 
back to Koza (1991) who first pointed out the suitability of the tree genome for decision tree building. 
Turney (1995) applied genetic algorithms to search through the space of decision trees generated by top-
down learners (focusing on cost-sensitive learning). Later on Nikolaev & Slavov (1998) analyzed a global 
fitness landscape structure and its application on decision tree building, while Bot & Longdon (2000) used 
genetic programming to evolve linear classification trees. Subsequently, the GATree system (Papagelis & 
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Kalles, 2001) employed a fitness function to trade off tree size (as expressed by the number of leaves) 
against accuracy in its quest for a good tree. 

Genetic algorithms have made an inroad into decision tree induction because they provide an attractive 
alternative for searching the space of decision trees that can serve as hypothesis for a given data set. While 
conventional learners, such as CART (Breiman et al., 1984) and C4.5 (Quinlan, 1993) are undoubtedly 
robust and widely used, it is also a fact that the top-down decisions made early on during decision tree 
building, such as which attribute to use at the root of the tree, are almost impossible to reverse during 
subsequent operations. Allowing more alternatives to participate into the decision tree building procedure 
entails either significant engineering of existing approaches (Esmeir & Markovitch, 2007) or the explicit 
teaming of classifiers into ensembles to generate more robust results (Breiman, 2001). Genetic algorithms 
offer a compact and elegant alternative to those approaches, with the added benefit that by manipulating a 
fitness function, one can inject preference measures that would be otherwise difficult to use and still 
obtain comparably good accuracy results, with usually significantly smaller trees and an easy to use time-
vs-performance trade-off. 

Fitness inheritance in genetic algorithms was first explicitly dealt with in the paper by Handley (1994) 
who explicitly built a relationship graph to represent the associations between members of a population; 
his approach was thereafter also referred to as fitness case-indexed caching (Ehrenburg, 1996). An 
alternative notion of inheritance, however, suggested that some individuals need not have their fitness 
calculated but an approximation should be used instead (Smith et al., 1995). Based on this observation 
which was backed by limited but promising experiments, several researchers pursued the theoretical 
justification of the inheritance idea (Sastry et al., 2001), as well as an investigation of techniques that can 
be used to better approximate the fitness function (Jin, 2005). 

This paper furthers the application of genetic algorithms into the problem of building good decision trees 
by trying to estimate which parts of the fitness function used in the evolution of decision trees can be re-
used as efficiently as possible, so that more candidate trees can be examined in the same amount of time. 
Our goal is to analyze whether such efficiencies are possible in a lossless fashion, namely that the fitness 
function will be fully calculated based on past data without having to revert to approximations. 

The rest of the paper is structured in four sections. We first review the basic concepts of genetic evolution 
of decision trees, also anchoring these concepts to mainstream research strands. Section 3 then shows how 
the fitness function can be reconstructed in a lossless fashion by re-using parts of decision trees in the 
current population (an example is included) and then presents an estimate of the expected improvement. 
Following that, in Section 4 we discuss how the tightening or loosening of some working assumptions 
might influence our estimates and offer a short discussion on the wider applicability of the lossless fitness 
inheritance concept. In Section 5 we offer some experimental results to support our arguments and, 
finally, in Section 6 we conclude and prioritize the directions for further work. 

2. Genetic evolution of decision trees – a brief review of key issues 

We first review the GATree system (Papagelis & Kalles, 2001), which served as the basis for this 
research, since it produced significantly smaller trees with comparable accuracy, when compared to 
standard decision tree inducers (Papagelis & Kalles, 2001; Kalles & Pierrakeas, 2006). 

GATree first builds a population of decision trees consisting of one node and two leaves. Every decision 
node has a random chosen attribute-value test. This is done in two steps. First we choose a random 
attribute. Then, if that attribute is nominal we randomly choose one of its possible values; if it is 
continuous we randomly pick an integer value belonging to its [min..max] range. For leaves, we just pick a 
random class from the ones available. Mutations operate on single trees (actually, on nodes of single trees) 
whereas crossovers operate on pairs of trees, after having chosen a crossover node for each of these trees 
(see Section 3 for examples of these operators at work).  
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A natural way to assign utility to a decision tree is by using it to classify the training instance-set. Each 
tree is granted a payoff that is balanced between accuracy and size, allowing for an extra parameter, x, to 
tune their relative weight: 

xsize
xaccuracytreepayoff
i

ii +
= 2

2 *)( Eq. 1

Note that as an attribute-value test can be used more than one time along a decision path, our higher 
payoff for smaller trees also “punishes” such replications that result in larger trees (semantically similar to 
smaller ones). The problem we deal with in this paper is the effective and efficient reuse of calculations 
for the accuracy and size quantities. 

GATree emphasizes the employment of a weak procedural bias that allows the concept learner to consider 
a (relatively speaking) large number of hypotheses in an efficient manner. By employing global metrics of 
tree quality, such as size and accuracy, it shifts the focus from “how to induce a tree” (standard, impurity-
based induction) to “what criteria an induced tree must satisfy”. By setting a policy direction, as opposed 
to how a policy should be implemented, we achieve a de facto decrease in search bias. This reflects the 
employment of genetic algorithms as an alternative search space navigation mechanism, compared to the 
conventional top down induction algorithms for decision trees. 

Conventional decision tree pruning algorithms, such as error-complexity pruning (Breiman et al., 1984), 
take into account the size-vs.-accuracy trade-off explicitly by first homing on a decision tree and then 
working bottom-up towards a pruned version. The same trade-off is accommodated in a top-down fashion 
by the minimum description length principle (Quinlan & Rivest, 1989), which evaluates each node based 
on the representation cost of a decision tree and the training set errors that this tree incurs. GATree is 
different to the above generic classes of techniques by holistically evaluating a decision tree as opposed to 
explicit local searching for improvements. Holistic evaluation is also a central theme in the shift from 
exhaustive search during learning to anytime learning (Esmeir & Markovitch, 2007). However, genetic 
evolution has been used in decision tree induction, mainly as a tool in feature selection (Chai et al., 1996; 
Krętowski & Grześ, 2005; Rokach, 2008) and feature construction (Cantú-Paz & Kamath, 2003; 
Krętowski, 2004), with some approaches explicitly factoring a size-vs.-accuracy trade-off into the fitness 
function either by computing it (Krętowski & Grześ, 2005) or by estimating it (Rokach, 2008) using the 
Vapnik—Chervonenkis dimension on oblivious decision trees; the latter, though less powerful, can 
guarantee the overall minimisation of the subset of the selected features and are thus easier amenable to 
theoretical analysis, as they are generated according to a pre-specified order of features. 

Of course, using previous calculations as a proxy for the final calculation is a classic caching concept so it 
is not surprising that it emerges in the population dynamics of genetic algorithms to deal with the massive 
fitness function calculations incurred by some applications. 

In genetic algorithms the general problem of caching intermediate results for later use has been mostly 
treated as an instance of fitness inheritance (Roberts, 2003). In decision trees, the fundamental problem of 
obtaining a good estimate by not having to process all data has been primarily addressed by processing a 
subset of the dataset with the view of using the metrics derived for this subset as surrogates for the whole 
dataset (Catlett, 1992; Musick et al., 1993). A similar approach was to explicitly implement caches that 
store intermediate splitting heuristic results in the hope that such results can be reused at other parts of a 
decision tree (Kalles, 1994). This approach has been also independently employed in genetic algorithms 
by using fitness surrogates to explicitly search for fitness evaluation calculations that can be trimmed 
(Teller & Andre, 1997; Zhang & Joung, 1999). While the latter approach is close to the concept of fitness 
inheritance, we believe that the use of surrogates and approximations (both in decision trees and genetic 
algorithms) has distracted researchers from the more fundamental (and, quite easier, as it turned out) 
problem of direct optimization that is made possible by the structural (namely, divide-and-conquer) nature 
of some evolutionary computation problems. 

A seminal contribution to such structural population dynamics explicitly built a relationship graph to 
represent the associations between members of a population (Handley, 1994). Establishing a graph 
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structure for identifying reusable parts of representations has been also central to the concept of Cartesian 
Genetic Programming (Woodward, 2006) and has also apparently influenced the work on identifying 
which evolutionary computation calculations are eventually not required (and may be trimmed) if one 
fixes the expected number of generations for a genetic algorithm experiment (Poli & Langdon, 2006). 
Note that the latter work also draws on the work by Teller and Andre (1997), referred to in the previous 
paragraph, thus bridging from another viewpoint genetic algorithms with sub-sampling techniques. 

