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Abstract In estimation of distribution algorithms
(EDAs), the joint probability distribution of high-

performance solutions is presented by a probability

model. This means that the priority search areas of

the solution space are characterized by the probabil-
ity model. From this point of view, an environment

identification based memory management scheme (EI-

MMS) is proposed to adapt binary-coded EDAs to solve

dynamic optimization problems (DOPs). Within this

scheme, the probability models that characterize the
search space of the changing environment are stored

and retrieved to adapt EDAs according to environmen-

tal changes. A diversity loss correction scheme and a

boundary correction scheme are combined to counteract
the diversity loss during the static evolutionary process

of each environment. Experimental results show the va-

lidity of the EI-MMS and indicate that the EI-MMS

can be applied to any binary-coded EDAs. In compari-

son with three state-of-the-art algorithms, the univari-
ate marginal distribution algorithm (UMDA) using the

EI-MMS performs better when solving three decompos-
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able DOPs. In order to understand the EI-MMS more
deeply, the sensitivity analysis of parameters is also car-

ried out in this paper.
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1 Introduction

In the real world, optimization problems are usually
time-varying and it is very important to get the opti-

mum in a short and acceptable time. Many researchers

have contributed to this challenging issue of solving dy-

namic optimization problems (DOPs). Evolutionary al-
gorithms (EAs) are inspired by the evolutionary process

in nature. From the evolutionism point of view, the na-

ture process simulated by EAs is changing, random and

uncertain in itself. Therefore, it is very reasonable to

use EAs to solve DOPs. The simplest way to react to
an environmental change is to regard each change as

the arrival of a new optimization problem, and solve

it from scratch. However, the time between every two

environmental changes is usually rather short in most
DOPs. Hence, the restart approach can not satisfy most

of real-world DOPs. In recent years, researchers have

developed many methods to maintain a sufficient diver-

sity level for EAs to continuously adapt to the chang-

ing landscape. They can be classified into four cate-
gories [1]: (1) generating diversity after a change, such

as the hyper-mutation method [2]; (2) maintaining the

diversity throughout the run, such as the random im-

migrants [3], sharing or crowding mechanisms [4], and
the thermodynamical genetic algorithm (GA) [5]; (3)

memory-based approaches [6], and (4) multi-population

approaches, such as the self-organizing scouts GA [7],
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the multi-national GA [8], and the shift balance GA

[9]. Comprehensive surveys on EAs applied to dynamic

environments can be found in [1,10–12].

The essence of DOPs is to search the optimum in

the solution space dynamically. For such a dynamic pro-
cess, the historic information generated in the previous

search process is very useful. An intuitional method

is to store the high-performance historic solutions and

reuse them later so as to improve the search process.
But this method involves a large memory space and a

complex memory management scheme. Estimation of

distribution algorithms (EDAs) are a class of proba-

bility model based EAs, where the processes of learn-

ing and sampling the probability model replace the ge-
netic operations (e.g., crossover and mutation) in con-

ventional GAs. A probability model indicates the joint

probability distribution of high-performance solutions.

That is, it characterizes the set of good solutions. If
the historic information could be stored as probability

models, we would not only save the memory space but

also simplify the memory management scheme. Conse-

quently, EDAs are suitable for being extended to be

memory-enhanced EAs to solve DOPs.

To this end, an environment identification based

memory management scheme (EI-MMS) is proposed in

this paper. Within this scheme, a probability model

is regarded as the learning result of the probability
distribution of high-performance solutions in an envi-

ronment. A probability model together with the best

individual in the solutions from which the probability

model is learnt are stored as a memory element. In or-
der to retrieve the memory elements in EI-MMS, an

environment identification method is proposed to select

the suitable element according to a special environment.

The EI-MMS can be used to extend any binary-encoded

static EDA to its dynamic version and we name the cor-
responding algorithm as EDA with environment iden-

tification based memory scheme (EI-MEDA).

Considering the fact that the diversity of conven-

tional EDAs will loss gradually while the learning and
sampling processes of the probability models are exe-

cuted alternately, in this paper, the reason for diver-

sity loss is briefly analyzed and an effective diversity

compensation method is introduced into EI-MEDA to

enhance its performance in dynamic environments.

The rest of this paper is organized as follows. Section

2 presents the description of the proposed EI-MEDA.

In Section 3, the diversity loss reason is first analyzed

and some diversity loss counteracting methods are then
introduced into EI-MEDA. Section 4 presents the ex-

perimental results and analysis. Finally, conclusions are

drawn in Section 5.

begin

t := 0

Randomly initialize first population P0

repeat

select promising solutions St from Pt (selection)
estimate the probability distribution of St (learning)
generate offspring Ot using the estimate (sampling)
create a new population Pt+1 by replacing some

solutions from Pt with Ot (replacement)
evaluate the individuals in Pt+1 (evaluation)
t := t+ 1;

until terminated = true;

end;

Fig. 1 Pseudocode for EDAs.

2 Description of the EI-MEDA

In this section, we present the details about the EI-

MEDA. Any static binary-coded EDA can be extended

to its corresponding EI-MEDA using EI-MMS. From
this point of view, an EI-MEDA is composed of two

main parts: the basic EDA and EI-MMS. The former

aims at searching optimum in each environment and the

latter aims at adapting to the environment changes.

2.1 Introduction to EDAs

The concept of EDAs was first proposed in 1996
[13]. In an EDA the probability distribution of high-

performance solutions is estimated and is used to gen-

erate new candidate solutions. There are five main steps

in EDAs: selection, learning, sampling, replacement,
and evaluation, as shown in Fig. 1. It can be seen that

the learning and sampling steps in EDAs replace the

crossover and mutation operations in GAs.

2.2 The EI-MMS

The EI-MMS scheme uses an additional memory and

the elements stored are the probability models learnt

from the population. Before giving the details, we as-
sume that the environmental changes are detectable.

In all the algorithms studied below, the environmen-

tal change is detected in each generation by checking

whether there is at least one memory element whose
evaluation value has changed.

In order to utilize the intervals between every two

environmental changes to learn a high-quality probabil-
ity model, EI-MEDA updates its memory just after the

environment changes. As shown in Fig. 2, the whole

dynamic optimization process is divided into many



3

mPM(ke-2)

Memory

e Environment

EDA EDA EDA

Retrieve

Update

Environment 

Identification

mPM(ke-3)

PM(t-1)
mPM(ke-1)

ke-3 ke-2 ke-1 m

1e2e3e

PM(t-1) PM(t-1)

Fig. 2 Illustration of the EI-MMS.

static optimization processes. In each static process,
EDA searches the optimum in the conventional man-

ner. When the e-th environment comes at generation t,

EI-MMS manages its memory M in three major steps.

First, it stores the probability model obtained from the
generation just before the environmental change, i.e.,

PM(t − 1), into the memory. Then, it finds a mem-

ory element M(ke) (ke = 1, 2, . . . ,m) which best fits

the new environment to retrieve using an environment

identification method. Finally, the probability model of
this memory element, i.e.,mPM(ke), is sampled to gen-

erate the first generation of population in the new en-

vironment.

2.3 The environment identification method

The environment identification method is very impor-
tant due to its role of linking between the memory and

the dynamic environment. A key aspect of EI-MMS is to

find the suitable memory element to retrieve according

to the new environment. An intuitive way of achiev-

ing this is to consider the average fitness of the solu-
tions sampled from a special element. Considering the

computational complexity and the accuracy, we pro-

pose a samples averaging plus best individual (SA +

BI) method to evaluate the elements in the memory
and select the suitable one.

2.3.1 The samples averaging (SA) method

The idea of this method is to evaluate a memory ele-

ment by averaging the fitness of solutions sampled from

it. For each memory element M(k) (k = 1, 2, . . . ,m),
NS solutions are sampled from it and the average fit-

ness of these sampled solutions is calculated in the cur-

rent environment as the evaluation value of M(k) as

follows.

fM (k) =
1

NS

NS
∑

i=1

fk
ind(i) (1)

where fk
ind(i) denotes the fitness of the i-th solution

sampled from the probability model, i.e. mPM(k), of

M(k). This method is the most intuitive way to evalu-

ate a memory element but its computational complexity

is high.

2.3.2 The best individual (BI) method

In this method, each memory element consists of two

parts: a probability model and the best individual of
the population from which the probability model is

learnt. Here we denote the memory element by M(k) =

〈BM(k),mPM(k)〉 (k = 1, 2, . . . ,m), where BM(k)

denotes the best individual. The evaluation of the mem-

ory element M(k) is defined as follows:

fM (k) = f(BM(k)) (2)

where f(BM(k)) denotes the fitness of BM(k) in the

current environment. This method is similar to the

method used in [14,15].

In contrast with the SA method, the accuracy is

sacrificed for the sake of the computational complexity.

The BI method uses the fitness of the best individual

to evaluate the probability model learning from a set of

individuals. This may lead to inaccuracy. For example,
it is impossible to differentiate two elements when the

fitness of their best individuals is equal.

2.3.3 The SA+BI method

In order to balance the accuracy and the computa-

tional complexity, we combine the above two methods,

resulting in the SA+BI method. For comparing two
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Input: M(i) = 〈BM(i), mPM(i)〉, (i = 1, 2, . . . ,m)
Output: The suitable memory element M(index)

maxfit := 0 and index := 1;
for i := 1 to m do

Calculate fM (i) by Eq. (2);
if fM (i) > maxfit then

maxfit := fM (i) and index := i;
else if fM (i) = maxfit then

Calculate fM (i) and fM (index) by Eq. (1);
if fM (i) > fM (index) then index := i;

endfor;

return M(index);

Fig. 3 Pseudocode for the SA+BI method.

begin

PM(0, i) := 0.5, mPM(j, i) := 0.5, i ∈ [1, l], j ∈ [1, m];
Randomly generate BM(j), t := 0, k := 0;
Randomly initialize first population P0;

repeat

if an environment change is detected then

〈BM(k), mPM(k)〉 := 〈B(t − 1), PM(t− 1)〉;
Update the fitness value of each BM(j), j ∈ [1, m];
Select a proper mPM(k) using the SA+BI method;
PM(t) := mPM(k);
Sample PM(t) to generate Pt;

else

Evaluate Pt;
Select the ps ×Npop best individuals from Pt

Learn PM(t);
Compensate the diversity for PM(t) by the method

described in Section 3;
Sample PM(t) to generate the t-th offspring Ot;
Evaluate Ot and replace the worst individuals in Pt;
B(t) := BestIndvidual(Pt);

t := t+ 1;
until terminated = true;

end;

Fig. 4 Pseudocode for the proposed EI-MEDA.

memory elements, if the fitness of the best individu-

als are different, the BI method is applied; otherwise,

the SA method is applied to differentiate the memory

elements. Fig. 3 shows how to select a memory element

with the SA+BI method, where a maximization prob-
lem is assumed. The pseudo-code of the proposed EI-

MEDA with the SA+BI method is shown in Fig. 4,

where Npop denotes the population size and ps denotes

the truncation selection rate (i.e., for each generation,
the ps × Npop best samples generated from the cur-

rent model PM(t) are selected to build up the model

PM(t+ 1) for the next generation).

3 Diversity loss and counteracting methods

The conventional EDA is likely to search the space
where it has visited, just like the GA without a mu-

tation operation. When the probability distribution of

a decision variable is close to 1 or 0, it is difficult to

change its value anymore. This is the so-called fixed-

point problem and it may mislead the search process to
a local optimum. Some researchers have contributed to

this challenge [16–19].