A very interesting approach to caching has been also applied by Rokach (2008) who maintains a cache of 
previously generated oblivious decision trees associated with the corresponding feature set and, upon 
observing a particular feature subset that has been genetically selected for feature partitioning, retrieves 
the corresponding decision tree instead of generating it anew. Rokach’s approach is distinct to ours but 
also quite related at a high level; one could possibly identify traces of duality since Rokach caches 
decision tree parts and calculates the fitness while we cache fitness parts but calculate the decision trees. 

3. Optimizing genetic operators on decision trees 

We will now show that simple data structures, which can be expected to be used for manipulating decision 
trees, do suffice for implementing lossless fitness inheritance. 

A tree that is the output of a mutation can have its fitness function computed directly from its (one) 
predecessor’s input. Note that there are a limited number of fundamentally different outcomes when a tree 
is subject to a mutation operator; a description of those appears in Table 1. Still, one might define a new 
operator by composition (for example, change the class assignment at a leaf and the attribute-value test at 
the root). 

Table 1. Fundamental mutation operators 

Operator Action 

Node-Change An internal node may have its attribute-value test changed

Leaf-Change A leaf node has its class assignment changed 

Node-Prune An internal node may be marked as a leaf (discarding all structure below) 

We start by observing that one can calculate the accuracy of a given decision tree recursively. During 
testing, when an instance arrives at a leaf, we can increment a counter of the correctly classified instances 
at that leaf. Working bottom-up we can then calculate the accuracy for the whole decision tree. The same 
applies for the calculation of the tree size. The divide-and-conquer formulation of the calculation of these 
quantities will be central to our optimization. 

To see how the mutated tree can have its fitness function computed without having to use the whole data 
set, let us examine Node-Prune. Denote by I(N) the set of instances that have passed through node N (for 
the sake of simplicity, we will use N to denote both a node and the tree rooted at that node). When the 
Node-Prune operator is applied to node N, we know that I(N) does not have to be re-evaluated since the 
path from the root to N has not changed. However, the accuracy of N has to be re-evaluated according to 
the new class assignment of (the node-converted-to) leaf N. After the re-evaluation is complete, the 
accuracy of the whole tree can be recomputed by only updating accuracy counters along the path to the 
root. In essence, a mutation indicates a node that is stale and needs reexamination. 

It is easy to see that for the other two operators, the same technique applies: a mutation only causes the 
mutated node to have its accuracy and size component re-calculated. If the node is internal, that means 
having to recalculate accuracies and sizes recursively for that portion of the tree that lies below the 
mutated node. 
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We now turn to show how a tree that is the output of a crossover can have its fitness function computed 
directly from its (two) predecessors’ input. We first note that there is just one crossover operator (see 
Figure 1 for an example). 

Evolution
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LL RL
RR
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L R

Crossover Point 

 

Figure 1: An example of the crossover operator. 

Since the paths from the roots to the corresponding nodes have not changed, it is the case again that 
I(LL)=I(L’L) and that I(RR)=I(R’R). If one of the crossover points is a tree root, we simply note that the new 
tree triggers an examination of the whole data set to calculate the accuracy and the previous observation 
about stale nodes apply. A special case is when crossover occurs at both tree roots; in that case a simple 
swapping of fitness indicators suffices. 

The above show that the observation of which nodes are stale and warrant re-examination is again the key 
to treating crossovers. 

3.1. A brief example to demonstrate improvement 

We now present a brief example to clarify the points above. Consider a sample data set with four 
instances, three binary attributes and one binary class, as shown in Table 2. 

Table 2. A sample data set 

 A1 A2 A3 Class 

I1 N N Y Y 

I2 N Y N N 

I3 Y N N N 

I4 Y Y Y Y
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Assume that at some point of the evolution we are considering the decision trees shown in Figure 2. All 
left branches correspond to a value of N for the tested attribute. Instances shown below leaves indicate the 
classification path for the corresponding instance (from the tree root to that leaf). Strikethrough instances 
indicate a classification error. Arrows show the nodes that have been selected for crossover. 

A1 

A2 A2

N YN Y 

I1 I2 I3 I4

T1 

 

A2 

A3 N 

N Y

I1

I2 

I3

I4 

T2

 

Figure 2: A snapshot of the evolution: trees T1 and T2. 

By setting the x factor of the fitness formula to 1, we obtain: 

F1 = (0 + 2)2 * 1 / ((2 + 2)2 + 1) = 4 / 17 F2 = (2 + 1)2 * 1 / ((2 + 1)2 + 1) = 9 / 10 

In the above derivation we underline the quantities that will have to be recomputed in the next evolution 
step. For example, the (0 + 2) figure in the derivation of F1 indicates that only 2 instances are correctly 
classified and these are due to the right branch of the root and that in the next evolution step the left sub-
tree will not have to have its accuracy recomputed. Tree size is measured by the number of leaves. 

After the crossover, the resulting trees are shown in Figure 3 (redundant nodes are not collapsed). 
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Figure 3: A new snapshot of the evolution: trees T3 and T4. 

For the new fitness values we observe that F4 differs from F2 only because the left branch of T4 now 
creates an extra error in the classification of I1: 

F3 = 22 * 1 / (42 + 1) = 4 / 17 F4 = (1 + 1)2 * 1 / ((2 + 1)2 + 1) = 4 / 10 

The cautious reader might observe at this point that the extra cost of recursively adding accuracy counters 
to calculate the tree accuracy might contribute to a non-negligible delay in the evolution and that this 
delay should be factored in any attempt to estimate speed-up. We point out that the fundamental algorithm 
already incurs this cost by having to recursively compute the size of the tree. Since the fitness function 
takes size into account, the traversal of the tree to calculate its size is an operation that gets done anyway. 
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Piggy-backing the accuracy calculation in this traversal all but eliminates the overhead, since the only 
extra data we need is the set of instances at each node. 

3.2. Expected improvement 

Since dealing with generic binary decision trees is too complicated, we examine two types of trees: the 
complete tree and the linear tree (see Figure 4 for an example). A complete tree contains all internal nodes 
and leaves up to a given depth, whereas a linear tree only contains one internal node and one leaf per 
level. Complete binary decision trees are quite unlikely to occur in a practical machine learning context 
(linear ones are considerably more likely, also due to their intuitive layout). However, complete trees offer 
theoretical insight and have been also studied as an example of the very difficult XOR concept (Pagallo, 
1989). We refer to both types of trees as bounding cases (extreme trees) in the sense that all possible trees 
with the same number of leaves are no deeper than the linear tree and no shallower than the complete tree. 

 

 

 

 

Figure 4: Examples of extreme binary decision trees: a complete (left) and a linear one (right). Darker 
nodes indicate leaves whereas blank nodes are internal nodes. 

There is a simple argument to appreciate why the above constraints on the type of decision trees we study 
do not in fact dilute the potential of the approach. That is to view such trees as the output of a genetic 
operator and retrospectively ask where, on any such given tree, a node might have been rendered stale. In 
fact, if we had explicitly considered such a tree as input only (and not as output), a legitimate question 
would be whether we should also discuss the probability that the tree type would not change after an 
operator had acted (for example, that a complete tree would remain complete). With better analytical 
skills, one might be able to compute such probability even in generic trees (Knessl & Szpankowski, 2006); 
but that is beyond the scope of this paper. 

3.2.1. Analyzing complete trees 

On notation issues, we start by noting that a complete binary decision tree has k+1 levels, in the range 0..k. 
The 0th level is the tree root. The kth level consists of leaves only; furthermore, no leaves are to be found 
elsewhere in the tree. Let us also assume that the tree has n instances, evenly distributed among the 2k 
leaves. Thus, the tree contains 2k+1+1 nodes (including internal nodes and leaves). 

We now define the node-instance-check as the unit of operation that processes an instance at a node. Such 
an operation at an internal node is the equivalent of a test with the attribute-value at that node. An 
operation at a leaf is the examination of the class at that leaf. Hence, k+1 is the (maximum) number of 
node-instance-check (hereafter, simply referred to as operations) required by any instance as it is sent 
down the tree. 

Now, assume we have a node at level i. Such a node covers n/2i instances (via all nodes below it), all the 
way down to the leaves. These account for (n/2i)(k+1) operations (since each instance has to start being 
processed at the root, anyway). 