3.1 The reason to the diversity loss

It is well known that the variance of a sample of size N

has an expected value of σ2(1 − 1/N) where σ2 is the
variance in the parent distribution. Most EDAs do not

compensate for this. When the new probability model is

produced, it attempts to model the new population and

therefore has a reduced variance. When this is iterated

repeatedly, the variance of the sampled population gets
smaller and smaller and decays to zero. The probability

model evolves to one which can only generate identical

configurations. In [18] Shapiro analyzed the dynamics of

EDAs in terms of Markov chains and declared that the
general EDAs can not satisfy two necessary conditions

for being effective search algorithms. Hence, we must

counteract the diversity loss to improve the efficiency

of an EDA.

3.2 Basic diversity compensation methods

As mentioned above, EI-MMS is in fact a diversity

maintaining method according to the environmental

changes. It is also important to counteract the diver-

sity loss in static EDA which searches the optimum in

each environment. Here, we introduce some basic diver-
sity compensation methods for binary EDAs. Accord-

ing to the experimental study in [16], the method that

combines the loss correction and boundary correction

methods, denoted LC+BC in this paper, is outstand-
ing to counteract the diversity loss. Hence, we use the

LC+BC method as the basic diversity compensation

method in EI-MEDA. The details are given below and

the experimental results are shown in the next section.

3.2.1 The loss correction (LC) method

Let l be the length of a chromosome and γi (i =

1, · · · , l) be the probability that the allele of the i-th

gene is equal to 1, γi is transformed to γ′
i to counteract
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the diversity loss as follows:

γ′
i =























1−
√

1− 4(1− γi)/Ls

2
, γi ≤

1

2
(1 −

√
1− LS)

1 +
√

1− 4(1− γi)/Ls

2
, γi ≥

1

2
(1 +

√
1− LS)

0.5, otherwise

(3)

where LS =
ps ×Npop − 1

ps ×Npop − ps
.

3.2.2 The boundary correction (BC) method

For the BC method, γi is transformed to γ′
i to counter-

act the diversity loss as follows:

γ′
i =











β, γi < β

1− β, γi > 1− β

γi, otherwise

(4)

where β is a preset parameter to prevent the distribu-

tion from converging to 1 or 0. To guarantee the mini-

mal diversity level, β is set to 1/l in this paper unless

stated otherwise.

3.2.3 The LC+BC method

For the LC+BC method, LC and BC are applied in

turn. In other words, LC is first applied to γi, then the
resulting γ′

i is taken as the input to the BC method. As

shown in Fig. 5(a), at the beginning of the searching

process, i.e., γi is close to 0.5, the effect of LC is the

strongest because it always returns γi to 0.5. At the

early searching stage, this effect that LC counteracts
γi from evolving towards 0 or 1 enables the population

search more widely in the solution space. But, LC can

not prevent the population from converging because it

does not guarantee the minimal diversity level. On the
contrast, as shown in Fig. 5(b), BC can prevent a dis-

tribution from converging by forcing the distribution

with a minimal diversity level. Therefore, the combina-

tion of LC and BC, as shown in Fig. 5(c), can not only

enable the algorithm to search widely but also prevent
the population from converging when the distributions

are close to their extreme value, i.e., 0 or 1.

4 Experimental study

4.1 Dynamic test environments and measurement

Here we present a bitwise exclusive-or (XOR) DOP gen-

erator, which was first proposed in [20,21] and then fi-

nalized in [22,23]. This DOP generator can construct
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Fig. 5 The effect of LC, BC, and LC+BC on γ′, assuming
Npop = 20, β = 0.05, and ps = 0.5. (a) LC, (b) BC, (c) LC+BC.

three types of dynamic environment (cyclic, cyclic
with noise, and random environment) from any binary-

encoded function f(x),x ∈ {0, 1}l by an XOR operator.

For each environmental period k, a XORing maskM(k)

is incrementally generated as follows:

M(k) = M(k − 1)⊕T(k) (5)

where “⊕” is the XOR operator and T(k) is an interme-

diate binary template randomly created with ρ× l ones
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for the environmental period k. With this DOP gener-

ator, the random environment can be constructed. The

parameter ρ controls the severity of the environmental

changes while τ controls the change speed. It is worth

noting that the environment changes at every τ fitness
evaluations in this paper. This is different from [21,23]

where the environment changes every τ generations.

With the DOP generator, cyclic dynamic environ-

ments are constructed as follows. First, we can gener-

ate 2K XORing masks as the base states in the search

space randomly (see [22,23] for details). Then, the en-
vironment can cycle among these base states in a fixed

logical ring. Furthermore, for constructing cyclic with

noise environment, each time the XORing mask M(k)

moves to the next state after bitwise flipping with a
small probability pn, called the noise rate in this paper.

For the first period k = 1, M(1) is set to a zero vec-

tor. Then, the population at generation t is evaluated

as follows:

f(x, te) = f(x⊕M(k)) (6)

where te is the fitness evaluation number and k =

⌈te/τ⌉ is the environmental period index.

In order to measure the performance of algorithms,

the collective mean fitness [24] is used in this paper.
This measurement calculates the average of the best-

of-generation fitness across the whole generations. Sup-

pose each experiment is performed NE times indepen-

dently with the same experimental settings, the collec-
tive mean fitness (FCMF ) is formulated as follows:

FCMF =
1

G

G
∑

i=1





1

NE

NE
∑

j=1

FBOG(i, j)



 (7)

where G is the total generation number and Ne denotes

the quantity of the environment periods in each run and
FBOG(i, j) denotes the best-of-generation fitness of the

i-th generation in the j-th run.

In order to understand the effect of memory scheme

and diversity compensation measures on the popula-

tion diversity during the running of an algorithm, we

also recorded the diversity of the population every gen-
eration. The diversity of the population at time t in the

k-th run of an algorithm on a DOP is defined as

Div(k, t) =
1

l ×Npop(Npop − 1)

Npop
∑

i=1

Npop
∑

j 6=i

HD(i, j) (8)

where l is the encoding length, Npop is the population

size, andHD(i, j) is the Hamming distance between the

i-th and j-th individual in the population. The mean
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Fig. 6 The building block of the three DUFs

population diversity of an algorithm on a DOP at time

t over NE runs is calculated as follows:

Div(k, t) =
1

NE

NE
∑

k=1

Div(k, t) (9)

4.2 Test functions

Decomposable unitation-based functions (DUFs), such

as trap and deceptive functions, have been widely stud-

ied in the EA community in the attempt to understand

what constructs difficult problems for EAs, especially

for GAs [25]. In this paper, in order to analyze the
performance of investigated algorithms in dynamic en-

vironments, three DUFs (denoted DUF1, DUF2, and

DUF3) are selected as the stationary test functions.

Each DUF consists of 25 copies of 4-bit building blocks
and each building block contributes a maximum value

of 4 to the total fitness, as shown in Fig. 6. The build-

ing block of the three DUFs are defined in Eq. (10),

Eq. (11), and Eq. (12) respectively.

fDUF1(x) = u(x) (10)

fDUF2(x) =











4, if u(x) = 4,

2, if u(x) = 3,

0, otherwise

(11)

fDUF3(x) =

{

3− u(x), if u(x) < 4,

4, otherwise
(12)

where u(x) denotes the number of ones in a building

block.

DUF1 is, in fact, the OneMax function, which aims

to maximize the number of ones in a chromosome. One-
Max functions are usually taken as easy functions for

EAs. For DUF2, in the search space of the 4-bit build-

ing block, the unique optimal solution is surrounded by
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Table 1 The FCMF value of UMDA, UMDA(LC+BC), EI-MUMDA, RUMDA, and RUMDA(LC+BC) over 50 runs on DDUFs in
three types of dynamic environments.

DDUF Environmental Type UMDA UMDA(LC+BC) EI-MUMDA RUMDA RUMDA(LC+BC)

DDUF1 Cyclic 72.52 92.92 98.25 87.59 86.16

Cyclic with noise 57.93 92.46 95.25 87.62 86.15

Random 50.64 89.20 89.23 87.60 86.13

DDUF2 Cyclic 52.14 86.01 96.39 73.97 71.02

Cyclic with noise 29.09 85.07 89.74 73.90 70.95

Random 19.24 76.67 76.91 73.95 71.00

DDUF3 Cyclic 51.45 69.37 77.09 54.78 53.32

Cyclic with noise 38.06 70.82 72.75 54.70 53.34

Random 33.04 66.02 66.18 54.76 53.38

only four sub-optimal solutions, while all the other 11

solutions form a wide plateau with zero fitness. The ex-

istence of this wide gap makes it much more difficultly

for EAs to search on DUF2 than on DUF1. DUF3 is a

fully deceptive function [25]. Fully deceptive functions
are usually considered hard problems for EAs because

the low-order building blocks inside the functions do

not combine to form the higher order optimal build-

ing block: instead they combine into deceptive sub-
optimal building blocks [26]. Generally speaking, the

three DUFs form an increasing difficulty for EAs in the

order from DUF1 to DUF2 to DUF3.

In this paper, the dynamic test problems are con-

structed by applying the XOR DOP generator to the

three DUFs and the corresponding dynamic DUFs are
denoted DDUF1, DDUF2, and DDUF3 respectively.

4.3 Experimental results and analysis

In this section, we present the results of four groups
of experiments. The first group of experiments shows

the validity of EI-MEDA by comparing it with EDAs

without the environment identification based memory

method. The second group of experiments compares the

performance of EI-MEDA with some state-of-the-art al-
gorithms for DOPs. The third group of experiments

aims to show that EI-MEDA can fit for any binary-

coded EDAs. Finally, in order to deeply understand the

proposed EI-MEDA, the sensitivity analysis of the ef-
fect of key parameters in EI-MEDA is also carried out

in the fourth group of experiments.

In the experiments, some common settings are given

as follows. Each algorithm was run 50 times in each ex-

periment (i.e., NE=50). The total number of environ-

mental changes Ne was set to 200. The dimension of
each DDUF is 100 (i.e., each DDUF is encoded with

100 bit binary strings). The memory size m was set to

20 and the truncation selection rate ps was set to 0.5.

4.3.1 Validation of EI-MEDA

The purpose of this group of experiments is to verify

the validity of EI-MEDA. In EI-MEDA, the LC+BC

and EI-MMS schemes work together to maintain the

population diversity. The former works when the algo-
rithm searches in a static environment while the latter

works to respond to an environmental change. From

this point of view, we compare EI-MEDA with several

variants of EDAs, using the univariate marginal dis-
tribution algorithm (UMDA) [13] as an example EDA.

We compare the following four algorithms: the original

UMDA (denoted by UMDA), UMDA with LC+BC (de-

noted by UMDA(LC+BC), UMDA with both EI-MMS

and LC+BC (i.e., EI-MUMDA), UMDA with restart
method (denoted by RUMDA), and UMDA with restart

and LC+BC methods (denoted by RUMDA(LC+BC)).

The parameters are set as follows: τ = 1000, ρ = 0.2,

pn = 0.01, and Npop = 100.

Table 1 shows the performance of each algorithm.

From Table 1, it can be seen that by introducing

LC+BC into the conventional UMDA, the performance

of the algorithm UMDA(LC+BC) is enhanced a lot
since the population diversity loss is compensated in

each generation. In addition, if the EI-MMS scheme

which reacts to environmental changes is applied to

reuse memory information, the performance of the al-
gorithm can be further enhanced. Therefore, it is obvi-

ous that no matter how the environment changes, EI-

MUMDA benefits from both LC+BC and EI-MMS and

performs the best on all DDUFs.