We are now ready to frame the problem: if a node at level i is marked as stale, what is the estimated cost 
of updating its data structures, so that size and accuracy are correctly calculated? 
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We start by calculating Cost0, the cost of classifying all instances through the whole decision tree. Since 
each of n instances consumes k+1 operations, Cost0 = n(k+1). 

Updating at level i incurs the cost of re-classifying that part of the data set that passes through the stale 
node, Costi = (n/2i)(k+1). 

The expected new cost is Costi / Cost0 = 1/2i (note that the number of instances, n, has been factored out). 

The cost ratio (denoted henceforth by R) has to be averaged over all nodes of the tree. This factors in the 
probability that a node at level i will be selected, which is 2i/(2k+1-1). Note that we average uniformly 
across all nodes reflecting that each one has the same probability to be selected for crossover. 
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For a depth-3 complete tree with 8 leaves, we get Rcomplete,k=3<0.27. Similarly, Rcomplete,k=9<0.01. Note that 
improvement is near-exponential and quite substantial even for small trees too. 

3.2.2. Analyzing linear trees 

We now turn to linear binary decision trees. These are skewed in the sense that, at each level, there is one 
leaf. The last level contains two leaves only. We study linear trees because they offer insight into the 
pessimistic cases. 

Again, a linear binary decision tree has k+1 levels, in the range 0..k. The 0th level is the tree root. Let us 
also assume that the tree has n instances, evenly distributed among the k+1 leaves, accounting for n/(k+1) 
instances per leaf. Thus, the tree contains 2k+1 nodes (including internal nodes and leaves). Yet again, k+1 
is the (maximum) number of node-instance-check operations required by any instance as it is sent down 
the tree. 

Now, assume we have a node at level i. Such a node covers ⎟
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However, for this type of tree, the number of operations consumed by an instance depends on which leaf it 
will be found (as opposed to the complete tree, where all instances travel the same path length). 

Note that the lowest-level leaves will require k+1 operations for each of their instances. Going one level 
up, a leaf will require k operations for each of its instances. In general, a leaf at level i will require i+1 
operations (this also holds for i=1; an instance at the topmost leaf consumes 2 operations). 

We will now calculate Cost0; therein we factor the cost of the lowest-rightmost leaf and then we sum the 
costs of the other leaves as we move towards the root. 
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To calculate Costi we must differentiate between an internal node and a leaf. 

The leaf case is straightforward: 

1
1

, +
+

=
k
inCost leafi  Eq. 4

For the internal node case, we observe that the cost is simply the formula for Cost0 (see Eq. 3) applied on a 
tree of k-i levels plus the cost of having all instances covered by the modified node actually reach that 
node first (each incurring the same overhead up to that node, of course). 
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The cost ratio has to be averaged over all nodes of the tree. Every node has a probability of 1/(2k+1) to be 
selected. Since there is one node at level 0 and two nodes for each level thereafter, we get: 
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We now note that Costi is a monotonously increasing function of i, so we approximate its calculation3: 
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After some algebraic manipulations we obtain: 
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Now, comparing Eq. 2 (complete binary decision tree) to Eq. 8, we observe that improvement is not as 
impressive, but it still converges to about 25% ( 4

31− ).4 However, as opposed to the complete tree case, 

it is now the deep trees that demonstrate smaller improvement, while shallow trees do much better. 

4. On the validity and the implications of the results 

We now first reflect on the accuracy of the estimation and then proceed to discuss the wider applicability 
of our observation in other fitness inheritance settings. 

We stress again that the extension to the tree data structure is minimal. It only consists of an array of 
instance indices per node. Quite importantly, when a stale node is processed, no nodes on the way up to 
the root need have their data structures changed (hence, incurring possibly expensive array union 
operations) since the instance sets at those nodes are guaranteed not to have changed. 

However, space may be expensive. The amount of space taken up by the instance indices in each node can 
be shown to be O(kn) for the two variants that we studied. If we take into account that these indices have 
to be stored in each tree, the resulting cost may grow at the expense of our ability to deal with huge 
datasets – we remind the reader that the basic algorithm does not store any dataset related information. We 
can improve substantially upon that O(kn) cost by employing the argument on the piggybacking of 
operations onto the tree size calculation (as presented just before Section 3.2). If we store the instance 
indices only in the leaves, we can recursively build our instance index at any node by concatenating the 
instance indices from below. Simple concatenation suffices since we have no duplicates and since no 
ordering information is required. This trims the storage cost to O(n). 

                                                      
3 Note that Costi,leaf is a linear function, hence the approximation refers only to Costi,node. We have calculated the error of the approximation at 

about 8% for k=8 (but the error increases with k). However, the approximation is pessimistic and we refer the reader to section 4 for a more 
detailed discussion on whether such pessimism is really warranted, offering a further at least double-fold improvement. 

4 We again refer the reader to section 4 where this estimate is substantially improved by partially avoiding some reclassification effort. 
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The cautious reader might observe that when a decision tree substitutes part of itself with part of another 
decision tree, there is no guarantee that the new decision tree will be of the same layout. However, there is 
a strong reason why one might not need to venture into factoring this observation explicitly in the analysis 
(we also believe that the complicated mathematics is unlikely to provide any further insight). The reason is 
that, on average, the probability that the new part will result in a larger tree is balanced by the probability 
that the new part will be smaller and hence result in a smaller tree. As a matter of fact, since the two parts 
will be simply exchanged and since both tree roots refer to the same instances, the extra operations that 
may be incurred at one side will be saved at the other side. 

Furthermore, it is instructive to see why the derivations of the potential savings, as detailed in Section 3.2, 
are pessimistic. Still, one might decide to plan with these pessimistic estimates, to safely offset the 
overhead cost of housekeeping the data structures. 

Recall that for the complete binary decision tree we assumed that updating at level i incurs the cost of re-
classifying that part of the data set that passes through the stale node, Costi = (n/2i)(k+1). This is 
pessimistic since we only need to reclassify at the node at level i (and below), thus incurring a cost of 
Cost’i = (n/2i)(k-i+1). Factoring the modified cost into our calculations would result in a further speed-up 
by a factor of 2. 

For the linear binary decision tree the cost would be: 
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The associated savings ratio is 
24

5
+
+

≤′
k
kRest , which converges to 0.25 accounting for a 3-fold increase in 

speed-up over the pessimistically calculated quantity. 

Figure 5 demonstrates a graphical plot of the two R′−1  quantities, showing the fraction of saved node-
instance-checks as a function of tree depth. To enhance the quality of the plot the x axis is shown in 
logarithmic scale. Note that even the shallowest trees demonstrate significant improvement and that the 
maximum attainable improvement is early reached. 

 

Figure 5: A graphical plot of saved node-instance-checks as a function of tree depth. 
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One could argue that the definition of the linear tree should allow leaves which are nearer the tree root to 
accommodate more instances than the leaves that are near the maximum tree depth. We briefly analyze 
this alternative here. 

Again, such a weighted linear binary decision tree has k+1 levels, in the range 0..k, with the tree root at the 
0th level. Now, a leaf at level i contains n/(2i) instances out of n instances in total. 

We first calculate Cost0 by explicitly accounting for one of the two lowest leaves and then summing the 
costs of the other leaves as we move towards the root.  
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We acknowledge that k+2 in the derivation in Eq. 10 is a weak upper bound, but we also note that this 
does not substantially influence our final estimates.  

For the rest of the nodes, we derive: 
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We now derive approximations for 
0

,

Cost
Cost leafi  and 
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Cost
Cost nodei  to facilitate the math: 
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The overall ratio has to be averaged over all nodes of the tree: 
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Eq. 15

Note that the above approximation is grossly pessimistic for small values of k but for those values actual 
improvement would be straightforward to calculate. The asymptotic improvement is 50%. 

4.1. A brief speculation on further applicability 

The formulation of vital tree statistics (size, accuracy) in terms of recursive calculations in a divide-and-
conquer fashion suggest that it might be interesting to investigate whether such speed-up results may be 
found in other problems where the evaluation of the fitness function can be cast as a divide-and-conquer 
problem. 

To gain some insight into this potential we briefly review a case into the other extreme. Suppose that we 
were evolving conventional feed-forward neural networks instead of decision trees. Since each change in a 
neural network would affect at least one weight, every instance would be liable to have its whole NN-
based classification changed. Neural networks are not designed for divide-and-conquer computations, 
hence there is minimal potential in using past fitness calculations for the lossless reconstruction of fitness 
in future populations. At this point we should remind the reader that it is the lossless reconstruction we are 
interested in; approximation techniques have been effectively used in domains where this assumption is 
relaxed (Pelikan & Sastry, 2004).  