In contrast to EI-MUMDA, the algorithms that use

the restart method (RUMDA and RUMDA(LC+BC))

compensate the population diversity in a totally blind

way and hence, their performance is worse. Since
RUMDA and RUMDA(LC+BC) do not use any his-

toric information and restart from scratch when the en-

vironment changes, their performance is not greatly af-
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Fig. 7 The average dynamic population diversity of algorithms over 50 runs in the first 100× 100 fitness evaluations on DDUF1 (left
column), DDUF2 (middle column), and DDUF3 (right column) in three types of environments: cyclic environment (top row), cyclic
with noise environment (middle row), and random environment (bottom row).

fected by the environmental dynamics type (i.e., cyclic,
cyclic with noise, or random).

Another noticeable result is that although both the

restart and LC+BC schemes improve the performance

of UMDA (i.e., both RUMDA and UMDA(LC+BC)
beats UMDA), it is not good to use them together in

UMDA (i.e., the performance of RUMDA(LC+BC) is

worse than both RUMDA and UMDA(LC+BC)). This

happens because the effect of enhancing the diversity
level by the restart and LC+BC schemes may be too

strong for RUMDA(LC+BC) to perform efficient search

in a new environment.

Fig. 7 shows the average dynamic population diver-
sity of four algorithms in the first 100×100 fitness eval-

uations (i.e. 10 environmental changes). From Fig. 7, it

can be seen that UMDA poorly maintains its popula-

tion diversity and can not adapt for the environmental
changes. UMDA(LC+BC) can maintain its population

diversity at a minimal diversity level using the LC+BC

method. In each generation, at least 1/l×Npop individ-

uals are randomly generated by the LC+BC method.

When the environment changes, the population has to
converge to the new optimum using the learning and

sampling operations of the conventional UMDA. This

leads to the small fluctuations in the population diver-

sity level of UMDA(LC+BC).

The LC+BC method is originally designed for com-

pensating diversity in static environment and is lack of
efficiency to track the moving optimum. If the informa-

tion in the past optimization process could be used to

infer the distribution of the new optimum and the pop-
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Table 2 The Wilcoxon rank sum test results of comparing EI-MUMDA with MPBIL, MPBIL2r, and RIGA on DDUFs in different
environments, where “+” means significantly better, “−” means significantly worse, and “∼” means statistically equivalent.

DDUF1 DDUF2 DDUF3

Cyclic, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0

EI-MUMDA vs MPBIL ∼ ∼ + + + + + + + + + +
EI-MUMDA vs MPBIL2r ∼ ∼ + + + + + + + + + +
EI-MUMDA vs RIGA + + + + + + + + + + + +

Cyclic with noise, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0

EI-MUMDA vs MPBIL ∼ ∼ + + + + + + + + + +
EI-MUMDA vs MPBIL2r + ∼ + + + + + + + + + +
EI-MUMDA vs RIGA + + + + + + + + + + + +

Random, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0

EI-MUMDA vs MPBIL − − + − + + + + + + + −
EI-MUMDA vs MPBIL2r − − + − + + + + + + + −
EI-MUMDA vs RIGA + + + + + + + + + + + +

ulation could be heuristically generated, the efficiency

of dynamic optimization would be enhanced greatly.

According to this idea, EI-MUMDA stores the past

probability models and reuse them to generate the ini-
tial population in a new environment. In the environ-

ment with cyclic or cyclic with noise environments, a

probability model in the memory will be refined if it is

retrieved back. In addition, by using the environment

identification, the initial population in an environment
can be generated around the possible optimum accord-

ing to the memory. This is more efficient than the con-

ventional evolutionary operators.

From the first two rows in Fig. 7, it can be seen

that the diversity level of EI-MUMDA is lower and
more smooth than that of UMDA(LC+BC). In the ran-

domly changing environment, from the bottom row of

Fig. 7, it can be seen that the diversity level curves of

EI-MUMDA and UMDA(LC+BC) overlap with each

other. This is because the memory in EI-MUMDA can
not refine its elements (probability models) properly

due to the randomly changing environment. There-

fore, one can say that EI-MEDA performs well in dy-

namic environments, especially in dynamic environ-
ments with cyclic characteristic. As for RUMDA and

RUMDA(LC+BC), although the restart method en-

ables the original UMDA to react to environmental

changes, these two algorithms are still defeated by EI-

MUMDA. Because the restart method compensates
population diversity in a blind and random way. As

shown in Fig. 7, when environment changes (at every

1000 fitness evaluations), the population is regenerated

randomly and the diversity level goes up to about 0.5.
In such a blind diversity compensation way, no use-

ful information can be used to guide the population to

track the optimum.

4.3.2 Comparison with the state-of-the-art algorithms

In this group of experiments, we compare EI-MUMDA

with the following three algorithms: memory enhanced

population-based incremental learning algorithm (MP-

BIL) [14], MPBIL with two populations and restart
scheme (MPBIL2r) [20], and random immigrants GA

(RIGA) [3]. For MPBIL, an explicit memory is applied,

which is randomly initialized and regularly updated.

For MPBIL2r, a second population with restart method
is added based on MPBIL. The population sizes of the

two populations in MPBIL2r are adjustable according

to their performance. When the environment changes,

the first population searches associated with the mem-

ory while the second population searches from scratch.
For RIGA, it differs from standard GA only in that

in each generation, a set of worst individuals in the

population are replaced by random immigrants. In the

following experiments, the learning rate and memory
size for MPBIL and MPBIL2r were set to 0.25 and 20,

respectively. The crossover probability, mutation prob-

ability, and immigrant rate for RIGA were set to 0.6,

0.1, and 0.1, respectively. The population size of each

algorithm was set to 100.

Fig. 8 plots the performance (FCMF ) of each al-
gorithm over 50 runs on different DDUFs, and the

Wilcoxon rank sum test results of comparing EI-

MUMDA with MPBIL, MPBIL2r, and RIGA are pre-

sented in Table 2, where “+”, “−”, or “∼” mean that
the first algorithm is significantly better than, signifi-

cantly worse than, or statistically equivalent to the sec-

ond algorithm, respectively. The sample size and sig-

nificant level of the Wilcoxon rank sum test are 50 and

0.05, respectively.