The lack of interdependence of local problems in a divide-and-conquer formulation has been also 
indirectly explored in research on how to optimize the convergence of genetic algorithms. For example, it 
has been noted that fitness caching can be employed only where evaluations have no side effects (Roberts, 
2003). The conclusion has seemed to be that for all but simple cases, the problem is hard (see Jansen 
(1999) and references therein for an overview). Not surprisingly, using the NK-model taxonomy (see 
Altenberg (1997) for a review), it is straightforward to see why the calculation of size and accuracy sets 
the decision trees problem that we studied at the easiest end of the scale (n0), since no interactions occur 
between the genome parts. Independently, fitness functions that can be piecewise computed have been 
recast as Walsh polynomials for faster convergence (Linton, 2004). However, it is the piecewise 
computation that seems to be the underlying assumption in that line of research; we expect that divide-
and-conquer fitness functions to be cast in that representation without any problems. 

5. An indicative experimental evaluation 

We modified GATree to incorporate the above changes and we tested it on 12 data sets from the Machine 
Learning Repository (Asuncion & Newman, 2007). 

For each data set we ran 8 experiments, each with an increasing number of generations and populations 
per run (so, column “700” indicates experiments with 700 generations and 700 trees per generation). For 
each data set and each experiment therein we report how long it took to build the tree in the “old” 
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approach, how long it took to build the tree in the proposed “new” approach, and what part of instances 
did not have to be re-evaluated (re-classified) due to the implementation of the “new” approach. 

To increase the credibility of the results we repeated the above procedure 4 times, with different 
combinations of the mutation rate and the x-factor (see Section 2)5: 

- For a mutation rate of 0.5 (mutation rate is the mutation probability of a standard genetic algorithm 
approach) 

o the x-factor was set at 104 (see Table 4), 

o the x-factor was set at 104 at the start of the evolution and increased linearly up to 105 at 
the end of the evolution (see Table 5). 

- For a mutation rate of 0.01 

o the x-factor was set at 104 (see Table 6), 

o the x-factor was set at 104 at the start of the evolution and increased linearly up to 105 at 
the end of the evolution (see Table 7). 

An average of the savings per data set and per configuration is shown in Table 3 (note that all savings are 
is reported as a percentage number – the % symbol is omitted). 

Table 3. An average of the savings across experiments  

Dataset m = 0.5 m = 0.01 m = 0.5 m = 0.01
balance‐scale 56,25 66,64 69,01 73,32
zoo 56,73 66,18 66,36 67,75
credit‐a 35,16 45,77 53,55 59,32
lymph 56,13 63,57 69,74 69,48
glass 50,91 59,65 63,56 64,88
soybean 46,81 60,45 47,37 60,05
vote 29,42 42,78 37,48 47,28
anneal 37,13 44,66 52,45 45,15
crime 39,70 45,73 55,73 51,87
kr‐vs‐kp 37,16 42,15 45,69 45,67
breast 55,40 64,51 68,68 70,65
multiplexor 54,58 59,78 71,99 69,90

x = 10000 x in [10000..100000]

 

                                                      
5 All other GATree parameters were set at their default values, but each experiment was seeded at a different random number seed. We opted 

to test with different configurations as opposed to running the same experiment several times, each with a new random seed, to indicate the 
robustness potential of the proposed approach. 
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Table 4. A savings-only comparison with mutation rate at 0.5 and x at 104  

Dataset 100 200 300 400 500 600 700 800
balance‐scale Old (sec) 0,98 4,34 9,84 17,97 27,69 34,90 59,71 72,91

New (sec) 0,71 2,47 5,97 10,79 18,20 25,06 35,53 44,55
Train Savings 49,54 56,91 58,63 54,15 59,35 55,50 59,70 56,26

zoo Old (sec) 0,52 2,33 5,76 9,50 16,06 23,88 32,36 45,58
New (sec) 0,39 1,80 4,68 7,63 13,48 16,90 24,94 35,60
Train Savings 55,48 60,00 54,99 54,65 57,91 52,39 57,20 61,20

credit‐a Old (sec) 1,66 6,81 15,61 27,27 43,58 61,80 86,98 111,24
New (sec) 0,86 4,18 8,36 17,98 27,17 33,99 49,84 66,33
Train Savings 29,08 35,69 40,56 33,30 32,47 43,31 31,62 35,24

lymph Old (sec) 0,60 2,90 6,20 13,04 23,50 29,87 44,97 56,55
New (sec) 0,38 1,82 4,16 8,43 13,38 21,68 25,17 38,83
Train Savings 51,18 56,30 46,45 60,54 52,95 61,54 56,14 63,94

glass Old (sec) 1,05 4,73 12,62 20,30 36,39 59,23 84,46 112,83
New (sec) 0,63 2,38 6,65 12,00 18,89 30,20 31,23 58,10
Train Savings 42,86 50,16 49,83 52,02 54,35 48,68 60,62 48,79

soybean Old (sec) 0,38 1,71 3,12 5,17 8,54 12,84 17,91 22,29
New (sec) 0,25 1,51 2,53 4,59 7,48 11,59 14,72 19,01
Train Savings 46,98 56,04 45,00 46,84 45,44 46,70 43,65 43,85

vote Old (sec) 0,81 3,30 7,24 12,83 21,33 28,66 41,91 54,05
New (sec) 0,60 2,47 5,47 9,67 15,72 21,65 30,01 40,15
Train Savings 27,88 29,93 29,59 29,55 30,11 29,30 29,64 29,37

anneal Old (sec) 5,89 18,45 55,60 98,84 155,75 165,55 308,79 368,76
New (sec) 3,46 12,71 34,06 59,47 102,35 133,83 165,07 161,76
Train Savings 36,88 34,19 33,89 34,50 34,40 31,68 33,89 57,62

crime Old (sec) 0,70 4,03 9,13 14,42 21,61 32,52 55,32 61,77
New (sec) 0,60 2,43 6,54 11,03 17,16 27,65 32,39 47,82
Train Savings 28,65 43,53 33,45 48,77 30,03 38,32 53,43 41,42

kr‐vs‐kp Old (sec) 5,09 19,46 43,86 76,66 154,44 193,63 225,69 400,59
New (sec) 3,82 11,49 28,37 58,19 105,02 143,92 157,79 235,42
Train Savings 27,26 54,45 49,76 29,13 28,93 28,96 49,92 28,89

breast Old (sec) 0,67 3,79 8,50 17,50 24,28 37,39 55,97 65,66
New (sec) 0,41 1,80 4,30 8,17 11,49 21,83 28,02 37,08
Train Savings 42,81 53,88 53,69 55,37 53,54 58,83 63,45 61,62

multiplexor Old (sec) 0,36 1,66 4,12 8,91 16,23 9,62 30,47 34,34
New (sec) 0,28 1,46 3,34 7,20 6,17 9,18 30,15 27,11
Train Savings 50,59 50,99 56,33 65,01 42,22 41,54 66,33 63,62  

Table 5. A savings-only comparison with mutation rate at 0.5 and x in [104..105] 

Dataset 100 200 300 400 500 600 700 800
balance‐scale Old (sec) 1,32 6,33 12,07 26,30 31,29 60,36 85,95 120,73

New (sec) 0,86 3,50 10,64 17,34 25,17 41,68 54,26 63,35
Train Savings 57,58 68,88 68,12 71,59 73,23 68,51 72,66 71,53

zoo Old (sec) 0,57 3,06 7,31 12,79 21,03 32,99 30,80 59,56
New (sec) 0,38 2,59 7,65 14,16 16,11 23,58 38,56 41,07
Train Savings 55,29 68,52 71,15 73,56 62,16 65,26 68,95 65,98

credit‐a Old (sec) 1,86 8,80 21,97 31,57 60,01 94,08 145,63 198,16
New (sec) 0,96 4,36 9,16 18,54 35,38 41,35 49,34 73,52
Train Savings 50,26 50,80 56,75 52,12 55,92 53,36 56,62 52,58

lymph Old (sec) 0,79 4,45 10,33 20,25 31,77 43,95 66,50 95,87
New (sec) 0,77 3,09 7,16 15,21 26,99 39,25 46,31 60,45
Train Savings 65,84 65,68 67,20 72,68 72,41 73,63 71,52 68,94

glass Old (sec) 0,99 7,63 20,63 42,80 58,09 135,50 109,80 157,41
New (sec) 0,72 4,00 8,86 20,28 54,46 85,45 72,33 102,46
Train Savings 55,57 59,44 69,06 65,32 60,27 62,03 67,68 69,13

soybean Old (sec) 0,35 1,70 3,71 6,21 9,48 13,36 19,11 24,07
New (sec) 0,30 1,63 3,18 5,06 8,42 11,48 15,94 20,63
Train Savings 48,67 53,17 47,96 47,82 46,71 45,18 45,30 44,17

vote Old (sec) 1,14 5,35 7,48 13,20 21,58 29,38 61,14 53,06
New (sec) 0,60 2,46 6,92 10,27 19,59 21,90 30,52 40,95
Train Savings 28,87 29,90 61,04 29,76 61,66 29,32 29,82 29,44

anneal Old (sec) 5,79 23,44 69,81 100,72 172,32 221,61 323,89 451,75
New (sec) 3,11 9,14 23,19 66,93 58,41 128,82 167,12 236,58
Train Savings 46,70 67,04 65,94 39,56 64,65 45,24 41,72 48,71

crime Old (sec) 0,71 4,38 13,07 21,02 39,41 56,13 75,54 114,79
New (sec) 0,62 2,94 7,40 15,04 24,70 28,46 48,66 70,62
Train Savings 31,60 60,04 62,76 62,08 61,64 48,96 59,80 58,99

kr‐vs‐kp Old (sec) 6,19 25,95 46,67 81,79 190,17 268,98 238,63 442,76
New (sec) 3,85 11,97 36,45 61,91 73,88 111,18 164,00 157,98
Train Savings 34,07 59,52 29,54 29,35 57,32 59,56 29,03 67,12

breast Old (sec) 1,00 6,11 13,23 29,56 43,40 61,38 76,18 119,06
New (sec) 0,64 2,80 5,69 11,67 19,30 29,98 42,58 67,31
Train Savings 60,54 63,00 66,88 72,79 70,31 70,06 71,93 73,96

multiplexor Old (sec) 0,72 3,23 2,48 17,38 13,28 37,26 59,08 59,90
New (sec) 0,52 2,53 6,37 9,84 22,92 32,65 44,45 59,76
Train Savings 59,59 67,91 73,59 71,77 75,62 74,67 77,35 75,40  
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Table 6. A savings-only comparison with mutation rate at 0.01 and x at 104  

Dataset 100 200 300 400 500 600 700 800
balance‐scale Old (sec) 0,98 4,34 9,84 17,97 27,69 34,90 59,71 72,91

New (sec) 0,71 2,47 5,97 10,79 18,20 25,06 35,53 44,55
Train Savings 49,54 56,91 58,63 54,15 59,35 55,50 59,70 56,26

zoo Old (sec) 0,52 2,33 5,76 9,50 16,06 23,88 32,36 45,58
New (sec) 0,39 1,80 4,68 7,63 13,48 16,90 24,94 35,60
Train Savings 55,48 60,00 54,99 54,65 57,91 52,39 57,20 61,20

credit‐a Old (sec) 1,66 6,81 15,61 27,27 43,58 61,80 86,98 111,24
New (sec) 0,86 4,18 8,36 17,98 27,17 33,99 49,84 66,33
Train Savings 29,08 35,69 40,56 33,30 32,47 43,31 31,62 35,24

lymph Old (sec) 0,60 2,90 6,20 13,04 23,50 29,87 44,97 56,55
New (sec) 0,38 1,82 4,16 8,43 13,38 21,68 25,17 38,83
Train Savings 51,18 56,30 46,45 60,54 52,95 61,54 56,14 63,94

glass Old (sec) 1,05 4,73 12,62 20,30 36,39 59,23 84,46 112,83
New (sec) 0,63 2,38 6,65 12,00 18,89 30,20 31,23 58,10
Train Savings 42,86 50,16 49,83 52,02 54,35 48,68 60,62 48,79

soybean Old (sec) 0,38 1,71 3,12 5,17 8,54 12,84 17,91 22,29
New (sec) 0,25 1,51 2,53 4,59 7,48 11,59 14,72 19,01
Train Savings 46,98 56,04 45,00 46,84 45,44 46,70 43,65 43,85

vote Old (sec) 0,81 3,30 7,24 12,83 21,33 28,66 41,91 54,05
New (sec) 0,60 2,47 5,47 9,67 15,72 21,65 30,01 40,15
Train Savings 27,88 29,93 29,59 29,55 30,11 29,30 29,64 29,37

anneal Old (sec) 5,89 18,45 55,60 98,84 155,75 165,55 308,79 368,76
New (sec) 3,46 12,71 34,06 59,47 102,35 133,83 165,07 161,76
Train Savings 36,88 34,19 33,89 34,50 34,40 31,68 33,89 57,62

crime Old (sec) 0,70 4,03 9,13 14,42 21,61 32,52 55,32 61,77
New (sec) 0,60 2,43 6,54 11,03 17,16 27,65 32,39 47,82
Train Savings 28,65 43,53 33,45 48,77 30,03 38,32 53,43 41,42

kr‐vs‐kp Old (sec) 5,09 19,46 43,86 76,66 154,44 193,63 225,69 400,59
New (sec) 3,82 11,49 28,37 58,19 105,02 143,92 157,79 235,42
Train Savings 27,26 54,45 49,76 29,13 28,93 28,96 49,92 28,89

breast Old (sec) 0,67 3,79 8,50 17,50 24,28 37,39 55,97 65,66
New (sec) 0,41 1,80 4,30 8,17 11,49 21,83 28,02 37,08
Train Savings 42,81 53,88 53,69 55,37 53,54 58,83 63,45 61,62

multiplexor Old (sec) 0,36 1,66 4,12 8,91 16,23 9,62 30,47 34,34
New (sec) 0,28 1,46 3,34 7,20 6,17 9,18 30,15 27,11
Train Savings 50,59 50,99 56,33 65,01 42,22 41,54 66,33 63,62  

Table 7. A savings-only comparison with mutation rate at 0.01 and x in [104..105] 

Dataset 100 200 300 400 500 600 700 800
balance‐scale Old (sec) 0,96 4,28 12,36 20,17 31,52 53,72 69,84 91,78

New (sec) 0,49 2,15 7,48 10,53 16,27 26,59 36,19 45,58
Train Savings 64,30 65,64 78,74 71,53 73,59 77,70 78,71 76,35

zoo Old (sec) 0,41 1,68 5,49 9,86 15,47 19,72 34,39 35,86
New (sec) 0,26 1,11 3,37 6,90 11,01 14,25 29,97 24,73
Train Savings 57,20 65,07 69,42 71,88 73,12 65,71 75,09 64,49

credit‐a Old (sec) 1,54 7,04 12,49 28,06 48,88 71,52 73,51 135,54
New (sec) 0,68 3,01 5,99 11,92 22,57 31,92 35,67 51,59
Train Savings 57,61 59,03 55,35 64,76 54,10 59,13 55,28 69,33

lymph Old (sec) 0,45 3,04 5,63 9,79 24,64 47,44 47,94 62,53
New (sec) 0,27 1,96 3,25 5,95 15,69 29,62 28,22 38,01
Train Savings 51,11 70,08 69,58 61,71 76,36 72,71 78,30 76,03

glass Old (sec) 0,60 5,19 12,25 24,84 37,41 107,83 113,69 127,55
New (sec) 0,26 2,23 4,94 15,81 17,97 37,30 41,54 51,21
Train Savings 61,91 60,32 61,09 59,12 76,90 58,15 69,03 72,50

soybean Old (sec) 0,32 0,96 3,91 5,91 9,51 12,48 18,08 27,78
New (sec) 0,23 0,70 2,86 4,51 7,10 9,24 13,96 20,69
Train Savings 58,62 50,99 67,19 59,77 59,38 61,43 58,78 64,20

vote Old (sec) 0,81 3,35 7,39 13,04 28,18 44,91 39,85 53,30
New (sec) 0,47 1,98 4,45 8,22 12,83 19,61 24,48 32,47
Train Savings 42,98 43,27 43,25 43,33 42,59 77,49 42,68 42,67