From the experimental results in Fig. 8 and Table 2,

it can be seen that EI-MUMDA performs significantly

better than RIGA and defeats MPBIL and MPBIL2r
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Fig. 8 The FCMF values of EI-MUMDA, RIGA, MPBIL and MPBIL2r over 50 runs on DDUF1 (left column), DDUF2 (middle
column), and DDUF3 (right column) in three types of environments: cyclic environment (top row), cyclic with noise environment
(middle row), and random environment (bottom row).

in most situations. The main reason lies in that EI-

MUMDA updates its memory when an environmental

change takes place. In this way, the probability models
stored in the memory are improved as far as possible

during two environmental changes. High-quality prob-

ability models can characterize the environments bet-

ter and more likely represent the probability distribu-

tion of the optimum. As a result, saving and retrieving
these high-quality probability models enable algorithms

to track the optimum better.

4.3.3 Testing the effect of EI-MMS for binary-coded

EDAs

In order to verify that the EI-MMS scheme can work

effectively for binary-coded EDAs, we apply EI-MMS
to the binary-coded UMDA and Bayesian optimization

algorithm (BOA) [27], respectively. The former is the

simplest EDA, where the decision variables are inde-

pendent to each other. In contrast, the latter is a com-

plex EDA, where the relationships between the decision

variables are modelled by a Bayesian network. The cor-
responding algorithms are denoted by EI-MUMDA and

EI-MBOA respectively. Here, EI-MUMDA is compared

with restart UMDA (RUMDA) and EI-MOBA is com-

pared with restart BOA (RBOA) on DDUF2. In all of

the above four algorithms, the LC+BC scheme is also
used to compensate the diversity loss in the popula-

tion. The relevant parameters were set as follows: the

population size Npop = 100, τ = 1000, ρ = 0.2, and

pn = 0.01.

Fig. 9 shows the best fitness obtained by each algo-

rithm in the first 50 environments. It can be seen that

EI-MUMDA and EI-MBOA outperform RUMDA and
RBOA respectively in all situations. This means that

EI-MMS works effectively for both simple and complex

binary-coded EDAs.
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Fig. 9 The average best fitness of EI-MUMDA, EI-MBOA, RUMDA and RBOA in the first 50 environments over 50 runs on DDUF2
in cyclic environment (left column), cyclic with noise environment (middle column), and random environment (right column).

In addition, from Fig. 9 it can be seen that the vari-

ation of the performance of EI-MMS enhanced algo-

rithms (EI-MUMDA and EI-MBOA) in each environ-

ment is affected by the environment type. The perfor-

mance variation is small when the environment changes
cyclically. When noise is added into the cyclic envi-

ronment, the performance variation goes larger. The

performance changes violently, e.g., the performance of

restart algorithms (RUMDA and RBOA), in the ran-
dom environment. The reason is that in a cyclic envi-

ronment EI-MMS can perform very well to guide the

EDA and reduce the blindness when a new environ-

ment comes. This is good for reducing the performance

variation. When noise is added into the cyclic environ-
ment or the environment changes randomly, it becomes

more difficult to correctly retrieve and update the mem-

ory. The inaccurate memory management increases the

variation of the performance of EI-MUMDA and EI-
MBOA.

4.3.4 Sensitivity analysis on the effect of parameters

In order to further understand EI-MEDA, in this group

of experiments, we perform the sensitivity analysis of

the effect of key parameters, including the environmen-

tal dynamics parameters, population size, and memory
size, on the performance of EI-MEDA in dynamic envi-

ronments. EI-MUMDA and RUMDA were used as ex-

ample EDAs and, in order to draw some fair and general

conclusions, the DDUF1 function was used as the test

function in this group of experiments.

(1) Effect of the environmental change speed

First, we investigate how the environmental param-

eter τ affects the performance of EI-MEDA in the envi-

ronments with different values of ρ. Table 3 presents
the comparison between EI-MUMDA and RUMDA.

Each element in the table is the average perfor-

mance difference between EI-MUMDA and RUMDA,

i.e., FCMF (EI-MUMDA)−FCMF (RUMDA), over 50

runs. Fig. 10 shows the FCMF value of EI-MUMDA
under the environments with different τ and ρ. In the

experiments, the population size Npop was set to 100

and the noise rate pn was set to 0.01.

From Fig. 10, it can be seen that the slower the

environment changes (i.e., the larger the value of τ),

the better EI-MUMDA can track the optimum dynam-

ically. This is because a slowly changing environment

involves a long static period between every two changes.
Hence, EI-MUMDA can perform a better search dur-

ing the static period and a memory element can be

correctly selected according to the new environment.

As shown in Table 3, in the environments with cyclic

characteristic (i.e., cyclic and cyclic with noise), the ad-

vantage of EI-MUMDA is more significant while the

value of τ decreases. This means that EI-MMS enhances
the algorithm to track the optimum more effectively in

comparison with the restart scheme, especially in fast

changing environments. For random environments, EI-
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Table 3 The average difference of the FCMF values between
EI-MUMDA and RUMDA over 50 runs in three types of envi-
ronments with different τ and ρ

Cyclic environment

ρ ⇒ 0.1 0.2 0.5 1.0

τ = 200 30.55 30.29 28.88 29.94
τ = 500 23.26 22.53 22.86 22.98
τ = 1000 12.96 12.37 13.15 13.17
τ = 2000 16.15 5.67 6.21 6.27

Cyclic environment with noise

ρ ⇒ 0.1 0.2 0.5 1.0

τ = 200 23.00 20.44 20.95 21.65
τ = 500 20.61 17.99 20.86 22.07
τ = 1000 11.28 8.92 12.33 12.83
τ = 2000 5.21 3.71 5.99 6.09

Random environment

ρ ⇒ 0.1 0.2 0.5 1.0

τ = 200 4.26 -0.06 -1.85 29.76

τ = 500 12.73 2.59 -5.78 23.01
τ = 1000 9.67 2.86 -8.94 13.19
τ = 2000 4.73 1.66 -7.07 6.27

MUMDA still outperforms RUMDA in general but is

defeated when ρ is 0.5. The reason lies in that the envi-

ronment with ρ = 0.5 is the most difficult to identify. If

the algorithm can not correctly select a suitable mem-
ory element to retrieve, the new population sampled

from it may miss the possible optimum.