anneal Old (sec) 4,83 19,29 41,87 102,74 143,96 166,60 289,42 450,48
New (sec) 2,62 10,35 23,53 51,03 65,07 94,48 149,41 201,70
Train Savings 44,32 45,52 42,75 46,89 43,35 42,72 47,70 47,91

crime Old (sec) 0,68 2,86 10,72 15,28 25,98 33,56 43,24 80,87
New (sec) 0,49 2,04 5,42 10,09 13,37 23,00 31,68 51,91
Train Savings 41,76 41,68 65,85 44,91 68,04 45,57 44,40 62,72

kr‐vs‐kp Old (sec) 5,07 20,31 46,21 82,32 133,11 196,38 448,10 398,74
New (sec) 2,82 11,86 25,75 46,22 86,26 107,87 118,28 180,32
Train Savings 42,11 41,64 42,13 42,82 47,14 42,24 64,71 42,58

breast Old (sec) 1,40 3,30 10,90 16,10 26,44 39,90 73,23 63,57
New (sec) 0,41 1,24 4,04 6,72 10,00 19,60 30,10 27,89
Train Savings 71,25 59,99 70,79 67,69 74,72 74,31 75,30 71,16

multiplexor Old (sec) 0,31 0,97 3,23 15,46 16,29 23,48 28,93 16,27
New (sec) 0,23 0,72 2,55 9,84 14,02 25,99 27,82 13,24
Train Savings 63,38 56,59 65,54 79,59 77,41 81,38 79,56 55,73  
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The key observation, of course, is that these real datasets deliver sizeable and consistent savings. The 
consistency is observed across larger experiments and within how instance test savings are translated into 
actual elapsed training time. The latter is of paramount importance; not only does it suggest that the 
housekeeping operations seem to be contained (even in a rather straightforward proof-of-concept 
implementation) but also that the approximation strategy we used with the two bounding cases to estimate 
the benefits is robust enough to apply to practical in-between problems equally well.  

The careful reader might note here that our theoretical improvement estimate was based on the concept of 
a node-instance-check as a unit of improvement and that results above report instance savings (along a 
path whose length is not taken into account). We acknowledge the simplification; still the reduced 
resolution of the results we report is more than satisfactory in terms of appreciating the new potential. 

For the sake of completeness, we now report some accuracy-size-time results on the above experimental 
configurations as compared to J48, a C4.5 clone that is available within the WEKA package (Witten & 
Frank, 2005). The only extension is that to test accuracy we used a 5-fold cross-validation; we then 
averaged the size and the time as well across each cross-validation run. To avoid cluttering we omit 
standard deviations. Moreover, we used the default parameters for J48 and we opted to generate binary 
decision trees and report the results for both its un-pruned and pruned versions – the latter shown as 
J48(p). The results are shown as follows (for GATree we only report the “new” version): 

- For a mutation rate of 0.5 

o the x-factor was set at 104 (see Table 8), 

o the x-factor was set at 104 at the start of the evolution and increased linearly up to 105 at 
the end of the evolution (see Table 9). 

- For a mutation rate of 0.01 

o the x-factor was set at 104 (see Table 10), 

o the x-factor was set at 104 at the start of the evolution and increased linearly up to 105 at 
the end of the evolution (see Table 11). 

For the sake of completeness, we now report some accuracy-size-time results on the above experimental 
configurations as compared to J48, a C4.5 clone that is available within the WEKA package (Witten & 
Frank, 2005). The only extension is that to test accuracy we used a 5-fold cross-validation; we then 
averaged the size and the time as well across each cross-validation run. To avoid cluttering we omit 
standard deviations. Moreover, we used the default parameters for J48 and we opted to generate binary 
decision trees and report the results for both its un-pruned and pruned versions – the latter shown as 
J48(p). The results are shown as follows (for GATree we only report the “new” version; furthermore note 
that accuracy is reported in the [0..1] range): 



Page 17 of 23 

Table 8. An accuracy-size-time comparison with mutation rate at 0.5 and x at 104  

Dataset 100 200 300 400 500 600 700 800 J48 J48 (p)
balance‐scale Accuracy 0,690 0,686 0,704 0,704 0,744 0,702 0,715 0,690 0,776 0,781

Size 14 13 15 13 17 16 14 16 103 55
Time 0,65 3,67 7,26 12,76 19,71 27,04 39,88 54,31 0,06 0,04

zoo Accuracy 0,840 0,870 0,860 0,890 0,900 0,940 0,920 0,900 0,911 0,881
Size 9 11 11 13 13 14 16 13 17 13
Time 0,74 3,89 12,55 15,39 20,66 30,90 37,45 45,10 0,01 0,01

credit‐a Accuracy 0,848 0,846 0,849 0,857 0,845 0,845 0,842 0,851 0,830 0,848
Size 5 8 9 10 10 9 9 9 49 23
Time 0,80 3,56 8,04 13,84 20,66 30,03 41,49 55,00 0,09 0,08

lymph Accuracy 0,759 0,738 0,766 0,731 0,766 0,779 0,779 0,772 0,770 0,764
Size 15 11 13 15 19 20 17 18 27 13
Time 0,57 2,53 6,26 11,12 18,62 28,07 37,56 46,93 0,03 0,01

glass Accuracy 0,524 0,524 0,495 0,538 0,567 0,543 0,595 0,581 0,486 0,533
Size 15 16 19 20 21 21 20 24 57 39
Time 0,96 4,59 11,47 19,67 28,86 45,53 61,86 89,64 0,09 0,01

soybean Accuracy 0,971 0,943 0,971 0,914 0,971 0,971 1,000 0,971 0,949 0,923
Size 7 7 7 7 7 7 7 7 7 7
Time 0,40 1,58 3,64 6,25 9,69 14,00 19,70 25,06 0,01 0,01

vote Accuracy 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,966 0,954
Size 3 4 3 3 3 3 3 3 11 9
Time 0,63 2,75 7,05 12,84 20,84 29,49 41,39 54,10 0,01 0,01

anneal Accuracy 0,817 0,837 0,838 0,867 0,842 0,883 0,868 0,902 0,954 0,938
Size 5 5 4 9 6 9 8 9 49 35
Time 2,17 9,30 20,86 37,38 59,68 81,55 115,22 159,42 0,08 0,11

crime Accuracy 0,712 0,715 0,724 0,744 0,730 0,721 0,721 0,739 0,728 0,728
Size 5 7 10 11 13 13 10 12 65 27
Time 0,67 2,99 6,81 12,36 20,01 29,22 39,26 49,11 0,09 0,13

kr‐vs‐kp Accuracy 0,912 0,932 0,924 0,948 0,969 0,965 0,976 0,970 0,993 0,989
Size 4 6 4 8 11 12 13 11 57 51
Time 2,47 10,28 24,23 38,03 57,80 76,42 106,45 132,52 0,11 0,04

breast Accuracy 0,737 0,730 0,737 0,712 0,730 0,709 0,709 0,740 0,710 0,664
Size 8 9 13 15 14 16 15 17 43 39
Time 0,59 2,57 6,22 11,20 18,01 27,90 37,73 49,64 0,06 0,03

multiplexor Accuracy 0,540 0,690 0,610 0,720 0,670 0,660 0,670 0,680 0,630 0,550
Size 11 12 17 16 16 23 23 21 23 21
Time 0,31 1,56 4,04 8,10 11,89 20,19 28,03 38,25 0,01 0,01  

Table 9. An accuracy-size-time comparison with mutation rate at 0.5 and x in [104..105] 

Dataset 100 200 300 400 500 600 700 800 J48 J48 (p)
balance‐scale Accuracy 0,709 0,702 0,733 0,733 0,742 0,744 0,771 0,736 0,776 0,781

Size 20 26 32 30 33 30 26 31 103 55
Time 0,77 3,82 8,89 16,40 26,58 39,33 50,70 83,69 0,06 0,04

zoo Accuracy 0,820 0,890 0,890 0,920 0,920 0,940 0,940 0,950 0,911 0,881
Size 20 11 13 15 15 19 18 16 17 13
Time 1,36 5,07 6,88 14,06 20,83 31,69 39,66 54,10 0,01 0,01

credit‐a Accuracy 0,848 0,841 0,854 0,838 0,848 0,851 0,848 0,849 0,830 0,848
Size 11 17 17 17 18 20 19 25 49 23
Time 0,87 3,73 8,28 15,29 28,22 37,13 52,57 69,69 0,09 0,08

lymph Accuracy 0,772 0,779 0,793 0,766 0,752 0,759 0,807 0,800 0,770 0,764
Size 26 28 28 21 30 31 24 34 27 13
Time 0,81 3,99 8,65 15,20 28,26 39,97 50,13 78,97 0,03 0,01

glass Accuracy 0,519 0,557 0,576 0,533 0,567 0,529 0,538 0,567 0,486 0,533
Size 37 34 46 45 41 46 44 44 57 39
Time 1,26 5,92 17,53 32,96 46,53 85,77 109,59 213,48 0,09 0,01

soybean Accuracy 0,886 0,971 0,943 0,971 1,000 0,943 0,943 0,943 0,949 0,923
Size 7 8 7 7 7 7 7 7 7 7
Time 0,53 1,90 4,53 6,09 10,20 14,24 19,37 25,54 0,01 0,01

vote Accuracy 0,956 0,959 0,956 0,947 0,956 0,956 0,952 0,954 0,966 0,954
Size 11 5 7 5 9 9 8 7 11 9
Time 0,67 3,02 6,89 13,26 17,94 27,49 41,63 59,10 0,01 0,01

anneal Accuracy 0,811 0,853 0,894 0,865 0,895 0,879 0,926 0,932 0,954 0,938
Size 11 6 11 15 13 15 16 17 49 35
Time 2,22 9,08 19,59 38,40 58,11 84,36 121,11 154,04 0,08 0,11

crime Accuracy 0,708 0,712 0,715 0,735 0,717 0,726 0,717 0,739 0,728 0,728
Size 10 11 27 28 29 22 26 31 65 27
Time 0,79 2,76 8,02 16,92 25,28 36,44 52,76 69,65 0,09 0,13

kr‐vs‐kp Accuracy 0,920 0,916 0,941 0,940 0,955 0,975 0,974 0,982 0,993 0,989
Size 4 6 11 9 16 18 19 21 57 51
Time 2,34 9,62 21,67 40,88 58,85 86,04 95,52 143,86 0,11 0,04

breast Accuracy 0,733 0,733 0,719 0,730 0,705 0,695 0,716 0,688 0,710 0,664
Size 16 27 31 31 39 31 33 33 43 39
Time 0,65 3,58 8,88 15,23 27,30 39,06 54,69 75,76 0,06 0,03

multiplexor Accuracy 0,580 0,690 0,620 0,610 0,640 0,640 0,690 0,710 0,630 0,550
Size 12 17 33 23 27 39 39 39 23 21
Time 0,39 3,01 9,22 13,01 24,45 36,64 52,33 69,42 0,01 0,01  
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Table 10. An accuracy-size-time comparison with mutation rate at 0.01 and x at 104  

Dataset 100 200 300 400 500 600 700 800 J48 J48 (p)
balance‐scale Accuracy 0,667 0,686 0,672 0,707 0,693 0,677 0,682 0,678 0,776 0,781

Size 11 12 12 13 12 13 12 11 103 55
Time 0,51 2,01 4,72 8,85 13,40 20,60 27,75 34,59 0,06 0,04

zoo Accuracy 0,710 0,800 0,840 0,840 0,850 0,890 0,860 0,860 0,911 0,881
Size 7 8 9 8 8 10 9 11 17 13
Time 0,37 1,56 3,82 7,00 10,77 15,98 22,07 30,45 0,01 0,01

credit‐a Accuracy 0,852 0,855 0,855 0,843 0,859 0,854 0,851 0,849 0,830 0,848
Size 3 3 3 6 4 8 6 7 49 23
Time 0,55 2,25 5,10 9,74 14,34 21,17 29,24 41,45 0,09 0,08

lymph Accuracy 0,690 0,766 0,752 0,724 0,738 0,779 0,752 0,752 0,770 0,764
Size 7 6 9 9 11 12 11 13 27 13
Time 0,44 1,89 4,56 8,17 13,07 21,03 25,99 34,74 0,03 0,01

glass Accuracy 0,490 0,476 0,429 0,505 0,543 0,519 0,519 0,557 0,486 0,533
Size 10 9 13 10 12 11 13 14 57 39
Time 0,73 2,89 7,04 12,53 20,64 28,92 41,65 62,96 0,09 0,01

soybean Accuracy 0,857 0,886 1,000 1,000 0,943 0,943 0,971 0,971 0,949 0,923
Size 6 7 7 8 7 7 7 7 7 7
Time 0,29 1,27 3,03 5,57 8,36 11,75 16,84 21,54 0,01 0,01

vote Accuracy 0,952 0,952 0,954 0,956 0,956 0,956 0,956 0,956 0,966 0,954
Size 3 3 3 3 3 3 3 3 11 9
Time 0,50 2,08 4,70 8,36 13,49 18,56 26,81 33,90 0,01 0,01

anneal Accuracy 0,790 0,823 0,838 0,815 0,859 0,837 0,849 0,842 0,954 0,938
Size 5 5 3 7 5 5 5 6 49 35
Time 1,74 7,46 15,20 30,81 39,16 64,20 85,56 103,42 0,08 0,11

crime Accuracy 0,723 0,715 0,719 0,717 0,719 0,710 0,721 0,715 0,728 0,728
Size 3 5 4 5 5 5 5 7 65 27
Time 0,52 2,12 5,19 9,67 13,97 21,17 30,50 37,83 0,09 0,13

kr‐vs‐kp Accuracy 0,908 0,918 0,924 0,927 0,920 0,927 0,924 0,930 0,993 0,989
Size 3 4 4 5 3 5 4 4 57 51
Time 1,93 7,21 17,53 32,80 50,29 64,26 92,82 125,62 0,11 0,04

breast Accuracy 0,709 0,712 0,751 0,740 0,723 0,719 0,719 0,712 0,710 0,664
Size 5 7 7 8 8 9 9 9 43 39
Time 0,45 1,87 4,45 7,81 11,76 18,76 24,70 31,95 0,06 0,03

multiplexor Accuracy 0,600 0,550 0,600 0,570 0,680 0,660 0,600 0,650 0,630 0,550
Size 5 6 11 5 14 12 10 12 23 21
Time 0,22 1,04 3,17 4,18 9,57 13,21 17,39 25,07 0,01 0,01  

Table 11. An accuracy-size-time comparison with mutation rate at 0.01 and x in [104..105] 

Dataset 100 200 300 400 500 600 700 800 J48 J48 (p)
balance‐scale Accuracy 0,661 0,706 0,659 0,682 0,659 0,744 0,702 0,731 0,776 0,781

Size 10 19 15 20 20 25 23 23 103 55
Time 0,56 2,83 5,90 11,78 798,54 29,75 39,98 55,20 0,06 0,04

zoo Accuracy 0,660 0,820 0,830 0,820 0,860 0,860 0,860 0,870 0,911 0,881
Size 9 8 8 8 8 10 11 10 17 13
Time 0,47 1,99 4,62 7,12 894,54 18,05 24,95 31,88 0,01 0,01

credit‐a Accuracy 0,855 0,855 0,852 0,857 0,854 0,852 0,855 0,846 0,830 0,848
Size 3 5 4 7 7 9 7 9 49 23
Time 0,56 2,40 5,40 10,18 16,31 26,31 31,86 47,81 0,09 0,08

lymph Accuracy 0,717 0,759 0,779 0,793 0,793 0,772 0,772 0,800 0,770 0,764
Size 8 15 15 23 14 16 16 17 27 13
Time 0,52 2,70 6,09 12,59 16,22 24,18 35,83 47,17 0,03 0,01

glass Accuracy 0,443 0,457 0,519 0,486 0,471 0,567 0,543 0,586 0,486 0,533
Size 6 8 16 15 15 18 18 24 57 39
Time 0,66 3,29 9,48 16,42 24,51 38,11 49,34 71,70 0,09 0,01

soybean Accuracy 0,857 0,914 1,000 0,943 1,000 1,000 1,000 0,943 0,949 0,923
Size 7 7 8 7 7 7 7 7 7 7
Time 0,35 1,41 3,41 5,86 9,10 12,65 17,18 22,57 0,01 0,01

vote Accuracy 0,952 0,949 0,956 0,952 0,952 0,956 0,956 0,956 0,966 0,954
Size 3 4 5 7 4 3 3 5 11 9
Time 0,52 2,19 4,95 9,20 14,04 19,26 26,61 384,86 0,01 0,01