In other words, the inaccurate environment iden-

tification may misguide the search in the new envi-

ronment. This can also be demonstrated by Fig. 10(c)
where EI-MUMDA performs the worst when the en-

vironmental dynamics parameter ρ is 0.5. When ρ is

less or more than 0.5, the difficulty for environment

identification is less. Extremely, when the environment
changes completely every time, i.e., ρ = 1.0, the algo-

rithm works well in a cyclic environment of two com-

plementary states.

(2) Effect of the noise rate pn

Secondly, we analyze how the noise rate pn affects

the performance of EI-MUMDA in dynamic environ-
ments. The parameters Npop and τ were set to 100 and

1000 respectively in the following experiments. Fig. 11

shows FCMF (EI-MUMDA) in the dynamic environ-

ments with different pn and ρ. Table 4 gives the com-

parison results between EI-MUMDA and RUMDA.

From Fig. 11, it can be observed that the perfor-
mance of EI-MUMDA becomes better while the noise

rate goes down. This reveals that noise is harmful for

the algorithm. This is because noise makes the environ-

ment unable to return its previous base state exactly
and hence no memory element can match a new envi-

ronment exactly. In the XOR DOP generator [22,23],

for a cyclic with noise environment, before the problem
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Fig. 10 The FCMF value of EI-MUMDA over 50 runs in three
types of environments with different τ and ρ.

moves to a next environment, noise is added to an ini-

tial XORing mask that represents the base state of the

new environment. This weakens the cyclic characteris-

tic of the dynamic environment and hence is not good
for the EI-MMS. Therefore, the larger the noise rate,

the less likely that a memory element matches a new

environment.
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Fig. 11 The FCMF value of EI-MUMDA over 50 runs in cyclic
environments with noise with different pn and ρ.

Table 4 The average difference of FCMF values between EI-
MUMDA and RUMDA over 50 runs in cyclic environments with
noise with different pn and ρ

ρ ⇒ 0.1 0.2 0.5 1.0

pn = 0.01 11.25 8.71 12.32 12.80
pn = 0.02 10.59 7.77 11.92 12.19
pn = 0.05 8.64 5.70 9.21 9.43
pn = 0.1 5.65 2.34 3.83 3.89

Observing the plots in Fig. 11 regarding ρ = 0.1,

0.5, and 1.0, EI-MUMDA performs better when the en-
vironmental change severity increases. The main reason

is that the environmental change severity can offset the

harmful effect caused by noise. Suppose the k-th mem-

ory element is relevant to the new environment and
its evaluation value should be the highest one. When

ρ is large enough or pn is relatively small, the fluctu-

ation of the evaluation of the elements caused by the

noise is slight in relative to the severity of environmen-

tal changes. Such slight fluctuation can not affect the
environment identification result much. This is demon-

strated in Fig. 12(a), where the current evaluation val-

ues (dash line) of the elements are around the values ac-

cording to the initial XORing mask (solid line). When
ρ1 is large enough in relative to pn, the evaluation value

of the proper element is still significantly higher than

others and a correct environment identification can still

be made.

However, when the environmental change severity

is not large enough, the harmful influence caused by
noise may not be effectively offset. In this condition,

a larger environmental change severity makes the al-

gorithm perform even worse. This is shown in Fig. 11

where the performance decreases when ρ changes from
0.1 to 0.2. This can be explained by Fig. 12(b), when

ρ2 is not large enough, the proper element is confused

with other elements due to the evaluation fluctuation.

Memory elememts

Memory elememts

(a)

(b)

1 

2 2 

M(k+1)M(k)M(k-1)

Evaluation value according 

to the initial XORing mask.

Current

evaluation value.

M(k-1) M(k) M(k+1)

1 

The most suitable 

element.

Fig. 12 Illustration of how ρ and pn affect the environment iden-
tification: (a) ρ1 is relatively large enough to offset the noise, (b)
ρ2 is not relatively large enough to offset the noise.

If the memory element can not be selected correctly,

a larger environmental change severity means a larger
gap between the optimum and the sampled population.

Besides, it can be seen from Table 4 that the ad-

vantage of EI-MUMDA over RUMDA decreases while
the environmental noise rate rises. This reveals the fact

that EI-MUMDA is more sensitive to the environmen-

tal noise than RUMDA. Nevertheless, EI-MUMDA still

outperforms RUMDA in all situations. That is, the EI-
MMS still effectively enhances EI-MUMDA to react to

environmental changes.

(3) Effect of the population size

This set of experiments was performed to analyze

the sensitivity of the effect of the population size to the

performance of EI-MUMDA. The environmental dy-
namics parameters were set as follows: τ = 1000 and

pn = 0.01.

Fig. 13 shows that in most situations EI-MUMDA

performs worse when its population size increases. This

is because a larger population size means more fitness

evaluations in each generation. Therefore, within the

same number of fitness evaluations, a smaller popu-
lation will evolve more generations and the probabil-

ity model will be refined more times. This enables the

EI-MMS to draw a better memory element from the

corresponding environment and react to environmental
changes better.

Table 5 shows the comparison between EI-MUMDA

and RUMDA. It can be seen that, in most situations,
the advantage of EI-MUMDA over RUMDA becomes

more significant while the population size rises. This

means that the effect of EI-MMS is important for the
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Fig. 13 The FCMF value of EI-MUMDA over 50 runs in three
types of environments with different Npop and ρ.

algorithm to react to the changing environment. When

the computational burden for evolving the population

is heavy, the EI-MMS is more effective than the restart
method to help the algorithm track the changing opti-

mum.