anneal Accuracy 0,785 0,813 0,832 0,836 0,856 0,849 0,846 0,863 0,954 0,938
Size 4 6 4 8 4 7 7 7 49 35
Time 1,83 7,52 16,69 33,04 40,16 70,28 98,83 125,17 0,08 0,11

crime Accuracy 0,723 0,721 0,715 0,723 0,726 0,708 0,701 0,706 0,728 0,728
Size 5 4 7 8 11 13 8 12 65 27
Time 0,57 2,31 5,40 11,16 17,43 26,19 31,60 46,58 0,09 0,13

kr‐vs‐kp Accuracy 0,904 0,918 0,919 0,920 0,937 0,934 0,917 0,932 0,993 0,989
Size 4 5 3 5 8 7 3 7 57 51
Time 1,92 7,65 17,29 29,75 42,65 64,13 95,19 110,66 0,11 0,04

breast Accuracy 0,737 0,726 0,712 0,719 0,705 0,719 0,705 0,712 0,710 0,664
Size 6 8 13 11 16 13 22 20 43 39
Time 0,49 2,01 5,56 8,77 16,93 22,19 36,64 52,29 0,06 0,03

multiplexor Accuracy 0,570 0,640 0,610 0,620 0,650 0,680 0,690 0,650 0,630 0,550
Size 6 9 12 9 13 13 17 16 23 21
Time 0,29 1,50 3,69 5,98 11,39 17,26 29,44 35,50 0,01 0,01  
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The above indicative results show that for most data sets GATree can deliver a very sizeable size benefit, 
even compared to J48(p), for the extra time it spends exploring the population. Accuracy is overall 
comparable to J48(p), if not better, but there are a few accuracy glitches in the data-sets balance-scale, 
anneal and kr-vs-kp, which are due to the fact that these data sets are (J48-wise) better served by larger 
trees, which are not rewarded by GATree with its current x-factor settings. A very clear hint that this is the 
reason for this behavior is that GATree accuracy increases consistently with time, since larger trees are 
more rewarded towards the end of the evolution (whereas, one can note, the other data sets demonstrate a 
relative stabilization in accuracy very early in the evolution). 

One could opt to speed-up the updating of the x-factor; in that case one would obtain good accuracy 
results for balance-scale, anneal and kr-vs-kp considerably faster. A limited-scope experiment is shown in 
Table 12, where one can observe that behavior. 

Table 12. An accuracy-size-time comparison with mutation rate at 0.01 and x in [104..106] 

Dataset 100 200 300 400 500 600 J48 J48 (p)
balance‐scale Accuracy 0,762 0,683 0,715 0,715 0,773 0,755 0,776 0,781

Size 52 34 52 66 48 80 103 55
Time 0,92 5,27 15,33 31,41 44,78 98,00 0,06 0,04

anneal Accuracy 0,817 0,847 0,868 0,892 0,911 0,927 0,954 0,938
Size 15 7 13 21 20 22 49 35
Time 2,39 8,89 20,84 37,79 62,82 89,74 0,08 0,11

kr‐vs‐kp Accuracy 0,939 0,950 0,967 0,951 0,982 0,961 0,993 0,989
Size 22 15 19 11 30 21 57 51
Time 2,24 7,82 16,49 33,23 54,03 76,06 0,11 0,04

Dataset 100 200 300 400 500 600 J48 J48 (p)
balance‐scale Accuracy 0,680 0,680 0,707 0,733 0,718 0,720 0,776 0,781

Size 11 17 30 36 35 45 103 55
Time 0,57 2,95 10,32 19,74 30,94 59,08 0,06 0,04

anneal Accuracy 0,779 0,820 0,823 0,855 0,849 0,838 0,954 0,938
Size 3 5 5 7 7 9 49 35
Time 1,63 7,01 16,12 27,15 850,58 64,73 0,08 0,11

kr‐vs‐kp Accuracy 0,915 0,919 0,912 0,924 0,934 0,931 0,993 0,989
Size 4 5 4 6 9 5 57 51
Time 1,73 6,81 14,60 25,56 39,87 56,91 0,11 0,04

Mutation 50%

Mutation 1%

 
Incidentally, we note that decision tree evolution seems to be a problem that is better served by larger 
mutation rates. Of course, one might decide to first generate a population of decision trees (via J48, for 
example) and, subsequently, use GATree with a small x-factor to bias evolutionary refinement towards 
smaller trees; in such case it is rather likely that we would need a small mutation value, as is usual in most 
evolution problems. 

The above exploratory approach to model development is facilitated by GATree, since it allows observing 
how the accuracy and the size of a model develop during evolution. For example, one can note (see Figure 
6) how quite early on it is possible to have a good model at a small size by watching a 5-fold cross-
validation on the multiplexor problem. Therein, drops in accuracy refer to each new run of the cross-
validation scheme and accuracy then increases towards the end of each run; also note how the spike in 
model size (at about the middle of the evolution) corresponds to a relatively small accuracy in that run. 
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Figure 6: An example of exploratory evolution. 

To further delve into accuracy and size aspects, to research the possibilities for dynamically tuning the x-
factor and the effect this may have on some data sets (of theoretical or practical importance), as well as the 
on-the-fly modifications of the evolution parameters and the associated constraints, we refer the interested 
reader to the experimental results and the discussion in previous work (Papagelis & Kalles, 2001; Kalles 
& Pierrakeas, 2006). 

6. Conclusions and future directions 

We have presented an extension to a genetic algorithm that evolves binary decision trees to improve the 
evolution speed by reusing past fitness calculations. Such reuse is possible by observing that the divide-
and-conquer formulation of the fitness function allows for its lossless piecewise calculation. We have 
analyzed two bounding cases (of very thin and very bushy trees) to estimate the range of possible speed-
ups and we have discussed the validity of our assumptions and our results vis-à-vis the potential for using 
the same method in other domains, beyond decision trees. We have backed our claims with an indicative 
yet extensive experimental evaluation to show that savings are substantial and across a diverse number of 
datasets and experimental configurations as regards setting GATree parameters. 

There are two key theoretical directions that should be pursued. The most critical one is the emergence of 
the cost of space. As mentioned, while we can keep the space cost of indexing the instances to what we 
believe to be the theoretical minimum, O(n), that cost is still a level of magnitude up from the previous 
situation. This trade-off must be researched and resolved. Actually, this direction of research is very 
closely related to the anytime learning flavor, where explicit quantification of such balancing decisions is 
factored into the top down induction of decision trees (Esmeir & Markovitch, 2007).  

The time-space tradeoff has been usually addressed by the explicit consideration of caching intermediate 
tree evaluations. For example, Roberts (2003) factors the estimated speed up into every decision to cache 
and, eventually, suggests that any such decision must take into account the architectural details of the 
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computer carrying out the computations, which is hardly a universal specification. We note that, while this 
approach has merits, it is in fact orthogonal to our approach; we do not deal with intermediate trees but 
with data that has to reside in the tree so that fitness can be reconstructed. Nevertheless, to factor in an 
estimate of when to apply one heuristic and to make that decision on the fly has been already 
demonstrated to be beneficial in incremental decision tree induction (Kalles & Papagelis, 2000). 

A further direction concerns the broader applicability of indexing schemes for fitness functions calculated 
in a divide-and-conquer manner. In particular, we are interested to see whether there exist any applications 
that utilize functions which already incur the space cost that crept into the decision trees problem, yet have 
not been investigated regarding their potential for lossless fitness inheritance. 

Last but not least, it is not trivial to investigate afresh the importance of the “losslessness” property, since 
by relaxing it one might be able to use fitness functions that are not tied to the actual instance description. 
The work of Rokach (2008) and Mansour & McAllester (2000) is along this direction; the latter 
specifically approach fitness calculations in the context of tree-subtree properties and their notion of 
“compositional” building of decision trees is related to our cross-over operator. The careful reader might 
question whether that takes us back to fitness approximation schemes, however when one frames the 
fitness question in terms of estimates and not in terms of actual accuracy calculations, it may be possible 
to deliver estimates in a divide-and-conquer approach. Even if approximation creeps back in, it is 
undoubtedly a step of progress to be able to accurately point out the assumptions and their impact.   

Nevertheless, the top item in our agenda is of an experimental (and development) nature. The GATree 
system has been updated and savings in quite a few standard benchmarks have been easy to obtain, 
however that direction must effectively deal with implementation details to reduce the extent to which any 
savings are compromised by data structures housekeeping. 
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