(4) Effect of the memory size

Finally, we investigate how the memory size af-

fects the performance of EI-MEDA. The following ex-

Table 5 The average difference of FCMF values between EI-
MUMDA and RUMDA over 50 runs in three types of environ-
ments with different Npop and ρ

Cyclic environment

ρ ⇒ 0.1 0.2 0.5 1.0

Npop = 20 5.15 4.57 6.34 6.42
Npop = 50 7.21 5.86 7.80 7.93
Npop = 100 13.08 12.52 12.91 13.14
Npop = 200 22.17 21.89 21.50 21.58

Cyclic environment with noise

ρ ⇒ 0.1 0.2 0.5 1.0

Npop = 20 4.79 3.01 5.77 6.10
Npop = 50 6.07 3.73 7.40 7.64
Npop = 100 11.40 8.69 12.28 12.84
Npop = 200 19.90 17.96 18.99 20.83

Random environment

ρ ⇒ 0.1 0.2 0.5 1.0

Npop = 20 4.67 2.32 -3.53 6.39
Npop = 50 5.77 1.89 -7.87 7.98
Npop = 100 9.63 2.89 -8.94 13.16
Npop = 200 12.99 3.18 -6.17 21.56

periments were carried out to test the performance

of EI-MUMDA with different memory sizes m ∈
{5, 10, 20, 40}. Some other parameters were set as fol-

lows: τ = 1000, ρ = 0.1, pn = 0.01, and Npop = 100.

Fig. 14 shows the performance of EI-MUMDA with

different memory sizes in different environments on the

three DDUFs. It can be seen that in cyclic environ-
ments, when the memory size m ≤ 20, the performance

of EI-MUMDA improves as the value of m increases.

However, when m > 20 (i.e., m = 40), the performance

of EI-MUMDA does not change significantly. This is be-
cause in this experiment, there are 20 (i.e., 2/ρ) inter-

mediate binary templates in the bitwise XOR DOP gen-

erator, which means that the environment re-cycles af-

ter it changes 20 times. Therefore, the algorithm needs

at most 20 memory elements to store the probability
models obtained in each environment. The redundant

memory elements when m = 40 can not significantly

enhance the performance any more.

For the cyclic with noise environment, if pn is large
or the environmental change severity is small, the mem-

ory elements may be close to each other. As a result,

the environment identification method can not work

properly. For example, from Fig. 14 it can be seen that

when the environment is cyclic with noise, the mem-
ory size seems not a sensitive parameter to affect the

performance of EI-MUMDA. In a similar way, a ran-

domly changing environment may also weaken the pos-

itive effect of memory. Therefore, it can be seen from
Fig. 14 that when the environment changes randomly,

the memory size does not affect the performance of EI-

MUMDA significantly.
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Fig. 14 The FCMF value of EI-MUMDA with different memory
sizes over 50 runs in different environments on (a) DDUF1, (b)
DDUF2, and (c) DDUF3.

In summary, several conclusions can be drawn from

the above experiments on the sensitivity analysis of pa-

rameters: (1) A slowly changing environment is good

for EI-MEDA to track the moving optimum; (2) Noise

is a negative factor for EI-MEDA and the severity of the
environmental changes can offset this factor to some de-

gree. If noise can be effectively offset, a severely chang-

ing environment is good for the environment identifica-

tion; otherwise, a large environmental change severity
may make the situation worse. (3) A large population

needs more computational effort to evolve and this de-

grades the performance of EI-MEDA. Nevertheless, the

EI-MMS helps an EDA track dynamic optimum more

effectively than the restart method. (4) If the environ-

ment is easy to identify and the memory size is smaller

than 2/ρ, a large memory size is positive to enhance

the performance of EI-MEDA; otherwise, the memory
size may not affect the performance of EI-MEDA sig-

nificantly.

5 Conclusions

In this paper, an environment identification based

memory management scheme (EI-MMS) is proposed

to enhance the performance of binary-coded estima-

tion of distribution algorithms (EDAs) for dynamic op-
timization problems (DOPs). In EDAs with the EI-

MMS (i.e., EI-MEDA), probability models are taken

as memory elements due to their ability to character-

ize each environment. When the environment changes,

the probability model generated in the previous gener-
ation is stored. Then, a suitable element in the mem-

ory is used to generate the initial population that may

be near the possible optimum in the new environment.

In order to retrieve a suitable memory element which
matches a new environment, an environment identifica-

tion method which combines the sample averaging and

best individual schemes is proposed in the EI-MMS.

Since the diversity of conventional EDAs will loss grad-

ually during the learning and sampling processes of
the probability models, an effective diversity compen-

sation method which combines the loss correction and

boundary correction schemes is also introduced into EI-

MEDA to further enhance its performance in dynamic
environments.

In order to test the validity of the EI-MMS, several

groups of experiments have been carried out based on

three dynamic decomposable unitation-based functions

(DDUFs) in three types of environments. The experi-
mental results show that the EI-MMS is valid to im-

prove the performance of EDAs for DOPs and that EI-

MEDA is suitable for any binary EDAs to track mov-

ing optimum, especially in the environments with cyclic
characteristics (i.e., cyclic environments and cyclic en-

vironments with noise). In the experiments, EI-MEDA

is also applied to the univariate marginal distribution

algorithm (UMDA) and the results show its advan-

tage over other three peer algorithms, i.e., the mem-
ory enhanced population-based incremental learning al-

gorithm (MPBIL) [14], MPBIL with two populations

and restart scheme (MPBIL2r) [20], and random im-

migrants GA (RIGA) [3], on most cases. In order to
understand the proposed method more deeply, the sen-

sitivity analysis on how the key parameters (such as

the environmental change speed and severity, the noise
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rate in cyclic environments, the population size, and

the memory size) affect the performance of EI-MEDA

has also been carried out in this paper.

Generally speaking, the experimental results indi-

cate that the proposed EI-MMS is efficient in enhancing
the performance of EDAs for DOPs and the correspond-

ing EI-MEDAs are good choices for DOPs.
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